
Efficient reasoning on large SHIN Aboxes in
relational databases

Julian Dolby1, Achille Fokoue1, Aditya Kalyanpur1, Li Ma2, Chintan Patel3,
Edith Schonberg1, Kavitha Srinivas1, and Xingzhi Sun2

1 IBM Watson Research Center,P.O.Box 704, Yorktown Heights, NY 10598, USA
dolby, achille, adityakal, ediths, ksrinivs@us.ibm.com

2 IBM China Research Lab, Beijing 100094, China
malli, sunxingz@cn.ibm.com

3 Columbia University Medical Center
chintan.patel@dbmi.columbia.edu

Abstract. As applications based on semantic web technologies enter the
mainstream, there is a need to provide highly efficient ontology reason-
ing over large Aboxes. However, achieving sufficient scalability is still a
challenge, especially for expressive ontologies. In this paper, we present a
hybrid approach which combines a fast, incomplete reasoning algorithm
with a slower complete reasoning algorithm to handle the more expres-
sive features of DL. Our approach works for SHIN . We demonstrate
the effectiveness of this approach on large datasets (30-60 million as-
sertions), including a clinical-trial patient matching application, where
we show significant performance gains (an average of 15 mins per query
compared to 100 mins) without sacrificing completeness or expressivity.
keywords: Reasoning, Description Logic, Ontology.

1 Introduction

As applications based on semantic web technologies enter the mainstream, there
is a need to provide highly efficient ontology reasoning over large Aboxes. How-
ever, achieving sufficient scalability is still a challenge. DL reasoning is in-
tractable in the worst case. In [1], we reported on the use of expressive reasoning
for matching patient records to clinical trial criteria. While the system was able
to successfully reason on 240,269 patient records, a knowledge base with 59 mil-
lion Abox and 33,561 Tbox assertions, the execution time was prohibitive. In
some cases, the system took hours to respond.

The expressivity of the patient knowledge base was ALCH, so expensive
reasoning was needed to be complete. However, most typical queries were simple,
and could have been answered faster with a less expensive reasoner. A high cost
was paid by all queries to support rarer complex queries. In this paper, we present
a hybrid approach, that combines a fast, incomplete reasoning algorithm with a
slower complete reasoning algorithm to handle the more expressive features of
DL. In this way, we were able to dramatically lower the cost of typical simple
queries, without losing the ability to answer more complex queries.

94

An interesting feature of our technique is that any sound and incomplete
algorithm may be used in the first phase to quickly find as many solutions as
possible to the query. The key novelty in the approach is a mechanism to incor-
porate these solutions into a slower, complete reasoning algorithm for SHIN ,
providing much better performance characteristics overall, without sacrificing
completeness or expressivity. This approach can be described as self-adjusting,
since the reasoner dynamically defaults to the expensive complete algorithm only
when deeper inferencing is actually required. On large datasets (30-60 million
assertions), this hybrid approach provides significant performance gains (an av-
erage of 15 mins per query on the 60 million dataset compared to 100 mins)
without sacrificing completeness or expressivity.

At its core, this hybrid approach builds on the summarization and refine-
ment techniques we described earlier to perform sound and complete reasoning
on large Aboxes in relational databases [2] [3]. Briefly, this technique applies a
standard tableaux algorithm on a summary Abox A′ rather than the original
Abox A to answer queries. A summary Abox is created by aggregating individ-
uals which are members of the same concepts, so when any given individual is
tested in the summary Abox, all individuals mapped to the summary individual
are effectively tested at the same time. For a tested individual s in A′, if the
summary is found to be consistent, then we know that all individuals mapped
to that summary individual s are not solutions. But if the summary is found to
be inconsistent, it is possible that either (a) a subset of individuals mapped to
the summarized individual s are instances of the query or (b) the inconsistency
is a spurious effect of the summarization. We determine the answer through re-
finement, which selectively expands the summary Abox to make it more precise.
Refinement is an iterative process that partitions the set of individuals mapped
to a single summary individual based on the common edges they have in the
original Abox, and remaps each partition to a new summary individual. The
iteration ends when either the expanded summary is consistent, or it can be
shown that all individuals mapped to the tested summary individual are solu-
tions. Significantly, convergence on the solution is based only on the structure of
the refined summary, without testing individuals in A. In practice, the scalability
of this algorithm is limited by the number of refinement steps that are needed.
Refinement is performed by database join operations, which become expensive
when the database is large.

The key insight of our hybrid approach is that the solutions from the sound
and incomplete reasoner can be used as a partitioning function for refinement
instead of partitioning based on common edges, as described in our earlier work.
This effectively removes the obvious solutions from the summary Abox. If the
sound and incomplete reasoning algorithm finds all solutions, there will be no
solutions left in the summary Abox after this first refinement, so the algorithm
will converge very quickly. Any remaining inconsistencies are spurious, and can
be resolved in one or a few refinement steps. If the sound and incomplete algo-
rithm finds only some of the solutions, then the refinement process will find the
rest of the solutions with fewer refinement steps.

95

Our key contributions in this paper are as follows: (a) we develop a fast,
sound but incomplete algorithm based on query expansion, and describe how
to incorporate solutions from this and other such techniques into a sound and
complete hybrid algorithm for reasoning over large expressive Aboxes, and (b)
we demonstrate its effectiveness in providing performance gains (from 100 min-
utes per query to 15 minutes per query) on expressive Aboxes with 60 million
assertions.

2 Related Work

There have been efforts in the semantic web community to define less expressive
subsets of OWL-DL for which reasoning is tractable. The EL-family of languages
[4] is one such example, for which classification can be done in polynomial time.
To take advantage of this fact, various query answering algorithms for EL have
been proposed (e.g. [5]). Another example is the DL-Lite family [6], for which
conjunctive query answering is expressible as a first-order logic formula (and
hence an SQL query) over the Abox stored in a relational database. The QuOnto
algorithm [6] is a sound and complete query expansion algorithm for DL-Lite.

Our query expansion algorithm described in Section 6 is not significantly
novel. It is similar in spirit to the EL and DL-Lite query expansion approaches,
with some differences, namely: (i) instead of using an EL reasoner to compute
additional subclasses during the normalization process (as in [5]), we use a sound
and complete OWL-DL reasoner (Pellet) which enables us to discover more en-
tailments outside of EL; (ii) we use a datalog reasoner to compute same-as-
individual inferences (considering functional properties) and transitive closure
for transitive properties that exist in the ABox.

Furthermore, a key point is that any query answering algorithm for a subset
of OWL can be plugged into our sound and complete hybrid OWL-DL reason-
ing system. When it is known that the optimization is complete based on the
underlying logic of the KB4 and the manner in which it is implemented, fallback
to our refinement strategy is not necessary. Otherwise, the refinement process
will find any remaining solutions.

3 Background

Query answering in expressive DLs can be reduced to consistency detection. For
instance, assume that we want to find all instances of the concept C. To answer
this query, each individual a is tested by adding the assertion a : ¬C to the
Abox, and checking the new Abox for consistency. If the Abox is inconsistent,
then a is an instance of C. For large Aboxes, this approach will clearly not scale.
Therefore, in our previous work [3], [7], we modify this approach to perform
tableau reasoning on a summarized version of the Abox rather than the original

4 Checking whether the logic falls in EL or DL-Lite is a matter of syntactic checking
of the KB axioms which can be done easily

96

Abox. Formally, an Abox A′ is a summary Abox of a SHIN Abox A if there
is a mapping function f that satisfies the following constraints5:

(1) if a : C ∈ A then f(a) : C ∈ A′

(2) if R(a, b) ∈ A then R(f(a), f(b)) ∈ A′

(3) if a ˙"=b ∈ A then f(a) ˙"=f(b) ∈ A′

If the summary Abox A′ obtained by applying the mapping function f to A is
consistent w.r.t. a given Tbox T and a RboxR, then A is consistent w.r.t. T and
R. However, the converse does not hold. In the case of an inconsistent summary,
we use a process of iterative refinement to make the summary more precise, to
the point where we can conclude that an inconsistent summary A′ reflects a real
inconsistency in the actual Abox A. Refinement is a process by which only the
part of the summary that gives rise to the inconsistency is made more precise,
while preserving the summary Abox properties (1)-(3). To pinpoint the portion
of the summary that gives rise to the inconsistency, we focus on the justification
for the inconsistency, where a justification is a minimal set of assertions which,
when taken together, imply a logical contradiction.

We define refinement for a summary individual s in a justification J as a
partition where individuals mapped to s are partitioned based on which edges
in J each individual actually has. More specifically:

key(a,J) ≡

R(t, s)

∣∣∣∣∣∣∣∣∣∣

f(a) = s∧
R(t, s) ∈J∧
∃b in A s.t.
R(b, a) ∈ A∧
f(b) = t

∪

R(s, t)

∣∣∣∣∣∣∣∣∣∣

f(a) = s∧
R(s, t) ∈J∧
∃b in A s.t.
R(a, b) ∈ A∧
f(b) = t

Since an individual may be mapped to a summary individual that is in multiple
overlapping justifications, we define:

key∗(a) =
⋃

{J |a∈J }

key(a,J)

In a refinement step that refines s in A′, new individuals s1...sk replace s in
A′, where there are k unique key sets key∗(a), for all a in A such that f(a) =
s. Individuals a and b in A mapped to s in A′ are partitioned correspondingly,
that is, f(a) = f(b) after the refinement step iff key∗(a) = key∗(b) before the
refinement step.

In principle, in the presence of many justifications involving overlapping sets
of nodes, the union of the keys could become very large. In practice, we have
not observed this across the various knowledge bases we have evaluated, even
for ones that do contain overlapping justifications.

If all individuals in A mapped to a summary individual s have the same key
w.r.t. J , then it must be the case that they have all the edges in the justification
5 We assume without loss of generality that A does not contain an assertion of the

form a=̇b

97

and hence s is precise w.r.t. J . If a justification is precise, we can conclude that all
individuals inA mapped to the tested individual in the justification are solutions
to the query. In the worst case, iterative refinement can expand a summary Abox
into the original Abox, but in practice, we conclude on precise justifications with
many individuals mapped to each summary node in the justification.

Our implementation of summarization and refinement in a system called
SHER is in terms of RDBMS operations to allow the system to scale to large
data sets. However, the iterative process of summarization and refinement is
expensive, because (a) it requires expensive join operations on all role assertions
in the Abox A to define the key(a), as well as expensive join operations of role
assertions with type assertions to rebuild the summary, and (b) it requires several
consistency checks to find the many sources of inconsistencies for each summary
that gets built. For large knowledge bases with multiple ways in which one can
derive a solution to the query, this becomes a serious performance bottleneck.

4 A Sample Knowledge Base

We illustrate our techniques with the sample knowledge base (Tbox T , the Rbox
R and the Abox A) in Figures 1 and 2. This example is a small subset of the
UOBM [8] benchmark that we use in our evaluation. To form the summary Abox
for Figure 2, the individuals a and b are mapped to a single summary individual
w with a concept set of Woman, and the individuals f , g and j are mapped
to another summary individual p with a concept set of Person. The summary
Abox is shown in the Figure 3.

T assertions:

(1) WomanCollege # ∀hasStudent.Woman
(2) % # ≤ 1isTaughtBy

R assertions:

(1) loves # likes
(2) isStudentOf is inverse of hasStudent
(3) teacherOf is inverse of isTaughtBy

Fig. 1. Example T , R

Consider the query WomanWithHobby, which is defined as Woman&≥ 1likes.
There are three solutions. The individual b is a solution because loves (likes.
The individual f is a solution because the course d can be taught by only one
Person, and so f and b will be identified with each other during reasoning. Fi-
nally, g is a solution, since isStudentOf(g, WomenCollege) implies that g is a
Woman.

Figure 3 shows the entire refinement process for answering this query:

98

! !

!!"

!!!#

!$

!!!%

!!&

%'()*"+,)-#

./0+'

!

)+1$&+2-#

!!

!!!1

!!3
!!4

./0+'

)+1$&+2-#

!5

6/*2'+ 7/81,6/..+3+

7/81,

7/81,

9+2'/,
9+2'/,

9+2'/,
9+2'/,

(/$$+2
:+,,%'

Fig. 2. Example A

(1) Refine w by splitting it into two nodes w′ which has a mapped to it, and w′′

which has b mapped to it.
(2) Refine p by splitting it into two nodes p′ which has g mapped to it, and p′′

which has f and j mapped to it.
(3) Refine p′′ further, by splitting it into nodes p1 which has f mapped to it,

and p2 which has j mapped to it.

We explain these steps in more detail. First, ¬WomanWithHobby is added
to a tested summary individual w. The resulting Abox is inconsistent, and a jus-
tification J contains the assertions: w : Woman, loves (likes, and loves(w, c).
For refinement, we target the summary individuals in J , which are w and c.
Refinement makes a justification J precise, that is, it partitions the individuals
mapped to the summary node w into a new set of summary nodes to reflect
the fact that not all individuals in A mapped to w have the loves(w, c) in J .
The summary individual w is therefore split into two new summary nodes, w′

that has individuals with no loves(w, c) mapped to it (e.g., a), and w′′ that has
individuals with loves(w, c) mapped to it (e.g., b). This new refined Abox is still
inconsistent, with a new justification J which contains the individuals w′′ and
c. Refinement of w′′ or c however is no longer possible, because every individual
in A that is mapped to w′′ also has the loves(c, ,) and every individual mapped
to c has the same edge (here c is the same as the summary node c). At this
point, the justification J is precise, in that it cannot be refined further, and we
conclude that all individuals in A mapped to w′′ are solutions to the query.

For the second step, ¬WomanWithHobby is added to a tested summary
individual p. The resulting Abox is inconsistent, and this time there is the jus-

99

! !

!

"

##$

#%

#&

##'

###()**+,-#.,+$'

/0+%'0,12
&(3/)"04/12

5670(

!

"

##$

#%

#&

##'

/0+%'0,12
&(3/)"04/12

5670(

!

"

##$

#%

#&

##'

2&,(/#,02&40*04/

&(3/)"04/12

5670(

!88

"

##$

#%

#&

##'

/0+%'0,12
&(3/)"04/12

5670(

!!8

!

"

#988

#%

#&

##'

#####(0%64"#,02&40*04/

&(3/)"04/12

5670(

!88

"

#%

#&

##'

/0+%'0,12
&(3/)"04/12

5670(!!8

##98
#

!

"

9:

#%

#&

##'

#######/'&,"#,02&40*04/

&(3/)"04/12

5670(

!88

"

#%

#&

##'

/0+%'0,12
&(3/)"04/12

5670(!!8

##98

9;

/0+%'0,12 /0+%'0,12

5670(

5670(

5670(
5670(

/0+%'0,12

/0+%'0,12
/0+%'0,12

<=+%/#>)(/&2&%+/&64>)(/&2&%+/&64

Fig. 3. Refinement Steps for Example

tification: isStudentOf(p, i), loves (likes, and loves(p, h), combined with the
axiom WomanCollege (∀hasStudent.Woman. The result of the second refine-
ment is shown in Figure 3. After this refinement, the subgraph containing p′ is
still inconsistent, and p′ is not refinable. Therefore, all individuals in A mapped
to p′, namely g, are solutions.

There is one final justification which is refinable: teacherOf(p′′, d), teacherOf(w′′, d),
w′′ : Woman, loves (likes, loves(w′′, c), and * (≤ 1isTaughtBy. After the
third refinement step, we conclude that f mapped to P1 is a solution.

On large knowledge bases, the cost of each additional refinement is significant,
so it is critical to reduce the number of refinements. We show in the next sections
how our hybrid reasoning approach can reduce the number of refinements for
this example.

100

5 Hybrid Algorithm

The key idea to reducing refinement iterations is to (a) quickly find solutions to
the query, (b) refine the summary to isolate these solutions into new summary
individuals, and (c) ignore these individuals for the rest of the refinement process.
We find solutions quickly by using a sound and incomplete reasoning algorithm
which does a form of query expansion described in Section 6. We point out that
other reasoner implementations (such as QuOnto) for less expressive logics may
also be plugged into this technique.

To illustrate the overall idea in terms of our example in Figure 2, we ex-
pand our query WomanWithHobby into the query WomanWithHobby(x) ,
(Woman(x) & likes(x, y)) , (Woman(x) & loves(x, y)). This query matches all
pairs of individuals in the Abox bound to both x and y, namely the pair (b,
c), and this constitutes our set of known bindings. Our next step is to refine
the summary Abox, so that the individuals in the solution, namely b and c, are
mapped to distinct new summary individuals. We do this by a refining the sum-
mary Abox in a manner similar to that described in Section 3; the only difference
is that we now partition the Abox individuals according to whether they were
bound to any variable in the query or not, rather than according to key sets.
That is, f(a) = f(b) after the refinement step iff a and b are mapped to the same
summary node before the refinement step and either both or neither a and b are
individuals in the set of known bindings. Our algorithm keeps track of the subset
of known bindings that actually are answers to the query, which is just b in this
case. Next, consistency checking is applied to this refined summary, and any re-
maining inconsistencies are resolved using the standard iterative refinement and
summarization process described in [3].

This approach has a nice property: in cases where the incomplete step ac-
tually does find all solutions and the summary itself is consistent, the complete
reasoning step may simply be a single consistency check on the refined summary.
Since there are no more solutions to be found, the only possible causes of incon-
sistency are spurious inconsistencies, which are the result of our summarization
technique. In practice, we find that the incomplete step captures all solutions
on most complex queries on most realistic datasets. This optimization there-
fore significantly reduces the number of refinements and makes query answering
practical for large Aboxes.

One non-obvious part of the hybrid algorithm is that it is important to
partition out all individuals that are bound to any variable in the query, and
not just the individuals that are are actual solutions to the query. To illustrate
why this is the case, consider a simple Abox shown in Figure 4 with 3 patients (q,
r, s) who each have an associated lab event (l, m, n), and each event indicates
a presence of organisms of different types, where x, y, and z indicate individuals
with organisms of type X, Y and Z, respectively. The summary Abox, as shown
in the Figure will contain one patient individual p, which has q, r and s mapped
to it, one lab event individual e which has l, m and n mapped to it, and 3
individual nodes for organisms x, y, and z. Consider a realistic query, which is
to find all patients who have a laboratory event which shows the presence of

101

the organism X. As shown in the Figure 4, if a summary is built with only the
solution individual q partitioned out, then it will contain spurious inconsistencies
which will cause unnecessary refinement. To avoid this issue, we should not only
partition out the solution individual q from p, but also other individuals bound
to other variables in the query, which in our example would be l and x.

Fig. 4. Partitioning Complexity

The pseudo-code for our overall algorithm is shown in the function Conjunc-
tiveQuery in Figure 5.

6 Query Expansion

Our sound but incomplete reasoning algorithm is based on the well-known recur-
sive query expansion technique suggested in the EL [5] and DL-Lite [6] solutions.
As discussed earlier, our approach differs in the following ways: (a) we refer to
an OWL-DL reasoner (Pellet) for computing subclasses of a concept when per-
forming the expansion, (b) we have an ABox pre-processing step that uses a
datalog reasoner to compute transitive relations in the Abox and same-as infer-
ences between ABox individuals due to functional property assertions. The same
individuals are used to expand query solutions, i.e, if individual a is found to be
a solution to the SQL query generated by query expansion, and sameAs(a,b) is
inferred by the datalog reasoner, we add b to the solution set.

For any given query a : C, we recursively traverse the definitions and sub-
classes of the concept C. For our sample query x : WomanWithHobby, we first
generate a union of SQL select statements which signify all the possible ways in
which this query can be expanded. The first disjunct in the union matches in-
dividuals of WomanWithHobby directly, rdf : type(x, WomanWithHobby). In
this case, however, the WomanWithHobby type does not appear in the Abox,
and so we drop this disjunct. Next we would generate disjuncts to match indi-
viduals that are in subclasses of WomanWithHobby, but in this case there are
no subclasses (checked by calling a standard DL reasoner). We then add any
complex subclasses of WomanWithHobby which can be inferred syntactically.
In our example, we have one such obvious subclass because WomanWithHobby

102

Function:ConjunctiveQuery

Input: Conjunctive Query CQ: Ci(x) ∧ ..Rj(x, y)
/* Get incomplete answers from sound but incomplete algorithm, which

can be translated to SQL */
sqlQuery ← BuildQuery(CQ);
/* Get the bindings for all variables in the expanded query, both

distinguished and non-distinguished variables */
result ← execute(sqlQuery);
/* Build filtered summary for query answering, which is the basic

summary Abox */
sum ← BuildSummary(A, CQ);
/* Separate the bindings for distinguished variables xdist from

bindings for existentially quantified variables */
sqlsolutions ← getBindings(result, xdist);
others ←

⋃
v∈vars(result)−xdist

getBindings(result, v);

/* Refine summary based on solutions found from SQL */
sum ← refineSummaryFromSolutions(sum, sqlsolutions ∪ others) ;
/* Find all summary nodes in new summary which have sqlSolutions

mapped to them */
sumSolutions ← getSummaryNodesForSQLSolutions(sum, sqlSolutions);
/* complete query answering, using refined summary */
restsolutions ← solveQuery(sum, allnodes - sumSolutions);
return sqlsolutions ∪ restsolutions

Fig. 5. Overall optimized complete query algorithm

is defined as equivalent to Woman & ≥ 1likes. The expansion process now re-
cursively continues and we expand this complex concept into a select statement
which is a disjunction of conjuncts; i.e., the selection must satisfy the two con-
ditions rdf : type(x, Woman) and likes(x, y), or alternatively, satisfy the two
conditions rdf : type(x, Woman) and loves(x, y), since likes has a subproperty
loves. These queries are applied against an Abox that has been processed to
include all edges materialized from the application of all deterministic merger
and transitivity rules.

One technical challenge in query expansion in general is keeping the query
relatively simple, especially when given very large Tboxes with deep subclass
and subproperty hierarchies. Our approach to this problem was to eliminate
forms of query expansion if the concept or role did not appear in the ABox. We
therefore maintained a simple cache of all roles and concepts that appeared in
the ABox, and limited our expansion to only these concepts and roles.

7 Evaluation

We evaluated our technique on two knowledge bases: the first is a real-world
knowledge base, and real queries of clinical data that we had used in previ-

103

ous work[1], and the second is the UOBM benchmark[8]. Our experiments were
conducted on a 2-way 2.4GHz AMD Dual Core Opteron system with 16GB of
memory running Linux, and we used IBM DB2 V9.1 as our database. Our Java
processes were given a maximum heap size of 8GB for clinical data, and 4GB
for UOBM.

7.1 Clinical trials dataset

In prior work [1], we reported on the use of expressive reasoning for matching
of patient records on clinical trials. The 1 year anonymized patient dataset we
used contained electronic medical records from Columbia University for 240,269
patients with 22,561 Tbox subclass assertions, 26 million type assertions, and
33 million role assertions. The 22,561 Tbox subclass assertions are a subset
of the a larger Tbox which combines SNOMED with Columbia’s local taxon-
omy called MED for a total of 523,368 concepts. For details of the partition-
ing algorithm used to define the subset see [1]. Although the expressivity of
the SNOMED version we used falls in the EL fragment of DL, the expres-
sivity needed to reason on the knowledge base is ALCH. This is because we
have type assertions in the Abox which includes assertions of the type ∀R.¬C,
where the concept C is itself defined in terms of a subclass or equivalence
axiom. As a concrete example, for a given patient, and a specific radiology
episode for the patient, the presence of ColonNeoplasm may be ruled out.
ColonNeoplasm has complex definitions in SNOMED (e.g., ColonNeoplasm ≡
∃AssociatedMorphology.Neoplasm & ∃FindingSite.Colon & ColonDisorder).
We selected the 9 clinical trials we evaluated in our earlier work which are
shown Table 1. Table 2 shows the DL version of the queries, in the order shown
in Table 1. For query NCT00001162, the results shown are for the union of 7
different disorders, only 4 of which are illustrated in Table 2.

ClinicalTrials.gov ID Description
NCT00084266 Patients with MRSA
NCT00288808 Patients on warfarin
NCT00393341 Patients with breast neoplasm
NCT00419978 Patients with colon neoplasm

NCT00304382
Patients with pneumococcal pneumonia where source
specimen is blood or sputum

NCT00304889 Patients on metronidazole

NCT00001162
Patients with acute amebiasis, giardisis, cyclosporiasis
or strongloides...

NCT00298870 Patients on steroids or cyclosporine
NCT00419068 Patients on corticosteroid or cytotoxic agent

Table 1. Clinical Trial Requirements Evaluated

Table 3 shows the queries, the number of patients matched to the queries,
the time to process the queries in minutes, the time in minutes for our hybrid

104

DL Query
∃associatedObservation.MRSA
∃associatedObservation.
∃roleGroup.
∃administeredSubstance.
∃roleGroup.∃hasActiveIngredient.Warfarin

∃associatedObservation.BreastNeoplasm
∃associatedObservation.ColonNeoplasm
∃associatedObservation.(

PneumococcalPneumonia
+
∃hasSpecimenSource.Blood , Sputum

)

∃associatedObservation.
∃roleGroup.
∃administeredSubstance.
∃roleGroup.∃hasActiveIngredient.Metronidazole

∃associatedObservation.

acuteamebiasis,
giardisis,
cyclosporiasis,
strongloides,
. . .

∃associatedObservation.
∃roleGroup.
∃administeredSubstance.
∃roleGroup.∃hasActiveIngredient.cyclosporine , steroids

∃associatedObservation.
∃roleGroup.
∃administeredSubstance.
∃roleGroup.∃hasActiveIngredient.corticosteroid , cytotoxicAgent

Table 2. DL Queries for Evaluated Clinical Trials

approach (HTime), the time in minutes for our previous approach (Time), the
number of refinements with our hybrid approach (HRefinements) and the number
of refinements with our previous approach (Refinements). As can be seen from
the table, the hybrid approach reduced the number of refinements to 1 in all
cases, which reflects the refinement needed to check that there are no additional
solutions after the incomplete algorithm has completed (The one case where 0
refinements occurred was because for that specific query, our expressivity checker
decided that no refinement was needed given the specific filtered Abox that was
built for the query and the Tbox.) The hybrid approach improved our overall
query times from 100.4 mins on average with a standard deviation of 113.7, to
15.6, with a standard deviation of 3.5. This is not surprising, given that the
entire variability in query answering in our previous approach was due to the
number of refinements.

105

Query Matched Patients Time (m) HTime (m) Refinements HRefinements
NCT00084266 1052 68.9 17.8 6 1
NCT00288808 3127 63.8 11.6 5 0
NCT00393341 74 26.4 12.1 2 1
NCT00419978 164 31.8 12.4 3 1
NCT00304382 107 56.4 15.1 8 1
NCT00304889 2 61.4 20.7 3 1
NCT00001162 1357 370.8 13.5 58 1
NCT00298870 5555 145.5 19.3 8 1
NCT00419068 4794 78.8 17.5 5 1

Table 3. Patient Matches for Trial DL Queries for 240,269 Patients

7.2 UOBM

We evaluated our approach on the UOBM benchmark, modified to SHIN ex-
pressivity. This was done by adding a new concept to correspond to each of
the nominals in the dataset (e.g. SwimmingClass for Swimming), adding a type
assertion for each nominal (e.g., Swimming : SwimmingClass), and changing
any of the references to nominals in the Tbox to point to the class. Currently,
we have evaluated membership query answering, and we tested one membership
query for each concept in the benchmark6, comparing the hybrid approach with
our prior techniques. We report results for UOBM size 100—with roughly 7.8
million type assertions and 22.4 million role assertions—and UOBM size 150—
with about 11.7 million type assertions and 33.5 million role assertions. The
queries naturally fall into three categories:

empty Concepts that have no instances in the Abox.
simple Concepts that have only simple solutions (i.e. reasoning does not require

iterative refinement because the justification viewed as a graph does not have
path lengths greater than 1).

complex Concepts that have complex solutions (i.e. reasoning requires itera-
tive refinement because the justification viewed as a graph has path lengths
greater than 1).

We expect the hybrid approach to benefit only the third category of queries.
One complication is that the summary Abox for the UOBM benchmark has a
spurious inconsistency induced by the summarization process, so all membership
query answering require 2 passes of refinement in order to make the summary
consistent.

Table 4 shows results for the 3 query categories for UOBM sizes 100 and
150. The first three columns list the UOBM dataset size, the category of query,
and how many such queries there are. For both sizes and each query category,
we report the average and standard deviation for the query time and the num-
ber of passes of refinement. For both datasets, we timed out queries that took
6 That is, all classes in the original benchmark. The extra classes introduced by our

transformation to SHIN are ignored.

106

Time (seconds) Refinement
Original Hybrid Original Hybrid

Size Category Count Average Stdev Average Stdev Average Stdev Average Stdev
100 empty 11 214 37 214 19 2 0 2 0
100 simple 43 255 83 265 47 2 0 2 0
100 complex 14 891∗ 386∗ 377 105 14∗ 11∗ 3 .3
150 empty 11 301 35 347 45 2 0 2 0
150 simple 43 340 88 416 85 2 0 2 0
150 complex 14 1368∗ 508∗ 647 198 14∗ 11∗ 3 .3

Table 4. Results for UOBM Membership Queries for sizes 100 and 150

longer than 30 minutes to complete; the timeouts occured on both the 100 size
(1 timeout) and the 150 size (6 timeouts) for the original approach. Hence,
those averages and standard deviations are significant underestimates, and so
are marked with a ∗ in the table.

As one might expect, there is some overhead for executing the incomplete
query, and so the simpler queries actually show some slowdown in the hybrid
approach. However, the results do indicate that our hybrid approach greatly
reduces the time for the complex queries, which were the most expensive ones
with our previous approach. In fact, for all but one query, the incomplete rea-
soning algorithm found all the solutions. The one query which was the outlier,
GraduateCourse, required propagation from a universal restriction for reason-
ing, which was not accounted for by our incomplete algorithm. In this case, we
proceeded to find the answer through our prior complete reasoning algorithm.

8 Conclusion and Future Work

We have developed an efficient, scalable query answering system for large expres-
sive ABoxes. The hybrid approach proposed in this paper combines our novel
summarization and refinement technology to do sound and complete OWL-DL
reasoning with any incomplete reasoning implementation (possibly for a subset
of OWL).

We have used our hybrid solution to build a web-based semantic search en-
gine for biomedical literature, known as Anatomy Lens, details of which can be
found in [9]. Anatomy Lens has indexed 300 million RDF triples dealing with
PubMed data, and utilizes ontological information from three large biomedical
ontologies (Gene ontology, Foundational Model of Anatomy, and MeSH), doing
query answering in a few seconds. Performing web-time reasoning for such a
large expressive dataset would not have been possible without our approach.

We plan to further optimize our query expansion algorithm by pruning ir-
relevant queries considering the summary ABox, and to continue to explore the
use of SHER in real world semantic web applications.

107

References

1. C.Patel, J.Cimino, J.Dolby, A.Fokoue, A.Kershenbaum, L.Ma, E.Schonberg,
K.Srinivas: Matching patient records to clinical trials. Proc. of the Int. Seman-
tic Web Conf. (ISWC 2007) (2007)

2. A.Fokoue, A.Kershenbaum, L.Ma, E.Schonberg, K.Srinivas: The summary abox:
Cutting ontologies down to size. Proc. of the Int. Semantic Web Conf. (ISWC 2006)
(2006) 136–145

3. Dolby, J., A.Fokoue, Kalyanpur, A., A.Kershenbaum, L.Ma, E.Schonberg,
K.Srinivas: Scalable semantic retrieval through summarization and refinement.
Proc. of the 22nd Conf. on Artificial Intelligence (AAAI 2007) (2007)

4. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Proceedings of
the Nineteenth International Joint Conference on Artificial Intelligence IJCAI-05,
Edinburgh, UK, Morgan-Kaufmann Publishers (2005)

5. Rosati, R.: On conjunctive query answering in EL, CEUR Electronic Workshop
Proceedings (2007)

6. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati, R.: Dl-lite:
Tractable description logics for ontologies. Proc. of AAAI (2005)

7. Dolby, J., Fokoue, A., Kalyanpur, A., Ma, L., Schonberg, E., Srinivas, K., Sun, X.:
Scalable grounded conjunctive query evaluation over large and expressive knowl-
edge bases. In: ISWC ’08: Proceedings of the 7th International Conference on The
Semantic Web, Berlin, Heidelberg, Springer-Verlag (2008) 403–418

8. Ma, L., Yang, Y., Qiu, Z., Xie, G., Pan, Y.: Towards a complete owl ontology
benchmark. In: Proc. of the third European Semantic Web Conf.(ESWC 2006).
(2006) 124–139

9. Dolby, J., Fokoue, A., Kalyanpur, A., Schonberg, E., Srinivas, K.: Scalable
highly expressive reasoner (sher). In: Journal of Web Semantics, (accepted),
http://dx.doi.org/10.1016/j.websem.2009.05.002 (2009)

108

