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Abstract. The FAST gadget development environment allows users to
graphically compose intelligent, i.e., semantically annotated gadgets from
predefined building blocks and deploy them on various mashup platforms,
thus enabling the interconnection of different systems and services. In an
environment where different parties use different ontologies to describe
such building blocks, ontology matching is crucial. This paper discusses
first steps in our effort to integrate ontology matching in an end-user-
oriented environment such as FAST. We evaluate a number of tools and
approaches for solving different levels of complexity in ontology matching
and define the direction of integrating ontology matching into FAST.
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1 Introduction

FAST (Fast and Advanced Storyboard Tools) [1] is a visual programming plat-
form allowing business users to build enterprise-class mashups, employing various
underlying services and generating new ones. Resources in FAST are described
semantically using different ontologies and vocabularies, and can therefore be
combined to what we can call “intelligent gadgets”. These ontologies come from
different parties, but will sometimes cover the same domain, making ontology
matching necessary. The paper reports on early steps on how to integrate ex-
isting ontology matching approaches into an end-user-targeted tool such as the
FAST platform. The focus of the paper is not on new methods and algorithms
for ontology matching, but rather a survey and application of existing ones to
our use case of ontology-matching for end-users. We will present automated so-
lutions for simple cases as well as identify more problematic cases which require
manual work, in which we want to support the ontology engineer.

In the remainder of this section we give an introduction to the FAST project,
and a brief overview of ontology matching. In Section 2 we detail the require-
ments for ontology matching in the FAST environment. Section 3 describes the
alignment tool used and the rationale behind our choice. In Section 4 we de-
scribe a problem scenario that we want to give a solution for in FAST, which is
the basis of this work, and in Section 5 we present the ontologies used for the
different web services involved in the scenario. Finally, in Section 6 we present
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the testing procedure and the results, based on which we draw the conclusions
in Section 7 and define future directions.

1.1 FAST

The main goal of the FAST Project [1] is to develop a web-based visual program-
ming environment allowing users to build enterprise-class mashups (see Fig. 1
for a screenshot exemplifying the composition of so-called screens to build such
a gadget). The motivation behind FAST is to allow non-technical users to be in-
volved in the development process of software applications based on their ad-hoc
needs. The project employs the paradigm of Enterprise Mashups [2], in which it
employs a user-centric approach.

Fig. 1. Composing an intelligent gadget from screens in FAST

The relevant components of the enterprise mashup paradigm are resources,
gadgets and mashups. Resources, which are in the focus of this paper, represent
all building-blocks of gadgets (such as the screens in Fig. 1). Gadgets provide a
graphical interface and interaction mechanisms abstracting from the complexity
of the underlying backend. Finally, though out of the scope of FAST, end-users
combine and configure the provided gadgets to create mashups.

1.2 Ontology Matching

FAST uses ontologies to conceptualise the underlying resources used by the
different components. Ontologies embody the fundamental vehicle for conceptu-
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alising data on semantic systems; they describe the context and semantic back-
ground of data that should be known to all agents using it [3]. However, different
ontologies are often used to describe the same domain or cover the same sce-
nario. This is also true for FAST, where gadget building blocks can originate
from different providers, who might use different ontologies to describe them.
To ensure interoperability, the task of ontology matching is therefore critical in
FAST.

Given two ontologies O and O′ that need to be mapped to each other, we
adopt the definition given in [4]: an ontology mapping element is a 5-tuple
< id, e, e′, n,R >, where id is a unique identifier, identifying the mapping ele-
ment, e and e′ are entities (formulas, terms, classes, individuals) of the first and
second ontology, respectively, n is a confidence measure holding the correspon-
dence value between e and e′, R is the correspondence relation holding between e
and e′ (e.g., equivalence (=), more general(w) or disjointness(⊥)). The
alignment operation determines the mapping M ′ for a pair of ontologies O and
O′. The alignment process can be extended by parameters, such as an input map-
ping, weights and thresholds and other external resources (dictionaries, thesauri,
etc.). Different levels of mappings are defined:

(a) A level 0 mapping [5] is a set of the above mapping elements, when the
entities are discreet (defined by URIs). E.g., consider the ontology O1 with a class
Person, and another ontology O2 with a class Human. For this case a matching
algorithm could return the mapping element < id11, P erson, Human, 0.67, =>,
meaning that the Person class from the first ontology is found to be equivalent
to the Human class in the second one with a confidence measure of 0.67. (b) A
level 1 mapping is a slight refinement of level 0, replacing pairs of elements
with pairs of sets of elements. (c) A level 2 mapping can be more complex
and defines correspondences in first order logic. It uses the ontology mapping
language described in [6]. It can describe complex correspondences, such as the
one detailed in Section 6.2.

2 Ontology Matching in FAST

The gadget life cycle in FAST has several phases and roles associated, as detailed
in [1]. Here, we list the ones relevant for the ontology matching tasks, in decreas-
ing order of the measure in which knowledge about ontologies is required. Note
that several roles can be played by the same actor. (i) The ontology engineer cre-
ates the ontologies used to annotate services and data. This role also includes the
process of ontology matching, either automated or manually, determining if the
alignment is feasible and creating so-called matching operator building blocks,
which are basic elements of the FAST screen building. The resource developer
then uses these ontologies to annotate resources created in FAST. (ii) Ontol-
ogy matching is needed by the screen developer at the design-time of a screen
(a visual building block of a gadget). Screen developers have a dedicated UI
component for building screens, in which they can use the matching operators
to combine components annotated with different ontologies. No actual match-
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ing needs to be performed in this phase, but rather the possibility of matching
needs to be determined (i.e., can two screens A and B be combined?). (iii) The
gadget developer combines screens to screen-flows and gadgets, and only uses
ontology matching implicitly. (iv) The end-user uses the final deployed gadget
at run-time, but is unaware of the underlying resources and ontologies or the
matching process. Only at run-time the actual mapping of instance data has to
be performed. In this paper, we mainly consider the first two cases (i.e. ontology
engineering and screen development).

3 Alignment Tool

An ontology mapping is a declarative specification of the semantic overlap be-
tween two ontologies [7]. It is the result of the ontology alignment process. This
mapping is represented as a set of axioms in a mapping language. The mapping
process has three main phases: (1) discovering the mapping (alignment phase),
(2) representing the mapping and (3) exploiting the mapping.

To accomplish this we need a tool to assist the ontology engineer in the on-
tology mapping process. Based on the description given in Sect. 2 we identify
the following requirements for an alignment tool, that we will take as the ba-
sis for an ontology matching component in FAST: (i) All three phases of the
process need to be accessible. (ii) Matching of OWL and RDFS ontologies must
be supported in the FAST project. (iii) The tool should be as independent as
possible, performing the alignment process with little or no user interference.
This is an important requirement, since FAST is end-user oriented. (iv) The
tool needs to be open source, allowing it to be integrated into the free and open
FAST platform. (v) The code should be suitable for porting to other languages
(in particular JavaScript), allowing it to be integrated into the FAST gadget
run-time. (vi) It should be well documented.

Based on these requirements, we compared three different tools. MAFRA [8]
supports an interactive and incremental process of ontology mapping. It pro-
vides an explicit notion of semantic bridges. This representation is serialisable,
portable and independent from the mapped languages. The bridges, however,
have been designed to be used within the MAFRA system, and the alignment
process needs to be done through the provided GUI. RDFT [9] is a small lan-
guage originally designed to map between XML and RDF. The results are map-
pings represented in DAML+OIL, that can be executed in a transformation
process. No hints are given to add alignment methods or extending the format
and the tool does not longer seem to be available. Alignment API [5] is the
tool best matching our requirements, satisfying all the desired conditions. It is
still under active development, provides an API and its implementation, is open
source (GPLv2 or above) and written in Java, providing an easy way to embed it
into other programs. Alignment API can be extended by other representations
and matching algorithms, it can be invoked through the command line inter-
face (thus working without user interference) or one of the two available GUI
implementations, or it can be exposed as an HTTP server. The tool allows for
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testing different alignment methods and can generate evaluation results based
on a reference alignment. Alignment API can generate the mapping results in
XSLT, therefore providing an easy way to integrate them into other systems.

4 Scenario Description

In our evaluation scenario, which is taken from the e-commerce domain, a user
needs to build a gadget which combines data from major e-commerce services,
allowing to aggregate item lists from all of them in a combined interface. As
examples in our scenario, we consider the two most popular online shopping
websites1, Amazon and eBay, along with the BestBuy site. The latter is an
interesting case, because it exposes its data in RDF using the GoodRelations
(GR) ontology [10], which has recently gained a lot of popularity. It is therefore
one of the first major e-commerce sites to provide semantic metadata.

Fig. 2. Three gadget components retrieving incompatible data

Figure 2 illustrates our scenario. There are three retrieval components that
wrap the different e-commerce sites and provide data according to three different
ontologies: the GR ontology, the Amazon ontology (A) and the eBay ontology
(E). Another component displays GR items for display to the user, but not A or
E items. If the gadget designer wants to aggregate data from all three services
in the display, there will therefore have to be a mapping present between A and
E on the one hand, and GR on the other.

5 Ontologies

Of the three ontologies used in our evaluation, only GoodRelations is a real-
world, extensive ontology for e-commerce. The other two, i.e., the Amazon and
1 http://alexa.com/topsites/category/Top/Shopping, checked 01/11/2009

http://alexa.com/topsites/category/Top/Shopping
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the eBay ontologies were developed for simulation purposes as simplified versions
of what would be used in the real-life scenarios. They were designed to showcase
particular features of ontology mapping in our scenario.

GoodRelations: This ontology is aimed at annotating so-called “offerings” on
the Web, which can be products or services. The ontology features support for
ranges of units, measurements, currencies, shipping and payments, common busi-
ness functions (sell, lease, repair, etc.) and international standards (ISO 4217
or UNSPSC) and codes (e.g., EAN or UPC) in the field. The main class is
Offering, which represents an announcement by a BusinessEntity to provide
a ProductOrService with a given BusinessFunction. It may be constrained in
terms of eligible business partner, countries, quantities, and other properties. It
is also described by a given PriceSpecification. The super-class for all classes
describing products or service types is ProductOrService. This top-level con-
cept has sub-classes representing actual product instances, product models and
dummy product placeholders. A product is described by its title and description,
manufacturer, make and model, etc.

Amazon Ontology: We have created a small Amazon ontology based on a subset
of the datatypes supported by the web service exposed by Amazon to third-party
agents. The ontology describes Items based on the ItemAttributes description
given in the Amazon Product Advertising API documentation2. The ontology
features three classes for describing a product. Example instance data is given in
List. 1.1. (1) Item represents an Amazon item, defined by a title, a manufacturer,
a product group (DVD, Book, etc.), an international EAN code, an ASIN (unique
Amazon id), an author (for books) and a ListPrice. (2) Company, described by a
legal name, is used for representing the manufacturer of an Item. (3) ListPrice
has two properties: hasCurrencyCode, representing an ISO 4217 currency code
(e.g. GBP or EUR), and hasAmount representing the price in the given currency.� �
: I tem 7590645 a amzn : Item ;

amzn : hasASIN ”B0012YA85A” ;
amzn : hasManu fac tu re r : Manufacturer Canon ;
amzn : hasModel ”XSI Kit ” ;
amzn : h a sP r i c e : P r i c e 7590645 1 ;
amzn : hasProductGroup ” E l e c t r o n i c s ” ;
amzn : h a sT i t l e ”Canon D i g i t a l Rebel XSi [ . . . ] ” .

: Manufacture r Canon a amzn : Company ;
amzn : hasLegalName ”Canon” .

: P r i c e 7590645 1 a amzn : L i s t P r i c e ;
amzn : hasAmount ”575.55” ;
amzn : hasCurrencyCode ”GBP” .� �

Listing 1.1. Simplified Amazon ontology data in N3 notation

eBay Ontology: The eBay ontology was created based on the eBay Shopping
API3 and is supposed to annotate data retrieved through the web service de-
scribed by the API. The ontology features three basic classes, (1) SimpleItem

2 http://docs.amazonwebservices.com/AWSECommerceService/latest/DG/
3 http://developer.ebay.com/DevZone/shopping/docs/CallRef/index.html

http://docs.amazonwebservices.com/AWSECommerceService/latest/DG/
http://developer.ebay.com/DevZone/shopping/docs/CallRef/index.html
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represents an eBay Item, that is sold by a SimpleUser. It is described by a
title, a CurrentPrice (specifying the highest bid, or the selling price of fix-
priced items), primary category name, manufacturer, model, EAN code, item
ID (a unique eBay ID), bid count, end time of bid, country where the item is
located, and a product ID (which supports major international product codes
— this property is from the Finding API). (2) The CurrentPrice features a
hasAmountType property, specifying the currency code, and a hasAmount prop-
erty, which is the amount of money for a price per unit. (3) SimpleUser contains
information about eBay users. Users are described by a user ID, about me URL
and the seller’s positive feedback score. This class will not be used for capturing
information on goods for our scenario, but is an essential component of the eBay
system, which was the reason for its inclusion in the ontology.

6 Testing and Results

We present the approach an ontology engineer has to take to discover and repre-
sent ontology mappings, and a means to exploit them after the they have been
discovered and appropriately represented.

There is a major paradigm difference between the GoodRelations ontology
and the other two ontologies (see Sect. 6.2 for details). After some initial testing,
we concluded that automatic mapping from GR to A/E using the string-based
methods employed by the Alignment API tool was not feasible. Therefore, the
following sections report on automatic mapping for the A–E pair — which are
similar enough to be suitable for level 0 mapping —, and manual mapping for
the GR–A/E pairs.

6.1 Automatic Mapping

For automatic mapping of level 0 mappings, we used a simple string distance-
based algorithm provided by Alignment API [5], which computes the string dis-
tance between the names of the entities to find correspondences between them.
Four methods have been used for computing the distance: (1) equality, which
tests whether the names are identical, (2) Levenshtein distance (number of char-
acter operations needed), (3) SMOA distance (which is a specialised distance for
matching ontology identifiers) and (4) a Wordnet-based [11] distance using the
JWNL library with Wordnet.

The alignment description derived from these methods is given based on a
simple vocabulary, containing a pair of ontologies and a set of correspondences,
which express relations between entities of the two ontologies. We used the level
0 mapping representation for representing simple mappings, which map discrete
entities of the two ontologies. Thus the representation of the correspondences is
given with the five elements described (with the id being optional), as shown
in List. 1.2. Similar mappings were were also used for more complex, manually-
created representations (level 2), as detailed in Sect. 6.2.
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� �
<l e v e l 0 mapp i ng> a a l i g n : C e l l ;

a l i g n : e n t i t y 1 amzn : hasCurrencyCode ;
a l i g n : e n t i t y 2 ebay : hasAmountType ;
a l i g n : measure ”1.0 ”ˆˆ xsd : f l o a t ;
a l i g n : r e l a t i o n ”=” .� �

Listing 1.2. Level 0 mapping element example

Testing Procedure For the Amazon–eBay pair we set up a reference alignment,
against which the results are evaluated. We then ran the matching process for all
for methods: (1) equality, (2) Levenshtein distance with a confidence threshold
of 0.33 (meaning that any correspondence having a smaller confidence measure
will be excluded), (3) SMOA distance with a threshold of 0.5 and (4) Wordnet
distance using a threshold of 0.5. To apply the results, we rendered an XSLT
template to transform an example dataset.

Results The results of automatically aligning the Amazon and eBay ontologies
were quite favourable. As shown in Tab. 1, we captured the four main parameters
used in information retrieval, as described in [12]. These four parameters are
used for evaluating the performance of the alignment methods: (1) Precision,
the fraction of results that are correct — the higher, the better, (2) Recall, the
ratio of the correct results to the total number of correct correspondences —
the higher, the better, (3) Fallout, the fraction of incorrect results - the lower
the better, and (4) F-measure, which measures the overall effectiveness of the
retrieval by a harmonic mean of precision and recall — the higher, the better.

Table 1. Alignment results: Precision, Recall, Fallout and F-Measure

precision recall fallout f-measure

reference 1.00 1.00 0.00 1.00
equality 1.00 0.38 0.00 0.55
SMOA 0.43 0.75 0.57 0.55

Levenshtein 0.40 0.75 0.60 0.52
JWNL 0.67 0.75 0.33 0.71

The first row (reference) shows the reference alignment, which, naturally, has
both perfect precision and recall. We can observe what intuition has predicted,
namely that pure string equality (equality) is far too simple and irrelevant,
by only taking identical labels. By using string distances and giving certain
thresholds (Levenshtein and SMOA), we can see that the results are much less
precise, but have a better recall, since this allows for entities having similar
names to be discovered, at the expense of having quite a few incorrect results
(lower precision); the thresholds allow for low-scored cases to be eliminated,
although this results in the exclusion of some correct correspondences. The last
column (JWNL) contains the results of the Wordnet-enabled method, which
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shows quite an improvement (precision of 0.67 and a recall of 0.75), due to the
lexical analysis, which performs a much more relevant comparison of strings,
giving a high number of correct results. The precision of the JWNL alignment
shows only a tiny drop below the recall value, meaning that the number of
incorrect correspondences discovered is small, and the main source of error is
from the number of correspondences not discovered.

We can deduce that the results provided are satisfactory, even though the
methods used were simple, string-based ones, and the process was completely
automated without any user input. We are therefore confident that through some
user assistance or an initial input alignment the tool can achieve 100% correct
results.

6.2 Manual Mapping

The GoodRelations ontology employs a unique paradigm, different from the
paradigms of Amazon and eBay. In GR everything is centred around an in-
stance of Offering and a graph of other instances attached to it, whereas for
Amazon (and similarly for eBay), the main class is Item, which holds all rele-
vant properties. In principle, Item would correspond to ProductOrService in
GoodRelations, but the properties of the Item class are reflected as properties
of many different classes in GR.

Though the infeasibility of automating this alignment became obvious, we
have represented the alignment in the mapping language supported by the tool,
as a level 2 mapping (described in Sect. 1.2). This mapping description can
later be used by the run-time gadget code. List. 1.3 shows an example mapping
between two properties of the two ontologies, specifying that the relationship is
Equivalence with a certainty degree of 1.0. This fragment does not show, but
assumes the equivalence correspondence between the classes Item and Offering,
which is a trivial level 0 mapping. This mapping specifies the relation

∀v, z; hasEAN(v, z) =⇒ ∃x, y; includesObject(v, x)∧
typeOfGood(x, y) ∧ hasEAN UCC 13(y, z),

meaning that the hasEAN property of v in the Amazon ontology corresponds
to the hasEAN UCC 13 property of the typeOfGood of the includesObject of v in
GoodRelations. The domains and ranges of the properties are inferred, thus it is
deduced, that in Amazon v is of type Item and z is int, and in GoodRelations
v, x, y and z are instances of the classes Offering, TypeAndQuantityNode,
ProductOrService and int, respectively.

Using this representation, complex correspondences can be modelled, using
first order logic constructs.

7 Conclusion

The goal of this paper was to explore ontology matching in an environment
such as the FAST platform, where building blocks described with different on-
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<l e v e l 2 mapp i ng> a a l i g n : C e l l ;

a l i g n : e n t i t y 1 amzn : hasEAN ;
a l i g n : e n t i t y 2

[ a a l i g n : P rope r t y ;
a l i g n : f i r s t g r : i n c l u d e sOb j e c t ;
a l i g n : nex t gr : hasEAN UCC 13 ,

g r : typeOfGood ] ;
a l i g n : measure ”1.0 ”ˆˆ xsd : f l o a t ;
a l i g n : r e l a t i o n ”Equ i va l ence ” .

amzn : hasEAN a a l i g n : P rope r t y .
g r : hasEAN UCC 13 a a l i g n : P rope r t y .
g r : i n c l u d e sOb j e c t a a l i g n : R e l a t i o n .
g r : typeOfGood a a l i g n : R e l a t i o n .� �

Listing 1.3. Fragment of the Amazon–GoodRelations mapping

tologies need to be integrated by end users. To this end, we have identified
which roles in the FAST gadget development lifecycle need to be considered,
and which kinds of ontology matching problems they might face. Based on an
example scenario from the e-commerce domain, which includes real-world on-
tologies such as GoodRelations, we have evaluated different existing algorithms
for level 0 matching problems. A wordnet-based approach for string matching
performed best, giving results suitable for semi-automatic level 0 matching, thus
enabling non-expert end users to perform such tasks in FAST. For more complex
level 2 matching problems, manual definition of matching rules is still necessary.
Additionally, we have evaluated three ontology matching tools based on the re-
quirements given by the FAST platform, and established that the Alignment API
tool suits our needs best. We use Alignment API both for the (semi-)automatic
generation of level 0 matching rules, as well as for the syntactic representation of
manually generated level 2 problems. Based on this format, ontology matching
rules of all levels can be represented and executed in all relevant components of
the FAST architecture.

As future work, we need to evaluate existing or develop new methods to aid
users in complex ontology matching problems (level 2). Additionally, we will
integrate ontology matching into the running FAST platform, and evaluate its
performance and usability there.
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