
Evaluation of Current RDF Database Solutions

Florian Stegmaier1, Udo Gröbner1, Mario Döller1, Harald Kosch1 and Gero
Baese2

1 Chair of Distributed Information Systems
University of Passau

Passau, Germany
forename.surname@uni-passau.de

2 Corporate Technology
Siemens AG

Munich, Germany
gero.baese@siemens.com

Abstract. Unstructured data (e.g., digital still images) is generated,
distributed and stored worldwide at an ever increasing rate. In order
to provide efficient annotation, storage and search capabilities among
this data and XML based description formats, data stores and query
languages have been introduced. As XML lacks on expressing semantic
meanings and coherences, it has been enhanced by the Resource Descrip-
tion Format (RDF) and the associated query language SPARQL.
In this context, the paper evaluates currently existing RDF databases
that support the SPARQL query language by the following means: gen-
eral features such as details about software producer and license infor-
mation, architectural comparison and efficiency comparison of the inter-
pretation of SPARQL queries on a scalable test data set.

1 Introduction

The production of unstructured data especially in the multimedia domain is
overwhelming. For instance, recent studies3 report that 60% of today’s mobile
multimedia devices equipped with an image sensor, audio support and video
playback have basic multimedia functionalities, almost nine out of ten in the
year 2011. In this context, the annotation of unstructured data has become a
necessity in order to increase retrieval efficiency during search. In the last couple
of years, the Extensible Markup Language (XML) [16], due to its interoperability
features, has become a de-facto standard as a basis for the use of description
formats in various domains. In the case of multimedia, there are for instance
the well known MPEG-7 [13] and Dublin Core [12] standards or in the domain
of cultural heritage the Museumdat4 and the Categories for the Description of
Works of Art (CDWA) Lite5 description formats. All these formats provide a
3 http://www.multimediaintelligence.com
4 http://museum.zib.de/museumdat/museumdat-v1.0.pdf
5 http://www.getty.edu/research/conducting_research/standards/cdwa/

cdwalite.html



XML Schema for annotation purposes. Related to this, several XML databases
(e.g., Xindice6) and query languages (e.g., XPath 2.0 [2], XQuery [20]) have
been introduced in order to improve storage and retrieval capabilities of XML
instance documents.

The description based on XML Schema has its advantages in expressing
structural and descriptive information. However, it lacks in expressing seman-
tic coherences and semantic meaning within content descriptions. In order to
close this gap, techniques emerging from the Semantic Web7 have been intro-
duced. The main contribution is RDF [19] and its quasi standard query language
SPARQL [11]. Both, are recommendations of W3C8, just as XML.

In this context, the paper provides an evaluation of currently existing RDF
databases that support the SPARQL query language. The evaluation concen-
trates on general features such as details about software producer and license
information as well as an architectural comparison and efficiency comparison of
the interpretation of SPARQL queries on a scalable test data set.

The remainder of this paper is organized as follows: Section 2 covers some
basic informations about accessing and evaluating RDF data. The definition
of evaluation criteria is done in section 4. Section 5 provides an architectural
overview of the triple stores in scope. Details about the test environment and
the results of the performance tests are part of section 6. The paper is concluded
in section 7.

2 Related work

This chapter covers basic information about related paradigms and technolo-
gies/standards required to perform the evaluation.

2.1 RDF data representation and storage approaches

Recent work already investigated several approaches concerning the storage of
RDF data. In general, RDF data can be represented in different formats:

– Notation 3 (N3) [3] is a very complex language in order to store RDF-Triples,
which was issued in 1998.

– N-Triples [17] was a recommendation of W3C, published in the year 2004.
It is a subset of N3 in order to reduce its complexity.

– Terse RDF Triple Language (Turtle) [1] was invented in order to enlarge the
expressiveness of N-Triples. The Turtle syntax is also used to define graph
patterns in the query language SPARQL [8].

– RDF/XML [18] defines an XML syntax for representing RDF-Triples.

Three fundamental different storage approaches can be identified at present:

6 http://xml.apache.org/xindice/
7 http://www.w3.org/2001/sw/
8 http://www.w3.org



– in-memory storage allocates a certain amount of the available main memory
to store the given RDF data. Obviously this approach is intended to be used
for few RDF data.

– native storage is a way to save RDF data permanently on the file system.
These implementations may fall back on (in this terms) well investigated
index structures, such as B-Tree.

– relational database storage makes use of relational database systems (e.g.,
PostgreSQL) to store RDF data permanently. Like the native storage, this
approach relies on research results in the database domain (e.g., indices or
efficient processing). Two different mapping strategies have been considered:
The first is an universal table, which contains all RDF triples. The second
solution is to create a mapping of the ontology into a table structure. Ap-
parently, this leads to a (potentially) large number of tables.

2.2 RDF databases

An overview of frameworks and applications with the ability to store and to
query RDF data is provided in Table 1. To retrieve the stored data, (quasi–)
standards can be used, in names RDF Query Language (RQL) [10], RDF Data
Query Language (RDQL) [15] and finally the W3C Recommendation SPARQL
Protocol and RDF Query Language (SPARQL) [21]. A comparison of RDF query
languages of the year 2004 can be found in [14].

2.3 RDF performance benchmarks

In addition to the huge efforts necessary to provide RDF database systems and
defining query languages, appropriate evaluation methodologies9 for triple stores
have been introduced recently.

This section gives an overview of three promising performance benchmarks:
Berlin SPARQL Benchmark (BSBM)10 [5] provides an benchmark using

SPARQL. This benchmark includes a data generator and a test suite. The data
generator is able to build a scalable amount of test data in RDF/XML format,
which is based on an e-commerce use case. For example, a search for products
from different suppliers can be performed or comments on the product can be
provided. The mode of operation of the test suite is based on a use–case taken
from real life. An automtic execution of miscellaneous queries is imitating the
behavior of human operators.

Lehigh University Benchmark (LUBM)11 [9] specifies the test data by an on-
tology named Univ-Bench. It represents an university with professors, students,
courses and so on. The test data set can be constructed with the associated data
generator [6]. The benchmark contains 14 test queries written in a KIF12–like

9 http://esw.w3.org/topic/RdfStoreBenchmarking
10 http://www4.wiwiss.fu-berlin.de/bizer/BerlinSPARQLBenchmark/
11 http://swat.cse.lehigh.edu/projects/lubm/
12 http://www.csee.umbc.edu/kse/kif/



Table 1. Overview of available RDF Triple Stores (abbreviations: o. = ongoing, disc.
= discontinued, e.d.s. = early developing stage, u. = unknown)

Name State Programming
language

Supported
query
language

Supported storage Part of
eval.

License

3Store o. C SPARQL,
RDQL

MySQL, Berkley DB no GPL

AllegroGraph o. Lisp SPARQL – (native disk stor-
age)

yes commercial

ARC o. PHP SPARQL MySQL no open source

BigOWLIM o. Java SPARQL – (plug-in of Sesame) no commercial

Bigdata o. Java SPARQL distributed
databases

no GPL

Boca disc. Java SPARQL relational databases no Eclipse Public
License

Inkling disc. Java SquishQL relational databases no GPL

Jena o. Java SPARQL,
RDQL

in–memory, na-
tive disk storage,
relational backends

yes open source

Heart e.d.s. u. u. u. no u.

Kowari metastore disc. Java SPARQL,
RDQL, iTQL

native disk storage no Mozilla Pub-
lic License

Mulgara o. Java SPARQL,
TQL & Jena
bindings

integrated database no Open Soft-
ware License
v3.0

Open Anzo o. Java SPARQL relational database yes Eclipse Public
License

Oracle’s Semantic Technologies o. Java SPARQL relational database yes BSD-style li-
cense

RAP o. PHP SPARQL,
RDQL

in–memory, rela-
tional database

no LGPL

rdfDB o. Perl SQLish query
language

Sleepycat Berkeley
DB

no open source

RDFStore o. Perl SPARQL,
RDQL

relational database no open source

Redland o. C SPARQL,
RDQL

relational databases no LGPL 2.1,
GPL 2 or
Apache 2

Semantics.Server 1.0 o. .NET SPARQL MySQL no commercial

SemWeb – DotNet o. .NET SPARQL in–memory, rela-
tional database

no GPL

Sesame o. Java SPARQL,
SeRQL

in–memory, na-
tive disk storage,
relational database

yes BSD-style li-
cense

Virtuoso o. Java SPARQL relational database no open source &
commercial &
open source

YARS o. Java subset of N3 Berkeley DB no BSD-style li-
cense



language and a test suite called UBT, which manages the loading of data and
the query execution automatically.

SP2B SPARQL Performance Benchmark (SP2B)13 [7] benchmark consists
of two major components. The first component is a (command line driven) data
generator, which can automatically create the evaluation data. The amount of
triples in this data set is scalable and based on the DBLP Computer Science
Library14. In this case the data generator uses several well known ontologies,
such as Friend of a Friend (FOAF)15. The second component consists of SPARQL
queries, which are specifically designed for the DBLP use case.

3 Preselection of technologies in scope

This section provides the reasoning for the chosen databases and evaluation
benchmark.

All technologies, which are discontinued or in a too early state of develop-
ment, are excluded. As the development of Boca, Inkling, Kowari and RDFStore
is discontinued and the Heart project is not yet implemented, a closer examina-
tion is not possible.

Furthermore, all databases shall have the ability to interpret SPARQL
queries. As the overview in section 2.2 shows, rdfDB and YARS do not sup-
port SPARQL, these databases will not be part of the further evaluation.

Based on the evaluation in [7] the achieved evaluation of ARC, Redland and
Virtuoso are insufficient, thus a further examination of these databases is not
part of this paper. Our paper extends this previous work by highlighting archi-
tectural facets and general information of the tested databases (see section 4
for details). Furthermore, we collected yet available databases in table 1, which
takes the current technologies and implementation efforts (e.g., Oracle’s Seman-
tic Technologies) into account. Schmidt et al. investigated in [7] the execution
times for in–memory and native storage. In contrast to that, our evaluation is
based on the relational storage approach.

The evaluation is based on SP2B, because it is most up–to–date and SPARQL
specific. In order to use LUBM, a translation of the queries into SPARQL must
be conducted, which is not satisfactory. Comparing the test data structure of
BSBM to the data of SP2B, the SP2B data uses already well known ontologies,
which is an additional advantage.

4 Evaluation criteria

The evaluation of RDF databases is based on three categories. The first category
focuses on general information about the technologies:

13 http://dbis.informatik.uni-freiburg.de/index.php?project=SP2B
14 http://www.informatik.uni-trier.de/~ley/db/
15 http://www.foaf-project.org



Software producer provides details about the company implementing the
framework.

Associated licenses shed light on the usage of the frameworks, whether it can
be used in business applications or not.

Project documentation should be rather complete. Furthermore, tutorials
should be available supporting the work with these systems especially in the
period of vocational adjustment.

Support is the last basic criteria. Support should be covered for example by
an active forum or a newsgroup.

The aspects of the second category examine architectural facets of the con-
sidered frameworks, such as:

Extensibility is a very important criteria for the integration of new features,
e.g., to optimize the existing working process. One of these features could be the
implementation of new indices, which accelerate the performance and advance
the efficiency of the entire system.

Architectural overview provides an insight into the structure of the framework
and the used programming language.

OWL should be supported by the databases, because it enlarges the semantic
expressiveness of RDF especially as far as reasoning is concerned.

Available query languages is another point of interest, is there support for
other RDF addressing query languages in addition to SPARQL.

Interpretable RDF data formats are not part of central focus. The most im-
portant formats (as mentioned in section 2.1) should be covered by the frame-
works from the point of completeness.

The evaluation of these two categories can be found in Chapter 5.

The third category is based on the expressiveness of SPARQL queries and the
performance of the frameworks / applications. SPARQL consists of four different
query forms: SELECT, ASK, CONSTRUCT and DESCRIBE. This evaluation
is restricted to the SELECT query type. It is discussed in Chapter 6. Further
details about the test environment are provided there, too.

5 Evaluation of considered databases

This section covers the evaluation of AllegroGraph, Jena, Open Anzo, Oracle’s
Semantic Technologies and Sesame following the reasoning in section 3.

5.1 AllegroGraph

The software producer of AllegroGraph RDF Store16 is Franz Inc.17. The com-
pany has been founded in 1984 and is well known for its Lisp programming

16 http://www.franz.com/agraph/allegrograph/
17 http://franz.com/



language expertise. Recently, they also started developing semantic tools, like
AllegroGraph.

The associated licenses of AllegroGraph come in two different flavors. The
version evaluated in this paper is the free edition, which is limited to 50 mil-
lion triples maximum. In contrast to that, the enterprise version has no limits
regarding to the number of stored triples but underlies a commercial license.

The product documentation delivered by Franz Inc. is rather complete. Sev-
eral useful example Java classes can be found on the companies website alongside
the Javadoc of the Java binding.

Support for AllegroGraph is offered by Franz Inc. in a commercial way. In
detail, they offer training for the software, seminars and consulting services,
which also includes application-specific coding if needed.

AllegroGraph is not extensible. It is closed source and stores data as well as
the database indices inside its particular storage stack.

Because of its closed source, an architectural overview is not possible. There-
fore, figure 1 shows a client server architecture of AllegroGraph. The software
is developed especially for 64 Bit systems and runs out of the box, as it doesn’t
need any other databases or software. Storage, indexing and query processing is
performed inside AllegroGraph. The software can be accessed using Java, C#,
Python or Lisp. There are bindings for Sesame or Jena integration available and
also an option to access AllegroGraph via HTTP.

Fig. 1. AllegroGraph client server architecture

Franz Inc. suggests using TopBraid Composer18 by TopQuadrant Inc. for
OWL support.

The available query language of the software is SPARQL, but it also sup-
ports low level API calls for direct access to triples by subject, predicate and
object. With those API calls, it is possible to retrieve all datasets matching a
certain triple. The API calls provide functionality, which can be compared to
SQL SELECT statements.
18 http://www.topquadrant.com/topbraid/composer/index.html



The interpretable RDF data formats of AllegroGraph are RDF/XML and
N-Triples. Other formats are planned to be supported in future versions.

5.2 Jena

The software producers of Jena19 are the HP Labs20, which are a part of the
Hewlett-Packard Development Company. This department was founded in 1966
by Bill Hewlett and Dave Packard. Jena was developed in the terms of the HP
Labs Semantic Web Research.

The associated license of the Jena project is completely open source. This
implies that redistribution and use in source and binary forms with or without
modification are permitted21.

The Jena product documentation can be found on the project page and is
widely complete. The documentation covers the central parts of Jena providing
basic information about the framework, Javadocs and several tutorials respec-
tively HowTos. The downloadable version of Jena also includes code examples,
which underline the basic steps in the working process of Jena.

The support focuses on a newsgroup22, which is founded in the Yahoo!
Groups23. It may be considered unsatisfactory that support is primarily limited
to a newsgroup. But due to the fact that there is a large amount of registered
members24 the activity of the newsgroup and therefore the delivered support is
excellent.

The Jena download package includes the source files of the entire Jena project
implemented in Java. This provides a basis for implementations extending the
framework, for instance with new indices.

Figure 2 illustrates an architectural overview of Jena. The framework offers
methods to load RDF data into a memory based triple store, a native storage
or into a persistent triple store. In order to build a persistent triple store a
variety of relational databases, for example MySQL, PostgreSQL or Oracle, can
be used. The stored data may be retrieved through SPARQL queries. A standard
implementation of the SPARQL query language is encapsulated in the ARQ
package of Jena. SPARQL queries can be executed using Java applications or by
the use of the graphical frontend Joseki25. The Ontology API provides methods
to work on ontologies of different formats, like OWL or RDFS. Jena’s Core
RDF Model API offers methods to create, manipulate, navigate, read, write
or query RDF data. The remaining major components are on the one hand the
Inference API, which allows the integration of inference engines or reasoners into
the system. On the other hand the Reification API is a proposal to optimize the
representation of reification.
19 http://jena.sourceforge.net/
20 http://www.hpl.hp.com/
21 http://jena.sourceforge.net/license.html
22 http://tech.groups.yahoo.com/group/jena-dev/
23 http://groups.yahoo.com/
24 Members of the Jena newsgroup (at time of writing): 2752
25 http://www.joseki.org/



Fig. 2. Architectural overview of Jena

OWL support is given in form of the Ontology API. The inference subsys-
tem26 enables the use of inference engines or reasoners in Jena.

Besides SPARQL, RDQL is a supported query language. In a tutorial about
RDQL it is recommended that new users of Jena should use SPARQL instead.

Jena uses readers and writers for RDF/XML, N-Triples and N3, which are
commonly known RDF data formats.

5.3 Open Anzo

Open Anzo27 is the prosecution of Boca28 and other components produced by
the IBM Semantic Layered Research Platform29.

The Open Anzo project offers a good product documentation. The key topics
are architectural facets of the current version, programmer guides and design
documents. There are also documents available describing key features of an
upcoming version of Open Anzo.

The support is based on several tutorials and a Google group30 with about
63 members at time of writing.

As already mentioned, Open Anzo is complete open source, underlying the
Eclipse Public License. So it is possible to extend the given framework by needed
functionalities.
26 http://jena.sourceforge.net/inference/
27 http://www.openanzo.org/
28 http://ibm-slrp.sourceforge.net/
29 http://ibm-slrp.sourceforge.net/
30 http://groups.google.com/group/openanzo



Fig. 3. Architectural overview of Open Anzo

Figure 3 highlights the main components of the Open Anzo architecture.
Open Anzo can be used with three modes of operation. It is possible to embed
it in an application, run it as a remote server or use it locally. The entry points
to the framework are the Anzo Client Stack (offers API implementations in
Java, Javascript and .NET) or a webservice. The Anzo Node API is the basis
to describe the structure of RDF data. The named graph component enables
user to access the RDF data. Beside that, the AnzoClient API encapsulates
transaction preconditions and connectivity events to the database. The purpose
of the Realtime Update Manager is to deliver messages about certain processing
states. In order to execute SPARQL queries in Open Anzo, the SPARQL Query
API is needed. The Storage Service is used to save and retrieve RDF data using
a relational database (like DB2 or Oracle). This is the center of any mode of
operation in an Open Anzo system.

There are OWL related classes in the project, but further information is
missing in the documentation regarding the coverage of OWL functionalities.
The producers claim on the product page that other semantic web technologies
(3rd party components) could easily be plugged into the system.

Open Anzo supports SPARQL queries and typed full-text search capabilities,
which also use an index system in order to improve the retrieval process.

N3, N-Triples, RDF/XML and TriX31 are the supported RDF data formats.

31 http://www.w3.org/2004/03/trix/



5.4 Oracle’s Semantic Technologies

Software producer Oracle32 is one of the major players in database business. The
company comprises relational database knowledge of 30 years and has added
support for semantic technologies to its products lately. The evaluated Semantic
add-on is the Jena Adapter 2.0 for Oracle Databases. It implements the Jena
Graph and model APIs as described earlier. The add-on requires Oracle Database
11g Release 11.1.0.6 (or higher) or Oracle Database 10g Release 10.20.0.1 or
10.2.0.3.

Licensing options can be found at the Oracle page33. The Jena Adapter is
provided from Oracle for free as closed source.

Product documentation can be found at Oracle Semantic Technologies Cen-
ter34 and offers code samples, usage scenarios, training material and documen-
tation for administrators as well as developers. The documentation provides a
good overview, but the structure of the website could be improved for usability
reasons.

Support is available via the Oracle forum35 for free, with excellent answer
times. Paid support is also available from several partners36 and from Oracle
itself.

An overview of the semantic capabilities of Oracle’s add–ons is illustrated in
figure 4.

Fig. 4. Oracle’s Semantic Technologies capabilities

Oracle supports large graphs of billions of triples, which can be queried by
SPARQL-like syntax and/or SQL. Complete SPARQL support is at the time of
this writing only available via the Jena adapter but native support for SPARQL
is planned. The RDF data model includes capabilities for inference via RDFS, its
32 http://www.oracle.com
33 http://www.oracle.com/us/corporate/pricing/index.htm
34 http://www.oracle.com/technology/tech/semantic_technologies/index.html
35 http://forums.oracle.com/forums/forum.jspa?forumID=269
36 http://www.oracle.com/technology/tech/semantic_technologies/htdocs/

semtech_partners.html



subset RDFS++, OWL, its subsets OWLSIF and OWLPrime, and user–defined
rules.

RDF data formats are RDF/XML, N-Triples and N3 because Jena is being
utilized. Semantic data can also be compressed by using the advanced compres-
sion option to reduce needed disk space.

5.5 Sesame

The software producer of Sesame37 is Aduna38. This company sets the focus
of their work in revealing the meaning of information. Sesame was started as a
prototype of the EU project On-To-Knowledge39 and is now developed by Aduna
in a cooperation with NLNet Foundation40.

Like Jena, Sesames associated license is open source underlying the BSD-style
license.

The product documentation of Sesame is well organized. There is a large user
guide available for every version of Sesame. Users can also refer to Javadocs and
tutorials completed with example code.

Aduna provides support in form of an active forum accessible on the project
page and a mailing list based on SourceForge41. Commercial consulting services
are also provided.

Sesame’s download package is shipped with the Java source files. Therefore,
a basis for extending the framework is provided similar to Jena.

Fig. 5. Architectural overview of Sesame

Figure 5 shows an architectural overview of Sesame. In order to use Sesame,
Apache Tomcat is recommended. The Sesame package also contains two web
applications, the Sesame server which stores the RDF data and the OpenRDF
37 http://www.openrdf.org/
38 http://www.aduna-software.com/
39 http://www.ontoknowledge.org/
40 http://www.nlnet.nl/
41 http://www.sourceforge.net



Workbench as a graphical frontend for the server. This workbench can manage
repositories, load RDF data and execute queries. Sesame is able to handle all
three in section 2.1 discussed approaches to store RDF data. The RDF Model
implements basic concepts about RDF data. The component RDF I/O (Rio)
consists of a set of parser and writer for the handling of RDF data. This is
for instance used by the Storage And Inference Layer (Sail) API for initializ-
ing, querying, modifying and the shut down of RDF stores. On the topmost
layer constitutes the Repository API the main entrance to address repositories.
Compared to Sail, which is rather a low level API, the Repository API is the
associated high level API with a larger amount of methods for managing RDF
data. The HTTPRepository is an implementation that acts like a proxy in order
to connect to a remote Sesame server via the HTTP protocol.

In order to achieve OWL support a Plug-In is available called BigOWLIM42.
It is implemented as a high performance semantic repository for Sesame and
packaged as a Sail.

Alternatively to SPARQL Sesame is able to interpret the Sesame RDF Query
Language (SeRQL) [4] integrated for enhancing the functionality of RQL and
RDQL.

Sesame offers parsers for various well known RDF formats N3, N-Triples,
RDF/XML, Turtle and two new formats TriG43 and TriX.

6 Performance tests

The performance tests of AllegroGraph 3.3.1, Jena (SDB 1.1), Open Anzo 3.1.0,
Oracle’s Semantic Technologies (Jena Adapter v.2.0)and Sesame 2.2.4 are con-
ducted in the following test environment. It consists of a client and a server
connected over a 1 Gb LAN network. The main parts of the server are two Intel
Xeon 3,8GHz Single-Core CPUs, 6 GB RAM and two 136GB Ultra320-SCSI
HDDs in a Hardware-RAID-1 with a Ubuntu 8.04.1 operating system running
on top. The client is a MacBook Pro with a 2,4 GHz Intel Core 2 Duo CPU, 2
GB Ram and a 150 GB Fujitsu HDD and the Mac OS 10.5.7 operating system.
In order to create persistent triple stores in Jena and Sesame, PostgreSQL is
used. All performance tests are conducted with the standard configurations of
the frameworks and database backends.

The queries of the SP2B benchmark can be classified into two groups accord-
ing to the expected complexity. On the one hand FILTER, OPTIONAL and
UNION are very similar to well known SQL paradigms (SELECT, left outer
joins, relational UNION ). Only minor influence on the performance of query
execution is assumed, because efficient implementations can be used [7]. On the
other hand keywords like DISTINCT, LIMIT or OFFSET will seriously affect
the query execution [7] (pipeline breaker). The queries will indicate the cor-
rectness of this assumptions, as they insist on at least one of the keywords or a
combination of them. The graph structure, which will be build by the queries can
42 http://ontotext.com/owlim/big/
43 http://www4.wiwiss.fu-berlin.de/bizer/TriG/



be distinguished into long path chains44, bushy patterns45 or the combination
of these two structure types.

The evaluation data was created in the N3 data format with the SP2B
data generator. A data set with about 100.000 triples (10.3 MB) another with
1.000.000 triples (107 MB) and a last one with 5.000.000 triples (538 MB) have
been created. In order to import the N3 data into AllegroGraph, CWM46 has
been used to parse the N3 data into RDF/XML, which AllegroGraph is able
to process. The parser was not able to parse the dataset with 5.000.000 triples.
Therefore, this data set could not be tested with AllegroGraph.

The following part shows the results of the evaluation focusing on the query
execution time. This time only includes the query execution and the transfer
of the result set from the server to the client (opening and closing of the con-
nection to the repository not included). The time unit given in the figure 6 are
milliseconds. A value of 1.000.000 milliseconds indicates a timeout of the query.

The execution times clearly show a great difference in the query execution
between Jena, Open Anzo, Oracle’s Semantic Technologies, Sesame and Alle-
groGraph and are similar to the execution times achieved in [7] for in–memory
and native storage. For instance the execution of query 4 regarding the 100.000
triple test set lasts 28 milliseconds in Jena and 18 milliseconds in Oracle. In con-
trast, this query on the same test set took 14478 milliseconds in Sesame, 141155
milliseconds in Open Anzo and 176496 milliseconds in AllegroGraph. There are
also queries, where Sesame’s execution times are smaller than Jena’s or Oracles,
for example Query 1 and 2 (also in the two bigger data sets). A reason for this
behavior comparing Jena, Oracle and Sesame is the diverse import strategy of
these two frameworks. The import of data in Sesame leads to the creation of 69
tables for the 100.000 triples data set, 79 tables for the 1.000.000 triples data
set and 87 tables for the 5.000.000 triples data set. Jena creates constantly 4
tables (universal table approach as discussed in section 2.1). Oracle’s Semantic
Technologies is using the Jena framework, the storage approach is the identical.
Sesame performs a mapping of the different entities in the N3 data sets directly
into tables of the database while building several other tables to save the RDF
triples data. Jena doesn’t use a mapping like this. Obviously, queries consist-
ing of a great amount of dots47 increase the execution time on a database with
about 70 tables compared to a database with only 4 tables. The other way round
Sesame is able to minimize the number of cross products during query execution
because it is able to address the elements of a special entity saved in a particular
table. AllegroGraph is saving the triples directly on the hard disk. It creates one
data file containing the RDF data and several other files, which purpose is not
deducible. Although AllegroGraph uses some kind of indices on the repository
the execution lasts much longer than in the other frameworks.

44 Similar to joins over a few tables in a relational database.
45 For example queries on a Star Schema
46 http://www.w3.org/2000/10/swap/doc/cwm.html
47 dots are similar to joins.



Fig. 6. Query execution times on the three different test sets



Figure 6 also shows the results of the evaluation for the 1.000.000 triples data
set and for the 5.000.000 triples data set. The execution time of AllegroGraph
was exceeding the time limit (terminated after 30 minutes per query) for the
1.000.000 triples data set. There is also an ascent of the execution times and
timeouts observable for the other triple stores.

7 Conclusion & Outlook

The architectural overview of chapter 5 and the performance tests of chapter
6 shows that AllegroGraph is not fulfilling the criteria defined in chapter 4. It
is neither extensible nor are the execution times satisfying. Jena and Sesame
are both API extensible but Jena obtained continuous evaluation times at the
moment. Oracle’s Semantic Technologies is using the Jena framework but it
comes with database procedures, which have an impact on the performance. In
contrast to that, Open Anzo serves well for small data but is not very good in
handling big amounts of RDF data. Jena and Oracle Semantics Technologies are
fulfilling the chosen criteria best. However, a decision to use one or the other
framework must be based on the domain to be addressed by such a system and
on the query structure expected. A deeper analysis of these two factors helps
finding the answer, what kind of storage approach would be appropriate.

This paper, especially section 2.2 shows that huge efforts were done in the
field of accessing RDF data. This trend is still ongoing as the development
of new RDF triple stores (e.g., HEART) is indicating. Up to now, only rela-
tional databases or XML databases are in scope of these technologies. Only one
database, namely Bigdata, is able to operate on a distributed database. Enlarg-
ing the set of accessible backends may improve the performance issues of certain
query paradigms in a good way. Future work could focus on the mapping of
SPARQL to SQL. Here, already well known database techniques could seriously
enhance the processing of queries.

8 Acknowledgments

This work has been supported in part by the THESEUS Program, which is
funded by the German Federal Ministry of Economics and Technology.

References

1. David Beckett. Turtle - terse rdf triple language.
http://www.dajobe.org/2004/01/turtle/, November 2007.

2. Anders Berglund, Scott Boag, Don Chamberlin, Mary F. Fernandez, Michael Kay,
Jonathan Robie, and Jerome Simeon. XML Path Language (XPath) 2.0. W3C
Recommendation, http: // www. w3. org/ TR/ xpath20/ , 2007.

3. Tim Berners-Lee. Notation 3. http://www.w3.org/DesignIssues/Notation3, March
2006.



4. Jeen Broekstra and Arjohn Kampman. SeRQL: A Second Generation RDF Query
Language. http://www.w3.org/2001/sw/Europe/events/20031113-storage/

positions/aduna.pdf, November 2003.
5. Christian Bizer et al. Benchmarking the performance of storage systems that

expose sparql endpoints. In Proceedings of the 4th International Workshop on
Scalable Semantic Web knowledge Base Systems (SSWS2008), 2008.

6. Kurt Rohloff et al. An evaluation of triple-store technologies for large data stores.
In Robert Meersman et al., editor, OTM Workshops (2), volume 4806 of Lecture
Notes in Computer Science, pages 1105–1114. Springer, 2007.

7. Michael Schmidt et al. SP2Bench: A SPARQL Performance Benchmark. CoRR,
abs/0806.4627, 2008.

8. Pascal Hitzler et al. Semantic Web. Springer, 2008.
9. Yuanbo Guo et al. Lubm: A benchmark for owl knowledge base systems. J. Web

Sem., 3(2–3):158–182, 2005.
10. Gregory Karvounarakis, Sofia Alexaki, Vassilis Christophides, Dimitris Plexousakis

and Michel Scholl. RQL: a declarative query language for RDF. In WWW, pages
592–603, 2002.

11. Eric Prud hommeaux and Andy Seaborne. SPARQL Query Language for RDF.
W3C Recommendation, http: // www. w3. org/ TR/ rdf-sparql-query/ , 2008.

12. Dublin Core Metadata Initiative. Dublin core metadata element set - version 1.1:
Reference description. http: // dublincore. org/ documents/ dces/ , 2008.

13. J. M. Martinez, R. Koenen, and F. Pereira. MPEG-7. IEEE Multimedia, 9(2):78–
87, April-June 2002.

14. Peter Haase, Jeen Broekstra, Andreas Eberhart and Raphael Volz. A Comparison
of RDF Query Languages. In International Semantic Web Conference, volume
3298, pages 502–517, 2004.

15. Andy Seaborne. RDQL - A Query Language for RDF. http://www.w3.org/

Submission/2004/SUBM-RDQL-20040109/, January 2004.
16. W3C. Extensible Markup Language (XML) 1.1, W3C Recommendation. http:

// www. w3. org/ XML/ , February 2004.
17. W3C. Rdf test cases. http://www.w3.org/TR/rdf-testcases/, February 2004.
18. W3C. RDF/XML Syntax Specification (Revised). http://www.w3.org/TR/

rdf-syntax-grammar/, February 2004.
19. W3C. Resource Description Framework (RDF). http: // www. w3. org/ RDF/ ,

2004.
20. W3C. XQuery 1.0: An XML Query Language. W3C, http: // www. w3. org/ TR/

2007/ REC-xquery-20070123/ , 2007.
21. W3C. SPARQL Query Language for RDF. http://www.w3.org/TR/

rdf-sparql-query/, January 2008.


