
Implementation of FIPA Ontology Service
Hiroki Suguri*

suguri@comtec.co.jp
Eiichiro Kodama**

kodama@iwate-pu.ac.jp
Masatoshi Miyazaki**

miyazaki@iwate-pu.ac.jp

Hiroshi Nunokawa***
nunokawa@sfais.or.jp

Shoichi Noguchi***
noguchi@sfais.or.jp

ABSTRACT
The authors have implemented FIPA 98 Spec 12: Ontology
Service. In addition, we developed a sample application of on-
line shopping service that integrated multiple database
schemata using the ontology service to verify and demonstrate
the specification and the implementation. In this paper, we
briefly introduce FIPA and FIPA Specifications at first. Next,
we describe Comtec Agent Platform, on which the ontology
service is deployed. Then, after reviewing the ontology
service specification and its relationship with OKBC, we
discuss details of the implementation of the ontology service
and demonstration application. We conclude with a prospect
of real-world applications in the Agentcities project and future
works that we are currently preparing for.

Keywords
Practical experience, Standardisation issues, Implications on
agent internal structure, Component architectures for agents,
FIPA, Ontology Service, OKBC, Agentcities.******

1. INTRODUCTION
FIPA (The Foundation for Intelligent Physical Agents,
http://www.fipa.org/) is a non-profit organization aimed at
producing standards for the interoperation of heterogeneous
software agents. The purpose is realized by publishing a set of
specifications so that the agents developed by different
vendors can talk to each other based on the standard
specifications.

In 1997, FIPA introduced its first set of specifications called
FIPA 97. FIPA 97 specifications include Spec 1: Agent
Management, Spec 2: Agent Communication Language, Spec
3: Agent/Software Integration and four other application
specifications. Specs 1-3 are called normative specifications
that prescribe technical aspects of multi-agent systems like
how agents are managed, what language and interaction
protocols agents use to communicate with each other, and how
agents and non-agent software interact in the Internet. Four
application specifications are called informative, which are

* Communication Technologies. 2-15-28-6F Omachi Aobaku,

Sendai 980-0804 Japan. Tel +81-22-222-2591
** Iwate Prefectural University. 152-52 Takizawa-aza-sugo,

Takizawa, Iwate 020-0173 Japan. Tel +81-19-694-2000
*** Sendai Foundation for Applied Information Sciences. 5-12-

55 Tsutsujigaoka Miyaginoku, Sendai 983-0852 Japan. Tel
+81-22-298-9653

intended to verify the normative technical specifications and
to promote the development and deployment of agent-based
applications.

In 1998, FIPA produced second set of specifications: FIPA 98.
FIPA 98 includes normative specifications of Spec 8: Human-
Agent Interaction, Spec 10: Agent Security Management, Spec
11: Agent Management Support for Mobility and Spec 12:
Ontology Service [3]. Spec 1: Agent Management and Spec 2:
Agent Communication Language were also revised and
updated.

Comtec Corporation (in October 2000, Communication
Technologies was established by the management buyout of
Comtec Corporation) implemented FIPA 97 Specs 1-3 and
released the source code of world’s first free implementation of
FIPA in September 1998. In October 1999, Comtec added the
implementation of Spec 12: Ontology Service to its agent
platform and also made the source code open to public. A live
service of Comtec Agent Platform had been offered in order to
facilitate the global interoperability trials of FIPA-based agent
platforms using the Internet since February 9, 1999, following
the first interoperability trials at FIPA Seoul meeting in
January 1999. Unfortunately, the live service has been stopped
during the chaos of the transition of the company from Comtec
Corporation to Communication Technologies [6].

In October 1999, FIPA decided that it no longer abide by a
yearly cycle (such as FIPA 97 and FIPA 98) and release the
specifications asynchronously. FIPA also undertook major
restructuring of the organization and introduced a new
document policy and lifecycle management of the
specifications. According to the new lifecycle schema of the
specifications, the documents follow the steps below:

(1) Preliminary, where the technical committee decides that
the document is worth public review;

(2) Experimental, where FIPA Architecture Board, the top
technical authority within FIPA, confirms that
experimental implementation and interoperability trials
of the implementations is encouraged;

(3) Standard, where the interoperability of the multiple
implementations by different developers has been
achieved; and

(4) Deprecated and Obsolete where documents are no longer
valid and archived for historical reference purpose only.

As of April 2001, most of the latest specifications are at the
Experimental stage. Such specifications include abstract
architecture, agent management, agent communication

language and content languages, interaction protocols,
message transports and message encodings, agent/software
integration, and ontology service [4]. Previous FIPA 97 and
FIPA 98 specifications are now Obsolete status.
Unfortunately, Comtec agent platform is based on FIPA 97
and FIPA 98. It is currently not yet fully compatible with the
latest Experimental specifications. Since FIPA 97 and FIPA
98, there are some major changes in agent management and
message transport in the latest specifications. However, the
differences between FIPA 98 Spec 12: Ontology Service and
the latest experimental ontology service specification are just
cosmetic and there is no functional change.

2. COMTEC AGENT PLATFORM
Comtec Agent Platform is a straightforward implementation of
agent management, agent communication language and
agent/non-agent software integration functions of the FIPA 97
specifications. Figure 1 shows the basic building blocks of
the platform.

Figure 1. Basic building blocks of Comtec Agent Platform

Java 2 is the foundation for the platform. Hardware and
operating system independency is achieved by using Java.
Kawa [1] is a Scheme (a dialect of LISP) interpreter written in
Java. Kawa allows Scheme programmers to access Java classes
and vice versa. Java IDL is adopted to implement IIOP-based
communication between agents as specified by the agent
management. Agent communication language library is a
collection of primitives of ACL communicative acts, content
language interpreters SL0 and SL2, basic design patterns of an
agent, and interaction protocol handlers. Agent Platform
agents are ACC (Agent Communication Channel), AMS (Agent
Management System) and DF (Directory Facilitator). (N.B.,
ACC is no longer an agent in the latest Experimental
specification.) On top of the platform agents are the
application agents such as ARB (Agent Resource Broker) and
software wrapper agents of agent/software integration, and
ontology server and ontology client agents of the Ontology
Service specification.

Figure 2 depicts the difference between Comtec’s
implementation and FIPA’s reference model of the
configuration of the agent platform. With FIPA 97 reference
model, agents communicate via Internal Platform Message

Transport mechanism, or IPMT. The communications protocol
used in IPMT is not specified by FIPA so that agents can use
platform-specific or programming language dependent
message transport mechanisms such as Unix IPC, Java RMI,
HTTP, SMTP etc. To ensure the communications between
agents on different agent platforms that use different IPMT
protocols, the ACC must speak common ‘baseline protocol’,
which is CORBA IIOP to forward the message to ACCs on other
platforms.

Figure 2. Agent platform configuration models

Comtec’s implementation simplifies the FIPA reference model
by using IIOP as the internal messaging protocol, too.
Therefore, ACC is responsible for both inter- and intra-
platform message exchange. Figure 3 below details out how an
agent talks to the ACC.

Figure 3. Agent communications

In this picture, agents (agent-a and ACC) are composed of two
parts. The main part is written in Kawa Scheme, which controls
agent’s behavior. The communications interface utilizes Java
IDL to use IIOP transport protocol. To establish the
communications between the agents, COS naming service
(tnameserv) is employed for name resolving. The ACC
registers the server (receiver) reference with the COS naming
service and agent-a (sender) retrieves the object reference from
the naming server. Agent-a sends a message to ACC using the
IOR and ACC then forwards the message to the recipient agent
(the recipient address is specified in the :receiver slot of the

Agent Platform Agents (ACC, AMS and DF)

Kawa Scheme Interpreter Java IDL

Java 2 Standard Edition (JDK 1.2)

Agent Communication Language Library

Application Agents (Non-agent Software
Integration and Ontology Service)

ACL message) with the same manner (which is not described in
Figure 3).

3. FIPA ONTOLOGY SERVICE
SPECIFICATION
After the initial release of the Agent Communication Language
specification, FIPA Technical Committee C, which was
responsible for the agent communications, began the work of
ontology service in January 1998. Since the basic framework
of the agent communications was established by specifying
the ACL, content language SL and interaction protocols such
as contract net and auctions, it seemed natural to proceed to
deal with the problem of how agents can share a common
ontology in order to make a meaningful conversation. The
task finished in October 1998 and the document was
published as FIPA 98 Specification Part 12: Ontology Service.
The original document itself has been in obsolete status since
revised version was edited according to the new document
management and lifecycle policy described above. However,
the differences between the old and new documents are mostly
cosmetic and no significant change has been made. A Japanese
translation of the original FIPA 98 specification [5] is also
available, which was made by Intelligent Agent Society of
Japan.

FIPA ontology service is basically an agent wrapper of OKBC
[2]. Open Knowledge Base Connectivity, or OKBC, is a set of
applications programming interfaces (API) that connects front-
end user applications and back-end knowledge bases (KBs).
Like ODBC (Open Data Base Connectivity) or JDBC (Java Data
Base Connectivity), OKBC connects to a wide variety of KB
servers (such as Ontolingua, Loom and Cyc) in the back-end
while allowing the client user applications to be able to access
these KBs via standardized front-end API. The reference
implementation of OKBC, which is available from Artificial
Intelligence Center of SRI International and Knowledge
Systems Laboratory of Stanford University, comes with C, Java
and Common Lisp programming language bindings of the API.
OKBC specification also defines a frame-based knowledge
model written in KIF that is used to describe the contents of
the API.

The problem with OKBC in FIPA perspective is that its client-
server model API does not fit for the FIPA agent standard style
where communicative interface of the agent is specified but
programming language API is outside the scope of the
specification. Therefore, FIPA decided to wrap the OKBC
front-end API with ACL-speaking agent, which is called
Ontology Agent (OA). (The back-end KBs are mentioned as
ontology server.) Client agents of the OA utilize standard
FIPA ACL (query-if, query-ref, request etc.), interaction
protocols (FIPA-request and FIPA-query), white page and
yellow page directory services (DF and AMS) and agent
message transport (IMTP/ACC) to talk to the OA in order to
access the ontology service behind the OA. Ontology clients
store, modify, delete or query the ontology with the OA to
share the common ontology with other client agents. Figure 4
below, which is taken from the specification document and

modified a little to better emphasize the role of OKBC, shows
the reference model of FIPA Ontology Service.

Non-FIPA Components

FIPA Components

 Message Transport Service

 DF, AMS etc.

 Ontology A gent

Ontology
Server 2

 (Loom)

Ontology
Server 1

(Ontolingua)

Ontology
 Server
 (Cyc)

Ontology
Designer

Ontology Client

 Agent 1

Ontology Client

 Agent 2

Ontology Client

 Agent 3

 OKBC Frontend

 OKBC Backend

Figure 4. Ontology Service reference model (modified)

The FIPA Ontology Service specification adopts OKBC
knowledge model as FIPA-meta-ontology (that is, an ontology
that is used to access the Ontology Agent). It also defines
actions and a predicate used in the content of the conversation
with the OA, which are shown in Tables 1 and 2 below. FIPA-
ontol-service-ontology consists of these actions, predicate
and FIPA-meta-ontology. For the complete list of FIPA-meta-
ontology, see the OKBC specification, part of which is also
included in the FIPA Ontology Service specification with the
permission of the original authors.

Table 1. Predicate defined in FIPA-ontol-service-ontology

Predicate Description

(ontol-

relationship

<o1> <o2>

<level>)

It is true if and only if there is a
relationship of type level between the
ontology o1 and the ontology o2.

Table 2. Actions defined in FIPA-ontol-service-ontology

Actions Description

(assert

<predicate>)

This action asserts the predicate in
the ontology specified by
the :ontology parameter of the ACL.

(retract

<predicate>)

This action retracts (cancels) the
predicate in the ontology specified
by the :ontology parameter of the
ACL.

(atomic-

sequence

<action>*)

This action introduces a transaction-
type sequence of actions, which is
treated as if it was a single action. The
result of the action is one of the two
cases: (1) all actions are successfully
done; or (2) none of the actions is
made. It is used to modify an existing
ontology by combining the actions of
retraction and assertion, for example.
The mechanism to maintain the
consistency inside the sequence
(rollback if necessary) and to protect
values from outside the sequence is
dependent on the implementation.

(translate

<expression>

<translation-

description>)

Translates the expression as specified
by the translation-description.
It should be used with FIPA-Request
interaction protocol.

The specification includes two informative annexes. One of
them sets forth an introduction to logical foundations of the
ontology and conceptualization, contributed by Nicola
Guarino (LADSEB-CNR). The other describes guidelines to
define a new ontology used by the applications, contributed
by Assuncion Gomez-Pérez (Universidad Politécnica de
Madrid).

4. IMPLEMENTATION OF THE
ONTOLOGY SERVICE
The implementation of the Ontology Service specification is
pretty straightforward based on the specification. Figure 5
shows the overall view of the internal composition of the
ontology agent.

Figure 5. Overview of the ontology agent

The development of the OA is divided into two parts. The first
part is an interface to the OKBC front-end. From OKBC point
of view, the OA is one of the front-end user applications. This
part is also responsible for managing OKBC knowledge model
and FIPA-meta-ontology. The second part is the FIPA interface
where the agent wrapper is implemented. The FIPA interface
includes functions such as ontology naming, ontology
relationship and FIPA-ontol-service-ontology management. It
utilizes existing interaction protocol handlers for FIPA-query
and FIPA-request, which are prescribed in the specification for
client agents to talk to the OA. The content language SL2
interpreter from the agent communication language libraries of
the Comtec Agent Platform is also used to express the actions,
objects and predicates in the ACL message.

4.1 OKBC Interface
The OKBC interface connects to the OKBC front-end using the
Java binding of the OKBC API. Figure 6 below shows the
OKBC interface.

Figure 6. OKBC interface

 It performs the following functions:

 Connecting to and disconnecting from the OKBC front-
end;

 Creating, deleting and identifying a back-end
knowledge base;

 Operations on frames, slots and facets including
creating, modifying and deleting them;

 Operations on class and individual hierarchies;

 Operations on predicates associated with the frame-
sentence;

 Converting the SL symbols and the OA predicates to the
OKBC objects and the OKBC predicates, and converting
vice versa;

 Converting the SL actions to the OKBC operations and
the OKBC results to the SL expressions; and

 Handling of the OKBC errors. Depending on the
severity, it either disconnects from OKBC or generates
appropriate exceptions and SL error expressions to be
passed to the FIPA interface.

4.2 FIPA Interface
The FIPA interface is an agent wrapper that takes care of
generating and interpreting SL actions and predicates, and
ACL communicative acts based on appropriate interaction
protocols. It also processes the registration with DF, and

management of ontology names and relationship between the
ontologies. Figure 7 below displays the internal composition
of the FIPA interface.

Figure 7. FIPA interface

The following are descriptions of the sub-modules.

4.2.1 Naming and Referring Ontologies
This sub-module processes naming of ontologies. Each
ontology must have a unique logical name, which is used in
the :ontology slot of the ACL message. The logical ontology
name corresponds to the physical name of the KB that is
connected to the back-end of OKBC. The ontology name
database manages the mapping of the logical name and
physical name of the ontologies.

This module deals with the name database to insert, delete,
modify and query the logical and physical names of the
ontologies. These requests come from actions and predicates
module and ontology relationship module.

4.2.2 Relationship between Ontologies
Six relations are defined between ontologies in the
specification: Extension, Identical, Equivalent,
Weakly-Translatable, Strongly-Translatable and
Approx-Translatable. These relationships of the
ontologies are expressed in the ontol-relationship

predicate with the form of (ontol-relationship <o1>
<o2> <relation>). This sub-module is responsible for
managing and maintaining the ontology relationship database.
It inserts, deletes, modifies and answers the relationship
according to the request coming from the actions and
predicates sub-module and naming and referring ontologies
sub-module. Table 3 below explains the definition of the
relations between two ontologies.

Table 3. Relations between ontologies

Relation Description

<O1> <O2> Extension Ontology O1 extends the
ontology O2.

<O1> <O2> Identical Ontologies O1 and O2 are
identical.

<O1> <O2> Equivalent Ontologies O1 and O2 are
equivalent.

<O1> <O2> Weakly-

Translatable

The source ontology O1 is
weakly translatable to the
target ontology O2.

<O1> <O2> Strongly-

Translatable

The source ontology O1 is
strongly translatable to the
target ontology O2.

<O1> <O2> Approx-

Translatable

The source ontology O1 is
approximately translatable
to the target ontology O2.

Please look at the specification document for the complete
description of these relations. It should be noted here,
however, that the following properties hold between the levels
of relationships:

• Strongly-Translatable ⇒
 Weakly-Translatable ⇒

Approx-Translatable

• Equivalent (O1, O2) ⇒
 Strongly-Translatable (O1, O2) ∧
 Strongly-Translatable (O2, O1)

• Identical ⇒ Equivalent

The relationship sub-module is responsible for tracking these
implications and correctly answering the queries from the
clients about the relationship even if the implications are
deeply nested.

4.2.3 Registration with DF
Directory Facilitator, or DF, is a yellow page directory service
of agents in an application domain defined in the Agent
Management specification. It stores the agent description and
service descriptions of the agents and answers queries about
them from other agents. Agent must register with the DF in
order to advertise the capabilities of itself. This sub-module
prepares the agent description and service descriptions of the
OA and registers with the DF using the FIPA-request
interaction protocol when the OA is activated. (Registration
with AMS, which is a white page directory service of the agent
platform, is also a mandatory step of initializing the agent and
thus automatically handled by the agent communications
library.)

4.2.4 Actions and Predicates
This sub-module handles the actions and predicates used in
the OA. There are two cases in terms of the actions and
predicates that are handled here.

(1) OKBC-related actions and predicates

In this case, this module calls OKBC interface to process the
actions and predicates.

(2) Actions about ontology name and relationship between
ontologies

If the action is about the ontology name or the relationship
between the ontologies, naming and referring sub-module and
ontology relationship sub-modules are called to process the
request.

The actions include assert, retract, atomic-sequence
from the FIPA-ontol-service-ontology, and inform,
request, query-if, query-ref, agree and cancel from
the standard communicative act library. The translate
action of the FIPA-ontol-service-ontology is not
implemented. This is the only feature that is not implemented
inside the specification. The OA registers with the DF
expressing that it is unable to process the translate action
from one ontology to another.

 Note that the basic policy of FIPA about the implementation
of the specification is that the developer can choose which
subset of the document to implement and which part not to
implement, as far as the consistency of the behavior of the
agent is maintained. The agent must properly register with DF
and AMS about its capabilities: which functions are
implemented and which functions are not implemented.
(Some features, for example, which communicative acts the
agent understands, are not registered with DF. This problem
should be resolved in the future version of the FIPA
architecture.) It is a responsibility of the applications
designers (or, maybe the responsibility of the agents
themselves if the agents are intelligent enough) to identify
the necessary features of the agents and integrate the multi-
agents by asking the DF for the service description of the
agents in order to achieve the interoperability of the agents
and deploy the applications.

The atomic-sequence action needs a special attention. This
action introduces a transaction-like (i.e., the ones found in
SQL RDB) sequence of actions, which is treated as if it was a
single action. The result of the atomic-sequence action is
strictly one of the two cases: (1) all actions in the sequence
have been successfully done; or (2) none of the actions in the
sequence has been committed. Like RDB transactions, the OA
takes care about the consistency between before and after the
atomic-sequence, and inside and outside of the atomic-
sequence. Firstly, the OA maintains the transactions log of
each action in the sequence and rollbacks to the previous state
of the KB, which is just before the atomic-sequence is
initiated, if one of the actions in the sequence fails by any
reason. Secondly, while the sequence of the actions is
processed, the OA provides a virtual view of the state of the
KB, which is just before the atomic-sequence is commenced,
to other transactions so that outside agents cannot see the
interim, possibly inconsistent, stage of the sequence. The OA
commits the changes made by the sequence of actions if all of
the actions in the sequence have been successfully completed
without an error.

4.2.5 Interaction Protocols
This sub-module generates function closures that process the
specified interaction protocols. In the OA, FIPA-request and
FIPA-query are the only two interaction protocols used. The

main loop of the OA evaluates the interaction protocol handler
closure to control the conversations between the OA and the
client agents or the DF according to the specified interaction
protocol. (Note that closures are heavily used everywhere in
the program in general.)

5. DEMONSTRATION APPLICATION
The purpose of the demonstration application of OA is to
identify the strengths and weaknesses of the OA and its client
agents that constitute the real-world applications. Web-based
on-line shopping mall was selected as such a practical
application. Comtec’s business partner, Intercraft Corporation
(http://www.intercraft.co.jp/), has developed an on-line
shopping application that is called Gumbo
(http://www.gumbo.ne.jp/). We received the source code from
Intercraft and developed a version of the application that
makes use of the ontology service, which is called Ontology
Gumbo. As a consequence, we could not only test the
Ontology Gumbo but also compare the performance of
Ontology Gumbo with the original Gumbo. The following
Figures 8 and 9 show the structure of the original Gumbo and
the modified part of Ontology Gumbo. Please note that
Ontology Gumbo server is implemented as a client agent of the
OA.

Figure 8. Original Gumbo server

Figure 9. Ontology Gumbo server (part)

By developing the demonstration application, firstly, we
wanted to know how easily an existing application could be

modified to become the ontology client agent that utilizes the
OA. Then we have tested both original and Ontology Gumbo
systems in terms of resource (CPU, memory, network etc.)
utilization, response time, ease of systems modification such
as adding and removing database schemata, and fault tolerance.
Here we report some of the results.

5.1 Development of the Demonstration
Application
The development of the demonstration application was made
by a programmer who had a pretty good knowledge on Oracle,
Perl, Apache and Kawa, but did not hear anything about
ontology. The following Table 4 summarizes hours that
actually took for the programmer to modify the original
Gumbo to support the ontology service as a client agent of the
OA. # of lines indicates modified or added number of lines in
the program code.

Table 4. Development hours

Work
Items

Details Hours # of
lines

Prepara-
tion

Study on ontology

Setting up the development
environment

15.0

3.0

Creating
the
ontology

Abstraction of the schema and
programming logic

Description of the ontology

Japanese characters processing

Assertion of the ontology

6.0
aaaa

3.0

0.5

0.5

 Aaa
aaa

219

13

Gumbo
ontology
client

CGI interface

OA interface

3.0

4.0

57

149

CGI
modifica-
tion

Ontology client interface

Utilizing the ontology

2.0

1.5

70

96

Total 38.50 604

Although Gumbo is not a very big system (total number of
lines: 16144), which offers just minimal functionalities of the
on-line shopping mall, it took less than one person-week to
change it to use the ontology agent. Please note that half of
the time is spent by preparation. It would not take this much if
the same person does the similar task.

However, it should be also noted that advantage of having
explicit and external ontology over implicit, internal and
hard-coded ontology (database schema) was not made clear
with such a small-sized applications. For example, there was
no significant difference1 in terms of the development time

1 A reviewer suggested to compare the figures. Unfortunately,

the record was lost and we are sorry we cannot present the
exact numbers.

between the original and Ontology Gumbo systems when new
schema had to be added and the unified end-user view must be
presented. This could be partly because the developer was an
Oracle specialist and new to ontology; partly because the task
of integrating multiple database schemata was not appropriate
for the OA.

5.2 Run-Time Performance Comparison
We have compared the run-time performance of the original
and Ontology Gumbo systems. The hardware and software
configuration is as follows:

 Ontology Agent and OKBC server – Sun Ultra 5

270MHz UltraSPARC IIi processor, 256MB memory,
4.3GB disk, Solaris 2.6, JDK 1.2.2, OA, OKBC and TKB

 Database and web server – Sun Ultra 5

270MHz UltraSPARC IIi processor, 256MB memory,
4.3GB disk, Solaris 2.6, JDK 1.2.2, Oracle 8.0.5, Apache
1.3.9, Perl 5.005_03, original and Ontology Gumbo

 Gumbo client – PC

233MHz Pentium MMX processor, 64MB memory,
4.3GB disk, Windows 98, Netscape Navigator 4.7,
Internet Explorer 5

 Gumbo client – Apple iMac

333MHz PowerPC G3 processor, 192MB memory, 6.4GB
disk, Mac OS 9, Netscape Navigator 4.7, Internet
Explorer 4.5

 Gumbo client – Sun Ultra 5

270MHz UltraSPARC IIi processor, 256MB memory,
4.3GB disk, Solaris 2.6, Netscape Navigator 4.7

These machines were connected to a closed 10Base-T LAN.
Typical end-user procedures of browsing a product catalog
were timed for the combinations of OS, browsers, with/without
pictures and with/without ontology service. The data was not
successfully acquired for the Netscape Navigator 4.7 on Mac
due to unstable Java Runtime Environment. Figure10
displays the results.

Figure 10. Gumbo performance comparison

As shown in the chart, overhead of using the ontology service
often exceeds ten seconds. One of the reasons of the bad
performance is that most of the Java optimization options had
to be turned off in order to avoid the nasty bugs related to the
optimization (JIT compiler, native thread etc.)

6. FUTURE WORKS AND CONCLUSIONS
Agentcities project (http://www.agentcities.org/) is a
worldwide initiative designed to help realize the commercial
and research potential of agent-based applications. The
objective is to construct a worldwide network of agent
platforms based on the FIPA standard. Each platform, which is
called a City, will be supported by different organizations
around the world and host diverse populations of agents that
are able to access each other's services. Communication
Technologies committed to take part in the project to host the
Sendai City, where the office is located, based on the Comtec
Agent Platform and the Ontology Agent. However, in order to
host the city platform and to be able to connect to other cities,
we have to work on some major update of the code because
current platform is based on FIPA 97 and FIPA 98
specifications. Currently (as of April, 2001), FIPA has
published most of the specifications as Experimental status,
which means that the experimental implementations and the
interoperability trials of the implementations by different
developers are encouraged in order to promote the
specifications to the Standard status.

Agentcities project is a great motivation for us to update the
platform and add the following features to the platform:

 HTTP transport of the agent communications;

 XML representation of the ACL and SL;

 Gateway between the HTTP/XML world and existing
IIOP/S-expression world;

 Deploy the Ontology Agent on top of the revised
platform; and

 Performance tuning of overall platform.

In addition, we are committed to provide other cities with the
ontology service, which is based on, as far as we know, the
only implementation of the FIPA Ontology Service
specification. It is expected that by utilizing the ontology
service, heterogeneous agents developed by different
participants and located in different cities will be able to share
a common ontology to establish a basis for a meaningful
conversation.

In conclusion, we have presented our experience of
implementing FIPA Ontology Service specification. It is our
big regret that we have not published a paper on the software

immediately upon the release of the source code in October
1999 and several key evaluation results were lost or not
recorded. Anyway, we believe the technology of the ontology
service, which combines the proven power of OKBC and
standard FIPA specifications, must be fully exploited in the
real-world application in order to facilitate the advanced
knowledge sharing among the computers and the human
beings.

7. ACKNOWLEDGMENTS
The authors acknowledge Information-technology Promotion
Agency of Japan (IPA) for funding the development of FIPA 97
agent platform (Advanced Information Promotion Assistance
Software Enrichment and Cultivation Project, under the
contract 9JOUGIOUDAI569GOU) and the development of FIPA
98 Ontology Service (Next Generation Digital Technology
Applications and Basic Foundations Support Technologies
Development Project, under the contract
10JOUGIOUDAI908GOU). We also thank Artificial
Intelligence Center of SRI International and Knowledge
Systems Laboratory of Stanford University for their OKBC
specification and implementation. The demonstration
application would not have been made possible without the
great courtesy of the Intercraft Corporation that developed the
original Gumbo system and kindly assisted us to build the
Ontology Gumbo. Last but by no means least, our special
thanks to 1998 FIPA Technical Committee C members led by
the chair Fabio Bellifemine of CSELT, and general membership
of FIPA that contributed to discuss and publish the Ontology
Service Specification.

8. REFERENCES
[1] Bothner, P. The Kawa Scheme System.

http://www.gnu.org/software/kawa/

[2] Chaudhri, V. K., Farquhar, A., Fikes, R., Karp, P. D., and
Rice, J. P. Open Knowledge Base Connectivity 2.0.
Technical Report KSL-98-06, Stanford University KSL,
1998. http://www.ai.sri.com/~okbc/spec.html

[3] FIPA. FIPA0006: FIPA 98 Specification Part 12:
Ontology Service. http://www.fipa.org/specs/fipa00006/

[4] FIPA. FIPA0086: FIPA Ontology Service Specification.
http://www.fipa.org/specs/fipa00086/

[5] Intelligent Agent Society of Japan. Japanese translation
of FIPA 98 Specification Part 12: Ontology Service.
http://fipa.comtec.co.jp/fipatrans/j98v1p12.PDF

[6] Suguri, H. et al. Comtec Agent Platform.
http://fipa.comtec.co.jp/ap/

