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1 Introduction

Today, distributed systems are implemented using imperative programming lan-
guages, such as Java or C#, and executed by multi-tiered application servers [2].
To facilitate application development, rule-based languages have been proposed
to simplify various aspects of these complex processing systems. This includes ac-
tive rules for database systems [13], dynamically controlling application aspects
using business rules [10, 14], or implementing basic message filtering and forward-
ing tasks in message broker components [11]. These languages help to simplify
the implementation of individual aspects of these systems using declarative, rule-
based facilities. However, due to the various different languages, heterogeneous
programming models and runtime systems involved, the overall complexity of
application development remains high. This reduces the productivity of pro-
grammers and may also have a significant impact on the runtime performance
as applications are difficult to implement, maintain and optimize [15].

The Demaq project [5] aims at simplifying the development of complex
messaging-based applications by using a novel programming model. Our focus
is on describing the complete business logic of a distributed application by using
exclusively a rule-based programming language.

In this paper, our goal is to demonstrate the feasibility of using a declara-
tive, closed rule language for the implementation of complex, distributed appli-
cations. For this purpose, we analyze whether the typical processing patterns
characteristic for Enterprise Application Integration (EAI) can be implemented
with our proposed approach. Choosing EAT as an example application domain is
particularly appealing, as EAI applications involve complex interactions among
several heterogeneous and distributed systems that are difficult to implement.
These processing patterns characteristic for this kind of applications have been
identified and systematically discussed in the literature [12].

The remainder of this paper is organized as follows. In Section 2 we intro-
duce our programming model that allows to implement the business logic of
distributed applications based on message queues and declarative application
rules. Section 3 reviews the typical processing patterns in EAI applications and
discusses whether and how these patterns can be implemented using our rule
language. We conclude the paper in Section 4 and give an outlook to our future
work.



2 Rule-Based Programming Model

Our approach is based on a simple, rule-based programming model that allows to
implement the business logic of a node participating in a distributed application.
It consists of four major components.

1. Messages are used to exchange data with remote communication partners
and for representing node-internal, intermediate state.

2. Message properties allow to annotate messages with additional metadata.

3. Message queues provide asynchronous communication facilities and allow for
transactional, reliable and persistent message storage.

4. Declarative rules operate on these queues and the messages stored within
them and are used to implement the application logic. Every rule specifies
how to react to an arriving message by creating resulting messages.

Unfortunately, due to space constraints, we cannot discuss all details of our
programming model. Instead, we give a brief overview of the key components
and concepts, and refer the interested reader to [5] for an in-depth discussion,
including design and performance aspects of the Demaq rule execution engine.

2.1 Message Queues

An application in our model is based on an infrastructure of message queues.
For this purpose, it incorporates two different types of message queues. Gateway
queues provide incoming and outgoing interfaces for message exchange with
remote systems. Basic queues are used for local, persistent message storage and
to pass intermediate information between application rules.

All messages in our model exclusively use XML as the underlying data for-
mat. This refers to the messages exchanged with external systems, as well as to
local messages sent between the queues of an application. Having XML as an
extensible and expressive message format facilitates to interact with all kinds of
remote services, while a uniform data format for all data avoids performance-
consuming representation changes.

Ezample 1. This example demonstrates how to create the infrastructure of mes-
sage queues that underlie an application. First, a incoming gateway queue
incomingMessages is created in line 1. This queue can be used to exchange mes-
sages with remote systems using HTTP as underlying transport. As HTTP is a
synchronous transport protocol, the gateway queue is associated with a corre-
sponding response queue. All messages inserted into this response queue will
be sent as synchronous replies to incoming requests.

Additionally, two local queues are created in lines 3 and 4. These queues are
used for local message forwarding and storage. The transient mode indicates
that no persistence guarantees need to be given, while a persistent queue mode
requires messages to be recovered in case of application or system errors.

create queue incomingMessages kind incoming interface "http” port ”2342”
response outgoingMessages mode persistent ;

create queue customerCare kind basic mode transient;

create queue customerOrders kind basic mode persistent ;
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2.2 Message Properties

Every message in our system is an XML fragment that was either received from
an external source or generated by a local application rule. Apart from their XML
payload, messages can be associated with additional metadata annotations that
are kept separate from the XML payload. These properties are key/value pairs,
with unique names as their key and a typed, atomic value. Apart from setting
properties in application rules, several properties are provided by the runtime
system, such as creation timestamps or transport protocol information.

2.3 Declarative Application Rules

In our programming model, the complete business logic of a distributed ap-
plication is implemented using declarative rules operating on message queues.
Conceptually, every application rule is an Event-Condition-Action (ECA) rule
[13] that reacts to messages by means of creating new messages.

Event Our rules react to a single kind of event, which is the arrival of a mes-
sage at a queue of the application. These messages may either be received from
external communication endpoints or result from the execution of another, local
application rule. To keep our rule language simple and comprehensible to appli-
cation developers, the insertion of a message in a queue of the system is the only
event type that is supported. Other event sources, such as timeouts or various
kinds of error notifications [16], are translated to corresponding messages that
can be handled by application rules.

Condition Instead of developing a novel expression language from scratch, our
approach builds on the existing declarative XML query language XQuery [3] and
the XQuery Update Facility [8], which enables XQuery expressions to perform
side-effects. This approach is inspired by other rule languages (e.g. [1,6,7]) that
have successfully been built on the foundation of XML query languages. Conse-
quentially, in our model all rule conditions and other business logic are described
using XQuery expressions that are evaluated with the triggering message as the
context item [3].

Action We restrict the set of resulting actions that a rule may produce to a single
kind of action, which is to enqueue a message into a queue of the application. This
restriction keeps our rule language closed, i.e. all actions produced by application
rules can be directly reacted on by other rules. At the same time, it still allows
application rules to implement the message flow within the local queues of an
application and to external systems using gateway queues.

To express the messaging actions resulting from rule execution, we have ex-
tended the XQuery Update Facility with an additional enqueue message up-
dating expression.

Ezxample 2. Below, we show an example of a simple application rule that per-
forms content-based message forwarding. The rule definition expression in line



1 is used to create a new rule (named exampleRule) which handles messages
enqueued into the incomingMessages queue. In the rule body (lines 2 to 12),
XQuery expressions are used to analyze the structure of the incoming mes-
sage using path expressions (lines 5 and 8) and to forward the message to an
appropriate queue for further processing using the enqueue message updating
expression. When a message with an unexpected structure is encountered, an
error notification is sent back to the sender (line 12).

create rule exampleRule for incomingMessages
let S$request := .
return
(: dispatch message to appropriate destination — message dispatcher :)
if ($request//complaint)
then
enqueue message $request into customerCare
else if($request//order)
then
10 enqueue message $request into customerOrders
11 else
12 enqueue message <error>...</error> into outgoingMessages;
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2.4 Persistent State Management

Our programming model achieves data persistence by storing the complete mes-
sage history. All messages received from and sent to external systems are stored
persistently in the queues of an application. Thus, queues are not only used as
staging areas for incoming and outgoing messages, but also serve as durable stor-
age containers. In our model, there are no auxiliary runtime contexts or other
constructs for maintaining state. Instead, message queues are the only way to
persistently store state information in the form of messages.

Application rules may recover state information by querying the message
history. For complex, state-dependent applications, queries to the message his-
tory are a frequent operation. To simplify this reoccurring task of history access,
our rule language incorporates the concept of slicings, which define application-
specific views to the message history. Slicings allow developers to declaratively
specify which parts of the message history are relevant for application rules, and
to access them by using a simple function call.

FEzxample 3. In this example, we illustrate how slicings can be used to organize
and access the message history. The slicing definition expression (lines 1 and 2)
defines a new slicing with name customerOrdersByID for the messages in the
customerOrders queue. For each distinct customerID, a separate slice will be
created. Each slice contains all messages that share the same key, which is the
customerID in this example. The require expression is used to indicate that
only the last ten messages for each slice need to be preserved. Older messages
may be safely removed from the message history using the garbage collection
facilities of the rule execution engine [5].

Application rules may access an individual slice using the slice function
call. In the example below, it is used by the rule to access all messages for a
particular customer (line 6). Depending on the number of items a customer has

ordered, the message is either forwarded to the importantCustomers queue or
handled locally.



create slicing property customerOrdersByID
queue customerOrders value //customerID require count(history()) eq 10;

create rule checkCustomerImportance for customerCare
let $customerID := //customerID
let $ordersForCustomer := slice ($customerID, ”customerOrdersByID”)
let S$orderedItems := count($ordersForCustomer//item)
return
if ($orderedItems gt 20)
then enqueue message . into importantCustomers
else ... (: handle locally:) ;
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3 Implementing EAI Patterns

Our rule-based programming model aims at simplifying the development of com-
plex, distributed applications by describing their business logic by means of mes-
sage queues and declarative application rules. To verify the practical feasibility
and benefits of such a programming model, Enterprise Application Integration
(EAI) applications are of particular interest.

The goal of Enterprise Application Integration (EAI) is to integrate several
applications and computer systems, which may be of heterogeneous architectures
and distributed across multiple sites, into a single, combined processing system.
Typically, the involved components are integrated using messaging. In practice,
the task of application integration may become arbitrarily complex, depending
on the kinds, numbers and peculiarities of the systems involved.

The various characteristic messaging patterns that evolve in EAI architec-
tures have been identified in the reference work of Hohpe and Woolf [12]. The
resulting library of patterns can be categorized into six distinct classes that refer
to the use of various messaging protocols, encodings and transport endpoints,
message construction, transformation as well as message routing and analysis.

In the following sections, we briefly review these patterns and discuss whether
and how they can be implemented using our rule language. We use italics (pat-
tern) to refer to the individual patterns [12]. Due to space constraints, we omit a
discussion of the system management patterns and refer the interested reader to
an extended version of this paper [4], where they are described in detail. In our
rule execution engine, most of these system management patterns are provided
by an integrated, interactive debugger. This saves developers from manually
incorporating system management patterns into their applications.

3.1 Messaging Endpoints

Typically, EAI involves accessing and interacting with a multitude of hetero-
geneous systems. The way in which messages are exchanged heavily depends
on the individual systems involved. Interaction styles include polling consumers
that actively pull messages from remote systems, or event-driven consumers that
are triggered by external event sources.

In our model, these different styles of messaging gateways are implemented
using gateway queues. Incoming gateway queues allow to receive notification



messages from external systems, while outgoing gateways allow to send data to
other systems, and to actively poll them for new data.

Once a message has been received, it is handled by message dispatchers that
forward messages to the appropriate destination, or by selective consumers that
only react to particular types of messages. In our model, these patterns can be re-
alized using corresponding path expressions. In the example below, the consumer
rule implements a selective consumer that only reacts to order messages.

Some patterns do not need to be manually implemented by developers, but
are instead automatically provided by our processing model [5]. It includes strong
transactional guarantees for rule processing (which subsume the transactional
client pattern) and allows multiple concurrent execution threads (competing con-
sumers) for a single message queue.

The durable subscriber pattern, which avoids losing messages while not ac-
tively processing messages for a particular queue can be implemented by using
a persistent queue mode (as in line 3 of the example below).

1| (: gateway queue — messaging gateway:)

2| create queue incomingMessages kind incoming interface ”smtp” port ”25”
3| mode persistent; (: — transactional client:)

4| create rule consumer on incomingMessages

5[ if(//order) (: — selective consumer :)

6| then ...

7| else ();

3.2 Different Message Types and Message Construction

Depending on the involved systems, there are various types of messages that
have to be handled by an EAI application. This includes command messages
that reflect remote procedure calls (RPC), document messages, which are used
for data transfer, or event messages, that inform an application of the occurrence
of a particular event. As our rule language is based on XML as the underlying
message format, these various message styles can be easily created by choosing
an appropriate XML schema. Moreover, messages can be easily annotated with
a format indicator, identifying the XML schema a message conforms to.

Apart from the message payload, messages are associated with additional,
transport-related metadata. This includes return addresses for asynchronous
transports and auxiliary transport protocol information for the request-reply pat-
tern reflecting synchronous protocols that require resulting messages to be sent
over the same connection (e.g. socket) as the initial request. Moreover, correla-
tion identifiers can be used to associate messages with other, related ones (e.g.
all messages belonging to the same transaction). In our programming model,
all these patterns are conveniently handled using (system-provided) message
properties. This includes the return address (line 11 in the example below) and
system-provided correlation identifiers for synchronous transports (line 13).

In our model, advanced message properties such as message expiration, that
requires that a message is only valid as long as a particular condition holds, can
be modeled using declarative message retention facilities. In the example below,
the require expression is used to indicate that only the last message in the
notifications queue should be retained (line 3).



(: only preserve last notification received — message expiration :)
create slicing property lastNotification
queue notifications require count(history()) eq 1;

(: synchronous gateway queue — request reply:)
create queue incomingMessages kind incoming interface "http” port ”80”
response outgoingMessages mode persistent ;
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create rule sendReply for incomingMessages

10| (: retrieving sender address using property — return address :)

11| let $sender := property(”comm:From”) (:not used any further:)

12| (: retrieving system—managed correlation identifier:)

13| let $correlationID := property(”comm: CorrelationID”) (:not used any further:)
14| (: invoking an external service as a reply — command message:)

15| let $result := <rpc:updateQuantity xmlns:rpc="http://www.example.com’>

16 <rpc:Arguments count="2">

17 <rpc:argument name="itemID” type="integer”>{//itemID/text()}</rpc:argument>
18 <rpc:argument name="quantity” type="float”>{//quantity/text()}</rpc:argument>
19 <rpc:Arguments>

20| </rpc:updateQuantity>

21| enqueue message $result into outgoingMessages;

3.3 Message Routing

Message routing patterns describe the various styles of message flow between
the components of an application. The most basic form of message routing is
to sequentially forward a message from one processing step to the next, thus
forming a processing chain. In our rule language, this pipes and filters pattern
corresponds to a message being forwarded from one queue to another, with
individual rules implementing the processing steps as in the example below.

Instead of simply forwarding messages, content-based routers can be used to
send messages to an appropriate processing step based on their payload. The
rule in lines 7-10 of the example below implements this pattern. It forwards all
order messages to the ordersQueue and enqueues all other messages to another
queue for further analysis.

Other basic message routing patterns include message filters, which filter out
unnecessary messages from a message stream, or splitters, which split a message
into individual parts and forward them to separate consumers (line 14ff in the
example below). Aggregators can be used to combine multiple messages to a
single, large one. Line 17 in the example below implements a message aggregator
that combines several messages from the message history into a single message.
Here, the implementation of the aggregator pattern is greatly simplified by the
sequence-oriented data model of XQuery underlying our application rules.

In contrast to the basic message routing patterns discussed above, the process
manager is a general-purpose pattern that represents complex message routing
operations. Process managers are e.g. required when multiple messages should
be created in a particular sequence or when performing other, context-dependent
operations that cannot be expressed with basic patterns. Line 20ff of the example
below shows the implementation of a simple process manager that routes three
messages to destination queues in a particular sequence.

1| (: add timestamp and forward to next processing step — pipes and filters:)
2| create rule addTimeStamp for incomingMessages
3| let $result := <result><timestamp>{fn:current—dateTime()}</timestamp>{.}</result>



return enqueue message $result into nextStep;

(: forward message to appropriate rule — content based router:)
create rule contentBasedRouter for nextStep

if(//orderMessage)

then enqueue message . into ordersQueue

else enqueue message . into anotherQueue ;

4
5
6
7
8
9
10
11
12| create rule simplePM for anotherQueue

13| (: split input message into two parts — splitter :)

14| let $firstMessage := //partl

15| let $secondMessage := //part2

16| (: combine all order messages into a large one — aggregator :)

17| let $thirdMessage := <orders>{slice (//customerID, ”ordersByCustomerID)}</orders>
18| return (

19| (: generating sequence of messages — simple process manager :)

20 enqueue message $firstMessage into someQueue,

21 enqueue message $secondMessage into anotherQueue,

22 enqueue message $thirdMessage into anotherQueue );

3.4 Message Transformation

Message transformation patterns describe how both structure and content of
messages may be modified and adapted by EAI applications. This includes mes-
sage translators that transcode messages from one format to another, for example
by converting a list of comma-separated values into XML format. As XML is
the only data format in our rule language, message translators are limited to
performing schema-to-schema transformations (i.e. translating from one XML
schema to another).

Normalizers are used to unify several different incoming messages to a canoni-
cal format. In our model, they can be easily implemented by defining correspond-
ing message translators and incoming gateway queues, that convert the incoming
messages into the expected schema and enqueue them to the same queue for fur-
ther processing. The purpose of an envelope wrapper is to wrap a message into
a metadata-carrying envelope. In the example below (line 14ff), we implement a
simple envelope wrapper that encloses a message into a SOAP envelope. Content
enrichers are used to imbue a message with additional information that cannot
be found in the input message. In our example, the slice history access function
is used to retrieve the address for a customer from the master data stored in the
queues of the system (line 7). In contrast to the content enricher, the content
filter is used to strip unnecessary content from a message. In the example rule,
this is done by using a path expression that excludes anything but the item
elements from the initial message. By combining the content enricher and filter
patterns with message history access functions, the claim check pattern, which
temporarily removes (e.g. sensitive) message parts, can be easily implemented.

1| create rule prepareMessage for prepareOutgoing

2| let $initialMessage = .

3| (:translate customer info — message translator:)

4| let $message := <result>

5| <custName>{concat(//customer/fName/text (), //customer/IName/text())}</custName>
6| <!—— enrich with master data — content enricher / claim check —>
7|<address>{slice (//customerID/text (), ”customersByID”)/address/*}</address>

8| <! filter out unnecessary information — content filter—>
9| <orderedItems>{$initialMessage //item}</orderedItems>
0| </result>
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11| (:add SOAP envelope — envelope wrapper:)

12| let $env := <soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/”>
13 <soap:Header/>
14 <soap :Body>{$message}</soap : Body>

15| </soap:Envelope>
16| return enqueue message $env into outgoingMessages;

3.5 Messaging Channels

Messaging channel patterns describe various message transports that can be used
to disseminate the messages in an EAT application. In our model, these various
message channels are provided by corresponding gateway queues. This includes
point-to-point messaging, which is implemented by using synchronous or asyn-
chronous gateway queues or publish-subscribe channels which are implemented
by gateway queues and message history access to retrieve the list of subscribers
(as in lines 12-15 of the example below). Similar to the publish-subscribe chan-
nels, a message bus can be implemented with a combination of gateway queues
and history access to identify the systems connected to the message bus.

In our model, special purpose channels such as the dead-letter channel con-
taining messages that could not be sent to remote systems or the invalid mes-
sage channel for messages that could not be handled (e.g. due to an unexpected
schema) are reflected by corresponding queues. Whenever message processing or
validation fails, a corresponding error notification message is sent to these error
queues, allowing developers to react to the error by means of compensating appli-
cation rules. In the example below (line 8), such an error queue is assigned to an
application rule. Thus, all messaging errors that are encountered when processing
this rule will be reflected by error notifications sent to the transportFailures
error queue, where they can be handled by corresponding rules.

Finally, guaranteed message delivery (as required for the guaranteed delivery
channel pattern) that persists messages to guarantee delivery even in case of
system failures, can be provided by requesting a persistent queue mode (as in
line 1 of the example below).

create queue sendToSubscribers kind basic mode persistent ;

(: guaranteed delivery using persistent queue mode:)
create queue outgoingMessages kind outgoing interface ”smtp” port ”25”
mode persistent ;

(:errorqueue — dead—letter channel and invalid message channel:)
create rule pubsub for sendToSubscribers errorqueue transportFailures
let $payload := //payload

10| let $topic := //topic

11| let $subscribers := slice ($topic, ”subscribersByTopic”)

12| (: forward message to all subscribers — pub/sub :)

13| for $address in $subscribers/address/email

14| return enqueue message $payload into outgoingMessages

15 with comm:To value $address (: set SMIP parameters :)

16 with comm: Subject value ”Subscription notification”;
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4 Conclusion

We have discussed a novel programming model that allows to implement the
business logic of complex, distributed applications using message queues and
declarative application rules.



Using the typical, complex application patterns from Enterprise Application
Integration (EAI) as an example domain, we have illustrated the practical feasi-
bility of using exclusively a rule-based language for the development of complex
messaging applications. We have demonstrated how various patterns can be im-
plemented in our rule language. Surprisingly, even complex messaging patterns
that require sophisticated development in today’s EAI solutions [12] could often
be implemented with only a few lines of code.

The focus of this paper was to systematically evaluate our rule-based ap-
proach in the light of typical patterns occurring in the context of EAI applica-
tions. Apart from investigating these patterns in isolation, we have also verified
the applicability of our language to implement complete, distributed applications
from various domains, including several distributed and workflow applications.
These applications and the Demaq rule execution engine are freely available at
[9] under an open-source license.
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