
Online Testing of Service-Oriented Architectures
to detect State-based Faults

Michaela Greiler
supervised by Hans-Gerhard Gross and Arie van Deursen

Delft University of Technology, Delft, The Netherlands,
{m.s.greiler|h.g.gross|arie.vanDeursen}@tudelft.nl

Abstract. Service-oriented architectures have found their way into in-
dustry to enable better business-to-business cooperations. With this soft-
ware architecture new challenges for software development and testing
appeared. In this proposal we discuss the problem of testing these com-
plex, and distributed systems in dedicated test environments. We argue
that state and configuration of the production system can influence sys-
tem behavior in an unexpected way, and that test environments do not
reflect the final system adequately. Therefore we propose the develop-
ment of an online testing method to detect state-based faults, and discuss
related research challenges and solutions.

1 Introduction

A service-oriented architecture (SOA) is a software architecture that aims at
reusability and interoperability by exposing functionality as loosely coupled ser-
vices, that can be composed to form business processes. Testing such systems
is aggravated by stakeholder separation: third party services are black-boxes
for integration testers, and influence in their evolution and maintenance is not
permitted. Dynamic features, like ultra-late binding or dynamic composition of
services, allow a flexible and dynamic way of composing a concrete system just
at runtime, but restrict the ability to test a priori. The context in which a service
will be used is often unknown at the service’s development time, imposing prob-
lems for service testers to predict and foresee possible requirements and usage
scenarios. The limited testability of service-oriented systems imposes the need
of reconsidering and redesigning traditional, and inventing new testing methods
and processes, as mentioned in [5, 7, 9, 10].

On the other hand, high availability requirements force business critical sys-
tems to be continuously available, and direct them to evolve at runtime as new
requirements come up. The system cannot be shutdown for the deployment pro-
cess, and erroneous behavior due to software reconfiguration has to be detected
while the system is operational, i.e. online. State comprises in our context in-
formation about previous executions, the concrete set of installed and active
programs, as well as history of preceding configuration activities.

This proposal suggests the development of a method to identify state-based
faults in online reconfiguration of service-oriented systems. Reconfiguration in-
cludes evolution of business processes, services, business logic and changes in the
execution environments.

The proposal is structured as following: First, related work on SOA testing
is summarized. Section 3 states the problem and formulates the research hy-
pothesis. The related research challenges and possible solutions are discussed
subsequently. The research plan is outlined in Section 5, followed by the evalu-
ation plan in Section 6. The expected outcomes are exposed in Section 7.

2 Related Work

Influenced by the need of new testing methods and techniques for SOA, many
approaches on unit testing of atomic or composite services, integration and in-
teroperability, as well as regression testing can be found in literature [6]. We are
focusing especially on related work concerning integration and online testing.

Bucchiarone et al. discuss in [4] integration testing and mention especially
the lack of control of integrated services e.g., to access the service code or to put
a service in test mode, and the lack of information of integrated services e.g., to
generate stubs, as difficulties for effective testing. Tsai et al. [12] introduce the
Coyote framework that allows to specify and execute test scenarios and cases.

Research in service-oriented testing has also looked at the field of online
testing, such as by Bertolino et al. for interoperability testing [1, 2]. The prob-
lem of online testability is only briefly mentioned, with the remark that test
invocations should be directed to stubs or proxies. How services can provide
runtime-testability has been addressed by Brenner et al. [3]. An architecture for
online testing of component-based software has been outlined in [8].

Tsai et al. propose in [11] several testability evaluation criteria for test sup-
port of service-oriented architectures. Especially service integration testability,
including service composition, runtime service re-composition, service controller
and adaptive controller testability evaluation criteria are of matter for the design
of a SOA integration testing framework.

All approaches abstract from the complex and heterogeneous environments
the services are operated in, and do not mention their influence on systems’
behavior.

3 Problem Statement and Research Hypothesis

Testing of SOA systems means testing of organization-spanning systems-of-
systems. Setting up an accurate test environment, that represents the final en-
vironments of all involved parties in which services are used is in most cases
unfeasible. Many parts of third parties have to be stubbed or mocked, even if
there is a lack in provided information. Different and heterogeneous execution
environments and their configuration have to be recreated, whereas a clean initial

system state still does not reflect the production environment. Beside resource
limitations, also time restrictions hinder adequate set-ups.

Complete recreation of the execution environments and their configuration
for the test environments involves high costs, and even if done carefully, is often
not accurate, leading to the risk that even tested software fails during online
integration in the production environment.

We want to determine how the state of the services, of the business logic
located behind and of the execution environments can influence the system be-
havior in an unexpected way. Our testing focuses on finding faults that deal with
incorrect state transitions of the configuration of the connected services.

To conclude, state-based faults cannot easily be revealed during testing of
complex, large, distributed SOA systems in dedicated test environments. A
method for identifying state-based faults during online reconfiguration of service-
oriented architectures is needed.

On account of this the research hypothesis is: “Online testing is an effective
strategy for detecting state-based faults in service-oriented systems.”

4 Research Challenges and Proposed Solutions

An efficient online testing method to detect reconfiguration faults has to address
following challenges.

What are typical reconfiguration faults in SOAs, and which state and configura-
tion produce those, even if software and services have been offline tested?

The main challenge is to determine which state and configuration data influ-
ence program execution in a SOA environment. This has to be narrowed down
by the question: “Which information is often left out in the set-up of test envi-
ronments?”.

To define possible faults it has to be clear how reconfigurations of service-
centric systems are propagated to local and remote systems. Possible faults have
to be partitioned in those that can easily be detected during offline testing,
and those that cannot. Latter faults have to be subdivided again, based on the
question: “Which errors are already handled by the middleware, and which have
to be handled by services and systems themselves?”

Regarding state and configuration, security and authentication policies are
often not known or accurately implemented in a test environment. Many errors,
like service unavailability and deployment errors, will be detected and partly
solved by the middleware. During composition, and service execution, typical
integration faults, like interface, data format, and communication protocol mis-
matches are to be expected. Further, dependency errors caused by evolution of
parts of the system can occur, especially if some of the services and systems
involved are stubbed or mocked in the test environment. It is important to an-
alyze the impact software evolution has on the existing systems, either local or
remote, and which layers of a SOA are affected. This can reach from changes in
the business process layer, to the business logic layer and also to changes in the
execution environment. Changes in the backend of a service, be it the business

logic or the configuration of the execution environment, can have rippling effects
on local or even remote systems. These changes can be for instance, policies,
new installed software, changes of database schema or changes of the database
management system. Such modifications can cause service level agreement viola-
tions, because the network load increases, the new database management system
responses slower, or access is now denied.

How should an effective online testing framework for SOA integration and system
testing be designed, and what are the requirements for such a framework?

Challenging during design and development of an online testing method, are
test isolation, performance, and application enhancement effort. If a system’s
behavior is assessed online, it has to be guaranteed that testing is isolated from
the production system, and no unintended side effects appear. Test execution
can only take place if no performance decreases or even unavailability of service
are experienced. Enhancement costs for applying online testability mechanisms
have to correspond to the positive impact accompanied with them. This implies
that the tradeoff of online testing is corporeal. But how can the effectiveness of
an online testing method be assessed and measured? Evaluation could be based
on the capability of online testing to reveal faults in contrast to offline testing.

Information regarding the state of execution environments and infrastruc-
tures (e.g. application server, messaging bus, etc.) should support online testing
to reveal faults. “But what is an accessible and uniformed way to provide state
information to testing entities?”

Monitoring capabilities can be used to notify about reconfiguration changes
in the system. An observer service, installed on each server involved in the SOA
environment, could provide access to this information to interested and authen-
ticated testing entities.

How can test cases, oracles, and system models be derived or generated?
In many SOA environments, abstract business models, business process mod-

els or UML documents, as well as service descriptions are present. Those repre-
sent a good foundation to derive system models, test scenarios and cases.

One technique would consider the running system to be correct and use it
as test oracle. The new, adapted version of the system is tested, and the test
output is compared with the output of the old, stable system. Capture and replay
techniques can help to increase observability, and controllability of the testing
process, because old input and output sequences are recorded and reused ad
libitum.

5 Research Plan

To address the first research challenge, asking what are typical reconfiguration
faults in SOA-based systems, we have implemented an online testing method
providing test isolation in a case study. We could gain a first insight in state-based
faults, mainly caused by missing required packages, or wrong class bindings. To
develop a method for identifying state-based faults in online reconfiguration,

we have to understand better which state and configurations are relevant in
SOA systems, and how these influence the testing effectiveness and accuracy.
In the coming year, we plan to set up a SOA laboratory in order to examine
configuration and state information significant during system reconfiguration.
Based on the results we want to develop a fault taxonomy for faults caused by
evolutions in distributed, heterogeneous runtime environments.

In the next year, our online testing method has to be enhanced to identify
these faults, and to be applicable in industrial SOA environments (e.g., IBM
product suite).

Subsequently, we will explore capabilities to reduce the application enhance-
ment effort. This will include automatic generation of test cases, and of testabil-
ity artifacts allowing runtime service assessment. With this outcome, the online
testing method will be extended to an open source online testing framework,
providing support for test generation and execution.

Throughout the research, the outcomes will be evaluated based on industrial
case studies.

6 Evaluation Plan

The SOA laboratory is a network of distributed servers, on which services, in-
stalled on different execution environments, form actual applications, inspired
by industry. Communication is handled by a centralized service registry and bus.

This laboratory will be used to conduct representative case studies, following
Yin [13], to evaluate our online testing method. Update scenarios of different
parts of the system will function to determine the accuracy of the test environ-
ment to prevent failures, and the fault finding capabilities of our method.

In collaboration with our industrial partner, we also want to assess the effort
to prepare an application, with support of our framework, for online testing.
For that, we will measure, for example, the required time and the number of
necessary changes in the existing system. A comparison of effort and fault finding
capabilities should indicate if online testing has a positive tradeoff.

7 Expected Outcomes

The resulting contributions of the doctoral studies include:

1. A new approach for online testing to detect state-based faults.
2. A series of fault models classifying faults that appear especially in the pro-

duction environments.
3. Empirical evidence concerning the effectiveness of the proposed approach.
4. An open source tool for online test support, including generation and exe-

cution of test cases.

Our results should corroborate the hypothesis by indicating the effectiveness
of online testing to detect state-based faults during system reconfiguration.

References

1. A. Bertolino, L. Frantzen, A. Polini, and J. Tretmans. Audition of web services
for testing conformance to open specified protocols. In Architecting Systems with
Trustworthy Components, pages 1–25. Springer, 2006.

2. Antonia Bertolino, Guglielmo Angelis, Lars Frantzen, and Andrea Polini. The
plastic framework and tools for testing service-oriented applications. pages 106 –
139, Berlin, Heidelberg, 2009. Springer-Verlag.

3. Daniel Brenner, Colin Atkinson, Oliver Hummel, and Dietmar Stoll. Strategies for
the run-time testing of third party web services. In SOCA ’07: Proceedings of the
IEEE International Conference on Service-Oriented Computing and Applications,
pages 114–121, Washington, DC, USA, 2007. IEEE Computer Society.

4. A. Bucchiarone, H. Melgratti, S. Gnesi, and R. Bruni. Testing service composition.
In Proceedings of the 8th Argentine Symposium on Software Engineering (ASSE’07)
Mar del Plata, Argentina, pages 29–31, August 2007.

5. Gerardo Canfora and Massimiliano Di Penta. Testing services and service-centric
systems: Challenges and opportunities. IT Professional, 8(2):10–17, 2006.

6. Gerardo Canfora and Massimiliano Penta. Service-oriented architectures testing:
A survey. pages 78–105, 2009.

7. Schahram Dustdar and Stephan Haslinger. Testing of service-oriented architectures
a practical approach. In Object-Oriented and Internet-Based Technologies, 2004.

8. Alberto González, Éric Piel, and Hans-Gerhard Gross. Architecture support for
runtime integration and verification of component-based systems of systems. In 1st
International Workshop on Automated Engineering of Autonomous and run-time
evolving Systems (ARAMIS 2008), pages 41–48, L’Aquila, Italy, September 2008.
IEEE Computer Society.

9. Michaela Greiler, Hans-Gerhard Gross, and Khalid Adam Nasr. Runtime integra-
tion and testing for highly dynamic service oriented ICT solutions – an industry
challenges report. In TAIC-PART ’09: Proceedings of the Testing: Academic & In-
dustrial Conference on Practice And Research Techniques, pages 51–55, Windsor,
UK, 2009. IEEE.

10. Michael P. Papazoglou, Paolo Traverso, Schahram Dustdar, and Frank Leymann.
Service-oriented computing: State of the art and research challenges. Computer,
40(11):38–45, 2007.

11. W. T. Tsai, Jerry Gao, Xiao Wei, and Yinong Chen. Testability of software in
service-oriented architecture. In COMPSAC ’06: Proceedings of the 30th An-
nual International Computer Software and Applications Conference, pages 163–
170, Washington, DC, USA, 2006. IEEE Computer Society.

12. W. T. Tsai, Ray Paul, Weiwei Song, and Zhibin Cao. Coyote: An xml-based frame-
work for web services testing. In HASE ’02: Proceedings of the 7th IEEE Interna-
tional Symposium on High Assurance Systems Engineering, page 173, Washington,
DC, USA, 2002. IEEE Computer Society.

13. R. K. Yin. Case Study Research, Design and Methods. Sage Publications, Beverly
Hills, CA, second edition, 1994.

