
Multilingual Agents: Ontologies, Languages and
Abstractions

Steven Willmott
�

Laboratoire d’Intelligence
Artificielle, Ecole

Polytechnique Federal de
Lausanne,

Lausanne, Switzerland

Ion Constantinescu
Laboratoire d’Intelligence

Artificielle, Ecole
Polytechnique Federal de

Lausanne,
Lausanne, Switzerland

Monique Calisti
Laboratoire d’Intelligence

Artificielle, Ecole
Polytechnique Federal de

Lausanne,
Lausanne, Switzerland

ABSTRACT
Agent Environments are becoming increasingly open, in-
terconnected and heterogeneous. This suggests that future
agents will need to be able to deal with multiple agent com-
munication languages, multiple ways of expressing content
and multiple ontology representations.
One way to deal with this heterogeneity is by identifying

an agent's internal knowledge representation with an ab-
stract ontology representation (AOR). This AOR then can
be used to capture abstract models of communication re-
lated knowledge (domain models, agent communication lan-
guages, content languages and models of how these interact)
and make it possible for the agent to manipulate all elements
of messages in a uniform way - as instances of its ontological
knowledge.
The paper outlines the approach, highlights interesting

issues and describes a prototype implementation.

Keywords
Ontologies, Agent Languages, Content Expressions, Repre-
sentations, Abstraction, Agent toolkits

1. INTRODUCTION
Recent years have seen signi�cant e�ort invested in the

study of communication mechanisms for agents. Particu-
lar attention has been paid to Agent Communication Lan-
guages (such as FIPA-ACL and KQML), Content Languages
(such as KIF and FIPA-SL) and Ontology representations
(DAML, OIL and others). These frameworks can be used
to describe both the structure and meaning of the messages
agents might exchange. For an agent to make e�ective use
of these frameworks it must be able to construct and manip-
ulate messages combining aspects from all three areas (on-
tology, content language, agent communication language).
Often constraints (structural and semantic) imposed by the
frameworks being used must be respected to ensure that the
message has meaning.
Whilst this task is di�cult enough if Agent Communica-

tion Language (ACL), Content Language (CL) and Ontol-
ogy Representation (OR) are �xed in advance, agents in het-
erogeneous environments are increasingly likely to be faced
with:

�Author for correspondence. Email:
Steven.Willmott@ep.ch

� Multiple ACLs, each with multiple possible encodings.

� Multiple CLs, each with multiple possible encodings.

� Multiple ORs, each with multiple possible encodings.1

How will agents deal with this heterogeneity? How can
agent toolkits support developers in exploiting the di�erent
language frameworks? How can we ensure that code is re-
usable across many agent languages? What is the best way
to bridge between the ACL, CL and OR levels? In answer
to some of these questions, the central thesis of this paper
is that:

1. An agent's internal knowledge representation can be
seen as an abstract ontology representation (AOR).

2. This AOR can be used to capture abstract models
of communication related knowledge (domain mod-
els, agent communication languages, content languages
and models of how these interact).

3. This makes it possible for the agent to manipulate el-
ements from all levels of messages (ACL, CL and do-
main) in a uniform way - as instances of its ontological
knowledge.

The main idea is therefore to give agents explicit repre-
sentations of languages and domains to manipulate at run-
time. The approach is described in three parts: abstract
ontology representation (Section 3.1), the de�nition of lan-
guages structures as ontologies (Section 3.2) and how these
can be used to develop communicating agents (Section 3.3).
Section 4 then details a prototype implementation of the ar-
chitecture supporting all of the main ideas presented and,
in particular:

� The abstract ontology representation described in Sec-
tion 3.1.

� An interface for a restricted version of DAML ontology
representation as a rei�cation of the AOR.

1Here an Ontology Representation is taken to be de�ned
by the information which can be represented (entities, rela-
tions and constraints allowed) and its encoding is the phys-
ical representation. An Object Oriented OR may have two
representations for example: one in UML and another in
XMI/XML.

� Conceptual models of the agent languages FIPA-SL,
FIPA-KIF, First order logic (content languages) and
FIPA-ACL (agent communication language) expressed
as DAML ontologies.

� Codecs for the rei�cation of instances of messages in
three of the languages listed above to their respec-
tive syntaxes (FIPA-SL S-Expression syntax, FIPA-
KIF Standard syntax and FIPA-ACL S-Expression syn-
tax).

This work described here is in many ways a logical pro-
gression of previous work by others in the following areas:
1) work on modelling agent languages as ontologies such as
[1], 2) implementations of Agent toolkits such as Jade [9],
FIPA-OS [7] and Jat-Lite [10] which provide ACL, Content
Language or Ontology access for speci�c languages and 3)
Ontology frameworks such as DAML, OIL, DAML+OIL and
UML approaches which form the basis of the example AOR
given in Section 3.1.
It should be noted that the objective of this paper is to

provide a global view of the feasibility and potential utility
of this approach rather than provide de�nitive results in any
one area.

2. DEFINITIONS
Before delving into the main body of the paper this sec-

tion de�nes important terms. The following example of an
agent message using FIPA-ACL (S-expression syntax [4]),
FIPA-SL [6] and an ontology about cars illustrates one way
of seeing the relationship between di�erent levels of agent
communication:

(inform
:sender (agent-identifier :name i)
:receiver (agent-identifier :name j)
:ontology car
:language FIPA-SL

:content
"((= (any ?x (is-car ?x))
(car

:colour lightgrey
:registration VD 3651

:make VW
:type Golf

)
)"

)

Elements in the world are de�ned in the domain ontology
(the predicate \is-car" and the \car" object would be de�ned
in the ontology \car"). A content language expression (the
argument of the \:content" parameter in the example) is
then used to represent and bind instances of these entities
together into a statement about the world. Finally a speech
act de�ned in an agent communication language expressing
an agent's opinion about this state of a�airs is wrapped
around the content expression. A similar structure exists for
messages using, for example, KQML with KIF as a content
language. These three levels are also linked by constraints
such as:

� In FIPA-ACL, the ACL expresses which content lan-
guage, encoding and ontologies are to be used in the
content �eld.

� Often the speech act used at the ACL level constrains
the type of content allowed - a FIPA \request" should
be for an action and not a proposition for example.

� Content Languages usually interface with ontologies
via certain constructs able to express entities de�ned
in an ontology (the car construct in the message above
is represented by an SL functional term for example).

� Ontologies often express constraints on composition of
concepts in the ontology, e.g. that the value of a car's
colour attribute must be a \colour" of some sort.

Some of these constraints are expressed in language gram-
mars, others in ontology de�nitions and others as free text
descriptions.
This paper also makes use of the following terms:

� Agent Language: a language which is either an Agent
Communication Language or a Content Language.

� Concept (or Class): A notion de�ning a named class
of entities.

� Conceptual Model: a model (or meta model) con-
taining de�nitions of a number of concepts and rela-
tionships between these concepts.

� Public: stable de�nition (of a language, encoding or
other) or structure which is available to all agents in
a given community and something which can be relied
upon to enable interoperability.

� Internal: something which is not necessarily public.

� Instance Knowledge: statements about particular
instances of concepts (classes). (E.g. \Harry the cat
is blue".)

� Ontological Knowledge (or Meta Knowledge):
statements about classes and relationships - instances
of conceptual models. Meta knowledge w.r.t. instance
knowledge (E.g. \Cats are animals", \Blue is a colour".)

3. ABSTRACTIONS AND ARCHITECTURE
The presentation of the approach is divided into three

parts: abstract ontology representations (Section 3.1), mod-
elling languages as ontologies (Section 3.2) and usage in agent
systems (Section 3.3).

3.1 Abstract Ontology Representations
As shown in Figure 1, most agent architectures store and

manipulate knowledge in several areas: conceptual models,
knowledge bases and messages involved in communication
with other agents. The underlying model the agent uses to
represent knowledge of conceptual models of the world is
called its \knowledge representation".
Since we are primarily concerned with communicating agents,

it is important that this knowledge representation is able to
represent ontological knowledge and in particular ontologies
de�ned in one or more public ORs. Given that there are al-
ready a number of di�erent public OR frameworks (DAML,
OIL, UML based approaches) and that there may be more
in the future, choices on what an agent's internal knowl-
edge representation is able to capture is of great importance.
Choices here impact both the e�ectiveness of the agent and

Conceptual
Models

Knowledge
Base

Message
Instances

Instance
Knowledge Meta

Knowledge

Figure 1: An agent's knowledge is usually divided
into instance knowledge (knowledge of individual
facts) and meta knowledge (knowledge about classes
of entities).

the future re-usability of its code. The problem has two
levels as illustrated in Figure 2:

1. Encoding: abstracting from multiple encodings of
one OR to extract a conceptual model for that OR.

2. Conceptual Model: abstracting from the (usually
di�erent) conceptual models of multiple ORs to ex-
tract a common concept model.

DAML OO

XMIUMLRDF

AOR AOR2

OR..

Encoding

Conceptual
Models

Common
Conceptual
Models

1

2

...

Figure 2: Abstraction from encoding is the �rst
step, followed by abstraction from conceptual mod-
els to �nd common features. The �nal abstract on-
tology representation matches the agent's internal
knowledge representation.

The product of the second step is then a potential can-
didate for use as the agent's internal knowledge representa-
tion.2 In the context of this paper it is referred to as an
Abstract Ontology Representation (AOR). In general there
may be several useful abstractions and more than simply
two abstraction steps. We focus on these two major tran-
sitions (encoding - conceptual model, conceptual models -
uni�ed conceptual model) to simply presentation however.

3.1.1 Abstraction from Encodings
There is clear value in separating internal representations

of knowledge from any one particular public encoding since
supporting new encodings can then normally be supported

2Note that an agent may well use several knowledge rep-
resentations internally, or that the AOR described here is
simply mapped to an internal KR when necessary. One KR
assumed here for clarity.

by simply adding new codecs.3 This type of abstraction is
generally relatively straightforward since most encodings of
a single OR will attempt to express the same elements of
the ORs underlying conceptual model.

3.1.2 Abstraction from Conceptual Models
Whilst dealing with multiple encodings is normally rel-

atively simple, dealing with multiple conceptual models of
ORs is much more problematic. It is highly likely that some
types of knowledge (e.g. certain types of relations or con-
straints) are allowed by some frameworks and not by others.
Java class hierarchies, for example, forbid multiple inheri-
tance but this is allowed by DAML and OIL. There are two
straightforward approaches to generating abstractions of a
set of target ORs (the ORs a designer wishes to consider):

� Feature intersection: Supporting representations of only
the features which fall into the intersection of features
of all target ORs. This approach ensures that all of
an agent's ontological knowledge could be represented
in any of the target ORs but means that it may not
be able to represent/reason with all the information in
ontologies it shares with others.

� Feature union: Supporting representations of all fea-
tures of all the target ORs. This extreme ensures that
the agent is able to represent all aspects of the knowl-
edge expressed in each of the target ORs. The negative
consequence is that there may be subsets of the agent's
knowledge which cannot be expressed in any single OR
(particularly if the agent is able to derive new ontology
information).

There are clearly complex tradeo�s involved here and the
choices made are directly linked to an agent's reasoning ca-
pabilities and potential functionality. In reality, most agent
systems will likely fall somewhere between these extremes
and pick and choose OR features to represent.

3.1.3 Example Abstract Ontology
The above are rather general statements, this section de-

�nes an abstract ontology representation which is used through-
out the rest of the paper. The intention is not to argue that
the model chosen is in anyway \the best" for the combina-
tion of target ORs but to draw out common aspects which
appeared to be necessary for a basic systems. Target ORs
are: DAML, OIL, UML, Frames (such as those currently
used in FIPA speci�cations), simple language grammars ex-
pressed in BNF/EBNF. Although a detailed study of the
similarities between these frameworks is beyond the scope
of this paper, a useful intersection appears to include the
elements below. The following is the example AOR which
will be used from now on:

1. Class: corresponding to a concept describing a named
class of entities.

2. subClassOf relations: indicating that one class is a
more speci�c version of another (can also be read as
\can substitute", as in \VW" can substitute \car").

3Codec is used to refer to software modules which translate
a single public representation to and from an internal data
structure.

3. sameConceptAs relations: indicating that two classes
are identical, includes implict equivalences between prop-
erties of the class.

4. Properties: corresponds to attribute value pairs which
express something about one or more classes. The fol-
lowing constraints can be applied to properties:

� Domain: the classes the property applies to.

� Range: the range of values the property may take.

� Cardinality: the number of times it may or must
occur for a given class.

The terminology used here is taken from the DAML+OIL
speci�cation [2] but equivalent formulations could be made
using (for example) frames and slots.4 The resulting struc-
ture is a directed graph corresponding to a class diagram
but which allows multiple inheritance and equivalence.

Vehicle

Car

Object

VW

Car

Truck

SubClassOf

SameClassAs

Meta

Car

Vehicle

Figure 3: Ontologies are represented as directed
graphs.

Figure 3 shows several linked ontology de�nitions using
the model de�ned. The boxes in the �gure each represent a
namespace de�ned by a single ontology de�nition. In addi-
tion to the subClassOf and sameClassAs relations each class
may also have properties assigned. There is clearly a lot of
richness from the target ORs which is lost is this model
but it should be remembered that the main purpose of this
representation is to illustrate the approach rather than to
propose a speci�c abstract ontology representation.

3.2 Abstract Agent Languages
The AOR given in the previous section gives the agent a

�xed model for its ontology knowledge. The next step is to
allow it to do the same with instance knowledge, speci�cally
with instance knowledge expressed in varied agent languages
(we are less concerned with knowledge bases). For any given
language, this problem is again at two levels: encoding and
conceptual model.

3.2.1 Abstraction from Encodings
In principle this can be solved as simply as for ontologies -

by presuming a common representation of message elements

4The terms \class" and \concept" are used interchangeably
throughout the paper.

which are extracted from diverse encodings by encoding spe-
ci�c codecs. The question of how the conceptual model of
a language is expressed arises however. This question is
more obvious for languages than for ontology representa-
tions since:

� Language grammars can be relatively complex and
capture a good deal of information about the mean-
ing of expressions in the language

� Agents will often need to manipulate instances of mes-
sages and require access to the conceptual model of the
language to ensure correctness.

� The interaction between agent languages and between
agent languages and entities de�ned in domain ontolo-
gies are particularly important.

� Language syntax de�nitions come in a variety of forms
(XML Schemas, DTD, EBNF grammars etc.) but
these tend to be highly dependent upon the individual
syntax involved.

As Crane�eld et. al. point out in [1] however, ontolo-
gies can in fact be seen as abstract grammars for languages.
An OR can be used to construct conceptual models of lan-
guages. A logical usage of this is to give the agent access
to these language models at runtime and allow it to ma-
nipulate them. This enables the agent to treat knowledge
about languages it knows at the same level as domain knowl-
edge. The objective is to model languages in a formalism
compatible with the AOR de�ned in the previous section.
For a language based on an EBNF grammar a �rst pass at
generating the model could be done as follows:

� Disjunctions become Classes: Each disjunction on
the right hand side (RHS) of a production rule in the
grammar can be used to generate a new class. The
class name can be derived either from the �rst constant
symbol on the RHS of the expansion or (if there is no
such constant), from the name of the non-terminal on
the LHS of the production.

� Elements become Properties: The elements in the
expansion of a single RHS disjunction to the new class
each generate a new property, s.t. the property's do-
main = class generated by the disjunction, range =
type of the element, cardinality is determined w.r.t.
cardinality expressed in EBNF (+, * etc.).

� Generating the Class Hierarchy: The concepts so
generated can be linked by subClassOf relationships
which express which grammatical elements can be sub-
stituted for others (e.g. in FIPA-SL, a term may be
replaced by a constant, giving rise to a relation de�n-
ing constant as a sub class of term.)

Similar schemes could be de�ned for XML Schema and
XML DTDs. This method is only a sketch and needs to
be applied with interpretation by the designer to deal with
ambiguities it might generate. Furthermore, grammars are
often optimised or compacted to reduce overhead. It may
be necessary to restructure the grammar to generate a clear
conceptual model.
It should be clear what is being done here - the concep-

tual model represents only the syntactic/lexical constraints

between the concepts in the language. The information so
generated does include a important part of the language
structure (such as, for example, the fact that an \+" opera-
tor may only take \numbers" as arguments) but it does not
capture more than an EBNF or Schema grammar - i.e. it
does not attempt to capture the semantics. The concepts
extracted for a language such as FIPA-SL include classes
such as:

Class: "BinaryTermOp"

SubClassOf: AtomicFormula
Property: argument
range: Term,
Cardinality: 2.

Class: "="

SubClassOf: BinaryTermOp

Class: "Term"

Where there are a number of sub classes of \Term". Con-
cepts such as BinaryTermOp and Term are never normally
instantiated in messages but are useful to structure the model
of the language. In the case of Term for example it is clearly
useful since it is used in the de�nition of the equals operator.

3.2.2 Abstraction from Conceptual Models
A further reason for considering how conceptual models of

languages are expressed (and made available to the agent)
is that the approach can be re-used for modelling abstract
languages and how they relate to each other. An example of
a conceptual di�erence between two languages is the belief
modal operator \B" which is available in FIPA-SL but not
de�ned in KIF. This means that:

� \(and X Y)" is de�ned in both languages.

� \(B fred (and X Y))" is only de�ned in FIPA-SL.

The reason \de�ned" is used and not \expressed" is that
the second statement can be expressed in KIF. KIF simply
attaches no special meaning to the belief operator.
FIPA-SL and KIF are in fact a good example for the po-

tential use of abstraction since they are both extensions of
First Oder Logic (FOL - see [8] for example). Due to this
common heritage, FOL concepts such as term, variable, con-
stant, predicate appear in both FIPA-SL and KIF and ac-
count for a signi�cant subset of both languages. As noted
above, in many cases speci�c constructions such as \mem-
ber" etc. in FIPA-SL and KIF are captured in a more gen-
eral way by FOL functions.

FOL

KIF SL

Term

KIF Term SL Term

SubClassOf

SameClassAs

Figure 4: Hierarchical ontology de�nitions for FOL,
FIPA-SL and KIF.

Figure 4 sketches how languages might be de�ned as three
separate but linked ontologies. Although FOL cannot be

said to abstract all of KIF and FIPA-SL it is clearly more ab-
stract. Agent code manipulating messages using only FOL
concepts would be more language independent than code us-
ing using concepts which appear only in SL or KIF respec-
tively (and not in FOL). Messages using concepts only from
FOL could be represented in both SL and KIF and hence
any of their encodings (potentially also in potentially other
FOL derivatives such as Prolog). De�nitions of languages as
hierarchies of ontologies could also be applied to non-logical
languages and at the ACL level - there are performatives
in KQML and ACL which are roughly equivalent (such as
\tell" and \inform") and others which are only found in one
of the languages (such as \stream").
Relationships between concepts in di�erent languages be-

come easy to model once a common meta model is used
to express conceptual models. In particular the sameClas-
sAs relation can be used to match equivalent concepts in
di�erent languages. This is especially important for declar-
ing mappings between concepts such as objects, actions and
functions which may be declared in a domain ontology and
the concepts in any given language which may represent
them.
The most abstract (general) language allowed by the AOR

given in Section 3.1 appears to be:

Class ::= (ClassName Class*)

This provides a lot of leeway for di�erent levels of abstrac-
tion of languages. It should be remembered, however, that
languages tend not to be very useful unless speci�c seman-
tics are attached to the concepts involved and the range of
things which can be expressed is well delimited. FOL is also
an especially good example because it covers a well de�ned
range of expressions with known computational properties.
It seems likely that the languages agents may know will not
form a neat hierarchy of abstractions but a patchwork of
communications concepts. This is especially true if, as sug-
gested in [1], models of language are exploited to construct
ad-hoc domain speci�c content languages linking conceptual
models of languages with domain models. Agents could then
potentially construct application speci�c languages at run-
time (to negotiate a particular contract for example).

3.3 Building Multilingual Agents
Up until now there has been little discussion on how these

developments impact the building of agents. In principle it
is possible to now limit an API for manipulating messages
to two areas:

� Ontological/Meta Knowledge: accessing and ma-
nipulating stored ontology information stored in the
AOR representation.

� Instance Knowledge: accessing and manipulating
instances of concepts de�ned in the ontology knowl-
edge.

Again, the important point is that both areas (ontology
and instance) represent ACLs, CLs and domains - removing
the need for Developer interfaces for each new language, OR
or domain the agent wishes to deal with. Developer code
is isolated from communication details such as syntax and
perhaps language if abstract languages are de�ned and used.
A simpli�ed view of the architecture is shown in Figure 5.

ACL/CL Encodings OR Encodings

API API

Reasoning, Knowledge bases, Behaviours etc.

Instances Conceptual Models

ACL

Car

SL

Cat
...

FOL

Figure 5: Development intensive aspects of the
agent implementation such as behaviours and rea-
soning are built on APIs accessing conceptual mod-
els and instances of concepts (classes). These in turn
are abstractions and independent of any particular
language or encoding.

As the �gure shows, there would usually be interaction
between the instances of messages / concepts and conceptual
models. The most obvious uses of the models applied to
instances are:

� Validation: Checking that a particular combination
of instances of concepts respects all the constraints im-
posed by the applicable models. This is the most basic
usage of the conceptual models and very important for
languages modelled in particular since it allows agents
to recognise whether a particular message (incoming
or outgoing) respects the constraints of a particular
language or not.

� Translation: Equivalences expressed in conceptual
models can be used to map instances from one model
(ontology) to another, in terms of language for exam-
ple - mapping from SL to FOL could render a incoming
message suitable for an FOL theorem prover the agent
has built in.

� Generation: When constructing messages it can be
useful to be able to generate the concepts which could
be inserted at a particular point in a message.

� Learning: If a message instance arrives which refer-
ences the concept \orange" in ontology \fruit" (un-
known to the agent) the agent may be able to read in
the referenced ontology and �nd a link between \or-
ange" and the \food" concept in some more general
ontology it already knows. This allows it to infer that
the construction \(eat sally orange)" makes some sort
of sense even if it has only a super�cial understanding
of \orange".

There is also no reason why additional information about
domain ontologies or languages could not also be encoded in
message instances. This information could then be assimi-
lated into existing conceptual models, mixing the sources of
the two types of knowledge. Further processing of instances
could include variable scope management, uni�cation, sim-
ple evaluations (e.g. executing associated functions in arith-
metic etc.). Add on features for the conceptual models could
include summarisation of knowledge, forgetting, macros to
extract well known schemas etc.

4. IMPLEMENTATION
This section describes ATOMIK5 which is a simple pro-

totype implementation of the architecture presented in Sec-
tion 3. ATOMIK is intended to:

� Provide a proof of concept for the ideas presented in
this paper.

� Act as an additional illustration of the approach (the
source code is available - see Section 4.3).

� (if it proves useful) be evolved into a library which
could be plugged into existing agent toolkits.

4.1 Overview
ATOMIK has a modular architecture and implements the

following:

� A kernel providing: an implementation of the AOR
described in Section 3.1 as a compact directed graph
(ontological knowledge) as well as an API for creating
instances of concepts and composing them (instance
knowledge).

� A validator module which is able to the check all the
relationships de�ned in known ontologies are respected
by a particular combination of concept instances.

� A codec for a subset of the DAML+OIL Ontology Rep-
resentation in RDF which corresponds to the AOR (so
ontologies can be loaded and saved from DAML �les)

� Conceptual models (coded as DAML ontologies) and
codec modules for the following languages:

{ FIPA-SL [6].

{ A subset of FIPA-KIF [5], corresponding to SKIF
(a limited form of KIF covering only KIF sen-
tences).

{ FIPA-ACL [3], S-expression syntax [4].

{ FOL ([8] conceptual model only - no codec since
it is used internally only).

� A simple agent able to perform tests of the above func-
tionalities.

The implementation is in Java6 (version 1.2) and uses the
SIRPAC RDF package7 to handle parsing for DAML RDF.
All other codecs were implemented using JavaCC8.

4.2 Examples of Operation
The following examples illustrate the current status of

ATOMIK's capabilities based on the languages/representations
currently available (FIPA-SL, KIF, ACL, DAML):

5Obligatory hastily chosen acronym: \AgenT Ontology Ma-
nipulatIon Kernel".
6The system could perhaps have been even more easily writ-
ten in Prolog, Lisp, Scheme etc. but Java was chosen simply
because most current agent toolkits are Java based.
7See: http://www.w3.org/RDF/Implementations/SIRPAC
8See: http://www.metamata.com/JavaCC/

� Validation of messages involving concepts from several
ontologies. Given a de�nition for a car ontology spec-
ifying that the colour property of a car must contain
a colour concept found in a second ontology and has
de�ned colours red, yellow, blue. ATOMIK is able to
tell that:

{ \(for-sale (car :colour black))" must be bogus but
that:

{ \(for-sale (car :colour blue))" is potentially a le-
gitimate statement.

� Detecting messages which are invalid according to a
particular language grammar. The following are de-
tected as illegal in FIPA-SL for example:

{ \(forall days (make-tea :milk true :sugar false))".
Fails because \days" is not a variable.

{ \(or A B C)". Disjunction in FIPA-SL is a binary
operator.

� Checking validity of complete FIPA-ACLmessages such
as:

(request
:sender (agent-identifier :name j)

:receiver (set (agent-identifier :name i))
:ontology car
:language FIPA-SL
:content

"((action (agent-identifier :name i)
(lend-to

(agent-identifier :name j)
(car

:colour lightgrey
:registration VD 3651
:make VW

:type Golf
))

))"
)

Including checks on the ACL level concepts, content
lanaguage expressions and ontology aspects.

� Reifying expressions in FOL into FIPA-KIF and FIPA-
SL: the expression \((not X) => Y)" can be con-
structed using concepts only from FOL and mapped
into both FIPA-KIF and FIPA-SL:

{ in FIPA-KIF this becomes: \(=> (not X) Y)".

{ in FIPA-SL this becomes: \(implies (not X) Y)".

In fact the syntaxes of FIPA-SL and KIF are very simi-
lar for the subset of elements which correspond to FOL
hence this exibility does not appear very useful. For
other languages with other syntaxes however (or other
syntaxes) this capability is likely to be of great impor-
tance.

In summary, the prototype is able to check correctness of
constructions in the de�ned languages based on their con-
ceptual models, link language concepts to domain concepts,

check constraints imposed by domain ontologies. translate
between languages in a limited way and make use of abstract
languages.
The most important things the prototype cannot do are

related to the AOR model applied, it cannot:

� Cope with variable scoping - i.e. it is not possible
to check in FIPA-SL that variables used in a message
instance have been declared or not.

� Enforce semantic constraints between (e.g.) performa-
tives and content.

These arise because they are constraints which cross more
than one node in the graph (i.e. they do not apply from a
concept to one of its properties). In principle those named
are not di�cult to add but a more general solution would
be preferable.

4.3 Resources
Since this paper can onl give an overview of the imple-

mentation work done, the following can be found on-line at
http://liawww.ep.ch/ATOMIK/:

� Full source code to the ATOMIK implementation (LPGL
license)

� DAML ontology de�nitions for: FIPA-SL, FIPA-ACL,
FOL, KIF and several example domain ontologies

We hope these will provide a useful support to the issues
discussed in this paper and might be re-used by others im-
plementing agent systems.

5. INTERESTING ISSUES
The work presented here raises a number of interesting

issues:

1. What should the AOR include/exclude?: As noted in
Section 3.1 the choice of internal representation has
a profound e�ect on the agent system. Although it
is \internal" and not shared with the outside world
choices by agent toolkit developers will have a e�ect
on how large numbers of agents may use of ontologies
de�ned.

2. Do Agents need to share AORs?: In principle AORs
are internal representations and as such do not need
to be public. Agents working in mission critical areas
however are likely to need to �nd ways of establishing
a lowest common denominator of understanding for a
given set of ontologies to ensure both can model the
others perception of the situation.

3. What types of Agent Languages can be represented?:
Since the AOR as described can in principle model
the main features of a wide range of languages (logical,
functional and object oriented). How does this relate
to other meta-modelling work (e.g. [1]) and what as-
pects of languages which could be regarded as part of
the conceptual model cannot be represented (variable
scoping for example).

4. How can we cope with equivalences between groups of
concepts?: Currently the AOR chosen allows class equiv-
alence, more generally however a combination of con-
cepts in one ontology may be equivalent to a combina-
tion of concepts in another.

5. How could semantic constraints be represented in the
OR?: How could constraints such as the fact that a
FIPA-ACL \inform" speech act may only contain a
proposition as content be generically represented in
the ontology de�nition?

6. What happened to the semantics anyway?: As with
current language descriptions the conceptual models
only capture the basic concepts of a language and their
\syntactic" relationships but say nothing about how
semantics might be managed or enforced. Although
beyond the immediate scope of the paper it would be
interesting to see if the abstractions described would
support e�ective semantic checking tools.

7. How easy/valid is it to generate abstractions from CLs?:
Extracting FOL concepts as common to SL and KIF
is clearly a special case. Although there may be oth-
ers (such as predicate logic from FOL) it is not clear
how easy it is to perform this abstraction in general.
It is also not clear that there will always be neat 1-1
mappings between language concepts.

8. How valid is it to construct CLs on the y?: As dis-
cussed in Section 3.2, de�ning languages as ontologies
makes it easy in principle for agents to put together ar-
bitrary combinations of language concepts at runtime.
Although this may be useful it could clearly lead to
the construction of intractable languages - could this
process be guided to allow agents to reason about the
power of the languages they create?

9. How should ontology de�nitions be linked?: Like their
counterparts in DAML, subClassOf and sameClassAs
relations allow linking of entities in di�erent ontologies
- this is important to (for example) infer that objects
from a domain ontology can be referenced in a con-
tent language statement such as \(= (car :colour red)
fashionable)". It appears to be useful to identify a
set of common concepts which act as bridging points
between ontologies. What should these concepts be?
How many should there be and at what granularity?

10. How can concept de�nitions be linked to functions and
Actions?: two important classes of ontological entities
are likely to be functions (e.g. \(+ 1 1)") and actions
(e.g. \paint", \eval"). These are things which may
have computation or activities to carry out associated
with them. It appears to be useful therefore, to have a
general mechanism for linking concept de�nitions with
function and action de�nitions (and/or code).

6. CONCLUSIONS
There is no doubt that agents will need to deal with con-

siderably heterogeneity at all levels of communication and
that they will need to e�ectively compose agent communica-
tion language, content expressions and domain knowledge.
This paper proposed strategies for equipping agents with
exible communications interfaces which:

� Isolate code intensive areas such as reasoners, theo-
rem provers and agent behaviour from languages and
encodings.

� Give the agent access to explicit representations of con-
ceptual models of all levels of communication.

� Allow manipulation of message instances at a single
uniform level.

The paper describes the approach and a prototype imple-
mentation. Future work includes:

� Theoretical: more detailed investigation of the link be-
tween AI knowledge representation and ontology frame-
works, requirements for representing conceptual mod-
els of languages, mechanisms for linking language and
domain ontologies.

� Development: potential integration with existing agent
toolkits, developing a stable API which could be used
to interface with existing AI/Agent tools such as the-
orem provers, planners etc.

� Application: testing the resulting system on a signi�-
cant project - one potential example being a multi-way
translation agent able to act as a gateway between
groups of agents using di�erent languages and/or on-
tology representations.

7. ACKNOWLEDGEMENTS
Many thanks go to Fabio Bellifemine, Federico Bergenti,

Giovanni Caire, Giovanni Rimassa and Tiziana Trucco for
interesting discussions on the issue of agent language sup-
port in FIPA compliant agent platforms. Thanks also to the
reviewers for their useful comments.

8. REFERENCES
[1] S. Crane�eld, M. Purvis, and M. Nowostawski. Is it an

Ontology or an Abstract Syntax? - Modelling Objects,
Knowledge and Agent Messages. In Proceedings of the
Workshop on Applications of Ontologies and
Problem-Solving Methods, 14th European Conference
on Arti�cial Intelligence (2000) 16.1-16.4. 2000.

[2] DAML. Darpa Agent Markup Language: DAML+OIL
speci�cation v 1.7. Technical report, DAML Project,
2001.

[3] FIPA. FIPA ACL Message Structure Speci�cation
(00037). Technical report, Foundation for Intelligence
Physical Agents, 19.

[4] FIPA. FIPA ACL Message Representation in String
Speci�cation (00070). Technical report, Foundation for
Intelligence Physical Agents, 2000.

[5] FIPA. FIPA KIF Content Language Speci�cation
(00010). Technical report, Foundation for Intelligence
Physical Agents, 2000.

[6] FIPA. FIPA SL Content Language Speci�cation
(00008). Technical report, Foundation for Intelligence
Physical Agents, 2000.

[7] FIPA-OS. FIPA OS v1.3.3. Technical report, FIPA-OS
Open Source Team, 2000.

[8] M. Genesereth and N. J. Nilsson. Logical Foundations
of Arti�cial Intelligence. Morgan Kaufmann, 1988.

[9] Jade. Java Agent Development Environment (JADE)
v2.0. Technical report, Jade Open Source Team, 2000.

[10] C. Petrie. Agent-based engineering, the web, and
intelligence. IEEE Expert, 11(6):24{29, Dec. 1996.

