
Accessing Site-Specific APIs Through
Write-Wrappers From The Web of Data

Oana Ureche, Aftab Iqbal, Richard Cyganiak, and Michael Hausenblas

Digital Enterprise Research Institute, NUI Galway, Ireland
{firstname.lastname}@deri.org

Abstract. Web of Data formats such as linked data, RDFa and mi-
croformats are read-only technologies. The issue of updating Web data
directly from an RDF-based environment has so far gained limited at-
tention. We present a preliminary report on the idea of “pushing back”
modifications of RDF data to the original source, focusing on the specific
case where data resides behind site-specific Web APIs.

1 Introduction

The linked data meme [4] in general, and the Linking Open Data community
project1 in particular triggered the publication of vast amounts of RDF-based
data; billions of RDF triples, interlinked with hundreds of millions of typed links
are available as part of the Web of Data [5]. Furthermore, search engines, such
as Google and Yahoo! started to index structured data (essentially, RDFa and
microformats in HTML). A significant fraction of the linked data available on
the Web is generated by RDF wrappers around popular Web 2.0 sites, such as
Flickr [16], MySpace [17] and delicious [15]. From a consumer point of view this
is a positive development, enabling one to build (Web) applications [12, 13] that
can exploit Web data from a large variety of sources through a uniform interface.

However, linked data, RDFa and microformats are read-only technologies.
Manipulation of Web data—that is, creating, updating or deleting data—is sup-
ported through site-specific APIs, if at all. In the following we will use the term
site-specific API synonymously for Web 2.0 API and Web services in the sense
of [18]. An example of a site-specific API is the delicious.com API [1] for manag-
ing bookmarks. Taking into account that there are more than 1300 site-specific
APIs at time of writing2, and contrasting this with the number of SPARQL end-
points3 currently available (less than 50), one might be interested in accessing
site-specific APIs from an RDF-based environment, as there is considerably more
data available in the former case. With RDF-based environment we mean appli-
cations that already operate on RDF data, such as Tabulator [3] or OpenLink’s
Data Explorer (ODE) [2].

1 http://linkeddata.org
2 http://www.programmableweb.com/apis
3 http://esw.w3.org/topic/SparqlEndpoints



2 Oana Ureche, Aftab Iqbal, Richard Cyganiak, and Michael Hausenblas

Let us take a look at a concrete use case. Sean is browsing the Web of Data
using Tabulator. While surfing the Web of Data, he finds a bookmark from his
delicious.com account. When Sean first bookmarked the URI, he assigned a few
general tags. As he has gained more experience in the field since, he now wants
to update the bookmark at hand (in terms of tags, description, etc.—cf. also
Fig. 1). Sean logs into the delicious.com Web application, locates the bookmark,
performs the desired changes and eventually the RDF representation will be
updated. When reviewing the actions necessary to complete Sean’s “update”
task, one may wonder if there are not more efficient means to do so. This is even
more evident if Sean wants to keep his tags synchronised between several Web
2.0 sites, or if he wants to do mass updates to his bookmarks.

Fig. 1. The data from http://delicious.com/mhausenblas viewed in ODE.

Thus, the key question is: How can data residing behind site-specific APIs
efficiently be manipulated from an RDF-based environment? In this work, we
focus on the issue of mapping from RDF-based update operations to invocations
of site-specific API operations. The key challenge is the mismatch between the
RDF model and the local semantics of site-specific APIs.

Based on the concept of write-wrappers introduced in Section 2 we elaborate
on design issues in Section 3. Then, in Section 4 we report on an experimental
implementation of a write-wrapper. We review related work in Section 5 and
eventually discuss our findings in Section 6.

2 Write-Wrappers for site-specific APIs

As we have reported in [5], read-only RDF wrappers are a common method
to integrate data obtained from site-specific APIs into the Web of Data. The



Web of Data Write-Wrappers 3

approach presented herein is hence based on write-wrappers. The input to a write
wrapper is an operation, such as update, along with some RDF data (see Fig. 2).
The wrapper maps the operation and data to one or more invocations of a site-
specific API. Write-wrappers are a high-level update mechanism because they
map a uniform RDF-based interface into different heterogenous, and likely not
RDF-based, APIs. Write-wrappers are usually proxies in the REST sense [11].

Fig. 2. The interfaces of a write-wrapper.

There are different alternatives for conveying the input operation and data.
Options include:

– RESTful HTTP interfaces, which use the four uniform HTTP methods GET,
POST, PUT, DELETE.

– XML-RPC interfaces.
– SPARQL Update4.

The output-interface of the write wrapper, on the other side, is determined
by the site-specific API. The write-wrapper needs to handle a variety of cases,
depending on the style of the API (RESTful, XML-RPC, etc.), the offered au-
thentication mechanisms, error handling and so forth. However, these cases can
be seen as implementations of the same basic steps. Therefore, it should be pos-
sible to employ a generic mechanism to perform the mapping and API access.

RDF clients can already update triple stores through SPARQL Update [6].
In order to allow clients to treat site-specific APIs and RDF triple stores in the
same manner, we decided to build our update mechanism on SPARQL Update.
We thus introduce the notion of a pushback (Fig. 3). A pushback conceptually
consists of:

1. A SPARQL Update input interface towards the client;
2. A generic mapping mechanism that maps the SPARQL Update requests to

site-specific API function calls, using site-specific, parameterized mappings;
4 http://www.w3.org/TR/sparql-features/#sparql-update



4 Oana Ureche, Aftab Iqbal, Richard Cyganiak, and Michael Hausenblas

3. An output interface that is able to call Web services and pipe results back
to the client.

Fig. 3. Architecture diagram of a pushback RDF write-wrapper.

As an initial step towards a generic pushback solution, in this paper we dis-
cuss design considerations for the components of a pushback and further discuss
an experimental implementation for a specific case.

3 Design Considerations

3.1 Input Interface

The first component of a pushback is the SPARQL Update input interface.
SPARQL Update is at time of writing under standardisation, hence a mov-
ing target. Beside this, the SPARQL Update is straight-forward to implement;
an array of existing libraries and platforms, for example, ARC25 (for PHP) or
ARQ/Jena6 (for Java) exist.

Type of Operation. Essentially, we have identified two options to encode the
operation in a request from the RDF-based client, that is, the update request
semantics. First, one can use the SPARQL Update operations such as INSERT,
DELETE, etc. to convey the semantics. Second, one can use the RDForms vo-
cabulary7 over SPARQL Update. The second approach is described in detail
in [5].

5 http://arc.semsol.org/
6 http://jena.sourceforge.net/
7 http://rdfs.org/ns/rdforms



Web of Data Write-Wrappers 5

3.2 Generic Mapping Mechanism

The second module of a pushback, the mapping mechanism for both the data and
operations could take many forms. We have contemplated the following options:

1. Rules expressed in an appropriate dialect of the Rule Interchange Format
(RIF)8,

2. Embedded scripting language fragments that directly invoke the target API,
3. An extension of the Web Application Description Language (WADL)9,
4. The creation of a new declarative mapping language.

This area is subject to further research, as we are only starting to understand
the requirements and possible limitations of the candidate languages. So far we
have identified the following functions that a mapping mechanism must support
in order to be used in a pushback:

1. Map input operations to target function call(s) of the site-specific API;
2. For each of the target function calls, map input data elements to function

call parameters;
3. Validate the parameter values against the contract of the API (required,

optional, etc.);
4. Declare how users are authenticated to the site-specific API;
5. Identify whether an API function call has succeeded or failed, and represent

error messages or conditions.

We will give an example of a simple mapping in the following. Assuming that
the input operation is based on RDForms over SPARQL Update and that the
site-specific API is an XML-RPC-style one, the 1:1 mapping could look like the
following:

CRUDOperationCreate{

method: POST

call: https://api.del.icio.us/v1/posts/add?

url.key : &url

description.key : &description

extended.key : &extended

tags.key : &tags

dt.key : &dt

replace.key : &replace

shared.key : &shared

}

Parameter Validation Site-specific API method calls usually encode a num-
ber of parameters. Table 1 illustrates, by example, some parameters charac-
teristics for the add function call10 of the delicious.com API. Explicitly, the
8 http://www.w3.org/2005/rules/wiki
9 https://wadl.dev.java.net/wadl20061109.pdf

10 http://delicious.com/help/api#posts_add



6 Oana Ureche, Aftab Iqbal, Richard Cyganiak, and Michael Hausenblas

structured unstructured

required N/A &description

optional &dt &extended

Table 1. Parameters characteristics for a delicious.com API function.

&description parameter, referring to the bookmark’s title, is required and un-
structured, whereas the &dt parameter (date stamp of the bookmark) is optional,
but structured because it requires a full ISO860111 date format. These parame-
ters have to be checked against their characteristics by the pushback. Note that
some parameters are not updatable. The RDForm will not display a field for
such parameter.

We note further that every site-specific API provides potentially different
methods of authenticating users and returning error messages. We will discuss
this in greater detail below.

Authenticating users In the context of Web services, authentication of a
client is performed by a server to determine the identity of the requesting agent.
In order to perform authentication, one needs to know about the identity of
an agent. Site-specific APIs support different authentication schemes, such as
HTTP Basic, Digest, or API keys.

Error Handling Site-specific APIs signal errors in very different ways. For
example, the delicious.com API only returns <result code=’done’> in case
the call was successful and <result code=’something went wrong’> other-
wise. The site-specific mapping must be sufficiently expressive to tell these situ-
ations apart.

3.3 Output Interface

Eventually, the third component, the Web service output interface, poses some
challenges on its own, as it very much depends on the type of Web service.
We have identified the following forms, a site-specific API function call may be
performed:

1. For RESTful APIs, one can use generic libraries and tools such as curl ;
2. Based on a mapping that is rooted in an interpreted language such as PHP,

one can directly execute the scripts, with the data as well as the operations
supplied as parameter;

3. Utilising WADL—WADL provides a machine processable description of REST-
ful Web applications and services. Using WADL, the implementation is not
tied to a specific programming language. There are tools available12 that
generate code automatically out of a WADL description.

11 http://www.cl.cam.ac.uk/~mgk25/iso-time.html
12 http://tomayac.de/rest-describe/latest/RestDescribe.html



Web of Data Write-Wrappers 7

4 Experimental Implementation

In this section, we provide a qualitative evaluation of an experimental imple-
mentation of a pushback against a simple API access:

Simple API access The first implementation is our evaluation base-line. In
this implementation the call to a site-specific API is done directly through
a basic programming script. The input data, arguments, operation and user
credentials are hard-coded in the application.

API access from the Web of Data The second implementation accesses a
site-specific API through a write wrapper. For the sake of completeness, the
input is an RDForm. The data of the RDForm is gleaned into a SPARQL
Update operation. The output is the call to a Web service. The call to a Web
service takes the language specific script form. Moreover, this implementa-
tion includes form validation, secure on line log in and operation expressed
using only the RDForms vocabulary. This approach uses only the SPARQL
INSERT query.

Our evaluation purpose is to compare the complexity vs. the performance of
the two approaches. While the second approach is obviously more complex than
the first one, it is interesting to find out the difference between the processing
time for both approaches. First, we will compare the two implementations by
their feature characteristics. Second, we will measure the processing time for the
both implementations for several consecutive accesses to a site-specific API.

The second approach includes error handling because it validates the user
given fields’ values. Although the authentication transparency suffers in the sec-
ond approach, the security risk is minimal compared to the first approach. Lastly,
none of the two approaches offers data integrity, that is, transaction support for
concurrent editing operations.

The chart in Figure 4 shows the performance of the two implementation
approaches. For the evaluation we chose the delicious.com API. Due to the re-
striction of “at least one second between queries” required by delicious.com, we
set up a two seconds throttle between requests. The terms “create” and “delete”
refer to the type of the request: “create a bookmark”, respectively “delete a
bookmark”. We observe that the time grows linearly with the number of re-
quests performed for both approaches and both types of requests. Moreover, the
create request for the second implementation approach takes twice as much to
process than the create request for the first approach. The delete request takes
about the same time for both implementations. While the create request encodes
seven fields in the SPARQL request and thus more information to process, the
delete request encodes only one field for the URL parameter, which leads to the
same processing time for both approaches when the number of requests is low.

The experiment shows that a write-wrapper does not add a lot of overhead
which provides evidence for the feasibility of the overall approach.



8 Oana Ureche, Aftab Iqbal, Richard Cyganiak, and Michael Hausenblas

Fig. 4. Performance chart: time required to perform several requests.

5 Related Work

Basic Update Mechanisms. Three basic update mechanisms are available in
the Web of Data context, (i) native HTTP methods, (ii) WebDAV, and (iii)
SPARQL Update. The HTTP protocol [10] defines methods for querying and
managing Web resources (such as GET, POST, DELETE, etc.). The Web Distributed
Authoring and Versioning protocol (WebDAV) [8] extends HTTP with additional
methods for collaborative authoring of resources, like COPY and MOVE. Neither
HTTP methods nor WebDAV are optimal for updating RDF-based data, because
of the coarse granularity of their operation, which work on entire documents. The
W3C SPARQL Working Group is currently standardising update operations to
allow remote manipulation of RDF data13. While it is subject to discussion if the
proposed protocol is RESTful in the sense of the Resource-Oriented Architecture
(ROA) [18], we rely on SPARQL Update as the basis of our update mechanism,
because it allows clients to treat RDF-based back-ends, such as triple stores, and
non-RDF back-ends, such as site-specific APIs, in a uniform manner.

RDF Mappings. Relational-to-RDF (RDB2RDF) mapping approaches [19]
have been widely studied. The problem of mapping SPARQL update operations
to site-specific API invocations can be seen as a comparable problem, with the
main difference that not only data has to be mapped, but also operations. This
has serious consequences, as for example one has to pipe back errors or exceptions
to the client, handle concurrent editing, authorization, and authentication.

Alternative Update Approaches. The Tabulator data browser imple-
ments an update protocol based on per-triple update [6]. Dietzold et al present

13 http://www.w3.org/TR/sparql-features/



Web of Data Write-Wrappers 9

a method for client-side in-place editing of data embedded as RDFa in a web
page, where a statement-level diff is sent back to the server [7]. Both approaches
are complementary to our work, because the performed client-side updates are,
or can be, expressed as SPARQL Update operations that could be propagated
to site-specific APIs using pushbacks.

Semantic web services. Major work towards connecting web services to
languages such as RDF and OWL has been undertaken in the Semantic Web
Services (SWS) field. In SWS terminology, the area addressed in our work is
Service Grounding : how to invoke a service given some input that is expressed
in terms of a domain ontology, and how to interpret the results in terms of the
domain ontology. This is typically achieved by referring to a WSDL file plus
lowering and lifting transformations, which map semantic information to and
from the message syntax expected by the service. This approach is standardized
in the SAWSDL [9] W3C Recommendation. XSLT is used as transformation
language, although the possibility of using other languages is noted.

A SAWSDL-annotated WSDL file contains all necessary information for con-
figuring a write wrapper around the service. But the preferred method of doc-
umenting RESTful APIs is prose text, and WSDL files are rarely provided by
service operators. Setting up a write wrapper thus requires manual authoring of
a WSDL file, an extremely tedious activity even for simple services, especially
when compared to creating a WADL file for the same service. Thus, an exten-
sion of WADL with annotations similar to those in SAWSDL seems like a more
attractive alternative. We also want to further explore alternatives to XSLT for
expressing the mappings, because processing RDF/XML input with XSLT is
awkward, and input and output of RESTful services are often not expressed in
XML.

SA-REST [14] has been proposed as another alternative to SAWSDL specif-
ically for RESTful services. It works by embedding annotations directly into the
HTML developer documentation of the service. The supported annotations are
kept very simple though, and do not cover details required by the services we
attempted to map, such as authentication, input validation or the recognition of
errors reported by the server.

6 Conclusion

We have argued in this paper that there is a growing need in accessing site-
specific APIs from an RDF based environment. We have introduced the concept
of a pushback, a SPARQL Update-based write-wrapper that is able to translate
RDF data into site-specific API calls. Further, we have elaborated on the design
of the three main components of a pushback, the SPARQL update interface,
the generic mapping mechanism, and the output interface. For each one of them
we have provided an initial design solution and implementation. Moreover, we
have highlighted the limitations of the proposed design. Finally, we have com-
pared direct access to a site-specific API and a prototype implementation of our
approach.



10 Oana Ureche, Aftab Iqbal, Richard Cyganiak, and Michael Hausenblas

In this paper we are not claiming to offer a comprehensive answer to our
initial question how can site-specific APIs efficiently be accessed from an RDF-
based environment?, but discuss possibilities and limitations, building a basis
for our further research. We have, for example, not yet addressed issues around
concurrent data updates and plan to elaborate as well on transactions to ensure
data integrity. Finally, we plan to have a deeper look into the handling of results
and how to pipe back errors to the client.

Acknowledgements

Our work has partly been supported by the European Commission under Grant
No. 217031, FP7/ICT-2007.1.2, project “Domain Driven Design and Mashup
Oriented Development based on Open Source Java Metaframework for Prag-
matic, Reliable and Secure Web Development” (Romulus).

References

1. Delicious API. http://delicious.com/help/api.
2. OpenLink’s Data Explorer. http://linkeddata.uriburner.com/ode/.
3. Tabulator. http://www.w3.org/2005/ajar/tab.
4. T. Berners-Lee. Linked Data, Design Issues. http://www.w3.org/DesignIssues/

LinkedData.html.
5. T. Berners-Lee, R. Cyganiak, M. Hausenblas, J. Presbrey, O. Seneviratne, and

O. Ureche. On Integration Issues of Site-Specific APIs into the Web of Data.
Intermediate Technical Report, Linked Data Research Centre, 2009. http://

linkeddata.deri.ie/tr/2009-rw-wod.
6. T. Berners-Lee, J. Hollenbach, K. Lu, J. Presbrey, E. Prud’hommeaux, and

mc schraefel. Tabulator Redux: Browsing and Writing Linked Data. In WWW
2008 Workshop: Linked Data on the Web (LDOW2008), Beijing, China, 2008.

7. S. Dietzold, S. Hellmann, and M. Peklo. Using JavaScript RDFa Widgets for
Model/View Separation inside Read/Write Websites. In Proceedings of the 4th
Workshop on Scripting for the Semantic Web, Tenerife, Spain, 2008.

8. L. Dusseault. HTTP Extensions for Web Distributed Authoring and Versioning
(WebDAV). Request for Comments: 4918, June 2007, IETF Network Working
Group, 2007.

9. J. Farrell and H. Lausen. Semantic Annotations for WSDL and XML Schema.
W3C Recommendation 14 October 2008, W3C Semantic Web Deployment Work-
ing Group, 2008.

10. R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-
Lee. Hypertext Transfer Protocol – HTTP/1.1. Request for Comments: 2616, June
1999, IETF Network Working Group, 1999.

11. R. Fielding and R. Taylor. Principled design of the modern Web architecture.
ACM Trans. Internet Technol., 2(2):115–150, 2002.

12. M. Hausenblas. Exploiting Linked Data For Building Web Applications. IEEE
Internet Computing, 13(4):68–73, 2009.

13. M. Hausenblas. Linked Data Applications. First Community Draft, Linked Data
Research Centre, 2009. http://linkeddata.deri.ie/tr/2009-ld2webapp.



Web of Data Write-Wrappers 11

14. J. Lathem, K. Gomadam, and A. Sheth. SA-REST and (S)mashups: Adding Se-
mantics to RESTful Services. In International Conference on Semantic Computing,
2007 (ICSC 2007), pages 469–476. IEEE Press, Sept. 2007.

15. OpenLink. RDF wrapper for delicious. http://linkeddata.uriburner.com/.
16. A. Passant. RDF wrapper for Flickr. http://apassant.net/home/2007/12/

flickrdf/.
17. Y. Raimond and K. Jacobson. RDF wrapper for MySpace. http://dbtune.org/

myspace/.
18. L. Richardson and S. Ruby. RESTful Web Services. O’Reilly Media, Inc., 2007.
19. S. Sahoo, W. Halb, S. Hellmann, K. Idehen, T. Thibodeau, S. Auer, J. Sequeda, and

A. Ezzat. A Survey of Current Approaches for Mapping of Relational Databases to
RDF. W3C Incubator Group Report January 08 2009, W3C RDB2RDF Incubator
Group, 2009.




