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Abstract 
The use of DL systems to add reasoning capabilities to database is now a major trend 

in convergence between knowledge base and database system but is still confronted with 
the issue of data update. DL systems provide fact additions and retractions but no real 
object update mechanisms. We present a semantics for update that favours attribute 
values to concept membership and deals with incomplete information. After relating our 
work to an existing previous one on update semantics we address implementation issues. 

 

1 Introduction 
Knowledge base systems are designed to express complex queries upon highly organised data 
whereas databases are meant to store and retrieve huge amounts of data in an efficient and 
secure way. Merging both approaches aims at combining their respective advantages and has 
been a hot topic for many years. Existing works differ both on database models (relational or 
object-oriented) and on knowledge base models (rule-based, constraint-based…). The current 
trend seems to be towards object orientation and the systematic use of Description Logics. A 
lot of systems implementing DL reasoners exist and, as time passes, they become more and 
more expressive and efficient, making them good candidates for combination with databases. 
Whereas translating schemes from database to DL has already been investigated [Borgida and 
Brachman 93; Bresciani 95], few work deal with updates. Practical DL systems manage a 
single ABox to which one can add or retract assertions. These capacities are very general but 
do not directly lead to database update. In this paper we consider the issue of introducing 
update semantics into a DL system, which is strongly related to view management in 
databases. 
In classical database management, updates are limited to the assignment of values to 
attributes. Assigning “properties” to objects or to attributes is not common to databases 
whereas it is one of the main purposes of knowledge bases. Assigning an interval value to an 
attribute is not considered in databases, even less assigning an object to a view. In 
Description Logics, it is quite common to express properties of the form Object ∈  Concept, 
which we call “concept assignment” in this paper. DL systems are able to check the 
consistency of the new assertion with respect to the previously asserted properties. However, 
these assertions are meant to complete an incompletely known object, not to modify it, 



because assertions provided at a given moment cannot be contradicted by a further one. This 
is different in databases where updates are often meant to contradict existing assertions on 
data. 
Problems may arise when assignment to a concept is performed on an existing object. If the 
new assertion only complements or refines the object, no question arises. Questions arise 
when the new concept contradicts the previous assertions made on the object. Should we 
forget all the previous assertions that contradict the new one? Should we try to find a subset 
of properties compatible with both the old and the new assertions? This kind of questions has 
been considered in knowledge base revision and there is no simple answer that could be 
applied to concept assignment in databases. 
Assigning a concept C to an object o can be interpreted in two ways: 1) if the object o is 
compatible with C, then C’s properties are asserted on o; 2) modify (update) o in such a way 
that it becomes compatible with C. We have chosen the first interpretation, and we 
distinguish between attribute value and concept membership assignments. The former are 
provided by value assignment, e.g., o.age := 18, which assigns the value 18 to o.age, and the 
latter is provided by concept assignment, e.g., o∈ ADULT, that implies the property o.age 
≥18. We impose that an attribute value can be modified only through explicit value 
assignment.  
As in [Katsuno and Mendelzon 91] we consider two types of situations: those where we have 
new information about a world that has not changed (which they call revision), and those 
where the world has changed, that is update. Accordingly, we consider two types of 
transactions: update transactions, which are the standard transactions in databases, and 
completion transactions, which are meant not to update the values of the attributes of the 
objects. A transaction is divided into two parts: the first part deals with elementary updates 
and the second expresses constraints on the objects by means of concept assignment.  
 

First we recall general issues on Description Logics, then we describe our proposition for an 
update semantics and we relate our work to existing one. Finally, we present implementation 
issues. 

2 Description Logics 
Description Logics provide a possible underlying data model for our work. DL languages are 
characterised by their concept constructors; here we focus on the language ALCQI that is 
well adapted to object-oriented models [Calvanese et al. 95]. The motivation for the choice of 
this particular language is that it contains most OO formalisms such as Entity Relationship or 
ODMG. In the Osiris Prototype we use the RACER [Haarslev and Moller 01] system to 
detect incoherent schemes, to check constraints and to classify instances.  

2.1 The TBox 
A TBox (Term Box) is a triplet <C,R,A> where C is a set of concept names, R a set of role 
names and A a set of axioms. Informally, concepts are named sets of objects, roles are binary 
relationships between concepts, and axioms express constraints between concepts and roles. 
Given C and R, complex concepts can be constructed according to Chart 1. Notion of role is 



very similar to those of attribute, an attribute is a role seen from one side. In the following we 
will use both terms. 
An interpretation I is given by a set of entities (objects) ∆I and an interpretation function .I 
which maps each concept from C to a subset of ∆I, and each role from R to a subset of ∆I × 
∆I. Complex concepts are interpreted through .I accordingly to Chart 1. 
Axioms are inclusion constraints between concepts (concepts from C or complex concepts), 
and then a valid interpretation is an interpretation that satisfies every axiom from A, i.e.,  if 
C1⊆ C2 is an axiom from A and I a valid interpretation then C1I⊆ C2 I. 
Intuitively, a Tbox may be safely considered as a Database scheme and an interpretation as a 
possible state for this scheme where there is only complete information. 

2.2 The ABox 
An ABox (Assertion Box) is a finite set of assertions of the following forms: o ∈  C, (o1,o2) 
∈  R, closed(o,R) 
 

Constructor  Syntax Semantics 

Attribute Typing ∀  R.A {x ∈  ∆I | ∀ y ∈  ∆I: (x,y) ∈  RI ⇒ y ∈  AI} 

Intersection U ∩ V UI ∩ VI   
Negation ¬ U {x ∈  ∆I | x ∉  UI} 
Union (U) U ∪  V UI ∪  VI 

(≤ n R C) {x ∈  ∆I | #{y ∈  CI, (x,y) ∈  RI} ≤ n } Qualified 
Cardinality 
Constraints (Q) 

(≥ n R C) {x ∈  ∆I | #{y ∈  CI, (x,y) ∈  RI} ≥ n } 

Inverse Role (I) R-1 {(x,y) | (y,x) ∈  RI} 
Chart 1. Syntax and semantics for the language ALCQI. 

 

The first form of assertions states that the object o belongs to the concept C, the second form 
that o1 and o2 are related through a role R and the third expresses that all the objects linked 
to o through role R are given explicitly by second form axioms in the Abox; it allows to 
distinguish between “Mark and Jack are some of Mike's brothers” and “Mark and Jack are all 
of Mike's brothers”. An ABox can be considered as a database state. ABox reasoning consists 
in determining if a given ABox is consistent with a TBox.  
 

An ABox is said to be complete if all roles are closed for all objects and if for each named 
concept C and each object o either o ∈  C or o ∈  ¬ C. In other words, in a complete ABox 
there is no incomplete information. A complete ABox is equivalent to an interpretation. An 
ABox A is said to be more precise than an ABox B if B ⊆  A (considering A and B as sets of 
axioms). A more precise ABox contains more information. 
An ABox A is valid for a TBox T if and only if there exists a complete ABox I that is more 
precise than A and such that I is equivalent to a valid interpretation for T.  
Therefore, although it is not explicitly mentioned, DL systems naturally deal with incomplete 
information. 



2.3 Instance Classification 
Description Logics systems provide an instance classification mechanism by allowing to ask 
if a given object belongs to a given concept; it is expressed in RACER with the (instance-of? 
o C) command that returns true if the object is proven to belong to C and nil otherwise. 
When dealing with incomplete data, the negation of true is not false; there are three 
possibilities. 
1. o belongs to C can be proven 
2. o belongs to ¬ C can be proven 
3. none of them can be proven 
 

Given an ABox A, instance classification for an object o can be performed by asking the 
following two questions for every concept from C: (instance-of? o C) and 
(instance-of? o ¬C). If none answers true, membership of o to C is unknown.  

3 A model for transaction updates 

3.1 Context 
Specifying an update requires saying what has changed in the world and what has not 
changed. There are often much more unchanged facts than changed ones, so specifying an 
update can need a lot of words. This issue is known as the frame problem [MacCarthy and 
Hayes 69]. We solve this issue by restricting to independence of roles and imposing explicit 
role updates, which is the standard proposition used both in programming languages and in 
databases.  
 

As usual when dealing with state evolution, we assume that a state keeps as many of its 
constituting properties as possible. This is known as the law of inertia [Przymusinski and 
Turner 97]. For example, painting an object does not change its shape.  
We impose that all role updates are explicitly expressed by the user, by means of elementary 
updates. This means that concept assignments does not change the value of the roles. In 
effect, concepts are defined by properties on role values. 

3.2 States 
We consider a countable infinite set of objects O, and a given TBox S=<C,R,A>, also 
referred as the scheme.  
The initial state of a universe is the empty ABox. We consider that there is a discrete time, 
the date is a natural number which indicates how many transactions or completions occurred 
since the initial state. We indicate states by their date, e.g., a state indexed by the date n refers 
the state after n successive transactions/completions occurred starting from the initial state. 
In order to capture information evolution and explain the global semantics, we build, for each 
date, a TBox with concepts, roles and axioms corresponding to S. For each date j we consider 
a TBox S(j) such that: 
� for each r in R and concept c in C there are respectively a role r(j) and a concept c(j) in 

S(j) 
� S(j) contains each axiom from A where a role r (respectively concept c) is replaced by r(j) 

(respectively c(j)) 



Intuitively c(j) represents the state of the concept c ∈  C at the date j.  
 

Example. Let us consider the following initial schema S : 
PERSON ⊆  ∀ friend. PERSON ∩ ∀ cars. CAR 
CAR ⊆  ∀ cars-1. PERSON ∩ ∀ colour. (STRING1∪ STRING2) ∩ (= 1 colour) 
STRING1 ⊆  ¬ STRING2 
BLACK-CAR = CAR ∩ ∀ colour. STRING1 
 

Thus S(j) is the following schema: 
PERSON(j) ⊆  ∀ friend(j). PERSON(j)∩ ∀ cars(j). CAR(j) 
CAR(j) ⊆  ∀ cars-1(j). PERSON(j) ∩ ∀ colour(j). (STRING1(j)∪ STRING2(j)) ∩ (= 1 
colour(j)) 
STRING1(j) ⊆  ¬ STRING2(j) 
BLACK-CAR(j) = CAR(j) ∩ ∀ colour(j). STRING1(j) 
 

A role state at date n, RS(n), is a set of constraints of the following form : 
•  (o1,o2) ∈  role(n) 
•  closed(o, role(n)) 

A membership state at date n, MS(n), is a set of constraints of the following form : 
•  ∈  C(n) 

The idea is to separate role values from concept membership. On one hand, role values are 
explicitly changed and those that are not modified retain their value from state to state (law of 
inertia). On the other hand, concept membership may change according to role value changes. 
The purpose and meaning of this indexation is to describe what was true in a past state and 
collect all the assessed information into one single global state in which reasoning can be 
achieved. If one says : “in 1945, the president was Mr X1” and “in 1973, the president was 
Mr X2”, there is no contradiction. Labelling a fact by the time it is true (or assessed to be 
true) allows to construct a coherent logical state (in fact it depends of the facts but the 
incoherency is not due to the process of modification in itself). We could not find any related 
work using this idea that we believe fundamental for modelling deduction in case of updates.  
 

Given a set of ABox axioms X over the TBox S(n), we define X↑↑↑↑  as the set of axioms from X 
where each occurrence of n is replaced by n+1. 
 

Example. If X = {(o1,o2) ∈  role(n), o1 ∈  c(n)} then X↑  = {(o1,o2) ∈  role(n+1), o1 ∈  
c(n+1)}. 
 

3.3 Elementary updates and completions 
 
An elementary update on a state is one of the following operations expressed through an 
object-oriented syntax: 
1. Adding a relationship between two objects  o1.role.add(o2)  
2. Removing a relationship between two objects  o1.role.remove(o2) 

It is possible only if (o1,o2) ∈  role(n) is an axiom of the state 
3. Modifying an object     o.role := value 



4. Modifying an object     o.role in value  
5. Deleting an object      o.delete 

It is only possible on a state where o is an object  
Here role can be either a member of R or role = r-1 with r in R. 
 

Given an attribute state RS labelled by n and an elementary update u, we define RS◊◊◊◊u as the 
result of the operation u on state RS : 

1. RS◊ o1.role.add(o2) = RS ∪  {(o1,o2) ∈  role(n)} 
2. RS◊ o1.role.remove(o2) = RS - {(o1,o2) ∈  role(n)} 
3. RS◊ o1.role:=value = RS - {(o1,x) ∈  role(n) | “(o1,x) ∈  role(n)” ∈  RS} ∪  {(o1,o2) 

∈  role(n) | o2∈ value} ∪  {closed(o1,role)} 
4. RS◊ o.role in value = RS - {(o1,x) ∈  role(n) | “(o1,x) ∈  role(n)” ∈  RS} ∪  {(o1,o2) 

∈  role(n) | o2∈ value} - {closed(o1,role)} 
5. RS◊ o.delete = RS – {(o,x) ∈  role(n) | “(o,x) ∈  role(n)” ∈  RS} 

 

We say that an elementary update u modifies the role r for an object o iff there exists an 
object x such that “(o,x) ∈  r” ∈  RS and “(o,x) ∈  r” ∉  RS◊u, or “(o,x) ∈  r” ∉  RS and “(o,x) ∈  
r” ∈  RS◊u. 
 

An elementary completion on a state is one of the following operations expressed through an 
object-oriented syntax: 
1. Adding a relationship between two objects  o1.role.add(o2)  
2. Closing an attribute value    o.role.close 
 

Given an attribute state RS labelled by n and an elementary completion c, we define RS◊◊◊◊c as 
the result of operation c on state RS : 

1. RS◊ o1.role.add(o2) = RS ∪  {(o1,o2) ∈  role(n)} 
It is only possible if closed(o1,role) ∉  RS and closed(o2,role-1) ∉  RS 

2. RS◊ o.role.close = RS ∪  {closed(o,role)} 
Remark. Because of inverse attributes, in the case where role = r-1, we re-write “(x,y) ∈  
role(n)” by “(y,x) ∈  r (n)” in all above formulas. 

3.4 Transactions 
A transaction is a sequence of elementary updates {U1, …,Uk} constrained through object 
constraints {C1, …, Cm} that are axioms of the form object∈ concept and that are asserted to 
be true at the end of the transaction.  
 

The global theory for the initial state is the empty set. Now let us consider the recursive case. 
First we have to define the partial theory, PT(n+1), for the state at date n+1 after 
transaction T=<{U1,…,Uk},{C1,…Cm}> executed on state n as the union of : 
� The global theory for state at date n 
� RS(n+1) = (RS(n)↑)◊U1◊ ... ◊Uk 
� {C1, ..., Cm} 
� axioms o.r(n+1) = o.r(n) for objects whose attribute r is not modified 



The partial theory after a transaction is used to check the validity of the transaction: a 
transaction is valid if the partial theory after the transaction is coherent with regards to the 
union of S(0), ..., S(n). The transaction is aborted if it is not valid. 
 

Example. Let us consider the scheme from example 1. The global theory for the initial state 
is {}. First we apply to that state the transaction T1 = <{o1.cars:={o2,o3}, o2.colour = 
black},{o1∈ PERSON, o2∈ CAR, o3∈ CAR, black∈ STRING1}>. 
The partial theory for the state at date 1 is :  

{(o1,o2)∈ cars(1), (o1,o3)∈ cars(1), closed(o1,cars(1)), (o2,black)∈ colour(1), 
closed(o2,colour(1)), o1∈ PERSON(1),o2∈ CAR(1), o3∈ CAR(1), 
black∈ STRING1(1)} 

� It is a coherent set of constraints so the transaction is valid. 
 

In the partial theory we have lost all the concept membership axioms from the state n. In 
order to recover as many of these axioms as possible we define : 
 

PM(n+1) = { X ⊆  MS(n) | X↑  is coherent with PT(n+1)} 
 

Intuitively, an element from PM(n+1) represents a set of concept membership axioms from 
the sate at date n that are still compatible (if asserted to be true at time n+1) with the partial 
theory of the state at date n+1. Elements from PM(n+1) are partially ordered by inclusion. 
PM represents the previous true axioms that could be safely added to the new state and we 
call an element of PM (j) a set of plausible previous membership axioms for state j. We 
consider that for a valid transaction to state i+1, the axioms from the intersection of the 
maximum elements of PM (i+1) are true in the state i+1. This allows recovering axioms on 
objects that have not been modified, and recover membership to unaffected concepts for 
modified objects. This is a criterion of minimal change as in [Fagin et al. 83]. 
 

We systematically classify each object o, i.e., for each named concept C there is either an 
axiom o∈ C or o∈¬ C, or none if neither can be proven. We keep the object membership to 
each named concept for each object. Systematic instance classification is not usual in DL nor 
in DB. The purpose of this feature is the maintenance of persistent views, which is one of the 
aims of the Osiris system [Simonet et al. 94; Roger et al. 01]. This classification is performed 
through the third point of the following definition. 
 

If the partial theory is valid then we can define the global theory, GT(n+1), for the state at 
date n+1 as the union of : 

1. The partial theory for the state n+1 
2. The intersection of all maximal elements from PM(n+1) 
3. For each object o and each concept C, “o∈ C” if it is compatible with the two 

preceding sets of constraints, or “o∈¬ C”, or nothing if none are compatible 
 
Example. In continuation of the preceding example, the global state at date 1 is : 

{(o1,o2)∈ cars(1), (o1,o3)∈ cars(1), closed(o1,cars(1)), (o2,black)∈ colour(1), 
closed(o2,colour(1)), o1∈ PERSON(1),o2∈ CAR(1), o3∈ CAR(1), 
black∈ STRING1(1), o2∈ BLACK-CAR(1)} 



 
Now we apply the transaction T2=<{o2.delete},{ o1∈ PERSON, o3∈ CAR, 
black∈ STRING1}>. This implies the following partial state : 

GT(1) ∪  {(o1,o3)∈ cars(2), closed(o1,cars(2)), o1∈ PERSON(2), o3∈ CAR(2), 
black∈ STRING1(2), o1.friends(2)=o1.friends(1), o3.colour(2)=o3.colour(1),  
o3.cars-1(2) = o3.cars-1(1)} 

� this is a coherent set of axioms so the transaction is valid. The global theory for the state 
at date 2 is : 

GT(1) ∪  {(o1,o3)∈ cars(2), closed(o1,cars(2)), o1∈ PERSON(2), o3∈ CAR(2), 
black∈ STRING1(2), o1.friends(2)=o1.friends(1), o3.colour(2)=o3.colour(1),  
o3.cars-1(2) = o3.cars-1(1)} 

3.5 Completions 
A completion is a sequence of elementary updates {U1, …,Uk} constrained through object 
constraints {C1, …, Cm} that are axioms of the form object∈ concept and that are asserted to 
be true at the end of the transaction.  
 

The partial theory, PT(n+1), for the state at date n+1 after a completion C=<{c1, ..., ck}, 
},{CM1,…CMm}> executed on a state n is the union of : 

1. The global theory for state at date n 
2. RS(n+1) = (RS(n)↑)◊c1◊ ... ◊ck 
3. {CM1, ..., CMm} where each concept C is replaced by C(n+1) 
4. MS(n)↑   
5. axioms o.r(n+1) = o.r(n) for each object o and attribute r such that o.r is not modified 

A completion is valid if the global theory after the completion is coherent. 
The global theory, GT(n+1), for the state at date n+1 after a valid completion C is the 
union of : 

1. the partial theory for the state at date n+1 after the completion C 
2. all membership axioms that can be deduced from this partial theory 

 

Example. Let us apply the following completion to the state at time 2 of our previous 
example, C=<{o3.colour.add(red), closed(o3,colour)},{red∈ STRING2}>. 
 

The partial theory is : 
GT(2) ∪  {{(o1,o3)∈ cars(3), closed(o1,cars(3)), (o3,red)∈ colour(3), 
closed(o3,colour(3)), red∈ STRING2(3), o1∈ PERSON(3), o3∈ CAR(3), 
black∈ STRING1(3), o1.friends(3)=o1.friends(2), o3.cars-1(3) = o3.cars-1(2), 
o1.cars(3)=o1.cars(3)} 

� it is coherent 
The global theory is: 

PT(3) ∪  {o3∈¬ BLACK-CAR} 

4 Comparison with previous work 



Here we compare to Possible Model Approach for knowledge base update from [Katsuno and 
Mendelzon 91]. First we need to relate terms from this work to ours. Here a knowledge base 
corresponds to a state in conjunction with the scheme, so a model is a model for the 
conjunction of the axioms from the state and from the scheme. Mod(ΦΦΦΦ) denotes the set of all 
the models of a set of axioms Φ. Given a pre-order ≤ on models and a set of models M, 
Min(M,≤≤≤≤) denotes the set of minimal elements for ≤ in M. 
 

This comparison relies on defining a pre-order on models. Given two models I and A we 
define OAttr(I)(A) (respectively OMem(I)(A)) as the set of objects o such that o has the same 
attribute values (respectively membership values) in A as in I. Given a model I we define the 
partial pre-order on models ≤I as follows: A ≤I B if A and B satisfy one of these conditions: 
� OAttr(I)(B) is a strict subset of OAttr(I)(A)  
� OAttr(I)(B)=OAttr(I)(A) and OMem(I)(B) is a strict subset of OMem(I)(A)  
� OAttr(I)(B)=OAttr(I)(A) and OMem(I)(B)=OMem(I)(A) and A has lesser objects than B 

 

This pre-order is faithful, i.e., for J≠I we have I <I J. It compares models according to 
attribute values first, then to membership and finally to minimal addition of objects. Lemma 1 
states that minimal models of the change according to this pre-order give the model of the 
changed state. 
 

Lemma. If we consider a state Φ and a transaction µ, if the application of transaction µ on 
state Φ succeeds, then the resulting state Φ◊µ (with respect to semantics expressed in 3.3) is 
such that: 
 

Mod(Φ◊µ) = ∪ I ∈ Mod(Φ) Min(Mod(µ), ≤I) (1) 
 

Katzuno and Mendelzon showed that update operators satisfying (1) for a faithful pre-order ≤I 
are exactly those that satisfy axioms (U1)-(U9) (that are the correspondents for update of 
AGM axioms for revision). Note that Katzuno and Mendelzon worked on a propositional 
logic model, whereas we are working on an object model. Work from [Simonet et al. 94; 
Roger et al. 01] suggests that correspondences could be done between DL and propositional 
logic. 

5 Implementation issues 
In this section we describe how computation of a new state is done. Complexity is in 
calculating the intersection of maximal unchanged facts (or union of minimal changed facts). 
If made in a simple way this requires trying all possibilities. So we focus here on possible 
optimisations. 

5.1 Optimisations 
The first optimisation is to concentrate only on objects both updated and recursively 
connected to updated objects. Concerning concept membership, the objects that are not 
modified or that are not recursively related to any modified object must not change 
classification: they are part of all maximal plausible previous membership axioms. 
 



The second idea is to derive facts on unknown attribute values. Membership constraints are 
used to derive facts on unknown attribute values for objects. Each membership constraint is 
put in normal form, i.e., it must not contain any named concepts (these names are replaced by 
their definition) or any known attribute constraint (they are replaced by their truth value): 
 

Consider the TBox C1 = ∀ A.C2 ∩ ∀ B.C1 and state  

(o1,o2) in A; (o1,o3) in A
closed(o1,A); closed(o2,A); closed(o3,A)

o1 in C1; o2 in C2; o3 in C2

the normal forms for the membership constraints are 

o1 in ∀ B.C1

If a transaction does not update o1.B then o1 in ∀ B.C1 is still true in the updated state. 
If a transaction updates an unknown value, then all occurrences of that attribute for normal 
form membership axioms concerning the object are marked as "obsolete". When an axiom in 
normal form has its entire attribute marked as "obsolete" then it is not useful anymore and 
may be forgotten. Axioms in normal form are a kind of value constraints on unknown 
attributes.   

5.2 Update Propagations and Instance Re-Classification 
During a transaction, all modified instances are marked with a tag "to be classified". In order 
to be classified these instances need classification information on related instances, so these 
related instances are marked with "to be used", and they are also marked "to be classified" if 
they logically depend on an object also marked "to be classified". 
 

At the end of the transaction, considering each marked object: 
� each marked object is assigned a unique name; built from its oid, for example.  
� if it is marked "to be classified" then it is translated into ABox assertions according to its 

attribute values. 
� if it is marked "to be used" and not marked "to be classified", then, as the object did not 

change classification during the transaction, it must not be classified and its previous 
classification is still valid and will be used. The object is translated into axioms of the 
form object belongs to class or object does not belong to class, one for each known 
concept membership 

 

Then the object constraints are asserted in the Abox. Thus the DL system is able to determine 
coherence. Classification of "to be classified" objects consists in evaluating queries as 
described in 2.3 for each named concept and for each object. 

6 Conclusion  
DLs and DBs are two kinds of system bound to merge in order to respectively increase 
reasoning power in DB (instance classification, query optimisation) and the amount of data 
efficiently processed in DL. But this convergence is hindered by the distance between 



database and DL representation models. Thus, works on semantic query optimisation rely on 
persistent view maintenance (through defined concepts), but the lack of such a mechanism in 
most databases renders them unusable through this approach. DB and DL coupling requires 
both a scheme and an update translation; whereas scheme translation has already been 
studied, update semantics for DL used in a database context is still lacking.  
We have suggested a semantics that allows post-conditions on transactions and constraint 
checking, which is an important feature for database issue. It also deals with incomplete 
information. This semantics is compatible with the axioms proposed by Katsuno and 
Mendelzon and the mainstream in database and programming languages, i.e., attributes only 
change through explicit assignments.  
This solution uses a DL system to make inferences and checks but also relies on 
optimisations not directly translatable in DL, which suggests using a DL system as a 
component in a more complex architecture. We are conducting implementation for this 
solution in the context of the Osiris system, and we use RACER as the DL sub-system. Our 
work is still in progress and is limited both in a theoretical and a practical way. We are 
investigating the reduction of restrictions on concept assignments. Moreover, only tests may 
validate the proposed optimised mechanisms. This work is a first step toward a finer 
integration between description logics and databases.  
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