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Abstract. Since its introduction in 1971, the B-tree has become the
dominant index structure in database systems. Conventional wisdom
dictated that the use of a B-tree index or one of its descendants would
typically lead to good results. The advent of XML-data, column stores,
and the recent resurgence of typed-graph (or triple) stores motivated by
the Semantic Web has changed the nature of the data typically stored.
In this paper we show that in the case of triple-stores the usage of B-
trees is actually highly detrimental to query performance. Specifically, we
compare on-disk query performance of our triple-based Hexastore when
using two different B-tree implementations, and our simple and novel
vector storage that leverages offsets.
Our experimental evaluation with a large benchmark data set confirms
that the vector storage outperforms the other approaches by at least
a factor of four in load-time, by approximately a factor of three (and
up to a factor of eight for some queries) in query-time, as well as by a
factor of two in required storage. The only drawback of the vector-based
approach is its time-consuming need for reorganization of parts of the
data during inserts of new triples: a seldom occurrence in many Semantic
Web environments.
As such this paper tries to reopen the discussion about the trade-offs
when using different types of indices in the light of non-relational data
and contribute to the endeavor of building scalable and fast typed-graph
databases.

1 Introduction

The increasing interest in the Semantic Web has motivated a lot of recent re-
search in various areas. That is because the dynamic graph-structured character
of Semantic Web data is challenging many traditional approaches, for example
those of data indexing and querying. So it does not come as a surprise that there
has been done a lot of work to improve state of the art Semantic Web engines.
Recent publications show how to index Semantic Web data efficiently [1, 8, 17],
how to improve query optimization processes [9, 14], and how to represent the
data. Most of them aim to avoid mapping data to the relational scheme.
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However, beyond optimizing in-memory indices, state-of-the-art systems still
make use of traditional data structures, such as B-trees, when it comes to on-disk
storage. It is surprising that so far no effort has been made on analyzing whether
those storage structures are a good match for the new indices. Will traditional
approaches still work well with the newly developed indexing techniques?

In this paper we discuss this issue and propose a novel, but simple lookup-
based, on-disk vector storage for the Hexastore indices. The vector storage em-
ploys key offsets rather than a tree structure to navigate large amounts of disk-
based data. The use of fixed-length indices makes lookups highly efficient (O(1),
with at most three page reads) and loads efficient. While updates are a bit
more costly, the fast load time makes it, oftentimes, simpler to “just” reload the
whole data. We benchmark our vector storage for Hexastore with two Hexastore-
customized B-tree based approaches. One has a B-tree index for each of the
Hexastore indices. Another has one B-tree index which combines all indices. We
will see that for typical queries the vector storage outperforms a B-tree based
structure by a factor of eight.

In summary our contributions in this paper are the following:

– We propose a simple but novel approach for on-disk storage of triples that
relies on an offset-based vector storage. The approach allows for a highly
compact representation of the data within the index while preserving a fast
retrieval forgoing some insert/update efficiency – a tradeoff that doesn’t seem
too disadvantageous given the nature of the data.

– We experimentally compare the load-time and space requirement perfor-
mance of the vector index with two different implementations of the a B-
tree style index and two different versions of a traditional table-based triple
store. We show that the vector storage based Hexastore has a smaller storage
footprint than a B-tree based approach and that it is much faster in loading
the data. Furthermore, we show that the vector storage based Hexastore
has about three to eight times the speed of the B-tree based approaches in
answering queries confirming the theoretical considerations.

The remainder of the paper is structured as follows. First we discuss the
work related to investigating non-tree data structures. Section 3 summarizes
the structure of Hexastore, introduces the novel vector storage structure, and
explains how the two B-tree-based back-ends for Hexastore are constructed.
Section 4 discusses the advantages and disadvantages of each of the indices and
is complemented by the experimental evaluation. We close with a discussion of
limitations and our conclusions.

2 Related Work

We found three areas of related work: other work on typed-graph (or RDF)
stores, projects focusing on the native storage of XML data, and other papers
investigating the limitations of usefulness of tree-based storage.
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Efficient indexing of Semantic Web data has become an active research
topic [1, 8, 13, 17]. Most approaches propose methods how to rearrange data
in-memory or in given database systems respectively such that query process-
ing can be performed more efficiently compared to straightforward approaches
like triple tables. Abadi et al [1] store their vertical partitioning approach in
a column-oriented database [2, 15]. Specifically they store each predicate in a
two-column < subject, object > table in a column store, indexed with an un-
clustered B-tree. Neumann et al. [8] as well as Guha [12] use native B-tree storage
approaches. The goal with our proposed vector storage is to avoid storage in ex-
isting DBS and also the usage of B-tree structures and to show that applying
these approaches is detrimental to query performance.

One of the oftentimes used serializations of an RDF graph is in XML. Projects
in the XML domain have investigated a plethora of approaches to efficient storage
and querying of this type of data. We can distinguish between non-native storage
strategies, which map the data onto the relational model, and native strategies,
that try to store the data more according to its nature. Native XML databases [3,
5, 7] typically store their data either as the XML document itself, or they store
the tree structure, i.e., the nodes and child node references. For indexing, some
index-related information may be stored as well, such as partial documents,
sub-tree information, and others. All of these approaches have in common that
they store their data (and usually their indices) in tree like structures, as the
underlying data is also in that format. The one exception is the native on-disk
XML-storage format proposed by Zhang et al. [18]. It provides an optimized,
non-tree disk-layout for XML-trees optimized to answer XPath queries. Akin to
this last project, we also propose to shed the limitations of the underlying data
format. Indeed, our on-disk structure consists only of the indices themselves,
which helps to answer queries about the underlying data and, hence, enables
their reconstruction.

It was most difficult to find work investigating the boundaries of tree-based
indices. Idreos et al. [4] address the slow build-time of an index in general by
proposing not to build an index at load time but to initially load the data in its
raw format and reorganize it to answer each query. They show that under certain
conditions the data organization converges to the ideal one. In the most radical
attack on the general applicability of trees, Weber et al. [16] discuss similarity
searches in high-dimensional spaces. They find that the performance of tree-
based indices radically degrades below the performance of a simple sequential
scan. They propose a novel vector-approximation scheme called VA-file that
overcomes this “dimensionality curse”. Our work can be seen in the spirit of
these studies in that we also try to explore the limitations of the predominant
tree structures and propose alternatives that excel under certain conditions.

3 The Storage Structure

In this section we describe our vector storage for Hexastore indices and data.
Hexastore, proposed in [17] as an in-memory prototype, is an efficient six-way
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indexing structure for Semantic Web data. In order to explain the functionality
of the vector storage we first briefly review the functionality of Hexastore itself
and its requirements towards an index. We then introduce the vector storage
and discuss its technical and computational characteristics. This is followed by
a brief explanation on how to build the B-tree based Hexastore back-ends.

3.1 Hexastore: A Sextuple index based graph store

A Semantic Web triple < s, p, o > consists of a subject s, which is a node in
the graph, a predicate p designating the type of edge, and an object o, which is
either a node in the graph or a literal. In RDF, the nodes are identified by a URI.
To limit the amount of storage needed for the URIs, Hexastore uses the typical
dictionary encoding of the URIs and the literals, i.e. every URI and literal is
assigned a unique numerical id. Furthermore, Hexastore recognizes that queries
are constructed by a collection of graph patterns [14] which may (i) bind any
of the three elements of the triples to a value, (ii) may use variables for any
of the triple elements effectively resulting in a join with other graph pattern,
and (iii) define any element with a wild card to be returned. Consequently, any
join order between triple patterns in the query is possible. Hexastore, therefore,
indexes the data to allow for retrieving values for each order of a triple pattern
respectively joining over every element (s, p, or o) of a triple pattern resulting in
six indices designated in the order in which the triple elements are indexed (e.g.,
SPO, OSP, etc.). This structure allows to retrieve all connected triple residuals
with one index lookup.

Figure 1 illustrates the structure of the six indices. It shows that each index
essentially consists of three different elements: a first-level Type1 index, a second-
level Type2 index, and a third-level Type3 ordered set, where the TypeN’s are
one of the three triple elements {subject, predicate, object}. Given a key ai the
first-level Type1 index returns a second-level Type2 index. Given a key bj the
Type2 index returns a Type3 ordered set, which lists all the matches to the query
< ai, bj , ? >. As an example consider trying to match a query that tries to find
all papers authored by “Bayer”. This query could result in the triple structure
< Bayer, authored, ? > and could be executed by consulting the spo index (i.e.,
Type1 = s, Type2 = p,and Type3 = o). Hence, first the s index would be asked
to return the p index matching the key “Bayer”, then the returned index would
be asked to return the ordered set for the key “authored”, which would be the
result of the query. Note that this structure has the advantage that every lookup
is of amortized cost of order O(1).

Our implementation of Hexastore presented in [17] used an in-memory pro-
totype for all experiments. Storing the first and second level indices on disk so
that all Hexastore performance advantages can be preserved is not straightfor-
ward. Clearly the proposed indexing technique does not adhere to the traditional
relational model. Still, taking inspiration from RDF-3X, we could use B-trees as
the well established indexing technique – an approach that we use to compare
our results to (see Section 3.3). But as we argued in the introduction we believe
that since our data adheres to different underlying assumptions, we would loose
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Fig. 2. Vector storage file layout

some of the advantages of the Hexastore index. Consequently, we need an on-disk
index structure/storage layout that adheres to the following requirements:

1. Given an item a of Type1 and a desired target Type2, there should be an
operation on the first-level index that efficiently retrieves the associated
second-level index of Type2, denoted as I(Type2). Hence we need an effi-
cient implementation of the operation:

getIdx(a) : Type1 !→ PointerTo−−−−−−−→ I(Type2)

2. Given an item b of Type2 and a desired target Type3, there should be an
operation operating on the second-level index that efficiently retrieves the
associated third-level ordered set Type3, denoted as S. Hence we need an
efficient implementation of the operation:

getSet(b) : Type2 !→ PointerTo−−−−−−−→ S(Type3)

3. The operations getIdx (a) and getSet(a) should require as few read operations
as possible.

4. The third-level sorted set should be accessible in as few read operations as
possible.

Obviously, this linked structure can be implemented in various ways. Given
that the structure is reminiscent of linked vectors one approach would be to store
each vector-like structure in a column store. This would fulfill requirements 3
and 4 above. In practice, however, this approach does not scale, as the number
of vectors is huge: while the number of first-level indices is only six, the number
of second level indices has an upper bound of 2|S|+2|P |+2|O| and the number
of third-level ordered sets would be, due to the fact that the third-level sets can
be shared by two indices, |S|(|P | + |O|) + |O||P | – a prohibitively large number.
MonetDB [2], for example, allocates one file for each column. Since most vectors
are small (requiring far less space than 4 KB, which is the default minimal size
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for each new file), this approach would lead to a tremendous waste of space.
In the following, we discuss three implementations. First, we introduce our own
vector storage. Then, we show two different approaches of how the two necessary
structure operations (getSecondLevelIndex (a) and getThirdLevelSet(a)) can be
implemented using a traditional B-tree.

3.2 Vector Storage

The Hexastore structure favors vector-like indices connected with pointers. To
mimic this behavior on-disk we needed to establish the analogues of vectors and
pointers on-disk whilst limiting the number of files needed (to avoid having a
large numbers of almost empty second and third level files). As an analogue for
a pointer we chose a storage structure we call a chunk (see also Figure 2 at the
top). A chunk contains the particular id (the id that results of the dictionary
encoding) of a URI or literal represented as a long integer, the number of
elements in the associated second-level index (or third-level sorted set) it points
to represented as integer, which can be chosen as long integer as well, if
necessary, and the offset information where to find the associated set data in the
level-two, respectively level-three file, again represented as long integer.

Chunks allow for the efficient storage of the first and second-level indices in a
single file each. Figure 2 shows the layout for each of the six Hexatore indices. If
an element with id i is stored, the appropriate chunk in the ith position of File 1
has the value ID set to i and size set to the number of chunks it points to in the
second-level index. The value offset contains the position of the start of the
files referenced by the chunk within File 2. Some nodes that appear as subjects
might also be objects in some triples, while other nodes are only referred to as
either subjects or objects. In the latter case the first-level index of the SPO,
SOP, OSP, and OPS has to return a NULL value, as those ids are not used
as subject respectively object. If that is the case the particular entry is filled
with a “zero” chunk, i.e. the ID, size and the offset are set to 0. While this
approach “wastes” some space to “zero” chunks, it maintains a placeholder for
every possible subject and/or object id allowing to compute the location of a
chunk associated with a given id by simply multiplying the id times the disk
footprint of a chunk (i.e., (id− 1) · sizeof(chunk)). In the predicate-headed
first-level indices (belonging to the overall Hexastore indices PSO and POS) we
avoid the necessity of “zero” chunks all together by using a different key-space
for the dictionary encoding. The second-level index is also stored as a collection
of chunks grouped in a single file denoted as File 2 in Figure 2. Since the lookup
in the first-level index provided us with the offset as well as the size (or number)
of chunks associated with its key in the second-level index we can again start to
directly read the relevant chunks and know how far we need to read. Note that
the second-level index does not use “zero” chunks, since the entries associated
with a first-level key are typically much fewer than the number of nodes (or
edges). Consequently, the offset-jump method of finding a second-level chunk
associated with a key requires a search for the chunk. The size of the second-
level group of chunks corresponds to the degree of a given node (or the number

54



of differing types of predicates it is associated with) in the case of a subject or
object first-level index, or the number of nodes connected with a certain type of
edge in the case of a first-level predicate. Hence, in most cases, the typical size
of a second-level group of chunks is going to be small enough to fit into main
memory allowing an efficient binary search. The third-level sorted sets are again
all stored in a single file denoted as File 3 in Figure 2. Reading the sorted set
associated with a second-level chunk results in a simple reading of the size ids
starting from the offset in the file.

The presented on-disk structure allows to store each index in 3 files resulting
in a total of 15 files (in addition to the dictionary store). Note that the number of
File 3s can be halved, as two Hexastore indices can share them (e.g., the SPO and
PSO index can share their third-level list File 3). Returning to our requirements
of Section 3.1 we can summarize:

1. getIdx(a) can be implemented as a simple lookup based on an off-set calcu-
lation (i.e., (id− 1) · sizeof(chunk)). It requires at most one page read.

2. getSet(b) can be implemented as a search over an ordered set of chunks in
File 2: In the best case it will involve one page read followed by a binary
search (or a simple binary search if the page is already in memory). In the
worst case it might involve multiple page reads (if the chunk group is larger
than the page size) and partial binary searches.

3. Few page reads (first and second level): In the first-level index lookup only
the relevant page is read. In the second-level index only the pages associated
with the relevant chunk group are read.

4. Third-level page reads: only pages containing the relevant third-level ordered
set are read.

3.3 B-tree Based Implementations

As a base-line comparison and following the conventional wisdom we imple-
mented two different Hexastore implementations based on B-trees. We decided
to use BerkeleyDB B-trees rather than from-the-scratch implemented ones, as
they a) are efficiently implemented, and b) allow for flexible key-value definitions
per default.

The first approach stores each Hexastore index in a separate B-tree. We refer
to it as the One-For-Each (OFE) approach. The second approach stores all
Hexstore indices in a single B-tree. Therefore, we refer to it as the All-In-One
(AIO) approach.

OFE: Storing each Hexastore index in one B-tree In this approach we store each
Hexastore index in a separate B-tree. Thus, instead of using the structure shown
in Figure 2 we implement it as a B-tree with a compound key consisting of the
lookup value for the first-level and the second-level index in the form of:

BtreeLookup(< a, b >) :
< Type1, Type2 > !→ S(Type3) if b > 0

< Type1 > !→ S(Type2) otherwise.
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This provides an easy lookup for each of the operations necessary to implement
a Hexastore operation. The typical lookup of the sorted set of third-level keys
for a given set of first-level and second-level keys is a straightforward call of
the BtreeLookup(a, b) function. Note that the vector storage requires calling
b = getIdx(a) followed by calling getList(b) to achieve the same operation. If
only the second-level keys are needed then the second-level key is passed as 0.
Hence, getIdx(a) = BtreeLookup(< a, 0 >). The result of this implementation
is that all lookups are optimized using the chosen B-tree implementation

AIO: Storing Hexastore in one B-tree In this approach we even further reduce
the number of needed B-trees by adding the type of index (SPO, SOP, ...) to the
compound key. Thus:

BtreeLookup(< a, b, t >) :
< Type1, Type2, idxType > !→ S(Type3) if b > 0

< Type1, idxType > !→ S(Type2) otherwise,

where idxType ∈ {SPO,SOP,PSO,POS,OSP,OPS}. Again partial lookups are
achieved with setting b to 0 and efficiency is handled by the B-tree implementa-
tion.

Note, that assuming an efficient implementation of a B-tree the main differ-
ence between OFE and AIO lies in the implementation ability to reuse/share
elements of the tree and the approach to dealing with compound keys. The sim-
pler key structure of OFE suggests a faster index build time. But an efficient
handling of compound keys in AIO could lead to a better reuse of already read
pages and could lead to better retrieval times.

4 Experimental Evaluation

In our evaluation we wanted to provide empirical evidence for our claim that
B-trees can be suboptimal in some situations and that they are outperformed
by our vector storage. To compare the vector storage, which we implemented in
C++, with B-tree based approaches, we implemented both B-tree variants, AIO
and OFE, described in Section 3.3 using the Oracle Berkeley DB [10,11] library
in release 4.7. Inspired by [13], in which the authors show that proper B-tree
indices over triple tables can already be highly efficient and scalable, we also
inserted the data into a standard MySQL 5 database table with three columns,
one for subject, one for predicate, and one for object. We then created indices
over all three columns. This indexed MySQL table is referred to as iMySQL.
Finally, we also used the unindexed MySQL database as a baseline for some of
the comparisons.

According to our goal we wanted to benchmark the systems with respect to
index creation times, required disk space, and data access (or retrieval) time.
All experiments were performed on a 2.8GHz, 2 x Dual Core AMD Opteron
machine with 16GB of main memory and 1TB hard disk running the 64Bit
version of Fedora Linux.
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Data Sets As we wanted to measure the behavior of the different storages under
various sizes we looked for a suitable typed-graph data set. We chose the Lehigh
University Benchmark (LUBM) [6] data set, which models typical academic set-
ting of universities, classes, students, instructors, and their relationships. The
advantage of this synthetical data set is that it has an associated data generator
which can generate an arbitrary number of triples within the given schema and
that it has a number of associated queries with their correct answers. It is, there-
fore, widely used for benchmarking Semantic Web infrastructure applications.
Table 1 summarizes the number of subjects, predicates, objects, and triples for
the used data sets.

# Triples |T | |P | |S| |O| |N |
5 Mio 18 787,288 585,784 1,191,500
25 Mio 18 3,928,780 2,921,363 5,948,606
50 Mio 18 7,855,814 5,842,384 11,894,568

Table 1. Number of triples, predicates, subjects, objects, and nodes of the used LUBM
data sets used

Experimental Procedure To ensure that all systems would have the same starting
conditions regardless of any string-handling optimizations we replaced all URIs
to unique numerical ids. In addition we also replaced all literals with unique
numerical ids mimicking a dictionary index. Note that according to the approach
chosen in Hexastore the numerical ids came from two different sets of numbers:
one for predicates as well as a second one for subjects and objects (since nodes
can be both subjects and objects).
To further ensure that the data would be loaded uniformly in the same way and
equalize possible differences between data-loaders we first built an in-memory
index from the data source files and then built the different on-disk indices in
exactly the same order. The exception was the MySQL loads, which had to rely
on SQL INSERT statements instead of calling a direct index API function.

4.1 Creation Time

To compare the index creation time under practical conditions using the LUBM
data set we measured the time from the first API-call until the data was entirely
written to disk. The results are presented in Figures 3 and 4. Surprisingly, as
depicted in Figure 3 the vector storage takes only marginally longer than the
simple (unindexed) MySQL insert batch process and already outperforms the
indexed MySQL table. As Figure 4 clearly indicates, both Berkeley DB B-tree
implementations take a very long time to create the on-disk index and are clearly
outperformed by the vector storage: to write a 50 million triples index, vector
storage requires about 50 minutes, whereas OFE requires 11.5 hours, and AIO
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Fig. 4. Comparison of index creation time
of vector storage and OFE/AIO

15 hours. These numbers show clearly that the vector storage index is built much
faster than any of the B-tree based indices.

4.2 Required Disk Space

The required disk space was determined by looking at the sum of the file sizes
of the respective stores containing a particular amount of triples. The results for
that are shown in Figures 5 and 6. We can see in Figure 5 that the ordinary
unindexed MySQL triples table requires the least amount of space, which is
no surprise. In fact it requires constantly approximately 4.3 times less space
than our vector storage approach. The B-tree-indexed MySQL version requires
about 33% less space than the vector storage. These findings weaken the original
criticism of Hexastore that its six indices use too much space. Indeed we argued
in in [17] that Hexastore would use at most 5 times the space than a single index
variant under worst-case conditions. We see here that a relational triple store
with index on each column (which is necessary given the types of queries typically
used in typed graph stores) uses only 33% less space. As shown in Figure 6 both
Hexastore-customized Berkeley DB approaches clearly require more disk space
than the vector storage. The OFE approach requires most storage, i.e. 2.3 times
as much as vector storage. The AIO approach requires less but still twice as
much space as the vector storage. A final observation is that for the LUBM data
the vector storage requires about 100 MB per million triples. This linear growth
is probably observed due to the uniformity of the interconnections of the data
generated by the LUBM generator, which adds new universities when additional
numbers of triples are required.

4.3 Retrieval Time

The most important question was how the different systems would compare in
terms of retrieval time. To ensure that we measure the time spent by querying
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the index and not any performed pre- or post-processing operations, we mea-
sured retrieval time from the moment all strings in the queries were converted
to ids until the final numerical results were retrieved. We also did not take into
account the final materialization step because we wanted to compare the imme-
diate behaviors of the different Hexastore implementations without being biased
by an additional lookup index. Thus the total time includes finding the key po-
sition(s) and fetching the desired data from disk. To avoid measuring the quality
of query optimization we restricted ourselves to single triple patterns. Note that
we refrained from including retrieval times for MySQL in this experiment, since
they were significantly worse than those of the other approaches. Specifically, we
evaluated the following requests, each as cold and warm run (i.e., uncached and
cached):

1. Retrieve all predicates for a given subject: < s, ?p, · >
2. Retrieve all objects for a given subject and predicate: < s, p, ?o >
3. Retrieve all subjects for a given predicate: <?s, p, · >

The ids chosen for the given subject or predicate were determined by a random
generator.

The results of the first request are shown in Figures 7 (cold run) and 8
(warm run). This request is highly selective and does not fetch much data. For
the vector storage approach it chooses the SPO index and fetches the subject
information from the first file and the set of associated predicates. There is no
need to fetch any information from the third file. Both B-tree approaches have
to perform key searches and fetch a small corresponding data chunk (in our
particular experiment run the given subject had three associated predicates).
We can see that the vector storage approach allows data retrieval in this case
for a cold run 2–3 times faster than the B-tree approaches and for a warm run
about 8 times faster. Given its structure the vector storage can probably answer
this query with only two page reads, which are then cached in the warm-run.
The B-trees have to perform more page-reads as they had to ”navigate” down
the tree. Interestingly, this navigation takes longer for the OFE, which has six
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smaller indices, in the cold-run case but exactly the same time in the warm-run
case.
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Fig. 8. Comparison of retrieval time for
vector storage and AIO/OFE, all predi-
cates for a given subject < s, ?p, · > (warm
run)

The second request fetches all objects for a given subject and predicate. The
vector storage needs to touch all three files to collect the required data, including
the predicate position determination in the second file within the known range
(compare Section 3.2). Both B-tree approaches work similarly to the first request
except for searching for a different key. This request is again highly selective, i.e.
in our experiment we had five objects connected to the given subject over the
given predicate.
The results are presented in Figures 9 and 10. Again we can see that the B-trees
are outperformed by vector storage by a factor of 1.5 – 3 for a cold run and 8 for
warm runs respectively. All three approaches have in common that retrieval times
remain constant with increasing number of stored triples for highly selective data
retrieval. Comparing the results of this query to the last one it is interesting to
observe that the cold-run case of this higher specified query is actually evaluated
faster than the one that ”only” resolves one level. In the warm-run case any
advantage is lost due to caching.

The last request retrieving all subjects for a given predicate is analogous to
the first one, but has a low selectivity and requires a lot of data to be fetched from
disk. In this concrete case, the number of subjects associated with the particular
predicate were 376, 924 in the 5 million triples case, 1, 888, 258 in the 25 million
triples case, and 3, 776, 769 in the 50 million triples case. It becomes therefore
obvious that in this case page size for a single retrieval is clearly exceeded.
Figures 11 and 12 show the corresponding results, where each of the approaches
has to retrieve a significant amount of more result triples as the size of the data
set increases. Correspondingly, the time needed for retrieval also increases. The
large number of retrieved result keys necessitates an increasing number of serial
page reads in the second-level index file for the vector storage. Due to the big
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Fig. 9. Comparison of retrieval time for
vector storage and AIO/OFE, all ob-
jects for a given subject and predicate
< s, p, ?o > (cold run)
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Fig. 10. Comparison of retrieval time for
vector storage and AIO/OFE, all ob-
jects for a given subject and predicate
< s, p, ?o > (warm run)

data amount to be read, the B-tree needs to read more pages and, in case of
overflows, determine their positions respectively beforehand. The vector storage
outperforms both B-trees by a factor of 1.5 as it can leverage the sequential
structure of the second-level index, which is cheaper than traversing overflow
pages.
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Fig. 11. Comparison of retrieval time for
vector storage and AIO/OFE, all subjects
for a given predicate <?s, p, · > (cold run)
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Fig. 12. Comparison of retrieval time for
vector storage and AIO/OFE, all subjects
for a given predicate <?s, p, · > (warm
run)

4.4 Results Summary

The presented results clearly show the advantages of our vector storage scheme.
We have shown empirically that it provides significantly lower data retrieval
times compared to B-trees. The differences are “only” in the tens or hundreds
of milliseconds. However, real world applications are likely to store even more
triples and to combine a series of such single graph pattern to a query. This
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would require a series of lookups such as the ones we discussed here and further
widen the gap.

Most computer science algorithms employ some type of time/space tradeoff.
In this case, we do not: besides being faster, the novel vector storage approach
also only requires half of the space of B-trees. Creation of the on-disk vector
storage is fast. Indeed, it is several orders of magnitude faster than creating the
corresponding B-trees and almost on par with creating a simple triple table in
MySQL without indices.

5 Limitations and Future Work

The goal of our work was twofold. First, we tried to re-open the discussion on the
general applicability of trees as the “one-size-fits-all” index and second to present
our vector storage format as an efficient on-disk format for semantic web data
storage. Even though the experimental evaluation shows that the vector storage
exhibits better performance characteristics our findings have some limitations.

First and foremost, our findings are limited by the introductory permanence
assumption. If the data stored in a Hexastore would entail many updates, then
the overall performance balance might not be so clearly in favor of the vector
storage. Again, our basic assumption, supported by many usages of RDF stores
in the semantic web, is that such updates are rare and that reloading the whole
store in those rare occasions would be faster than using a slower index.

Second, our approach is limited to storing numerical ids requiring a dictio-
nary index for URI-based ids and literals. This approach requires that literal-
based query processing elements would be handled by the dictionary index, for
example for SPARQL1 FILTER expressions. To address this limitation we are
currently investigating an extension of the dictionary index to efficiently handle
such elements. Its discussion was, however, beyond the scope of this paper.

Third, as illustrated in the evaluation of the <?s, p, · > query in the last
section, all approaches suffer when they need to retrieve very large amounts of
data from the second-level index. This is oftentimes the case if the first-level
index is not very selective such as when the number of predicates |P | is small
compared to the number of triples |T | (18 versus 50 millions in the example
query). If such a triple pattern would be queried in the context of a query
containing many patterns then the query optimizer would call it at a later stage
due to its low selectivity. To speed things up in other cases (or for very loosely
bounded queries with lots of results) one could consider to forgoing some of the
vector storage compactness for highly unselective first-level indices and introduce
the zero-chunks at the second-level. We would foresee that such an approach
would only seldomly be chosen: mostly in the PSO and POS second-level indices
when |P | << |T |. We hope to investigate this further in future work.

Fourth, the LUBM data set is obviously only one possible choice and has
its limitations. It is a synthetic data set and has the limitations associated with

1 http://www.w3.org/TR/rdf-sparql-query/
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such data. Nonetheless, it is realistic in that it has a small number of relationship
types but many entries/triples – a typical observation in real-world data. Also,
it is a heavily used data set, which makes our results comparable to a series of
other studies. We hope to extend our evaluation to other large data sets in the
future. Given our careful theoretical evaluation we are, however, confident that
the new experiments will reflect the results presented here.

Last but not least, our approach was conceived in the context of RDF data
and the evaluation only employs such data. As a consequence our findings should
only be generalized beyond graph-basd data with caution. In particular, the
vector storage index we proposed was geared towards serving as a back-end to
Hexastore and might not be quite as useful in other setting. Nonetheless, we
believe that scrutinizing the basic assumption of the ubiquitous applicability of
B-trees is a fruitful takeaway in itself and should be considered in all areas of
database research.

6 Conclusions

In this paper we set out to question the universal superiority of B-tree-based in-
dex structures and presented a simple vector-based index structure that outper-
forms the former in typical graph-based RDF-stye data. Specifically, we departed
from three assumptions about RDF data: its structurelessness, its permanence,
and its mostly path-style queries. Based on these assumptions we proposed to
exploit the structurelessness in favor of a novel storage format based on storing
the data in indices rather than in their raw format. Exploiting the difference
in permanence (compared to traditional transaction-focused RDBMS) we opti-
mized the indices for loads and reads. We showed empirically that the proposed
vector storage index for Hexastore outperforms state-of-the-art B-tree imple-
mentations both in terms of load time (by over one order of magnitude) and
retrieval time (up to eight times faster). We also showed, that the proposed
structure had a load time comparable to an unindexed MySQL < s, p, o > table
and even slightly outperformed the load into a similar table providing an index
over all three columns (which would be needed to answer any realistic queries).
Consequently, as the vector-storage-backed Hexastore so clearly outperformed
the other solutions, we can confirm that under certain conditions following con-
ventional wisdom can be considered harmful.

As such the presented paper and its vector storage index can be seen as a
first step in developing new on-disk storage structures that are better suited for
Semantic Web data. The goal of this endeavor is to gather the building blocks
for truly scalable fast stores for typed graph (and thus Semantic Web) data.
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