
Protégé-2000:
A Flexible and Extensible

Ontology-Editing Environment

Natalya F. Noy,
Monica Crubézy, Ray W. Fergerson,

Samson Tu, Mark A. Musen

Stanford Medical Informatics
Stanford University

Stanford, CA



Facts (maybe)

Fact 1: Ontologies are no longer just for
knowledge engineers

Fact 2: A number of new Semantic-Web
languages and representation formalisms are
emerging; no agreement yet

Fact 3: We are developing ontologies, agents, and
applications today, without waiting for the
standards



Facts and Requirements

n Facts:
n Ontologies are no longer

just for knowledge
engineers

n A number of new
Semantic-Web languages
and representation
formalisms are emerging;
no agreement yet

n We are developing
ontologies, agents, and
applications today, without
waiting for the standards

n Requirements:
n Domain experts need to

understand and maintain
ontologies

n We need adaptable tools
which we can tune to
support new languages
and formalisms quickly

n We need suites of tools for
ontology development and
management



A Solution

n Protégé-2000 is an ontology-editing and
knowledge-acquisition environment, which has
n a graphical and easy-to-use interface
n a flexible knowledge model
n an extensible plugin architecture
n an existing set of plugins for

n ontology merging
n acquisition of information from online knowledge sources
n constraint specification and verification
n …. (we don’t even know them all)



Protégé-2000 Knowledge-Model
Components

n Classes
concepts in a taxonomic hierarchy

n Instances
instances of classes

n Slots
first-class objects representing properties of classes
and instances

n Facets
constraints on allowed slot values, such as cardinality,
defaults, allowed classes, and so on.



Ontologies in Protégé-2000



Acquiring instance data



Protégé-2000 Architecture

Knowledge
model

Storage
model

User
interface



Changing the Knowledge Model



Changing the Knowledge Model

n Templates for new
class-level and slot-
level properties
n metaclasses
n metaslots



Changing the Knowledge Model

n Templates for new
class-level and slot-
level properties
n metaclasses
n metaslots



Protégé-2000 Plugin Architecture

Knowledge
model

Storage
model

User
interface

• URIs
• Complex expressions
• Primitive and defined classes
• Transitive, symmetric properties



Changing The User Interface

n Users can replace any widget on the form with a
different one.



Changing The User Interface

n Users can replace any widget on the form with a
different one.



Protégé-2000 Plugin Architecture

Knowledge
model

Storage
model

User
interface

• URIs
• Complex expressions
• Primitive and defined classes
• Transitive, symmetric properties

• Acquire and verify URIs
• Use a structured editor 

for logical expressions
• Display inferred values 

for transitive properties



Changing The Storage Model

n Users can change the output file
format - alternative “back ends”

n The back-end code can
n resolve the remaining differences in

the knowledge model,
n add or remove information,
n map between Protégé knowledge

model and the required knowledge
model



Protégé-2000 Plugin Architecture

Knowledge
model

Storage
model

User
interface

• URIs
• Complex expressions
• Primitive and defined classes
• Transitive, symmetric properties

• Acquire and verify URIs
• Use a structured editor 

for logical expressions
• Display inferred values 

for transitive properties

• RDF Schema
• OIL
• XML
• JDBC database



Including New Applications

Knowledge
model

Storage
model

User
interface

Other KB
applications

API



Include New Applications

Integration With
A Description
Logics Classifier
(FaCT)



Using A DL Classifier



Other Plugins

n Diagrammatic knowledge entry
n Ontology visualization
n Ontology merging
n Ontology acquisition from UMLS and

WordNet
n Constraint verification

All these plugins become automatically
available for different languages



As A Result, We Get A Tool That

n can be used for ontology development in
different (overlapping) representation formalisms
n translate models from one formalism to another

n can be easily customized to a new language
n knowledge model
n user interface
n persistent storage

n can incorporate other applications



Our Vision

n Complex, distributed systems built from plug-
and-play components

n Systems that allow evolution throughout their life
cycles via substitution of new components

n Repositories of components for use in new
designs and for updating previous applications

for both ontologies and components 
of knowledge-based systems!



http://protege.stanford.edu


