
Document Content Authoring and
Hybrid Knowledge Bases

Marc Dymetman
Xerox Research Centre Europe

6 chemin de Maupertuis
38240 Meylan

email: marc.dymetman@xrce.xerox.com

Abstract

We present a principled approach to the problem of connecting a controlled document
authoring system with a knowledge base. We start by describingclosed-world authoring
situations, in which the knowledge base is used for constraining the possible documents
and orienting the user’s selections. Then we move toopen-world authoringsituations in
which, additionally, choices made during authoring are echoed back to the knowledge
base. In this way the information implicitly encoded in a document becomes explicit
in the knowledge base and can be re-exploited for simplifying the authoring of new
documents. We show how a Datalog KB is adequate for the closed-world situation, while
a Description Logic KB is better-adapted to the more complex open-world situation. We
stress the strong connections between the later case and current work on hybrid knowlege
bases of the Datalog-DL type. All along, we pay special attention to logically sound
solutions and to decidability issues in the different processes.

1 Introduction

Recently there has been a surge of interest ininteractive natural language generation systems
[12, 14, 4, 16]; such systems rely on a capability of generating a natural language text from
an abstract content representation, but — contrary to traditional NLG systems — this repre-
sentation is only partially available at the beginning of the text production process; it is then
gradually completed by a human author, typically using content-selection menus correlated
with regions of the evolving generated text..

One such system, MDA (Multilingual Document Authoring) [8, 2] is based on a formal
specification — using a variant of Definite Clause Grammars (DCGs) [13] — of what counts
as a valid abstract content representation. The different derivation trees in the grammar cor-
respond to texts with different contents, and at each step of the authoring process the user
is asked to make interactive choices on how to expand the current partial derivation tree one
step further. There are important analogies between this process and the process of authoring
an XML document under the control of a DTD or a Schema, but DCGs are more expressive
in terms of the contextual constraints that can be expressed and also are more adapted to the
production of grammatical text.1

1The grammars used in MDA are typically more “semantically” than “syntactically” oriented, and a choice



In published MDA work, all the knowledge about what constitutes a valid document
is provided in the grammars, with no clear separation between (1) world knowledge (the
fact that a certain pharmaceutical drug contains some molecule makes it dangerous for a
certain patient condition) and (2) constraints about document organization (if a certain drug
is dangerous for a certain condition, then a warning should be generated at a certain place in
the document).

A more principled and modular solution is to leave in the grammar all constraints pertain-
ing to document/textual organization, and to use an external logical theory to express knowl-
edge about the world described by the documents. A document will then be constrained to
have a semantic interpretation that is compatible with the external theory.

In this paper we will:

• Provide aformally precise and computationally tractable modelfor this approach. The
logical theory we will be using will take the form of a Description Logic (DL) knowl-
edge base [6]; Such representations are currently given a lot of attention in the knowl-
edge representation community and in activities around the Semantic Web, and have
recently started to attract attention in the computational linguistics community as well
[9, 17];

• Show how this model can be used not only for constraining the document during the
authoring process, but also to use the document as a source of new knowledge to be
added in a logically sound way to the KB (knowledge acquisition);

• Discuss conditions under which the whole process of authoring isdecidable.

The paper is organized as follows. We first describe a class of situations,closed-world
authoring, in which the flow of information is strictly from the knowledge base to the docu-
ment. The MDA approach is briefly presented, and we show how the document specification
can be interfaced with an “informationally complete” KB, using a Datalog representation [3];
then we present conditions on the specification which guarantee decidability of the closed-
world authoring process, that is, that guarantee that at each authoring step, the selections
presented to the author are “real choices” which will not result in dead-ends at a later stage
of authoring. We then move on toopen-world authoring, in which the flow of information
is bi-directional between the KB and the document. Now we start working with an “infor-
mationally incomplete” KB, using a Description Logic representation, which can be satisfied
in several “possible worlds”; the document being authored has to be compatible with at least
one of these possible worlds. We give conditions on the grammar which guarantee that, as
long as the DL on which the KB is built is intrinsically decidable, then the authoring process
as a whole is also decidable. We stress the strong connections of our approach with current
work on hybrid knowlege bases of the Datalog-DL type [11, 7]. Finally we introduce a notion
of light semantics, which corresponds to a restricted form of semantic interpretation for the
document allowing exchange of information between the document and the knowledge base
and permittingknowledge acquisitionduring the authoring process. In particular the knowl-
edge gained during the authoring of a document can be re-used for simplifying the authoring
of other documents.

between two alternatives for expanding a nonterminal in the grammar tends to correlate with a clear distinction
of meaning in the final text. A given grammar covers a semantically unified class of documents (e.g. employ-
ment offers, drug package leaflets, etc.), in a way analogous to the customized XML DTDs used for technical
documentation.



2 Closed-world authoring

MDA. We start by introducing briefly the MDA framework through a simplified exam-
ple. The focus of this paper is on the document content aspects (as represented by what we
call the abstract content tree) and not on the textual realization aspects, which are handled in
a simplistic way here (see [8, 2] for details on MDA).

Grammar G1:

dfa1: dfa(D,F,A)→ “the drug”, drug(D), “has the form”,
dform(D,F), “and is administered by”,
dadm(D,A).

dform1: dform(D,F)→ form(F), & df(D,F).
dadm1: dadm(D,A)→ admin(A), comments(D,A).
dadm1: dadm(D,A)→ admin(A), comments(D,A).
coms1: comments(D,A)→ “ ”, & da(D,A).
coms2: comments(D,A)→ comments(D,A),

“;”, comment(D,A).
com1: comment(D,A)→ “strictly follow instructions”.
com2: comment(diprox,A)→ “take a glass of water”.
diprox: drug(diprox)→ “Diprox”.
xenor: drug(xenor)→ “Xenor”.
burpal: drug(burpal)→ “Burpal”.
tablet: form(tablet)→ “tablet”.
solution: form(solution)→ “solution”.
swallow: admin(swallow)→ “swallowing”.
chew: admin(chew)→ “chewing”.
drink: admin(drink)→ “drinking”.

Auxiliary clauses D1:

df(diprox,tablet).
df(xenor,tablet).
df(burpal,solution).
da(diprox,swallow).
da(xenor,chew).
da(burpal,drink).

The form of grammar G1 is a variant of the DCG format [13]: (1) each of the grammar
clauses is given a unique name (e.g.dfa1); (2) the nonterminals are notated in lowercase
and are parameterized by variable or ground terms; (3) the terminals are enclosed in double
quotes; (4) the auxiliary predicates (a.k.a. Prolog calls, usually enclosed in curly brackets)
appear after the ampersand sign.

Free generation. If we start from the initial nonterminaldfa(D,F,A) and expand it non-
deterministically until we get to terminal strings (so-called free generation mode), we can
obtain (among others) the texts:

(T1) “the drug Diprox has the form tablet and is administered by swallowing”,



(T2)“the drug Xenor has the form tablet and is administered by chewing; strictly follow
instructions”,

but not the text:
“the drug Burpal has the form tablet and is administered by swallowing”.

Authoring. The authoring mode is different from the free generation mode in that it
gives the author the responsibility of choosing expansions for nonterminals rather than enu-
merating all possible expansions nondeterministically. Thus, after all the obligatory expan-
sions fromdfa(D,F,A) (expansions for which there is only one possibility in the grammar)
have been done, the frontier of the derivation tree contains some terminals and the nonter-
minalsdrug(D), form(F), admin(A), comments(D,A), and has to satisfy the constraintdf(D,F).2

At this point the user can freely choose which of these nonterminals to expand next — say
form(F). There are two possible ways to expand this nonterminal: through the clause of name
tablet or through the clause with namesolution, and the system displays to the user a menu
listing these two choices. Assume that the author choosestablet. The nonterminalform(F) is
expanded into the terminal “tablet”, F is unified withtablet, and the process is repeated until
no more nonterminal needs to be expanded.

At the end of this process, the collection of choices that the user has made can be repre-
sented as a tree labeled by names of clauses, for instance:

(AT1) dfa1(diprox, dform1(tablet), dadm1(swallow,coms1))

from which a complete derivation tree can be reconstructed as well as the associated terminal
string, which in this case is seen to be equal to T1.

Such a tree of choices asAT1 will be called anabstract content tree, or simply anabstract
tree. Different abstract trees correspond to different sets of choices of content and also to
different document instances in the class of documents associated with the grammar. It is
then natural to see an abstract tree as a representation of the content of a document relative to
this class of documents.3

Life/death issues There is one important issue that we did not discuss in the explanation
just given, namely how exactly the system determines which choices to propose the user once
he has selected a new nonterminal to be expanded. One possibility is to present him with all
the possible names of clauses which are headed by the nonterminal in question (as was done
for form(F)), but then it is possible that the author makes a choice that will never lead to a
complete valid document.

For instance, let us go back to the point just after the author has chosentablet as the clause
for expandingform(F); at this point the nonterminals on the frontier of the derivation tree
are: drug(D), admin(A), comments(D,A), with the constraintdf(D,tablet) in the background.
Suppose the author next chooses to expandadmin(A); if the system was working in a naive
fashion, it would then display the choicesswallow, chew, anddrink. However it is easy to see
thatdrink is in fact ruled out as a choice: any complete document would eventually have to

2What we call frontier here is sometimes called sentential form when speaking about context-free grammars.
3This approach to document content stems from the work of Aarne Ranta on his “Grammatical Framework

(GF)” [15, 16] in which he was inspired by the interactive proof editors in a higher-order typed/functional setting
such as ALF and COQ in which the user attempts to build a proof of a formula through stepwise top-down
refinements of a partial proof. In the present paper the abstract trees can be seen as proofs of an initial goal in a
logic programming setting.



satisfy the constraintsdf(D,tablet) andda(D,drink), but there is no drug in the database which
is compatible with both this form and this administration. We can say that drink is a “dead”
choice in this context.

In order to prevent the author from entering a dead-end, what is really needed is for the
system to foresee such possible clashes and to present to the author only those choices which
may eventually lead to a valid document; in the case at hand, it should present the “live”
choicesswallow andchew.

Remark. When exactly one choice is possible, the system should not even present any
choice to the author, but make the only possible expansion decision on its own: authoring
should be done automatically at that point. In these cases the authoring mode becomes closer
to the classical non-interactive NLG mode, and in the limit, when knowledge-base inferences
force all authoring choices, the two modes converge.

Finitely-parameterized grammars, Datalog, and decidability of life/death In the
current MDA system, the method for determining whether a choice is live or dead is in-
complete. This is due to the fact that the nonterminal parameters can be terms of arbitrary
complexity (built from variables, constantsand functional symbols) and then it is easy to sim-
ulate with a DCG an arbitrary Prolog program.4 Determining whether the initial nonterminal
may lead to a complete valid document is then undecidable in general. It is usually possible
for the grammar writer to exercise some care in designing the grammars so that life/death
problems do not hinder the authoring process in practice, but a principled solution would be
preferable.

In order to tackle this problem, we will be making two fundamental assumptions: (i)
the nonterminal parameters in the grammar clauses — as well as the goal arguments in the
auxiliary program clauses — are variables or constants; (ii) all variables take their value in
the finite set of constants present in the grammar and auxiliary clauses .

Under these assumptions, we are now dealing with a DCG withfinite-domain parameters
both for its grammar and for its auxiliary predicates components. The auxiliary predicate
component is then formally the same as a Datalog database [3], as in our example D1.5

We can then see the authoring model as consisting of two components: a finitely param-
eterized DCG, and a Datalog database.

Now, it is striking that, when working with finite-domain DCGs, not only the auxiliary
predicate component,but also the grammar component, has formal similarities to a Datalog
base: in fact, if one “forgets” in the grammar G1 all the terminal strings, then one obtains a
Datalog program DP1:

DP1:

dfa1: dfa(D,F,A)← drug(D), dform(D,F), dadm(D,A).
dform1: dform(D,F)← form(F), & df(D,F).
dadm1: dadm(D,A)← admin(A), comments(D,A).
coms1: comments(D,A)← & da(D,A).
coms2: comments(D,A)← comments(D,A), comment(D,A).
com1: comment(D,A).

4Even without the use of auxiliary predicates: a pure Prolog program is equivalent to a DCG generating empty
strings.

5The database D1 only contains facts (Datalog’s EDB), but it could also contain recursively defined predicates
(Datalog’s IDB) without impact on the discussion.



com2: comment(diprox,A).
diprox: drug(diprox).
xenor: drug(xenor).
burpal: drug(burpal).
tablet: form(tablet).
solution: form(solution).
swallow: admin(swallow).
chew: admin(chew).
drink: admin(drink).

Deciding the productivity of a parameterized nonterminal in the combination G1+D1 is
thenformally equivalent to proving it as a program goalin the combination DP1+D1 (which
is itself a global Datalog program), and a derivation in G1 has a one-to-one correspondence
to a proof in DP1.

For instance, deciding the productivity of the nonterminaldfa(D,tablet,drink)is equivalent
to proving the goaldfa(D,tablet,drink) in the Datalog program DP1+D1: because no such
proof can be found, the nonterminal is not productive.

Now, the interest of this translation is that provability of a goal in a Datalog program is
not only known to be decidable, but also to be amenable to efficient implementation [1].

Consider the situation discussed before, just after the author has chosen the formtablet,
and at the point where the system needs to present him with a list of choices foradmin(A). At
that point, the system is confronted with the following question: what are the possible values
for A such that the following goal:

drug(D), admin(A), comments(D,A), df(D,tablet)

is satisfiable?
This question can be succinctly represented as the following conjunctive Datalog query:

answer(A)← drug(D), admin(A), comments(D,A), df(D,tablet)

for which a number of optimization techniques exist (see [3, 1]), and which returns as possible
values forA the set{swallow, chew}.6 The advantage for authoring is clear: at each choice
point, the system is capable to return a valid list of choices more efficiently than by applying
more naive techniques. It is also worthy of note that somefundamental issues in authoring
are so closely connected with database query optimization.7 8

6In this case, the set of possible values for the parameterA coincides with the set of possible values for the
names of the expanding clauses foradmin(A). In general it is not the case, but it is simple to add a parameter to
each nonterminal that indexes its (finitely many) possible expanding clauses.

7A DCG is nothing else than a context-free grammar with parameterized nonterminals and a unification mech-
anism between the parameters. Because of the analogy between DTD/Schemas and CFGs, it seems likely that the
same approach could be useful for extending XML-based authoring through the use of finite-domain parameters
and unification.

8The fact that the program DP1 is equivalent to G1as far as nonterminal productivity is concerneddoes not
mean that the two objects are equivalent for authoring purposes. The grammar associates different texts with
different derivations of thesameground nonterminal (for instance, there are an infinite number of texts produced
by comments(diprox,tablet), corresponding to different combinations ofcoms1, coms2, com1, com2.),
whereas the program is of interest to us here not in the different proofs of a given ground goal, but in the fact that
this goal is provable or not. Note that the clause of namecoms2 can be eliminated from the program DP1 without
changing its interpretation (because in order to provecomments(D,A) it requires a proof ofcomments(D,A)),
but making the program non-recursive and therefore simplifying the check for productivity; eliminating the same
clause from G1 would however completely change the meaning of the grammar.



3 Open-world authoring

In an authoring context, some grammatically valid documents will never be authored because
they do not correspond to any possible state of affairs. Typically the grammar specifies a
much larger set of documents than the ones which are actually possible. If this were not the
case, then an author would not have to take the trouble to direct the production process by
making content choices that he alone can make. That is to say, a document which has actu-
ally been authored conveys more meaning than just stating “I am a valid document relative
to the specification”. However, in a closed-world environment as we have been discussing
until now, that additional meaning has no explicit counterpart in the knowledge-base; it is
only represented implicitly in the abstract content tree, in a form which is not perspicuous
and would be difficult to re-use for the authoring of other documents or to share with other
processes.9

In a closed-world context, the KB constraints which are tested during the authoring pro-
cess are completely passive: they are seen purely as validity checks against the knowledge
base.

By contrast, open-world authoring sees the KB constraints not only as checks, but also
as conditions on the world being described. When authoring a document, the author is not
neutrally picking out one of the documents valid relative to the KB, but asserting that the
constraintsdohold of the actual world.

Let us illustrate this idea. We are now viewing the formal specification of valid documents
as consisting, as before, of a grammar of the type previously described (we will take again
the grammar G1), but instead of a Datalog database, we are now using aninformationally
incompletedescription logic knowledge base KB1:

KB1:

TBOX:
TabletDrugs = ∃df.{tablet}
SolutionDrugs = ∃df.{solution}
SwallowDrugs = ∃da.{swallow}
ChewDrugs = ∃da.{chew}
DrinkDrugs = ∃da.{drink}

Drugs = TabletDrugs ] SolutionDrugs
Drugs = SwallowDrugs ] ChewDrugs ] DrinkDrugs

TabletDrugs = SwallowDrugs ] ChewDrugs
SolutionDrugs = DrinkDrugs

ABOX :
df(burpal,solution)
da(burpal,drink)

This knowledge-base is written using a certain number of DL constructors — existen-
tial quantification, concept enumeration, disjoint union (an abbreviation:A = B]C can be

9Note an analogy here with the Semantic Web perspective: tags used in XML documents may convey implicit
semantic information, but in order to make this information sharable, it had better be represented explicitly in
some formal knowledge representation.



replaced by the two constraintsA=BtC and BuC = ⊥, andB]C]D is an abbreviation for
(B]C)]D)10 —, and we are assuming the unique name convention (all named individuals are
different). The constructors which are used place the knowledge base in the classALCO [6].

The TBOX can be glossed in the following way. TheTabletDrugs are those drugsD for
whichdf(D,tablet), theSolutionDrugs those drugs for whichdf(D,solution), ..., theDrinkDrugs
those drugs for whichda(D,drink). The drugs can come in either one of the two forms:tablet
andsolution, and in either one of the three administrationsswallow, chew anddrink. Finally
TabletDrugs are eitherswallow drugs orchew drugs, whereasSolutionDrugs are alwaysdrink
drugs. The ABOX says what we already know about the form and administration of Burpal.

The list of relations in D1 is compatible with KB1: indeed it is easy to see that one can
obtain a model of KB1 by taking the relations of D1 along with the facts:

diprox: TabletDrugs
xenor : TabletDrugs
burpal : SolutionDrugs
diprox: SwallowDrugs
xenor : ChewDrugs
burpal : DrinkDrugs

In a certain sense the TBOX of KB1 can be seen as a conceptual schema for the database
D1, which states certain general relations about the forms and administrations of drugs, or
about the uniqueness of form and administration for a drug, but which does not say how many
drugs there are or what are the properties of these drugs.

Valid abstract trees and incomplete KBs Let us return to our authoring example in
this new context. We now associate grammar G1 with KB1 instead of DB1. We then make
the assumption that all constant parameters appearing in the grammar (diprox, xenor, burpal,
tablet, etc.) are to be considered distinct named individuals for the KB, and that the constraint
relations (da, df) are all unary or binary and correspond to concepts or roles in the KB.

Let’s now look again at the abstract tree AT1:

dfa1(diprox, dform1(tablet), dadm1(swallow,coms1))

This abstract tree is validrelative to G1(it corresponds to a possible complete deriva-
tion) but it is not necessarily valid relative to the combination<G1,KB1>; this notion is
defined in the following way: because the abstract tree uniquely determines the set of rules
which have been used for building the derivation, it also uniquely determines a set of asso-
ciated KB constraints; thus AT1 is associated with the set of constraints:{df(diprox,tablet),
da(diprox,swallow)}.

Now we say that AT1 is valid relative to the combination<G1,KB1> if and only if it
is both valid relative to G1 and if its associated set of constraints is compatible with KB1.
In other words we need to show thatthe addition of the two constraintsdf(diprox,tablet),
da(diprox,swallow) to the ABOX still leads to a satisfiable knowledge base. This can be shown
by exhibiting a model as we did a few paragraphs ago, and therefore AT1 is a valid abstract
tree relative to<G1,KB1>.

10We see disjoint union as purely an abbreviation mechanism here, that is, we suppose that it is actually replaced
through the expansions just defined. An actual constructor for disjoint union could however easily be introduced
in the DL formalism itself.



The informal reasoning by which we just showed the satisfiability of KB1 extended with
the two relations can also be established by a computational proof, due to the decidability of
KB-consistency checking inALCO [5, 10].

Open- vs. closed-world authoring, satisfiability vs. deducibility Note that validity
of an abstract tree in theopen-world authoringcontext involves thesatisfiabilityof a con-
junction of constraints relative to the knowledge base, whereas the notion of validity of an
abstract tree in theclosed-world authoringcontext involves the dual notion ofdeducibility
of a conjunction of constraints relative to the knowledge-base (in the Datalog context, being
true in the minimal Herbrand model is the same as being deducible from the Horn clauses
constituting the base).

Decidability of the authoring process In order to illustrate the process, let’s go back
to the point in the authoring after all obligatory expansions ofdfa(D,F,A) have been made,
where the frontier of the derivation tree isdrug(D), form(F), admin(A), comments(D,A), and
where the user has chosen to expandform(F). There are apparently two possible expansions:
the clauses with namestablet andsolution. Before presenting these choices to the user, the
system must check that they are live, namely, as before, that they may lead to a complete
valid document.

Choosing thetablet expansion leads to the derivation frontierdrug(D), admin(A), com-
ments(D,A) with constraintdf(D,tablet). In order to decide whether the frontier is live, the
system needs to enumerate possible complete derivations of this frontier until it finds one
that is satisfiable relative to KB1 and then return a positive answer, and if it does not find
one, it should return a negative answer. In principle, the enumeration could never stop, but
because of the finite parameter condition on the grammar, the system has only to enumerate
a finite number of trees; this is because if a derivation tree is of the formS(... A1(... A2(...)
...) ...) whereS is a ground instantiation of the initial nonterminal andA1 andA2 are the
sameground instantiation of a nonterminal (“repetitive derivation”), then the satisfiability of
S(... A1(... A2(...) ...) ...) relative to KB1 implies the satisfiability ofS(... A2(...) ...): a
model of the larger derivation tree is again a model of the smaller derivation tree.This means
that when checking life/death we do not ever need to consider a repetitive derivation during
the enumeration of derivations.In particular, because we are dealing with a finite parameter
domain, the derivations that we need to consider have a bounded depth (otherwise we would
necessarily encounter repetitive situations), and the decidability of the process follows.11

In the case of choosingtablet, the abstract tree AT1 is enumerated at some point in the
process, and its satisfiability relative to KB1 can be decidably checked:tablet is then shown
to be a live authoring choice. The same process showssolution to be live.

Now, let’s go to the point where, after having chosentablet, the author decides to select an
expansion foradmin(A). The derivation frontier is thendrug(D), admin(A), comments(D,A),
with the constraintdf(D,tablet), and the apparently possible expansions areswallow, chew,
anddrink. Bothswallow andchew can be seen to be live by a similar reasoning as before. In
the case ofdrink, we have to check whether the sequencedrug(D), comments(D,drink), with
the constraintdf(D,tablet) is live. Let’s choose to expandcomments(D,drink) first. The expan-
sioncoms2 leads to a repetitive situation (comments(D,drink) is abovecomments(D,drink) in
the derivation path.) and is therefore discarded; the expansioncoms1 leads to the frontier

11The same reasoning could be made for proving decidability in the closed-world case, instead of appealing
there to the decidability of Datalog queries.



drug(D), with the constraintsdf(D,tablet) andda(D,drink). However the two constraints can-
not be simultaneously satisfied in KB1; This can be shown by using the satisfiability check
in KB1, but also by the following informal reasoning:df(D,tablet) andda(D,drink) imply that
D is both inTabletDrugs and inDrinkDrugs; by the second fact it is inSolutionDrugs, butSo-
lutionDrugs andTabletDrugs have an empty intersection. Thus all expansions of comments
lead to invalidity; hencedrink is not a live choice.

Open-World authoring and hybrid knowledge bases The process that we have just
described for finding live selection, although decidable, is clearly not optimized. In the case
of closed-world authoring that we discussed at the beginning of this paper, we said that, from
the point of view of detecting life/death situations, a Datalog program such as DP1 could be
used in place of the grammar G1, and that the combination of DP1 + D1 could be treated as a
global Datalog program to which standard database optimization techniques could be applied.
Is there some comparable possibility here? We do not have an answer at this point, but we
will show that there are strong connections between our problem and problems considered
in the field of hybrid Datalog-DL knowledge bases, and that this might provide directions in
which to search for optimization techniques.

In the open-world authoring context that we have been discussing, all life/death issues can
be stated relatively to the combination DP1 + KB1 instead of relatively to the combination
G1 + KB1. Formally, we are now looking for proofs of the predicates of DP1 which are
conditioned on the “acceptability” of combination of constraints relative to the knowledge
base KB1, where we mean here by “acceptability” thesatisfiabilityof this combination of
constraints relative to KB, whereas in the case that we discussed before of the global Datalog
program DP1 + D1, we were concerned with a notion of acceptability asprovability relative
to the database.

As an illustration, the abstract treedfa1(diprox, dform1(tablet) ,
dadm1(swallow, comments1)) can be seen as a proof of the DP1 pred-
icate dfa(D,F,A) which is conditional on the satisfiability of the constraints
df(diprox,tablet) andda(diprox,swallow) relative to KB1.

Now, interestingly, the situation in which a combination of a Datalog program and a
Description Logic knowledge base is considered is strongly reminiscent of work done in the
field of hybrid Datalog-DL knowledge bases [11, 7], however we will see that our approach
and these approaches are kinds of dual to each other.

The hybrid Datalog-DL knowledge bases consider the following problem: if P is a
grounded instance of a predicate of the Datalog component DP of an hybrid knowledge
base<DP,KB>, where KB is the description logic component, then P is considered to be
acceptable (read provable) relative to<DP,KB> if and only if, for any modelof the KB,
there exists a proof of P in the program DP which is conditional on a set of constraints
that are true in the model. A formal proof of the fact that P is acceptable takes the form
of exhibiting a set of proof trees relative to DP such that thedisjunctionof the constraint
combinations associated with each proof tree isdeductiblefrom the knowledge base (indeed,
if such is the case, then in any model of KB, at least one of the proof trees will be condi-
tioned on a combination of constraints true in this model). According to this approach, then,
the goaldfa(burpal,solution,drink) is provable relative to<DP1,KB1>, but the
goaldfa(diprox,tablet,swallow) is not.

According to our definition, however P is considered acceptable (read satisfiable) rel-
ative to<DP,KB> if and only if, there exists a modelof the KB such that there exists a



proof of P in the program DP which is conditional on a set of constraints that are true in
the model. A formal proof of the acceptability of P takes the form of exhibitingoneproof
tree relative to DP such as its associated combination of constraints issatisfiablerelative to
the KB. According to that approach, each of the goalsdfa(burpal,solution,drink)
anddfa(diprox,tablet,swallow) is satisfiable relative to<DP1,KB1>.

The acceptability problem in our approach leads to more local proofs than the one in the
hybrid KB approach (which involve the simultaneous consideration of several proof trees)
and therefore seems simpler. Still, our open-authoring approach and the hybrid KB approach,
while different, have obvious affinities, and it might be hoped that some optimization results
for the hybrid approach could be transferred to our case.

Light semantics and knowledge acquisition Let’s step back and reconsider the ratio-
nale behind open-world authoring. We are considering a situation in which there is an “actual
world” which is not completely known either to the knowledge base or to the author; however
both the KB and the author are supposed to have correct partial knowledge about that world.

The system presents the author with a collection of documents which,from its point of
view, are compatible with whatit knows about the actual world. Among these documents,
the author picks (during the authoring process) one document that,from his point of view, is
compatible with whatheknows about the actual world.

So the author is not passively exploring the space of document considered possible by
the system (although that could certainly be a nonstandard mode of operation if the author
takes a developer’s hat and wants to see what the system believes is possible), but is actively
committing to certain facts about the world.

What are these facts? What the author is producing is an abstract content tree, which
corresponds to acompletely specific choice of expansion rulesfor the nonterminals of the
grammar. This means that the abstract tree completely determines a set of associated ground
KB relations. For instance AT1 determines the set{df(diprox,tablet), da(diprox,swallow)}.
These are the facts that the author asserts to be true in the actual world.

Light semantics. Such facts are aspects of the document content that the document
“exports” to the knowledge base and thereby makes formally explicit. They provide what
we shall call alight semanticsfor the document. In terms of light semantics, if we were
to build a standard logical form for the whole document, for instance for AT1, that logi-
cal form would simply be the conjunction of the associated asserted factsdf(diprox,tablet)
∧da(diprox,swallow). Light semantics does not attempt to model the whole semantics of the
document (for instance, in our example, there is no explicit logical counterpart to the differ-
ent choices for thecomment nonterminal), but focuses instead on modeling those parts of
the document semantics that can be tractably handled both by the knowledge representation
component and by the authoring process.

Knowledge acquisition. Once the author has committed to a document, he has revealed
a certain number of facts that he knows about the actual world and that the KB possibly did
not “know”. These facts (in our example:df(diprox,tablet) andda(diprox,swallow)) can then
be added to the ABOX of the knowledge base, and can be used either for their own sake
(knowledge acquisition) or in order to constrain the authoring of a new document.

So after the authoring of AT1, the ABOX of KB1 becomes:



ABOX :
df(burpal,solution)
da(burpal,drink)
df(diprox,tablet)
da(diprox,swallow)

Suppose now the user authors a new document, first making a selection fordrug(D),
and choosingdiprox. Then the KB “knows” thattablet is the only choice forF and
swallow the only choice forA. Indeed they are possible choices (becausedf(diprox,tablet)
and da(diprox,swallow) are in the ABOX of the KB), but are also theonly choices, for
diprox is now known to be inTabletDrugs and in SwallowDrugs; it can therefore not be
in SolutionDrugs or in ChewDrugs or in DrinkDrugs, which means that none of the facts
df(dirprox,solution), da(diprox,chew) or da(diprox,drink) may hold. After the author’s choice
of diprox, the derivation frontier isform(F), admin(A), comments(diprox,A) with the constraint
df(diprox,F). The author then chooses to expandform(F), and the system notices that the
only live choice istablet, and performs this expansion without asking the user. The fron-
tier is now admin(A), comments(diprox,A), with the constraintdf(diprox,tablet). Now the
user can choose to expandadmin(A), and the only live choice isswallow. At that point
the frontier iscomments(diprox,swallow) with the constraintdf(diprox,tablet). The author
can then make choices forcomments(diprox,swallow) that lead to zero or several instances
of comment(diprox,swallow). At a certain point he will choose the nonrecursive expan-
sion com1, which will lead to an empty frontier, with the constraintsdf(diprox,tablet) and
da(diprox,swallow).

We could obviously suppose here that rather than waiting for the user to point to the
nonterminal he wants to expand next before finding the live choices for this nonterminal,
the system could find all the live choices for all nonterminals on the frontier beforehand,
and do the obligatory expansions without any input from the user, but at a slightly higher
computational cost. In this way, after the initial choice ofdiprox as the drug, the other steps
of the authoring process would be done automatically, apart from the choice of how many
(and which) comments to make, which would still remain the responsibility of the author.

4 Conclusion

In the course of the paper we have defined different notions such aslive-deathissues in au-
thoring processes,closed-worldversusopen-worldauthoring, andlight document semantics.
We have presented a formal approach to closed-world authoring that shows a correspondence
between life-death problems and conjunctive Datalog queries, as well as a formal approach
to open-world document authoring that stresses the strong connections with current work on
hybrid knowlege bases of the Datalog-DL type. We have also sketched proofs of decidability
for life/death issues in these different processes. Finally we have shown how an open-world
authoring context can be used for supporting a novel form of knowledge acquisition.

Acknowledgments

Thanks to Jean-Marc Andréoli, Caroline Brun, Pierre Isabelle, Aaron Kaplan, Aurélien Max
and Sylvain Pogodalla for inspiration and discussions and to the anonymous KRDB-02 re-
viewers for suggestions about improving the presentation.



References

[1] Serge Abiteboul, Richard Hull, and Victor Vianu.Foundations of Databases. Addison-Wesley,
1995.

[2] C. Brun, M. Dymetman, and V. Lux. Document structure and multilingual authoring. InProc. of
First International Natural Language Generation Conference (INLG), 2000.

[3] S. Ceri, G. Gottlob, and L. Tanca.Logic Programming and Databases. Springer-Verlag, 1989.

[4] Jośe Coch and Karine Chevreau. Interactive multilingual generation. In A. Gelbukh, editor,
Computational Linguistics and Intelligent Text Processing, LNCS 2004. Springer, 2001.

[5] Giuseppe De Giacomo.Decidability of Class-Based Knowledge Representation Formalisms.
PhD thesis, Dipartimento di Informatica e Sistemistica, Università di Roma “La Sapienza”, 1995.

[6] Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and Andrea Schaerf. Reasoning in
description logics. In Gerhard Brewka, editor,Principles of Knowledge Representation, pages
191–236. CSLI Publications, Stanford, California, 1996.

[7] Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and Andrea Schaerf. AL-log: Integrat-
ing datalog and description logics.Journal of Intelligent Information Systems, 10(3):227–252,
1998.

[8] Marc Dymetman, Veronika Lux, and Aarne Ranta. XML and multilingual document authoring:
Convergent trends. InProc. Computational Linguistics COLING, 2000.

[9] Malte Gabsdil, Alexander Koller, and Kristina Striegnitz. Building a text adventure on descrip-
tion logic. InProceedings of KI-2001 Workshop on Applications of Description Logics, Vienna,
2001.

[10] Erich Gr̈adel, Martin Otto, and Eric Rosen. Two-variable logic with counting is decidable. In
Proc. of the 12th IEEE Symp. on Logic in Computer Science (LICS’97), pages 306–317. IEEE
Computer Society Press, 1997.

[11] Alon Y. Levy and Marie-Christine Rousset. CARIN: A representation language combining horn
rules and description logics. InEuropean Conference on Artificial Intelligence, pages 323–327,
1996.

[12] Cécile Paris, Keith Vander Linden, Markus Fischer, Anthony Hartley, Lyn Pemberton, Richard
Power, and Donia Scott. A Support Tool for Writing Multilingual Instructions. InProceedings
of the International Joint Conference on Artificial Intelligence (IJCAI) 1995, pages 1398–1404,
Montréal, Canada, 1995.

[13] F. Pereira and D. Warren. Definite clauses for language analysis.Artificial Intelligence, 13:231
– 278, 1980., 1980.

[14] Richard Power and Donia Scott. Multilingual authoring using feedback texts. InCOLING-ACL,
pages 1053–1059, 1998.

[15] Aarne Ranta. Grammatical framework work page, 1999—.
www.cs.chalmers.se/˜aarne/GF/pub/work-index/index.html.

[16] Aarne Ranta. Grammatical Framework: a Type-Theoretical Grammar Formalism, 2002.
http://www.cs.chalmers.se/˜aarne/work/gf-jfp.ps.gz.

[17] K. Striegnitz. Model checking for contextual reasoning in nlg, 2001. ICOS-3. Inference in
Computational Semantics Workshop. Siena.


