

defined by the semantics of the FMs. As a result, there is no need to define an
ad-hoc semantics or constraint checking techniques. The context elements are
no longer represented as Boolean variables and the user can structure hierar-
chically domain concepts. Besides, it is possible to express constraints between
the elements of the context model, invariants and adaptation in the FM formal-
ism. The uniform representation of the context model and the software system
makes possible to express relations between the two models. The DSML-based
approach and the FM-based approach can complement each other. On the one
hand, the FM-based approach can take advantage of simulation and validation
checking proposed in [5, 4]. On the other hand, the DSML-based approach can
use the infrastructure, tools, techniques, etc. associated to FMs. As part of our
future work, we intend i) to address the validation and simulation directly at the
level of FMs and ii) to leverage the expressiveness of the FM-based approach
(e.g. using attributes). We also plan on achieving a better separation of concerns
thanks to a set of operators allowing to extract a subset of the context model;
we believe that the context that may influence the runtime execution of the
system is most of the time only a part of it. Finally, our long term goal is to con-
nect state-of-the-art adaption engines to our models and provide an end-to-end
software solution.
References

1. Morin, B., Fleurey, F., Bencomo, N., Jézéquel, J., Solberg, A., Dehlen, V., Blair, G.:
An Aspect-Oriented and Model-Driven approach for managing dynamic variability.
In: Model Driven Engineering Languages and Systems conference. (2008)

2. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering:
Foundations, Principles and Techniques. Springer-Verlag (2005)

3. Hallsteinsen, S., Stav, E., Solberg, A., Floch, J.: Using product line techniques to
build adaptive systems. In: Software Product Line Conference. (2006)

4. Fleurey, F., Solberg, A.: A domain specific modeling language supporting specifi-
cation, simulation and execution of dynamic adaptive systems. In: Model Driven
Engineering Languages and Systems conference. (2009)

5. Fleurey, F., Delhen, V., Bencomo, N., Morin, B., Jézéquel, J.M.: Modeling and
validating dynamic adaptation. In: Proceedings of the 3rd International Workshop
on Models@Runtime, at MoDELS’08, Toulouse, France (oct 2008)

6. Kang, K., Kim, S., Lee, J., Kim, K., Shin, E., Huh, M.: Form: A feature-oriented
reuse method with domain-specific reference architectures. Annals of Software
Engineering 5(1) (1998) 143–168

7. Czarnecki, K., Helsen, S., Eisenecker, U.: Staged Configuration through Specializa-
tion and Multilevel Configuration of Feature Models. Software Process: Improve-
ment and Practice 10(2) (2005) 143–169

8. Batory, D.S.: Feature models, grammars, and propositional formulas. In Obbink,
J.H., Pohl, K., eds.: SPLC. Volume 3714 of LNCS., Springer (2005) 7–20

9. Benavides, D., Ruiz-Cortés, A., Trinidad, P.: Automated reasoning on feature
models. LNCS, CAiSE 2005 3520 (2005) 491–503

10. Hartmann, H., Trew, T.: Using feature diagrams with context variability to model
multiple product lines for software supply chains. In: SPLC ’08, IEEE (2008) 12–21

11. Fernandes, P., Werner, C.M.L.: Ubifex: Modeling context-aware software product
lines. In Thiel, S., Pohl, K., eds.: SPLC (2), Limerick, Ireland (2008) 3–8

12. Zhang, J., Cheng, B.H.C.: Specifying adaptation semantics. In: WADS ’05: Pro-
ceedings of the workshop on Architecting dependable systems, ACM (2005) 1–7

13. Floch, J., Hallsteinsen, S., Stav, E., Eliassen, F., Lund, K., Gjorven, E.: Using
architecture models for runtime adaptability. IEEE Softw. 23(2) (2006) 62–70

Statechart Interpretation on Resource
Constrained Platforms: a Performance Analysis

Edzard Höfig1, Peter H. Deussen1, and Hakan Coşkun2 �

1 Fraunhofer Institute for Open Communication Systems, Berlin, Germany
{edzard.hoefig|peter.deussen}@fokus.fraunhofer.de

2 Faculty IV, Department of Design and Testing of Communication-Based Systems,
Technical University of Berlin, Germany coskun@cs.tu-berlin.de

Abstract The statechart formalism allows for the specification of beha-
viour models of complex, reactive systems. It is employed in the embed-
ded systems domain to specify and verify applications at design time.
By enabling the interpretation of formalised behaviour models one earns
the favourable abilities of application behaviour inspection, control, and
substitution at runtime. One of the major arguments against such an
approach concerns poor interpretation performance and high-resource
overhead. We are answering this argument by showing that it is feasible
to implement a statechart interpreter on a resource-limited platform. We
define the utilised statechart formalism and use it as a base for imple-
menting a resource-efficient interpreter on a 8bit microcontroller with 2
kByte RAM. Performance overhead of key aspects of the interpretation
engine is evaluated using suitable behaviour models and by comparison
with compiled code.

Key words: Statechart, Interpretation, Behaviour Model, Performance
Analysis

1 Introduction

Professionals are modelling reactive systems using statecharts for the purpose of
system analysis and quality assurance at system design time. Recently there is an
interest in using such formalised behaviour models to control and describe sys-
tem behaviour at runtime. For runtime evolution of software and communication
protocols such an approach has potential advantages over the direct generation
of system code. Take for example the dynamic re-configuration of embedded
systems without a firmware ”flashing” procedure or shutdown, the possibility to
trace a system state with only minimal performance overhead, or the application
of formal validation methods at runtime to assure that the system is in a valid
state. Although these properties are of interest for researchers and practitioners
� The authors would like to acknowledge the European Commission for funding the

Integrated Project EFIPSANS ”Exposing the Features in IP version Six protocols
that can be exploited/extended for the purposes of designing/building Autonomic
Networks and Services” within the 7th IST Framework Program.

4th Workshop on Models@run.time at MODELS 09 99

in the autonomic communication and networking field, the resource usage of the
interpretation mechanisms is critisised. We often heard the argument that the
performance overhead renders the approach unsuitable for resource-constrained
platforms. Contrary to this, we believe that such an approach is feasible even for
embedded hardware platforms. As we found no hard numbers on interpretation
performance, we decided to conduct a study on the performance of a statechart
interpreter on a resource-constrained platform. Our challenge is two-fold: Firstly,
we created a proof-of-concept implementation of such an interpreter. Secondly,
we quantified the performance, enabling us to give a well-grounded answer to
the performance argument.
The paper is structured as follows. We describe related work in section 2, and
give a formal definition of statecharts in section 3. In section 4 we detail the map-
ping of our definition to a runtime mechanism. Subsequently, section 5 describes
the performance characteristics obtained by measuring the implementation. We
conclude with a discussion of our findings in section 6.

2 Related Work

Statecharts were invented more than 20 years ago by D. Harel [1] and are in wide-
spread use as part of UML2 state diagrams. An example for a statechart-based
behaviour model of a simplified car door and passenger room light is depicted
in Figure 1.

Lights and Door

OnOff

open /
switch_lights_on()

Waiting

open /
clear_timer(1)

close
/ set_timer(1, 5s)

timer1_up /
switch_lights_off()

Open

Closed
Locked

door_closed
! close

Unlocked

lock
[key = true]

unlock
[key = true]

door_open
! open

Figure 1. Example behaviour model “Lights & Door”

Employing statecharts for model checking and code generation is common
practice [2,3] and the efficient interpretation of statecharts has also been re-
searched by J. Ebert from a theoretical point of view [4]. First practical usage of
interpreters for similar formalisms emerged in the last years out of the business
process field [5]. An execution standard for statecharts is specified by the W3C
under the name “State Chart XML”[6] with two implementations3 available.

3 A Java version from the Apache Software Foundation (http://commons.apache.
org/scxml) and a C++ engine from QT Labs (http://qt.gitorious.org/qt-labs/
scxml)

4th Workshop on Models@run.time at MODELS 09 100

In our current work we use statecharts for network and system management
[7] with the goal of equipping network routers with the ability to make autonomic
decisions on an incoming packet stream by interpreting behaviour models [8]. We
also have prior experience with optimisation of Extended Finite State Machines
(EFSM) based automatons for analysing large XML data streams [9] and some of
the optimisations that we are employing were discovered during previous work.

3 Formal Definition of Statecharts

Our formalism follows the definition specified in the annex of the original re-
search paper [1]. We left out the “History Connector” definition, but apart from
that we have a full-fledged statechart, including aggregate states and parallel
components.

We define a higraph as a structure H = �S, E, s0, θ , σ�, where S is a finite set
of symbolic states, E ⊆ S×S is a set of edges, σ : S → 22S

is a substate function,
and s0 ∈ S is a root state. We call each set of states Q ∈ σ(s) a component of
s. Distinguished components Q1, Q2 ∈ σ(s) are called parallel to each other. A
state s ∈ S is called atomic if σ(s) = ∅ does hold, otherwise it is called composed.
Moreover θ : Θ → S assigns a unique start state to each component of H, where
Θ =def

�
s∈S σ(s) is the set of components of H. We assume that θ(Q) ∈ Q for

each Q ∈ Θ, i. e., the initial state of a component is a member of that component.
We stipulate a number of restrictions; to this end, let us define σ

+(s) to be
the smallest set (w. r. t. ⊆) of symbolic states satisfying

�
Q∈σ(s) Q ⊆ σ

+(s) and
s
� ∈ σ

+(s) ⇒
�

Q∈σ(s�) Q ⊆ σ
+(s).

Then we assume that:

1. Q ∈ σ(s) ⇒ Q �= ∅, i. e., substates of s are non-empty sets (note that this
does not imply that σ(s) = ∅, i. e., we allow atomic states).

2. σ is non-cyclic, i. e., s /∈ σ
+(s) for all s ∈ S.

3. The sets in σ(s) are pairwise disjoint, i. e., Q1, Q2 ∈ σ(s) ∧Q1 ∩Q1 �= ∅ ⇒
Q1 = Q2, for all s ∈ S such that Q1, Q2 ∈ σ(s);

4. that the whole higraph has a tree-like structure, i.e., σ
∗(s1)∩ σ

∗(s1) �= ∅ ⇒
s1 ∈ σ

∗(s2) ∨ s2 ∈ σ
∗(s1).

5. Finally, for the root state s0 we assume that σ
∗(s0) = S, and s0 is the only

state with this property.

For the sake of notational simplicity we moreover define σ
−1(s) =def s

� whenever
s ∈ σ(s�) (note that the expression σ

−1(s) is undefined for s = s0).
Next, we define a statechart as a structure C = �H,V,D, I, ι, ω, γ,α �, such

that H = �S, E, s0, θ , σ�, is a higraph called the skeleton of C. V is a finite set
of variables, D is a set of data, I is a set of events including the empty event
�, ι,ω : E → I are mappings assigning a triggering event ι(e) and an output
event ω(e) to each edge of H, respectively. Moreover γ : E → (V D → {0, 1})
assigns a predicate to each edge of H. Here, V

D denotes the set of total mappings
from V to D, i. e. all assignments of values from D to variables from V . Finally

4th Workshop on Models@run.time at MODELS 09 101

α : E → (V D → V
D) defines the effect of executing an edge e ∈ E to an

assignment ρ ∈ V
D.

A statechart describes a set of concurrent processes, where parallel processes
are syntactically distinguished as substates Q ∈ σ(s) of some high-level state
s ∈ S. Hence we first need to define what a run-time state of statechart is. An
aggregated state of a statechart C is a minimum (w. r. t. set inclusion) set R ⊆ S

such that
1. s ∈ R & s �= s0 ⇒ σ

−1(s) ∈ R, i. e., if a state s is a member of an
aggregated state, then its corresponding high-level state σ

−1(s) is also;
2. s ∈ R ∧ σ(s) �= ∅ ⇒ (∀Q ∈ σ(s))|R ∩ Q| = 1, i. e., if s is a member of R,

then R contains exactly one state from each component of s.

Note that by definition we have s0 ∈ R for each aggregated state R. Moreover,
there is a uniquely defined initial aggregated state for each statechart C, namely
the aggregated state R0 with θ(Q) ∈ R0 for all s ∈ R0 and Q ∈ σ(s).

In order to fully describe the run-time behaviour of a statechart, we further
need to take into account its current variable vector. Hence, run-time states are
tuples of the form �R,ρ �, where R is an aggregated state and ρ ∈ V

D is a variable
assignment. Let us denote the set of run-time states of C by Σ.

Now we are ready to define the behaviour of a statecharts in terms of trans-
itions leading from one run-time state to another. To this end, we define a partial
transition relation a,b−−→ ⊆ Σ ×Σ for each pair of events a, b ∈ I:

�R1, ρ1�
a,b−−→ �R2, ρ2�

⇔def (∃e = �s1, s2� ∈ E)
�
s1 ∈ R1 ∧ s2 ∈ R2

∧ ι(e) = a ∧ ω(e) = b ∧ γ(e)(ρ1) = 1 ∧ α(e)(ρ1) = ρ2

∧ (∀s ∈ R2 \ R1)(∀Q ∈ σ(s))
�
Q ∩R1 = ∅ ⇒ θ(Q) ∈ R2

��

This means, a transition from a run-time state �R1, ρ1� to another run-time
�R2, ρ2� if R1 and R2 contain symbolic states s1 and s2, respectively, connected
by an edge e = �e1, e2� labelled with the input event a and the output event
b. Moreover, the predicate γ(e) applied to ρ1 yields true, and ρ2 is the result
of applying the α(e) to ρ1. Finally, the last line in the formula above ensures
that if a component Q is newly introduced into R2 by the transition, then R2

contains its start state. Using these definitions we can now discuss the statechart
interpreter implementation.

4 Mapping of the Formalism to a Runtime Mechanism

We implemented the interpreter using the C programming language on an Ardu-
ino Duemilanove test board with a 16MHz ATmega328P microcontroller. There
are 32 KByte Flash and 1 KByte EEPROM non-volatile memory available, as
well as 2 KByte of volatile SRAM. We are using the most simple mapping that
still allows to show a working approach. Introduction of more complex features
would greatly improve the usability of the devised mechanism, but add nothing
substantial in terms of evaluating the runtime performance overhead.

4th Workshop on Models@run.time at MODELS 09 102

4.1 The Behaviour Model

We abstained from defining a syntax for behaviour models and work directly with
an Abstract Syntax Tree (AST) in-memory representation, which we suppose
can be generated from any suitable representation format (e.g., UML2 state
diagrams, or SCXML). For each model the complete AST data is allocated as a
single chunk of memory and the AST structure is constructed with single-byte
references to this data. Prior to interpretation, an additional executor structure
is allocated that holds input and output event queues, as well as data structures
for processing parallel components, and a reference to s0 as the initial starting
point for execution.

4.2 States and Data Space

We restrict S to contain up to 256 symbols encoded by the numbers 0..255. Each
state is represented by a data structure containing fields that allow to bidirec-
tionally navigate the substate tree spanned by σ. For performance reasons we
separate the state data structure into a substate set, a set of parallel components,
and an additional reference to a superstate. Additionally, the structure contains
a set of references to outgoing edges and a so-called flag byte used to indicate
state properties, e.g., θ is implemented as a single bit in the flag byte. Sets are
generally implemented as byte arrays with an additional field that holds set size.
For aggregated states, and states containing parallel components, it is necessary
to evaluate θ to identify the start state of contained component(s), and to ad-
ditionally create data structures that allow for pseudo-concurrent processing of
parallel components.

The variables V are limited to a maximum of 246 read- and writeable entries
per behaviour model and 10 additional global entries shared between all execut-
ing models. Variables are referenced by the numerical values 0..255, where the
values 0..9 refer to global values and 10..255 refer to local ones. The data set D

is limited to 8 bit integer numbers. There is no type system. When data values
are evaluated within boolean expressions, we follow C conventions for assigning
logical values: 0 corresponds to a logical “false”, other values are “true”.

4.3 Edges and Event Processing

E is implemented as a set of data structures, which contain a reference to a
destination state, the triggering event assignment ι, and the output event as-
signment ω. There can be a maximum of 256 edges. Events are numbered from
0..255 and identified by their numerical value – 0 is the special “empty” event
symbol ε. The edge structure also contains references to a guard condition predic-
ate γ and an action mapping α. Due to parallel processing of edges it is possible
for multiple events to be received during a single step of a model. Events are
buffered for input and output in ring-buffers, limited to 10 elements.
The guard condition predicates γ need to be evaluated to decide if an edge should

4th Workshop on Models@run.time at MODELS 09 103

be traversed (hence the name “guard condition”). They are specified within the
model AST and can be constructed from variable or constant references (nota-
tionally depicted using a $ sign), boolean operators (!, ∧, ∨), and comparison
operators (=, <, >, ≤, ≥). Evaluation precedence is implicitly given through
the AST hierarchy.
The action bindings α are implemented as code that is statically bound to the
runtime mechanism before the interpretation of a behaviour model commences.
An action binding is a conventional function call with an arbitrary number of
input and output parameters, and represents fixed capabilities of a device that
are orchestrated using statechart logic. It is implemented by a structure holding
a function pointer plus an ordered set of variable references. Parameters need to
be de-referenced inside of the action function and can be used to read or write
the variable value. A specific set of actions considers timers. We created three
timers that can be set with a delay value using set timer(id,delay) to deliver
the specific events 8..10 once the delay time passes. Timers can be cleared using
clear timer(id) which suppresses dispatching of the timer event.
Explaining the processing algorithm goes beyond the scope of this paper. For an
understanding of the intricacies refer to the paper by J. Ebert [4]. In a nutshell:
For each input event all active components in a statechart are evaluated for
triggered edges. If a triggered edge has a matching guard condition, the assigned
action is executed and an output event send. The state(s) are then changed and
another evaluation iteration is run with the next input event. These steps are
repeated until all active components reach end states. It is worth mentioning
that all ε edges are traversed before the next input event is taken from the input
queue. Also, specific handling functionality needs to be executed on entering and
exiting parallel states to maintain data structures for active components.

5 Performance Analysis

We found that the experimental platform has sufficient resources for the state-
chart interpreter code, which uses less than 8 KBytes of Flash memory. In this
section we describe the evaluation results using the experimental platform.
Latency measurements have been conducted using in-line timestamps, the slight
delay that has been introduced by this is negligible for the overall result. The em-
ployed timestamping mechanism has an accuracy of approx. 4 µs. Stack memory
measurements were conducted by dumping the stack pointer during runtime.
Performance of these routines is uncritical as such experiments only measured
memory consumption, not latency.

5.1 Memory Overhead

To analyse stack performance, we exercised the behaviour model shown in Fig.
1. We used the following sequence to measure the normalised4 stack alloca-
tion as shown in Fig. 2: key ← false, door open, door close, lock, door open,
4 Showing only the additional bytes consumed during interpretation of the model

4th Workshop on Models@run.time at MODELS 09 104

door close, key ← true, lock, door open, key ← false, unlock, door open,
key ← true, unlock, door open, door close, wait for the lights to turn off. The
interpreter executes a single step method to iteratively advance the statechart.
This method uses 25 bytes stack when processing input events and 23 bytes
when processing ε events. Peaks in the stack usage are due to evaluation of the
key guard conditions on the edges between the Locked and Unlocked states.

6000 100 200 300 400 500

50

0

10

20

30

40

Number of stack samples (~time)

A
llo

ca
ti

on
 (

b
yt

es
)

Waiting for timeout

Stack used by step execution method

Evaluation of conditional expressions

Figure 2. Stack usage during interpretation of Light & Door model

5.2 Conditional Expression Evaluation

The expression evaluator is implemented as a tree walker that recursively tra-
verses a binary tree of statement tokens (variables, constants, and operators).
We used three expressions to measure performance “$0 < 15” (interpreted in 24
µs), “($0 < 15) ∧ ($1 = $2)” (56 µs), and “(($0 < 15) ∧ ($1 = $2)) ∧ ((30 >

$4) ∨ ($3 = $5))” (116 µs). This approach has a remarkable performance over-
head: A hard-coded C version of any of these expressions executes in less than
4 µs. As seen in Fig. 2 the evaluation of conditional expressions is depicted as
peaks in the stack usage. By sampling stack size during evaluation we found that
the expression evaluator uses an additional 11 bytes per recursive iteration, e.g.,
Expression C uses a total of 44 bytes stack memory during evaluation.

5.3 Simple Edge Matching

We are measuring the time that our implementation needs to react with a single
output event to a single input event using the traversal of a single edge. There
can be more than one outgoing edge assigned to a single state, so we are also
interested in the latency of the interpreter when processing multiple edges. We
are using 30 behaviour models with an increasing number of edges for a single
state. Each edge is triggered by a specific event 1..30 and sends a correspond-
ing output event 101..130. Each model is then supplied with exactly one event,
activating the edge that is triggered by the highest event. This is done to force
the interpreter into exhibiting worst-case behaviour (it checks each edge before
finding the edge that matches). The results, along with an illustration of the
experimental models, can be seen in Fig. 3. To put the measurements into per-
spective, we also added the time that a conventional “switch” statement needs
to deliver the same result.

4th Workshop on Models@run.time at MODELS 09 105

300 5 10 15 20 25

200

0

40

80

120

160

Number of Transitions For a Single State

D
e
la

y
 [
!
s
]

Interpreter

"switch" statement

Test

e
1

! e101 e
2
 ! e102

e
n
 ! e100 + n

...

Experimental Models

Figure 3. Delay of edge matching processes

The latency for a simple edge transition is approx. 64 µs, which includes event
processing, timer handling, edge selection, and edge execution. It is approxim-
ately a factor 10 slower than a conventional switch statement which executes at
around 6 µs. Latency increases linearly with approx. 3 µs for each edge up to
152 µs for 30 edges. The “switch” statement has a constant delay independent
of the given event. The reason for the linear increase is the need to check each
of the edges for a possible match.
The usage of dynamic action bindings instead of static function calls also has an
impact on the latency of action execution due to the way parameters are passed
to function code. We created models that trigger an action using a single edge
from a single state and altered the number of parameters (0..10) passed to the
action. The additional delay introduced amounts to an average of approx. 3 µs

per additional parameter. For conventional function calls we believe that an ad-
ditional delay exists as well, but we found that the measured latency differences
are within the precision range of the employed timing mechanism for the number
of arguments studied (delay differs < 4 µs).

5.4 Processing of Aggregates and Parallel Components

The two major features that differentiate statecharts from EFSM are aggrega-
tion and the ability to specify parallel components. To measure performance of
aggregation handling we used a series of models with an increasing number of
nested states (from a single state to an aggregate with a nesting depth of 30)
where the most deeply nested state had an edge that matched on a given input
event. The parallel component processing was analysed using 30 models which
contained a superstate with an increasing number of parallel components, each
triggering on the same input event. The results are displayed along with the
experimental models in Fig. 4. We found it necessary to differentiate between
the first input event and subsequent events5 processed in the same state. This is
due to additional functionality executed when entering an aggregated state or a
state that contains parallel components. Fig. 4(A) shows an average delay of 12.5

5 in the diagram labelled as 2nd event, representative for all subsequent events

4th Workshop on Models@run.time at MODELS 09 106

µs per additional nested state for an event that triggers entering the aggregate.
Once the aggregate has been entered, the delay for processing subsequent events
is independent of the nesting level. This is different for parallel components, as
shown in Fig. 4(B). Entering a state with parallel components has an average
latency of approx. 52 µs per parallel component. There is an average overhead
of approx. 26 µs per active component for each subsequent event. To compare
the latency overhead with conventional constructs, we also show the delay of a
“for-loop” sequentially processing the input event. In this case, the overhead is
at approx. 2 µs per additional iteration.

300 5 10 15 20 25

1600

0

400

800

1200

(B) Number of Parallel Components

D
el

ay
 [
μs

] 1st Event
2nd Event

"for loop" statement

300 5 10 15 20 25

450

0

100

200

300

(A) Depth of sub-state containment

D
e
la

y
 [
!
s
] 1st Event

2nd Event

en ! e100 + n

Test

...

Test
e1 !
 e101

Test
e2 !
 e102

Testen !
 e100 + n

...
Experimental Models
for Aggregates

Experimental
Models for Parallel
Components

Figure 4. Event delay characteristics for processing of aggregated states (A) and par-
allel components (B) with the employed experimental models

6 Conclusion

The results confirm our initial assumption: It is possible to implement a state-
chart interpreter on a severely resource-constrained platform. We had no prob-
lem fitting the interpreter into non-volatile memory, though the available heap
memory establishes clear constraints on the complexity of the behaviour mod-
els. Heap memory was large enough to hold any of the experimental models we
applied for performance assessment, but we found that models with about 100
states are the limit. Stack memory is unlikely to be exhausted: Models would
need to use a very deep conditional expression token tree.
On the performance side, we found that the interpreter clearly adds a processing
overhead. In the best case execution latency is about a factor 10 longer than with
compiled code. Performance depends largely on the structure of the interpreted

4th Workshop on Models@run.time at MODELS 09 107

models, main factors are: the number of edges leaving a state, the nesting depth
for aggregates, the number of parallel components, and the usage of guard condi-
tions. Also, the ratio between the time the interpreter spends in action functions
and the time spent in statechart interpretation plays an important role: If action
functions are sufficiently complex, the overhead caused by the statechart engine
is much smaller. On the other hand, if system behaviour is completely modelled
using a statechart, the interpretation overhead becomes very large.

The interpreter performance can still be improved, mainly by using a better
expression evaluator, but also by optimisation of the edge evaluation code (e.g.,
grouping triggering events, combining guard conditions). Even with ingenious
optimisations, some overhead cannot be purged: In the worst case, any statechart
interpreter needs to evaluate all outgoing edges for a single state, including the
outgoing edges of parent states, and there will always be an overhead for event
processing and handling aggregates, as well as parallel components. Therefore
we conclude that our approach is adequate for reactive systems, which are idle
most of the time. It does not seem to be suitable for systems that need the
fastest possible reaction time due to the introduced interpretation delay, which
can easily amount to 1 ms. Such a value is unacceptable for most real-time
applications. Regarding high-throughput systems, successful applications should
be possible but will depend on the underlying platform performance and the
utilised behaviour model complexity.

References

1. Harel, D.: On visual formalisms. Communications of the ACM 31(5) (May 1988)
2. Gnesi, S., Mazzanti, F.: On the fly model checking of communicating uml state

machines. ACIS Int. Conf. on Software Engineering Research, Management and
Applications (2004) 331–338

3. Raghunathan, B., Hartrum, T.: The automated transformation of statecharts from
a formal specification to object-oriented software. 48th Midwest Symposium on
Circuits and Systems (2005) 319– 322

4. Ebert, J.: Efficient interpretation of state charts. Fundamentals of Computation
Theory 710 (Jan 1993) 212–221

5. Sánchez, M., Barrero, I., Villalobos, J., Deridder, D.: An execution platform for
extensible runtime models. Proc. models@run.time workshop (2008) 107–116

6. W3C: State Chart XML (SCXML): State machine notation for control abstraction.
http://www.w3.org/TR/scxml/

7. Höfig, E., P.H.Deussen: Document-based network and system management. Proc.
2nd International Conference on Autonomic Computing and Communication Sys-
tems (Jun 2008)

8. Höfig, E., Coskun, H.: Intrinsic monitoring using behaviour models in ipv6 networks.
to be presented at the IEEE Modelling Autonomic Communication Environments
(MACE) Workshop (October 2009)

9. Hinnerichs, A., Höfig, E.: An efficient mechanism for matching multiple patterns
on xml streams. Proc. IASTED Int. Conf. on Software Engineering (2007) 164–170

4th Workshop on Models@run.time at MODELS 09 108

Using Specification Models for RunTime
Adaptations�

Sébastien Saudrais1, Athanasios Staikopoulos2, and Siobhán Clarke2

1 Embedded Systems Laboratory, ESTACA, France sebastien.saudrais@estaca.fr
2 DSG, Trinity College of Dublin, Ireland

{athanasios.staikopoulos,siobhan.clarke}@cs.tcd.ie

Abstract. For a myriad of reasons, modern applications face constant change
to their requirements and working environment, requiring them to adapt ac-
cordingly. Increasingly, such adaptation is even required during runtime. In
Model-Driven Engineering (MDE) approaches, models are first-class enti-
ties in the development of applications, though they have not, to date, been
sufficiently taken advantage of in runtime adaptation specification. In many
existing approaches, designers are required to consider the execution model
when specifying any runtime adaptation, forcing them to understand the dif-
ferent formalisms of both the execution model and the specification model.
The focus of this paper is to show how runtime models to monitor an appli-
cation’s execution can be derived efficiently from the specification, and how
they support the designer in considering the application’s execution in the
same formalism as the specification.

1 Introduction

Model-Driven Engineering (MDE) promotes the use of models throughout the de-
velopment of software. The underlying idea is to promote models as the primary
artefacts of software development, making executable code a pure derivative of those
models. Models containing adaptation specifications are an increasingly important
and frequently encountered part of the development process. This is especially true
for modern applications that need to adapt at runtime to cope with constant changes
to their requirements and operating environments. Such changes have to be consid-
ered at the specification phase, and the models validated before they are transformed
to real code. However, despite the importance of specification models, they have, to
date, been ignored during the execution of the software. Once the code is generated,
the specification models are no longer used with the potential loss of information
that would be especially valuable during adaptation specification.

A further difficulty emerges during the process of adapting the execution. While
the adaptation may be based on a specification model, the actual adaptation is
necessarily performed either by hand on the application’s code, or requires a com-
plete regeneration of the system since it is unlikely to match the old specifications.
Working directly with the application’s code means a move to a different formalism
from that of the specification. This change between formalisms has a number of dis-
advantages. The first is that the adaptations performed in the new formalism must
be validated against those in the specification model. An automatic generation of
the entire module that is to be adapted can ease this checking, but this needs to be
coupled with a reverse-engineering technique to reproduce the specification model.
The second disadvantage is that while the software architect knows the specifica-
tion formalism, he is not always familiar with the implementation’s one(s). If there
� This work has been carried out within the FP7 project ALIVE IST-215890, which

is funded by the European Community. The authors would like to acknowledge the
contributions of their colleagues from ALIVE Consortium (http://www.ist-alive.eu)

4th Workshop on Models@run.time at MODELS 09 109

are adaptation problems at runtime, he has to be able to understand the second
formalism in order to solve the errors, or work closely with an implementation team
member. Either approach is likely to be difficult where an application’s execution
context often changes, requiring manual adaptation at runtime. It would be easier
for the architect to visualise a snapshot of the actual execution in the specification
formalism.

The approach proposed in this paper takes advantage of the specification models
during the execution. A runtime model is generated from the specifications, which
supports the monitoring of the execution required to supply sufficient information
to apply adaptations directly on the specification models of the software. The run-
time model contains the information needed to trigger the adaptation and is created
based on the adaptations defined at the specification. At runtime, when an adapta-
tion needs to be performed, the specification models are updated to correspond to
the actual execution and the adaptation is performed on the up-to-date specifica-
tion models. The new configuration of the application is, finally, generated from this
new specification models. The approach allows a designer to use a single language
(the specification language) to design the software and to interact with it during the
execution. Our approach is applied within the ALIVE project[1], which is funded
by the EU under Framework 7. ALIVE’s objective is to enrich service-oriented ar-
chitectures with coordination and organisation mechanisms often seen in human
and other societies. The remainder of the paper is organised as follows: Section 2
presents the different metamodels and how runtime models are generated. Section
3 illustrates the approach with the ALIVE Crisis Management scenario. Section 4
compares our approach with related work and discusses the advantages of runtime
models. Finally Section 5 concludes.

2 From Specification to Runtime

Our approach uses the adaptation rules defined during the specification directly
when needed at runtime. For the purposes of this paper, we assume these adap-
tation rules have been proven during the specification of the application and are
understandable by the architect. We use the adaptation rules to generate runtime
models that will monitor the application and launch an adaptation when needed.
Only a subset of the information contained in the adaptation rules is required to
produce the runtime models. This subset is composed of the model elements that
need to be monitored to trigger the adaptation and those that need to be read to
perform the adaptation. An overview of the approach is presented in Figure 1. The
runtime models are generated from the specification models and the enabling con-
ditions of the adaptation rules. During execution, the runtime models monitor the
application’s code. When an adaptation is triggered, the adaptation rules and the
runtime models are used to provide a snapshot of the application containing only
the part involved in the targeted adaptation. The adaptation is then performed on
the specification models obtained from this snapshot. A new configuration of the
code is obtained from the new version of the specification models using the same
code generation techniques used in the initial generation of the software. In the next
section, we define a metamodel for runtime based on adaptation rules. An algorithm
is then presented to automatically generate the runtime models. Finally we explain
how the adaptation can be performed.

2.1 Adaptation Rules

Adaptations specify the appropriate reaction to changes that can occur at run-
time and that have an impact on the software. An adaptation rule is composed of a

4th Workshop on Models@run.time at MODELS 09 110

Initial
Specification
models

Adaptation rules

Runtime
Models

Execution

Condition

Effect

Adapted
Specification
models

Generate

Monitored by

Produce
Snapshot

Adapt

Fig. 1. Approach overview.

Fig. 2. Adaptation rules concepts.

condition and an effect. The condition contains the information triggering the adap-
tation: for example, an occurrence/absence of an event, a comparison of an object
with a value or a number of occurrences of an event. The effect explains how the
adaptation is performed and is written in the model transformation language used
to specify the adaptation. It explains how the adaptation is applied and which part
of the application is involved in the adaptation. Figure 2 presents the (simplified)
metamodel of the adaptation rules in our approach. The condition is a superset of
the possible conditions and can be extended by other types. The effect part only
contains the expressions, i.e. the elements of the specification models involved in the
adaptation. These elements will be manipulated and updated by the adaptation.

2.2 Runtime Models

Runtime models contain the information needed to support an adaptation when it
must be performed. They link the implementation, the specification models and the
adaptation rules. We have defined a generic metamodel to represent the different
relations between these three elements. The runtime models have the same objec-
tive as the condition part of the adaptation rules: triggering the adaptation. As
illustrated in Figure 3, the runtime metamodel has as base the metamodel of the
adaptation rules relating to the conditions and is extended with information about
the platform to monitor the software. The left part of the metamodel corresponds
to the enabling condition and the right part to the link with the platform. Each
adaptation rule has different triggers of the same type as the enabing condition and
so can be extended with other types of conditions. The class Element references
the elements of the specification model. For each element to be monitored, the cor-
responding implementation is obtained through an AccessPoint. The access point
provides the means to access the value of the element in the implementation, for
example, via a method to access the value or an exchange of messages. Only some
of the possible types of access points are presented is the metamodel, method and

4th Workshop on Models@run.time at MODELS 09 111

Fig. 3. Runtime metamodel.

message, but extensions can be easily made depending on the requirements of the
software.

The runtime metamodel is also used for the snapshot through the class snapshot.
The purpose of a snapshot model is to give an updated view of the software and
links elements of the specification to the platform. It contains only a set of elements
involved in the effect part of the adaptation corresponding to the right part of the
Figure 3: the Element and AccessPoint.

2.3 Generation of the Runtime Models

Our approach includes an automated process to apply the adaptation rules on the
specification models during the execution. The architect may also add new adap-
tation rules during the execution that will need to be incorporated in the runtime
model without human intervention. The runtime model is automatically generated
from the specification, the adaptation rules and the platform specifications. The
generation algorithm has two steps. The first step is to select the different classes
from the specification that are used by the adaptation rules. For each enabling
condition, the set of elements required for monitoring is identified. The trigger is
created using the enabling condition of each adaptation rules. The set of elements
is then reduced to avoid duplicate elements. This step is designed to ensure that
the runtime model contains only the elements required to support adaptation, and
is therefore smaller and more efficient to process than would be a runtime model of
the complete specification.

The second step is to identify the access point in the implementation. This step
will use information from the specification and platform specifications. The access
point is attached to the element in the runtime model and needs code to be generated
before it can access the implementation. As software modules do not have a single
implementation language, the different access points can be implemented in different
languages. The runtime model is updated with values obtained through the access
point during the monitoring process. The actual implementation of the runtime
model is done using Kermeta [2]. Kermeta offers calls to Java classes with interfaces
to other languages. For each access point, a Kermeta method is created with the
intermediate code in Java, if needed, to make the link with the implementation. This
access point can be regenerated at runtime if the access point is changing during
the execution.

4th Workshop on Models@run.time at MODELS 09 112

2.4 Adaptation at Runtime

Once the runtime model is generated, its monitoring capabilities are executed and
the runtime models are automatically updated. When an adaptation is triggered,
the specification models are updated with the actual values contained in the run-
time model and a snapshot is created. The process of creating the snapshot is based
on the same algorithm as the generation of the runtime models but where only the
current adaptation’s effect’s expressions are considered. Once the snapshot of all
useful information is created, the adaptation can be performed on the specification
models using the adaptation rules. Once the adaptation is performed, the new im-
plementation is generated using the same method as for the first generation of the
implementation.

The architect can also use the snapshot process to create a visualisation of the
actual execution. This visualisation may consider only a subset of the application
and some adaptation rules. The snapshot process is used in this case to support the
architect adding new adaptations that take account of the actual execution of the
software. A new runtime model is then generated to incorporate the new enabling
conditions of the added adaptation rules.

3 Evaluation: Crisis Management Case Study

In this section we show how runtime models are exploited in a use case from the
ALIVE project that describes a crisis management scenario defined by Thales[3]. We
first present a high-level summary of the specification used in ALIVE applications.
We then apply our approach on the example.

3.1 ALIVE’s Specification

Three metamodels describe the ALIVE layered architecture: organisation, coor-
dination and services. Each one has a different level of abstraction and its own
adaptation rules. Model transformations are defined from the metamodels and are
bi-directional between the different layers.

The organisation level provides context for the two other levels, supporting an
explicit representation of the organisational structure of the application. It presents
the roles involved in the organisation and their inter-relations. Each role has a set of
objectives for which it is responsible. The coordination level uses the organisation
level as a starting point, and provides coordination plans to achieve the objectives
of the organisation. As agents can play different roles in an organisation, the coor-
dination metamodel has also the concept of actors capturing the goals of an agent
playing a specific role. The coordination plans describes the interaction between the
actors. For example, a payment objective will be refined by cash, paper payment
or electronic payment. The service level supports the semantic description of ser-
vices and the selection of the most appropriate service for a given task. It connects
the executing environment and the two other levels, which are input to the service
level. It contains agents and the different services. The agents are connected to the
actors of the coordination. The services are refinements of the coordination actions,
for example, the electronic payments become different services from each bank that
offers an electronic payment.

The adaptation rules of the different levels are based on the occurrence of specific
events or properties. An adaptation is triggered if certain conditions are verified.
Properties from all three levels may trigger an adaptation to an ALIVE application.
Depending on the level where the adaptation trigger occurs, the adaptation will
have a different impact on the application. Adaptations affecting the service level

4th Workshop on Models@run.time at MODELS 09 113

will be performed without impacting the two others. An adaptation that impacts
the coordination level is also likely to impact the service level. An adaptation at the
organisation level is likely to impact all three levels. The same language is used by
the three levels to express the adaptations.

3.2 Initial Specification

The use case describes a system to handle emergency situations.The organisation
includes a police station, first-aid station, emergency centre and fire station. The
main objective of the fire station is to evacuate people. Other objectives of the
different roles are to identify the emergency location, to provide an ambulance
service and to regulate traffic. These objectives are delegated through the arrows
to the other roles as depicted on the top part of Figure 4. The coordination level
describes a plan to achieve the evacuation objective in different steps: selection of
the transport vehicle, provision of an itinerary to the accident location, collection of
injured people, provision of an itinerary to the hospital. This plan is a generic one
that can be used and refined by the service level. The middle part of the Figure 4
shows the coordination level.

Choice of
transport
vehicle

Itinerary to
accident
location

Loading
people

Itinerary to
closest
hospital

Emergency
Centre

FireStationFirst Aid
Station

Emergency location

Ambulance service Police StationRegulate Traffic

Ambulance Itinerary
softare Police Station Emergency

centre

Organisation level

Coordination level

Service level

Fig. 4. Initial specification of the crisis management scenario.

During an accident, the fire station makes decisions relating to the evacuation of
people. The evacuation plan is called at the service level. Specific services are used:
an ambulance, the emergency centre, itinerary software and the police station. The
bottom part of the Figure 4 shows the different services in play.

Adaptation rules are defined to handle common failures that can happen to this
type of application: traffic jams, engine failure, escalation of the danger level. For
example, a first adaptation may concern engine failure. Depending on the position
of the ambulance and on the level of risk for rescued people, different choices can
be made: ambulance change, people transfer or ambulance repair. This adaptation
concerns only the service level. A second adaptation may concern a failure relating
to difficulties encountered by the rescue personnel in achieving their objectives. The
ambulance has a problem and no other terrestrial vehicle, as needed by the plan,
is available. Alternative transport has to be considered, either by air or by sea and
a new plan has to be given to the service level. This adaptation concerns both
the coordination and the service levels. A last adaptation may be triggered when
the coordination level is unable to find a new plan when the ambulance fails. The
organisation level needs to adapt to the situation and may incorporate new roles.
In this case, private companies can be added, like private helicopters, to evacuate
people. While this adaptation will impact the three levels, some parts of each level
can be reused, like the abstract plan and different services.

4th Workshop on Models@run.time at MODELS 09 114

3.3 Runtime Models

The runtime model obtained from the specifications to support the second adap-
tation presented above is depicted on Figure 5. The enabling condition from the
adaptation has the occurrence of the message ambulance blocked and the occur-
rence of the properties no repairable and no terrestrial vehicule available. The trig-
ger is added to the runtime model. The next step in the creation of the runtime
model is to link with the implementation. For the purpose of the evaluation, we
are using the Thales simulation workbench to simulate the different services. For
each of the three elements, the corresponding access point is provided according to
the platform specification. The ambulance provides its status and position through
the methods Ambulance position and Ambulance status. The emergency centre pro-
vides the transports’ availability through Transport Availability. The methods are
implemented in Java and interact with the workbench.

Ambulance_position

RuleA2

AND

AND

Occurrence

Occurrence

Occurrence

Not_repairable

No_terrestrial

Ambulance_blocked

Ambulance_Status

Transport_Availability

Trigger

Trigger Element

Element

Element

Trigger

Trigger

Trigger

Method

Method

Method

Fig. 5. Runtime model.

Once the adaptation is triggered, a snapshot of the part of the application of
interest to the adaptation is made. The create plan aerial evecuation call needs
nothing at the coordination level as a new plan is created. Once the evacuation plan
is created, the status of different aerial transport is needed to select one available
to execute the plan. The snapshot contains two elements helicopter and their access
point. The specification models are updated using both the runtime model and the
snapshot model, and the adaptation is performed.

The new configuration is then produced from the adapted specification models as
shown on Figure 6. The plan is modified and the services helicopter1 and helicopter2
are added.

Choice of
transport
vehicle

Itinerary to
evacuation
point

Loading
people

Itinerary to
closest
hospital

Ambulance Itinerary
software Police Station Emergency

CentreHelicopter 1

Coordination level

Service level

Choice of
aerial

transport

Loading
people

Itinerary to
closest
hospital

X

Helicopter 2

Fig. 6. New specification.

4th Workshop on Models@run.time at MODELS 09 115

4 Discussion and Related Work

Discussion Our hypothesis related to the efficiency of this approach is based on
an assumption that only a subset of the application is subject to adaptation. The
approach generates a runtime model based on only those elements required to sup-
port adaptation, thereby reducing its size relative to the full application, making
it more efficient to work with. Given this, our approach is therefore well-suited for
applications where a big part of the specification is static (in other words, not ex-
pected to require adaptation over the execution of the application) and mainly used
to understand the objectives of the application. A good example of this is ALIVE’s
organisation level. The static part of ALIVE applications do not, therefore, require
permanent monitoring at runtime. In applications where adaptation rules cover a
bigger part of the specification, the runtime model will be a correspondingly bigger
proportion of the full specification, reducing the extent of the efficiencies. Further
experiments are needed to identify the maximum coverage percentage that will still
result in efficiency benefits in the monitoring process. The evaluation runtime model
contains 10 elements to monitor when the specification models contain 50 elements.
The snapshot models need an average of 10 elements to update.

A second potential limitation is the feasibility of performing the adaptation on
the models at runtime. If the application is centralised, different transformation
languages can be used but as modern applications are often distributed, including
ALIVE applications, the adaptation may also be distributed. Few transformation
languages focus on ensuring a light execution footprint, which may be problematic
in a distributed setting. The current version of our runtime models is implemented
using Kermeta but it requires at least a Java virtual machine. A more optimal
approach would be a transformation language than can be interfaced with multiple
implementation languages but without any constraints on the execution platform.

Related Work Many approaches adapt applications using a different formalism
than the specification. In such approaches, the adaptation module can be seen as a
runtime model because it has its own representation of the execution. However, the
gap between the specification and the execution requires a re-test of the adaptation
even though it has already been proven at the specification phase. For example,
Pickering et al [4] propose an approach to manage complex systems with runtime
models. The systems management is defined in specification models that are trans-
formed to runtime models in a specific infrastructure, IBM WebSphere and so are
expressed in a different language than the specification. Rainbow [5] provides an
adaptation framework based on an abstract architectural model to monitor runtime
properties to accommodate resource variability, system faults, etc. In our approach,
runtime model is built on dynamic parts of the specification models and not on an
abstract model to apply adaptations.

Other approaches are in a position to use the specification models at runtime
because of the specific platform they provide. For example, Fractal [6] monitors the
execution and performs the adaptation using the reflexivity of its own language.
The ALIVE approach uses standard languages, and therefore assumes different lan-
guages at the implementation level. The Diva [7] approach considers both design
and runtime phases of development. At design time, an application is modelled
using a base model (containing the common/core functionalities), a set of variant
models (capturing the adaptive application variability) and an adaptation model
(specifying which variants should be used according the rules and current context
of the executing system). At runtime, the models are processed by model composers
that produce the system’s configuration. The application is fully monitored and is
based on the reflexivity of the underlying language.

4th Workshop on Models@run.time at MODELS 09 116

5 Conclusion

In this paper, we presented an approach to using specification models to derive
efficient runtime models that support runtime adaptation. We defined a metamodel
for runtime models based on adaptation rules. Runtime models are automatically
generated from the specification. Adaptation is performed at runtime using the
specification models. The approach is designed to address two main objectives. This
first is to use the same formalism for adaptation both at design and runtime. This
reduces the potential for introduction of errors, by avoiding the transformation to
another formalism, and aids the architect’s understanding of the execution without
requiring him to learn additional languages. The second objective is to optimise the
efficiency of the runtime models. This is achieved as the runtime models monitor
only the parts of the application that are involved in adaptation. A snapshot is taken
of only those elements of interest to the adaptation. A full snapshot is available when
the architect wants to have an overview of the system or wants to introduce new
adaptation rules. The automation of the generation of runtime models supports
this addition of new adaptation rules. We illustrated an evaluation of the approach
through application on a case study.

References

1. ALIVE: Coordination, organisation and model driven approaches for dynamic, flexible,
robust software and services engineering, http://www.ist-alive.eu/

2. Muller, P.A., Fleurey, F., Jézéquel, J.M.: Weaving executability into object-oriented
meta-languages. In L. Briand, S.K., ed.: Proceedings of MODELS/UML’2005. Volume
3713 of LNCS., Montego Bay, Jamaica, Springer (October 2005) 264–278

3. Aldewereld, H., Dignum, F., Penserini, L., Dignum, V.: Norm dynamics in adaptive
organisations. In Boella, G., Pigozzi, G., Singh, M.P., Verhagen, H., eds.: NORMAS.
(2008) 1–15

4. Brian Pickering, Sylvain Robert, S.M., Mengusoglu, E.: Model-driven management
of complex systems. In: Proceedings of the 3rd International Workshop on Mod-
els@Runtime, at MoDELS’08, Toulouse, France (oct 2008)

5. Huang, A.C., Garlan, D., Schmerl, B.: Rainbow: Architecture-based self-adaptation
with reusable infrastructure. In: ICAC ’04: Proceedings of the First International Con-
ference on Autonomic Computing, Washington, DC, USA, IEEE Computer Society
(2004) 276–277

6. Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.B.: An open component
model and its support in java. In Crnkovic, I., Stafford, J.A., Schmidt, H.W., Wallnau,
K.C., eds.: CBSE. Volume 3054 of Lecture Notes in Computer Science., Springer (2004)
7–22

7. Fleurey, F., Delhen, V., Bencomo, N., Morin, B., Jezequel, J.M.: Modeling and val-
idating dynamic adaptation. In: Proceedings of the 3rd International Workshop on
Models@Runtime, at MoDELS’08, Toulouse, France (oct 2008)

4th Workshop on Models@run.time at MODELS 09 117

