
Managing Co-reference on the Semantic Web

Hugh Glaser, Afraz Jaffri, Ian C. Millard
School of Electronics and Computer Science

University of Southampton
Southampton, Hampshire, UK

{hg, aoj04r, icm}@ecs.soton.ac.uk

ABSTRACT
Co-reference resolution, or the determination of ‘equivalent’
URIs referring to the same concept or entity, is a significant
hurdle to overcome in the realisation of large scale Seman-
tic Web applications. However, it has only recently gained
the attention of research communities in the Semantic Web
context, and while activities are now underway in identifying
co-referent or conflated URIs, little consideration has been
given to tools and techniques for storing, manipulating, and
reusing co-reference information.

This paper provides an overview of the specification, im-
plementation, interactions and experiences in using the Co-
reference Resolution Service (CRS) to facilitate rigorous man-
agement of URI co-reference data, and enable interoperation
between multiple Linked Open Data sources. Comparisons
are made throughout the paper contrasting the differences
in the way the CRS manages multiple URIs for the same
resource with the emerging practice of using owl:sameAs to
identify duplicate URIs. The advantages and benefits that
have been gained from deploying the CRS on a site with
multiple Linked Data repositories are also highlighted.

Categories and Subject Descriptors
H.3.5 [Information Systems]: Information storage and
retrieval—Online Information Services – data sharing, web
based services

Keywords
Co-reference, Linked Data, Semantic Web

1. INTRODUCTION
The Semantic Web vision fundamentally requires the cre-

ation of a ‘Web of Data’ containing large quantities of readily
accessible, interlinked, and machine readable information,
analogous to the existing World Wide Web content currently
available for human consumption.

In recent years an increasing number of semantic datasets
are emerging, fuelled primarily by the efforts of the Link-
ing Open Data community, forming the beginnings of such
a resource. By following the guidelines set out in the Linked
Data Tutorial [3], or through the use of tools such as D2R
[5], existing datasets are being made available online, in-

Copyright is held by the author/owner(s).
LDOW2009, April 20, 2009, Madrid, Spain.

cluding notable encyclopaedic, geographical, music, film and
academic publication related resources.

However, in many cases there is minimal interlinking be-
tween these datasets, as often they are existing resources
which have recently been exposed in a semantic representa-
tion. As a result, the ‘web’ remains fragmented and difficult
to navigate.

As more datasets appear there is significant potential for
overlap to occur, with a given resource being described in
two or more repositories. These representations are more
than likely to use different identifiers, stemming from each
source, unless one or other of the datasets is relatively new
and has been constructed with knowledge of the other. Fur-
thermore, the information in different repositories could be
expressed against different ontologies.

The problems involved with identifying these ‘duplicate’
descriptions, either within a single dataset or across multiple
data sources, are encapsulated in the area of co-reference
resolution [9]. Research has been and continues to be carried
out in this field, developing systematic analysis and heuristic
based approaches to identifying co-references in or between
datasets, however techniques for managing, publishing and
using co-reference information are lacking.

This is not a problem that will disappear as the Semantic
Web gains momentum, and it is näıve to suppose or rely on
the fact that a ‘standard’ set of identifiers will eventually
emerge over time; organisations, companies and government
agencies are unlikely to be willing to adopt identifiers over
which they have no authority or control.

The remainder of this paper describes the Co-reference
Resolution Service (CRS, formerly known as the Consistent
Reference Service), which we have developed to meet the
needs of managing co-reference data, both within our own
project and the Semantic Web as a whole.

2. THE NEED FOR A CO-REFERENCE
RESOLUTION SERVICE

Part of the ReSIST project with which the authors are
involved aims to provide a synthesised view of resources
related to Resilient and Dependable Computing research,
utilising a Semantic Web based approach [6]. Data has been
acquired from multiple sources, detailing academic publica-
tions, researchers, institutions and projects, and converted
into RDF as required. This totals approximately 100M
triples, from 20+ different sources, ranging from large pub-
lication repositories to small chunks of information submit-
ted by project partners. Data from each different source
has been kept separate, and published as Linked Data on



subdomains of rkbexplorer.com.
Clearly there is likely to be overlap and duplicity of in-

formation between these repositories, particularly with peo-
ple and publications. We have deployed a number of algo-
rithms to identify co-referent identifiers in and between our
datasets, however this is of little use without some way of
applying these results to a semantic application or further
analysis tools.

The most prevalent way of dealing with ‘duplicate’ URIs
that are deemed to be the same is to use the owl:sameAs pred-
icate to link between them. The semantics of owl:sameAs dic-
tate that all the URIs linked with this predicate have the
same identity [2], implying that the subject and object must
be the same resource. The major disadvantage with this ap-
proach is that the two URIs become indistinguishable, even
though they may refer to different entities according to the
context in which they are used.

Named graphs may be used in some cases to overcome
this problem, but this approach has significant drawbacks.
In addition to being outside of the RDF model, prior un-
derstanding of the graphs and their partition is required.
Furthermore, if RDF descriptions are combined, cached, or
passed between different services, then named graphs can
easily be lost.

Generally, co-reference resolution techniques are not as
certain as one might hope, somewhat undermining the strong
semantics behind owl:sameAs. Once again, we must con-
sider the notion of equivalence within a given context: with
the exception of very elementary examples, one can only be
sure that two URIs are equivalent within the confines of a
specific application, whereas owl:sameAs asserts that two
references are always the same.

It is the authors’ belief that more often than not the use of
owl:sameAs is inappropriate and is being applied incorrectly,
and rather that owl:sameAs should only be used when the
two concepts being represented are utterly indistinguishable.

The approach taken within the ReSIST project has been
to separate out knowledge regarding co-reference and equiv-
alence from the main datasets, in a manner similar to that
in which early hypertext systems were developed by storing
content and link-bases as distinct components. By treating
such information as a first class entity and storing it in a sep-
arate system, the Co-reference Resolution Service, a number
of benefits can be realised.

Firstly, a number of CRSes can be used to represent dif-
ferent co-reference contexts; applications can then use one
or more CRSes as appropriate. For example, in undertak-
ing citation analysis, a paper with the same title and text
that appeared both as a journal article and technical re-
port should be considered as two separate papers, whereas
in many other applications it may be thought of as the same
resource appearing in two different publication formats. A
different CRS instance could be created to represent each
viewpoint, whereas an application accessing a linked data
site with embedded owl:sameAs links has no opportunity to
choose an equivalence context.

Secondly, in recognising co-reference data as important
knowledge in its own right, and by storing it separately
and manipulating it through custom services, more powerful
management techniques can be applied, including history,
rollback and annotation capabilities.

In relation to the ongoing issues over URI identity, both
the RDF predicate based approach [8] and the URI declara-

Merge uria and urib . . .

bundle1 = {uria} (1)

bundle2 = {urib} (2)

bundle3 = bundle1 ∪ bundle2 (3)

bundle3 = {uria, urib} (4)

����bundle1,����bundle2 (5)

Merge uria and uric . . .

bundle4 = {uric} (6)

bundle5 = bundle3 ∪ bundle4 (7)

bundle5 = {uria, urib, uric} (8)

����bundle3,����bundle4 (9)

Merge urim and urin . . .

bundle6 = {urim} (10)

bundle7 = {urin} (11)

bundle8 = bundle6 ∪ bundle7 (12)

bundle8 = {urim, urin} (13)

����bundle6,����bundle7 (14)

Merge urin and urib . . .

bundle9 = bundle8 ∪ bundle5 (15)

bundle9 = {uria, urib, uric, urim, urin} (16)

����bundle8,����bundle5 (17)

Figure 1: Examples of bundle formation

tions approach [4] to identity management can be seamlessly
integrated into the CRS framework. Indeed, any approach
to URI identity management will be easier to implement and
control in a world where knowledge of URI synonyms and
URI definition are kept separate.

Consider the case where the URI synonyms for the same
resource are included as owl:sameAs links in the definition
of the resource that is being described. Alterations to these
URIs will cause an alteration in the definition of the URI.
Separating the URI co-reference links into a bundle in a
separate knowledge base allows the duplicate URIs to be
changed without affecting the definition of the resource for
the original URI.

3. CRS IMPLEMENTATION
The CRS provides what is essentially a very simple ser-

vice – maintaining sets of equivalent URIs – however it has
taken several iterations to arrive at the current version 3,
which is maintaining co-reference data for each of the rkb-

explorer.com repositories and enabling the complex cross-
repository interoperation required by the RKBExplorer ap-
plication [7].

What may appear to be a trivially straight-forward ser-
vice actually delivers a refined yet powerful set of capabili-
ties, which is the result of much thought, deliberation and
experience through implementing and using the service to
manage real-world data and support complex applications.

The core CRS functionality is implemented in a PHP
class, enabling easy integration to a wide variety of web-
based applications and middleware libraries, and backed by



a mySQL database to facilitate acceptable performance when
used with large datasets.

Equivalent URIs are conceptually stored in a ‘bundle’ – a
set of identifiers referring to resources which are considered
to be the same in a given context. A URI can exist in at
most one bundle within a CRS instance. One URI in each
bundle is nominated to be a canonical identifier, or canon,
for that bundle, representing a ‘preferred’ URI for the set
of duplicates. An application that wishes to use data from
multiple sources as if they were a single resource can process
results by looking up URIs in a CRS and replacing them
with their canons on the fly, reducing the multiplicity of
identifiers to a single definitive URI. Bundles additionally
have sequential numeric identifiers, however these are only
used internally and are not exposed.

Bundles are formed by atomic operations only, by means
of merging pairs of URIs together. In merging uria and urib
the CRS first checks to see that each URI is already known
and exists within a bundle. If not, a ‘singleton’ bundle is cre-
ated for new URIs as required. Now to perform the merge,
a new third bundle is created consisting of the union of the
bundles that contain the URIs which are being asserted as
equivalent. The two constituent bundles which were merged
are then marked as inactive, as shown in Figure 1.

A number of schemes can be employed to elect the canon
for this newly merged bundle, from random allocation, se-
lection by a ordering according to a list of preferred URI
domains, or simply by assuming the canon from the bundle
in the left hand side of the pair of merged URIs, as in the
example above.

In order to handle large datasets, the CRS uses a mySQL
database for back end storage. To facilitate fast access when
querying the CRS, data is internalised in indexed tables of
hashed URIs, according to the schema in Figure 2. This
enables simple queries to be formulated which permit ex-
tremely fast lookups to find the canon of a given URI, or
finding all URIs in a given bundle; the two fundamental
query operations and most used features of the CRS.

Each operation performed by the CRS can additionally be
logged in a history table, including the facility to record a
comment as to why an action was carried out. As a result, if
at a later date it is discovered that two URIs were incorrectly
deemed to be equivalent, then operations can be ‘undone’ or
rolled back to rectify the situation.

Finally, functionality is provided to ‘deprecate’ URIs within
a dataset, by setting a flag in the uris table. A number of
sources from which we acquired publications data contained
particularly poor quality information with regards to person
identifiers, often conflating different individuals who share
common names under the same URI. As a result, we were
forced to generate a new URI for every author name on every
publication, and then perform our own co-reference analysis
to collapse equivalent URIs where appropriate [7].

However, this process led to bundles containing many tens
or low hundreds equivalent URIs, each from within the same
‘local’ dataset. These duplicates are of our own creation,
provide little additional value, and in fact cause significant
overheads if each variant has to be checked by an applica-
tion. It was decided therefore that once a phase of this ‘cold
start’ co-reference analysis had been completed, the under-
lying RDF data in the associated knowledge base should
be modified to remove unnecessary duplicates by consult-
ing the CRS and re-writing each ‘local’ URI with the canon

uris

hash bundleID deprecated

bundles

bundleID canonHash active

symbols

hash lexical URI

Figure 2: CRS database schema

returned by the CRS for that URI. In removing the unnec-
essary duplicates, we reduce the number of query iterations
that are required to retrieve all possible facts from an equiv-
alence closure. Those duplicates removed from the underly-
ing dataset are flagged as deprecated within the CRS, which
continues to give results when asked to give equivalents for
both normal and deprecated URIs. However, deprecated
URIs are not returned in equivalence sets, hence if the CRS
is queried for equivalents of a deprecated URI, only the non-
deprecated members of the bundle are returned. All URIs
remain in their bundles, maintaining the history and bundle
formation structures; deprecated ones are simply filtered out
when results are returned. Checks have been put in place to
ensure that canons cannot be deprecated, and while it would
be perfectly feasible to change the canon for a given bundle
to an alternative member of that bundle, we have not found
need to implement such functionality.

4. USING A SINGLE CRS
As stated in the previous section, the core functionality of

the CRS is implemented in a PHP class. This can be used
directly, incorporated within an application, or wrapped in
simple scripts to expose functionality via HTTP interfaces.
In either case, the back end database does not have to re-
side on the same machine as the code executing the CRS
class, given appropriate mySQL permissions and firewall ac-
cess, enabling multiple applications to access the same co-
reference information directly via PHP. However this obvi-
ously may incur additional overheads.

The CRS class provides a function to ‘merge’ two URIs,
i.e. assert that they are equivalent, along with a number
of other useful functions to facilitate querying of the un-
derlying knowledge. One can request equivalent URIs for
a given input URI, which returns the set of non-deprecated
URIs from the bundle in which the requested URI resides.
If no information is known about the requested URI, a set
is simply returned containing only that URI. Similarly, the
canonical URI can be requested for any given input URI.

There is no level of access control built in to the core func-
tionality, other than authenticating to the mySQL database.
As a result, we have chosen not to give public access to
the rkbexplorer.com CRSes via the CRS class, rather to
provide a number of web interfaces which permit read-only
querying of the co-reference knowledge.

For each rkbexplorer.com sub-domain, the URI naming
scheme uses the following pattern for non-information re-
sources: http://<repository>.rkbexplorer.com/id/xyz.
When a non-information resource is dereferenced with
Accept: application/rdf+xml an RDF representation is



returned as expected within linked data best practice. How-
ever, in this document, there is an additional link via the
coref:coreferenceData predicate, indicating that there is
co-reference data available at the URI
http://<repository>.rkbexplorer.com/crs/xyz and allow-
ing CRS aware applications to discover related CRSes. This
URI produces a representation of the bundle for the /id/xyz
URI in either HTML or RDF, based on content negotiation,
such as that in Figure 3. Alternatively, to facilitate use by
a wider number of systems, a request can be made which
returns a document in ntriples format describing the canon
to be owl:sameAs all other duplicates in the bundle.

Applications may also wish to query the CRS in a more
general sense, which is provided by the interface accessible
via /crs/export/?term=<uri>&format=<format>

The core CRS implementation can handle arbitrary URIs
from any number of sources, however the HTTP interfaces
described above and used with rkbexplorer.com sub-domains
have the implication that at least one of the URIs in any
pair of equivalence assertions comes from the sub-domain
for which that CRS is representative. As a result, each
rkbexplorer.com CRS maintains co-references between URIs
on that sub-domain, in addition to links to equivalent URIs
in other rkbexplorer.com sub-domains or external Linked
Data sources.

Finally, each CRS instance, or database, is assumed to
contain knowledge according to a single co-reference context
only. Unfortunately ontologies have not yet been defined for
encapsulating the contextual aspects of co-reference analysis
or the use of co-reference information; hence an application
must currently either have prior knowledge of a set of CRSes
it may consult, or accept data ‘carte-blanche’ from any CRS
it discovers.

5. USING MULTIPLE CRSES
It is conceivable that linked data providers may wish to

publish co-reference information about their dataset, repre-
senting equivalences both between local URIs and linking
to external URIs in other sources. Typically we envisage
that providers could host one (or more) CRSes per dataset,
as demonstrated with rkbexplorer.com. When investigat-
ing co-reference for a given URI, application developers may
choose to treat a CRS which exists on the same domain as
the URI in question as a first point of call, or as more ‘au-
thoritative’ than other CRSes published elsewhere, however
this is not a prescribed semantic.

We have seen how the separation of co-reference data into
CRSes allows for additional services to be provided that
could not easily be achieved with owl:sameAs approaches.
Another of these is the use of multiple CRSes to efficiently
deduce a global equivalence closure for finding duplicates for
a given URI. Finding all equivalences is simply a matter of
following the coref:coreferenceData links to the bundle
for that URI and recursively repeating the process for each
URI in that bundle.

There are various methods that can speed up this process,
such as only looking at one URI from each CRS repository,
or following only the coref:canon predicates in order to
build up a unified view of equivalent URIs. It is also possible
for an application to maintain a list of known CRSes appli-
cable to a given context, and to query each one in parallel to
discover any equivalences it knows about, or to näıvely query
the <repository>.rkbexplorer.com/crs/ CRS whenever a

<repository>.rkbexplorer.com/id/ URI is encountered.
In comparison, Semantic Web applications that rely on

owl:sameAs to represent all co-references must always re-
cursively load and potentially compute inference over the
data of each URI that is deemed equivalent to the current
URI in order to compute a global equivalence closure. This
may bring significant performance overheads, imposing un-
necessary loading and processing of large chunks of data.
Furthermore, there are no opportunities to limit or control
the expansion of the equivalence set, whereas the CRS ar-
chitecture allows for following as many, or as few duplicate
URIs as required with no significant barrier on performance.

We have provided CRS instances for each of our
rkbexplorer.com sub-domains, and performed significant
co-reference analysis both internally and across these datasets.
A visualisation of the cross-repository linkage is presented
in Figure 4, and experimental voiD descriptions [1] are pro-
vided at http://<repository>.rkbexplorer.com/id/void

detailing these linkages and CRS content in a semantically
annotated manner.

This set of CRSes informs our faceted browser application,
RKBExplorer, enabling data from the various repositories to
be incorporated as required. Although rigorous performance
and load testing has not been carried out on the CRS im-
plementation, managing millions of URIs in tens of millions
of bundles has presented no problems. Indeed, fetching the
global equivalence closure is an insignificant step when com-
pared to other processing and analysis phases within the ap-
plication. It is anticipated that individual CRSes will scale
well beyond the current usage, and even more so when mul-
tiple CRSes are employed.

The global equivalence closure described above has been
implemented within the RKBExplorer application, and ad-
ditionally exposed through an HTTP interface at
http://www.rkbexplorer.com/sameAs/. This service will
consult all necessary CRSes to determine the overall set of
equivalents for a given URI, while additionally picking a
canon from a preferential order of domains. Again, to en-
able easy integration of CRS knowledge in non CRS aware
applications, the service can simply be queried with content
negotiation or the additional parameter &format=n3 to re-
trieve a document listing the equivalence relationships using
the owl:sameAs predicate.

6. CONCLUSIONS
This paper has briefly outlined the problems of co-reference

resolution within Open Linked Data repositories and on the
Semantic Web as a whole. The problems of using owl:sameAs

have been discussed, and the needs of more capable manage-
ment techniques presented. We detail the rationale, capa-
bilities and implementation of the CRS architecture, and
describe its use in real-world applications.

Co-reference within the Semantic Web is a growing, yet
largely unappreciated problem. It has been suggested that
it is a matter that will resolve as the Semantic Web evolves,
with careful social engineering and planning, however due
to the reasons discussed previously we do not believe this to
be the case.

It is our conclusion that the most effective means for com-
bating the issue is to make co-reference awareness an archi-
tectural feature of future semantic applications. Existing
use of owl:sameAs is not sufficient, and in many cases incor-
rect. We believe the use of the bundle framework provides a



<rdf:RDF xmlns:coref="http://www.rkbexplorer.com/ontologies/coref#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<coref:Bundle>

<coref:canon rdf:resource="http://southampton.rkbexplorer.com/id/person-00021"/>

<coref:duplicate rdf:resource="http://acm.rkbexplorer.com/id/person-102898" />

<coref:duplicate rdf:resource="http://citeseer.rkbexplorer.com/id/resource-CSP109002" />

<coref:duplicate rdf:resource="http://dblp.rkbexplorer.com/id/people-27aedbcb" />

<coref:duplicate rdf:resource="http://eprints.rkbexplorer.com/id/kfupm/person-27aed0c1" />

<coref:duplicate rdf:resource="http://southampton.rkbexplorer.com/id/person-00021" />

<coref:duplicate rdf:resource="http://wiki.rkbexplorer.com/id/hugh_glaser" />

<coref:lastUpdated>2009-01-16 11:11:40</coref:lastUpdated>

</coref:Bundle>

</rdf:RDF>

Figure 3: Example RDF description of equivalent URIs in a bundle

Figure 4: Co-references between CRSes – see http://www.rkbexplorer.com/linkage/



flexible, expandable and readily compatible notation for con-
ceptualising co-reference, and that the CRS implementation
provides a broad strategy for co-reference management that
integrates the process of reference management into the ar-
chitecture of the Semantic Web by utilising both social and
technical engineering.

Readers are encourage to experiment with and if possi-
ble make use of the rkbexplorer.com services discussed in
this paper, and we welcome any feedback. The core CRS
implementation may be available on request.

7. ACKNOWLEDGMENTS
This work is funded in part by the ReSIST Network of Ex-

cellence (NoE) which is sponsored by the EU Sixth Frame-
work programme (FP6) under contract number IST-4-026764-
NOE, and in collaboration with The Korea Institute of Sci-
ence and Technology Information (KISTI).

We would also like to thank our colleagues at Southamp-
ton, Newcastle, and DERI, along with numerous members
of the Linking Open Data community who have contributed
both directly and indirectly through informative and enlight-
ening discussion.

8. REFERENCES
[1] K. Alexander, R. Cyganiak, M. Hausenblas, and

J. Zhao. voiD Guide - Using the Vocabulary of
interlinked Datasets, 2008.

[2] S. Bechofer, F. Van Harmelen, J. Hendler, I. Horrocks,
D. Mcguiness, P. Schneider, and L. Stein. OWL Web
Ontology Language Reference, 2004.

[3] C. Bizer, R. Cyganiak, and T. Heath. How to publish
Linked Data on the Web, 2007.

[4] D. Booth. Why URI Declarations? A Comparison of
Architectural Approaches. In 1st Workshop on Identity
and Reference for the Semantic Web (IRSW2008),
2008.

[5] R. Cyganiak and C. Bizer. D2R Server – Publishing
Relational Databases on the Web as SPARQL
Endpoints. In 15th International World Wide Web
Conference (WWW2006), 2006.

[6] H. Glaser, I. C. Millard, T. Anderson, and B. Randell.
ReSIST Deliverable D10: Prototype Knowledge Base,
2006.

[7] H. Glaser, I. C. Millard, T. Anderson, and B. Randell.
ReSIST Deliverable D23: Resilience Knowledge Base –
Version 2, 2007.

[8] P. Hayes and H. Halpin. In Defense of Ambiguity. In
Workshop on Identity, Identifiers and Identification
(WWW2007), 2007.

[9] A. Jaffri, H. Glaser, and I. C. Millard. URI
Disambiguation in the Context of Linked Data. In 1st
Workshop on Linked Data on the Web (LDOW2008),
2008.


