
Preliminary Results of Logical Ontology Pattern
Detection Using SPARQL and Lexical Heuristics

Ondřej Šváb-Zamazal1,2, François Scharffe2, and Vojtěch Svátek1

1University of Economics, Prague, {ondrej.zamazal,svatek}@vse.cz
2 INRIA & LIG, Montbonnot, France, {francois.scharffe}@inria.fr

Abstract. Ontology design patterns were proposed in order to assist
the ontology engineering task, providing models of specific construction
representing a particular form of knowledge. Various kinds of patterns
have since been introduced and classes of patterns identified. Detecting
these patterns in existing ontologies is needed in various scenarios, for
example the detection of the the two parts of an alignment pattern in
an ontology matching scenario, or the detection of an anti-pattern in an
optimization scenario.
In this paper we present a novel method for the detection of logical
patterns in ontologies. This method is based on both SPARQL, as the
underlying language for retrieving patterns, and a lexical heuristic con-
straining the query. It extends our previous works on ontology patterns
modeling and detection. We describe an algorithm computing a token-
based similarity measure used as the lexical heuristic. We conduct an
experiment on a large number of Web ontologies, obtaining interesting
measures on the usage frequency of three selected patterns.

1 Introduction

Ontology Patterns turn out to be an important instrument in many diverse
applications on the Semantic Web. This is reflected by many different Ontology
Design Pattern types such as Logical Patterns, Content Patterns, Refactoring
Patterns, Transformation Patterns or Alignment Patterns1. Many applications
of ontology patterns need to detect patterns at first. In this paper we present
preliminary experiments with logical ontology pattern detection using SPARQL
and additional lexical heuristics. This work extends the work presented in [7, 8]
in terms of detection experiments over real ontologies. Our particular motivation
for ontology pattern detection is ontology transformation where detection is the
first step. In [8] we argue that ontology transformation is useful for many different
Semantic Web use-cases such as ontology matching and ontology re-engineering.
The remainder of this paper is organized as follows: in the next section we
describe three ontology patterns and the way to detect them. Then in Section 3
we present preliminary results of a large scale detection experiment along with
illustrative examples of these ontology patterns. We wrap-up the paper with
conclusions and future work.
1 http://ontologydesignpatterns.org/wiki/OPTypes

139

2 Patterns and their Detection

All of the logical ontology patterns introduced in this section have been pre-
sented before [8]. We introduce here preliminary results of their detection over
a collection of real ontologies. The detection of these patterns has two aspects:
structural and naming ones. Our method first detect the structural aspect us-
ing the SPARQL language2. We currently use the SPARQL query engine from
the Jena framework3. SPARQL queries corresponding to each detected pattern
are detailed in sections below. Then, the method applies the lexical heuristic
computed by Algorithm 1.

Algorithm 1 calculateAverageTokenBasedSimilarityMeasure

MainEntity ⇐ lemmatized tokens of main entity
Entities ⇐ lemmatized tokens of entities
c ⇐ 0
i ⇐ 0
for all u ∈ Entities do

if |u ∩ MainEntity| �= ∅ then
i ⇐ i + 1

end if
end for
c ⇐ i/|Entities|
return c

Algorihtm 1 computes an average token-based similarity measure c. The par-
ticular instantiation of MainEntity and Entities depends on the ontology pat-
tern, see below. This algorithm works on names of entities (a fragment of the
entity URI) which are tokenised (See [6]) and lemmatized.4 Lemmatization can
potentially increase the recall of the detection process. The lexical heuristics
constraint is fulfilled when c exceeds a certain threshold which is dependent on
particular ontology pattern. The motivation of this computation is based on an
assumption that entities involved in patterns share tokens. More entities share
the same token, the higher probability of occurrence of a pattern. We detail be-
low three patterns that were detected in the experiment described in Section 3.

2.1 Attribute Value Restriction

The AVR pattern has been originally introduced in [4] as a constituent part
of an alignment pattern, a pattern of correspondence between entities in two
ontologies. Basically, it is a class the instances of which are restricted with some

2 http://www.w3.org/TR/rdf-sparql-query/
3 http://jena.sourceforge.net/
4 We use the Stanford POS tagger http://nlp.stanford.edu/software/tagger.

shtml.

140

attribute value. The SPARQL query for detection of this ontology pattern is the
following:

SELECT ?c1 ?c2 ?c3
WHERE {
?c1 rdfs:subClassOf _:b.
_:b owl:onProperty ?c2.
_:b owl:hasValue ?c3.
?c2 rdf:type owl:ObjectProperty.
FILTER (!isBlank(?c1)) }

In this query we express a value restriction applied on a named class. Fur-
thermore restricting properties must be of the type ’ObjectProperty’ in order to
have individuals (eg. ’Sweet’) as values and not data types (eg. String). Currently
we do not consider the naming aspect for this pattern.

2.2 Specified Values

We first considered the SV pattern in [7], but it had been originally presented in
a document from the SWBPD group5. This ontology pattern deals with ’value
partitions’ representing specified collection of values expressing ’qualities’, ’at-
tributes’, or ’features’. An example is given in the next section 3.

There are mainly two ways for capturing this pattern which are reflected by
two different SPARQL queries. Either individuals where qualities are instances
can be used for the detection:

SELECT distinct ?p ?a1 ?a2
WHERE {
?a1 rdf:type ?p.
?a2 rdf:type ?p.
?a1 owl:differentFrom ?a2 }

Or subclasses where qualities are classes partitioning a ’feature’ can be used:

SELECT distinct ?p ?c1 ?c2
WHERE {
?c1 rdfs:subClassOf ?p.
?c2 rdfs:subClassOf ?p.
?c1 owl:disjointWith ?c2
FILTER (
!isBlank(?c1) && !isBlank(?c2) && !isBlank(?p))}

We are interested in mutually disjoint named classes (siblings) and we use
non-transitive semantics (ie. direct) of ’subClassOf’ relation here. Otherwise we
would get ’specified value’ as many times as there are different superclasses for
those siblings. Regarding the initialisation of variables from the Algorithm 1,
the MainEntity is either a ?p instance (for the first query) or class (for the
second query). Entities are all other entities from the SELECT construct. The
experimental setting for the threshold is 0.5.

5 http://www.w3.org/TR/swbp-specified-values/

141

2.3 Reified N-ary Relations

We have already considered the N-ary pattern in [7]. It has also been an im-
portant topic of the SWBPD group [2], because there is no direct way how to
express N-ary relations in OWL6. Basically, a N-ary relation is a relation con-
necting an individual to many individuals or values. For this pattern we adhere
to a solution introduced in [2]: introducing a new class for a relation which is
therefore reified. For examples in the next section 3 we will use the following
syntax (property(domain,range)):

relationX(X,Y); relationY 1(Y,A); relationY 2(Y,B)

� �

�

�

�

��	
����
��	

��
�
��

��	
�����
��	
��������

Fig. 1. N-ary relation

The structural aspect of this pattern is captured
using the following SPARQL query:
SELECT ?relationX ?Y ?relationY1 ?relationY2 ?A ?B
WHERE {
?relationX rdfs:domain ?X.
?relationX rdfs:range ?Y.
?relationY1 rdfs:domain ?Y.
?relationY1 rdfs:range ?A.
?relationY2 rdfs:domain ?Y.
?relationY2 rdfs:range ?B
FILTER (?relationY1!=?relationY2)}

The intended structure of this reified N-ary relation pattern is depicted in
the Figure on the right. In order to increase the precision of the detection we also
apply lexical heuristics introduced above in Algorithm 1: variable MainEntity
is initialised with the value ?relationX. Entities are all other entities from the
SELECT construct. The experimental setting for the threshold is 0.4.

3 Experiment

In order to acquire a high number of ontologies, we applied the Watson tool7 via
its API. We searched ontologies imposing conjuction of the following constraints:
OWL as the representation language, at least 10 classes, and at least 5 prop-
erties. Alltogether we collected 490 ontologies. However, many ontologies have
not been accessible at the time of querying or there were some parser problems.
Futhermore we only include ontologies having less than 300 entities. All in all
our collection has 273 ontologies.

Table 1 presents overall numbers of ontologies where certain amount of on-
tology patterns were detected.

We can see that patterns were only detected in a small portion of ontologies
from the collection. In four ontologies, the AVR pattern was detected more than
10 times. It reflects the fact that some designers tend to extensively use this

6 It also holds for OWL 2. The notion of N-ary datatype was not introduced there,
except for syntactic constructs allowing further extensions, see http://www.w3.org/

TR/2009/WD-owl2-new-features-20090611/#F11:_N-ary_Datatypes
7 http://watson.kmi.open.ac.uk/WS_and_API.html

142

≥ 10× (9 − 4)× 3× 2× 1× all

AVR pattern 4× – 2× 1× 1× 8×
SV pattern – 4× – 2× 9× 15×
N-ary pattern – 5× 4× 16× 25× 50×

Table 1. Frequency table of ontologies wrt. number of ontology patterns detected.

pattern. Other two ontology patterns were not so frequent in one ontology (the
SV pattern was detected maximally 8 times and the N-ary pattern was detected
maximally six times). On the other hand the most frequent pattern regarding a
number of ontologies was the N-ary pattern. This goes against an intution that
this pattern is quite rare. It can be explained with a low precision detection of
this pattern, see below.

In order to obtain raw preliminary precision estimation for the ontology pat-
tern detection we analysed one randomly chosen detected pattern instance from
10 ontologies (in the case of the AVR pattern from 8 ontologies). Although
we tried to apply ontology transformation perspective for manual evaluation, we
could not fully avoid coarse-grained and subjective evaluation due to soft bound-
aries between ontology patterns and sometimes unexpected conceptualisations
in some Web ontologies.

The overall precision for the AVR pattern is 0.6, for the SV pattern 0.7, and
for the N-ary pattern 0.3. For better insight we will look at two examples (one
positive and one negative) for each of these ontology patterns.

AVR pattern This ontology pattern was found many times in a wine on-
tology8 with high precision. One positive example is the following:

� hasColor.{White} � Chardonnay

Chardonnay wine is restricted on these instances having value ’White’ for the
property hasColor. On the other hand, one negative example is the following9:

� 2.{coordinate 0} � North

In this ontology each point of the compass (eg. North) is described using
three different relations (2 is one of them) having coordinates. This cannot be
interpreted as an attribute value restriction pattern.

SV pattern The following10 is one example which we evaluated as positive
(a shared token is ’Molecule’, c = 1.0):

Molecule � AnorganicMolecule; Molecule � OrganicMolecule

This can be interpreted as a collection of different kinds of molecules which is a
complete partitioning. Furthermore disjointness is ensured by a query. On the other
hand in another ontology11 a negative example was detected:

8 http://www.w3.org/TR/2003/CR-owl-guide-20030818/wine
9 http://sweet.jpl.nasa.gov/ontology/space.owl

10 http://www.meteck.org/PilotPollution1.owl
11 http://www.cip.ifi.lmu.de/~oezden/MastersThesisWeb/STCONCEPTS.owl

143

T imePeriods � SocioculturalT imePeriods; T imePeriods � CalendarDatePeriods

In this case it can hardly be a complete partitioning, however this is always de-
pendent on domain of discourse. It points out that ontology pattern detection should
generally be a semi-automatic process.

N-ary pattern This pattern has the lowest precision. Due to the usage of a relaxed
structural condition there are a lot of negative cases. Even if the lexical heuristics
constraint improves this low precision, there is still ample space for improvement.

In the PML ontology12 the following positive example was detected:

hasPrettyNameMapping(InferenceStep, PrettyNameMapping)
hasPrettyName(PrettyNameMapping, string)

hasReplacee(PrettyNameMapping, string)

This is the example of N-ary relation where the reified property ’PrettyNameMap-
ping’ (’?Y’) captures additional attributes (’hasReplacee’) describing the relation (’hasPret-
tyNameMapping’). c = 0.5 where shared tokens were ’Pretty’ resp. ’has’.

On the other hand in the earthrealm13 a negative example was detected:

hasUpperBoundary(EarthRealm, LayerBoundary)
isUpperBoundaryOf(LayerBoundary, EarthRealm)

isLowerBoundaryOf(LayerBoundary, EarthRealm)

In this case ’LayerBoundary’ was detected as a reified N-ary relation (’?relationX’)
connecting different aspects (’?relationY1’, ’?A’ and ’?relationY2’,’?B’) of the same
relation; c = 0.75 where a shared token was ’Boundary’. But if we look at the classes
bound with ’?X’, ’?A’ and ’?B’, we can see that there is an implicit ’inverseOf’ relation
between ’hasUpperBoundary’ and ’isUpperBoundaryOf’ resp. with ’isLowerBound-
aryOf’. This ’inverseOf’ relation cannot be directly found in this ontology. However
we could assume this and therefore we could increase the precision considering this
specific case in the future work.

Another recurrent negative example is the following14:

concludedby(perdurant, perdurant)
startedby(perdurant, perdurant)

concludedby(perdurant, perdurant)

This is a chain of properties connected with the same class in domain/range; c =
0.66 where a shared token is ’by’. Thus, at the first sight a detection could be improved
with considering this negative example (’?X’=’?Y’=’?A’=’?B’). On the other hand
we can also find a counter-example considering true semantics of domain and range in
OWL, ie. restrictions are superclasses of possible individuals. As usual, applying this
condition we could filter out some current negative examples (getting higher precision),
on the other side we could miss other positive examples (getting lower recall). This
choice is application-dependant.

4 Related Work

In [3] the authors generally consider using SPARQL expressions for extracting Content
Ontology Design Patterns from an existing reference ontology. It is followed by a manual

12 http://inferenceweb.stanford.edu/2004/07/iw.owl
13 http://sweet.jpl.nasa.gov/sweet/earthrealm.owl
14 http://neuroscientific.net/bio-zen.owl

144

selection of particular useful axioms towards creating new Content Ontology Design
Pattern. The Ontology Pre-Processing Language (OPPL) is specialized on pattern-
based manipulation with ontologies. It can be used for ontology pattern detection,
however there is no such a lexical support which our detection needs. In [1] the authors
envision employing OPPL for detecting recurring patterns in ontologies and materialize
them as new patterns. This is also one of our long-term effort.

By now, we use the SPARQL language for detecting structural aspect of ontology
patterns. But SPARQL is a query language for RDF. Considering ontology patterns
as DL-like conceptualisations, it leads to a necessity of expressing DL-like concepts in
RDF representations which is rarely 1:1. This can be overcome by using some OWL-DL
aware query language, eg. SPARQL-DL [5]. However for now this language does not
support some specific DL constructs e.g. restriction and it is not fully implemented
yet.

5 Conclusions and Future Work

In this paper we presented preliminary results of logical ontology pattern detection for
which we use SPARQL and lexical heuristics. We conducted an experiment on a large
number of Web ontologies. We manually evaluated 28 ontology pattern instances so
as to roughly estimate precision. The performance of this detection must be further
improved. Besides future work depicted in Section 3, we have to further work on more
sophisticated lexical heuristics constraint. We could also employ head noun detection
[6]. Further, we should also try to perform our queries using SPARQL-DL as OWL-DL
aware language. We work on a specific FILTER extension (in connection with head
noun detection) for the SPARQL language which could include the naming aspect
already at the level of the query language.

Acknowledgement The work has been partially supported by the IGA VSE grant no.
20/08 “Evaluation and matching ontologies via patterns”.

References

1. A. R. Luigi Iannone and R. Stevens. Embedding Knowledge Patterns into OWL.
In Proceedings of the 6th European Semantic Web Conference, 2009.

2. N. Noy and A. Rector. Defining n-ary relations on the semantic web, Apr. 2006.

3. V. Presutti and A. Gangemi. Content ontology design patterns as practical building
blocks for web ontologies. In Proceedings of ER2008. Barcelona, Spain, 2008.

4. F. Scharffe. Correspondence Patterns Representation. PhD thesis, University of
Innsbruck, 2009.

5. E. Sirin and B. Parsia. SPARQL-DL: SPARQL Query for OWL-DL. In
OWLED2007, 2007.

6. O. Šváb Zamazal and V. Svátek. Analysing Ontological Structures through Name
Pattern Tracking. In Proceedings of the 16th International Conference on Knowledge
Engineering and Knowledge Management, 2008.

7. O. Šváb-Zamazal and V. Svátek. Towards Ontology Matching via Pattern-Based
Detection of Semantic Structures in OWL Ontologies. In Proceedings of the Znalosti
Czecho-Slovak Knowledge Technology conference, 2009.

145

8. O. Šváb-Zamazal, V. Svátek, and F. Scharffe. Pattern-based Ontology Transfor-
mation Service. In Proceedings of the 1st International Conference on Knowledge
Engineering and Ontology Development, 2009.

146

