
A State of Art Survey on zz-structures

Antonina Dattolo
Dipartimento di Matematica e Informatica

Università degli Studi di Udine, Italy
antonina.dattolo@uniud.it

Flaminia L. Luccio
Dipartimento di Informatica

Università Ca’ Foscari, Venezia, Italy
luccio@unive.it

ABSTRACT
Zz-structures are particular data structures capable of rep-
resenting both hypertextual information and contextual in-
terconnections among different information.
The focus of this paper is to stimulate new research on this
topic, by providing, in a state of the art survey, a short de-
scription and comparison of all the material that, to the
best of our knowledge, is related to zz-structures: infor-
mal and formal descriptions, implementations, languages,
demonstrations, projects and applitudes of zz-structures; in
fact, despite their large use in different fields, the literature
lacks of an exhaustive and up-to-date description of them.

1. INTRODUCTION
Zz-structures are xanalogical structures that were first pro-
posed by Ted Nelson [25, 26, 27, 28, 29, 30]: information is
stored inside cells which may also be linked to other cells,
forming complex graphs.
Research on this topic has been active and different imple-
mentations (see, e.g., [1, 2, 3, 7, 8, 23, 16, 17, 18, 29]),
applitudes (see, e.g., [5, 6, 9, 10, 22, 24, 31]) and some for-
mal models ([12, 13, 14, 15, 20, 21]) have been proposed.
Implementations are distinct from applitudes; in fact, an
“applitude is not merely an application that has been de-
signed to work with ZigZag data, but is rather a part of a
zz-structure, utilizing a set of views and dimensions in order
to express a specific functionality over a particular part of
that space” [24].
Our focus is to stimulate interest on this topic. To this
aim we shortly illustrate, examine, and compare, in a state
of the art survey, all the material that, to the best of our
knowledge, is related to zz-structures.

This paper is organized as follows: in Section 2, we give an
informal description of zz-structures, summarizing in Sec-
tion 3 existing formal formulations; Section 4 is dedicated
to known implementations. At end of each section, we sum-
marize and compare respectively formal descriptions, imple-
mentations and applitudes of zz-structures. Finally, Sec-
tion 6 concludes the paper.

2. A GENERAL INTRODUCTION
A zz-structure can be thought of as a space filled with cells
each of which may contain data (integers, text, images, au-
dio, etc.), and connections to other cells [30].

Sequences of cells connected through links of the same color
define dimensions, each of which may be composed of dif-

ferent connected chains of cells called ranks. An example
of zz-structure is shown in Figure 1 where normal, dotted
and thick lines represent three different dimensions. The

V1

V5

V9

V6

V10 V11

V2 V3

V12

V7

V13

V8

V4

Figure 1: An example of zz-structure.

starting and the ending cells of a rank are called, headcell
and tailcell respectively, and the direction from the start-
ing (ending) to the ending (starting) cell is called posward
(respectively, negward). Each cell has at most one connec-
tion in the posward direction, and one in the negward di-
rection of the same color, thus ensuring that all paths are
non-branching, and embodying the simplest possible mech-
anism for traversing links. Dimensions are used to project
different structures: ordinary lists are viewed in one dimen-
sion; spreadsheets and hierarchical directories in many di-
mensions.

These structures may be viewed in different ways: e.g., a
raster is a way of selecting the cells from a structure, while
a view is a way of placing the cells on a screen. In two-
dimensional rectangular views cells are placed, using differ-
ent rasters, on a Cartesian plane where the dimensions in-
crease going down and to the right. The simplest raster is
the row and column raster, i.e., two rasters which are the
same but rotated of 90 degrees from each other.

The focus is a cell that is chosen and placed at the center
of the plane (cursor centric view) and may be changed by
moving the cursor horizontally and vertically. In a row view
I (respectively, in a column view H), a rank is chosen and
placed vertically (horizontally), then the related ranks are
placed horizontally (vertically). All the cells are denoted
by different numbers. An example of H-view, related to zz-
structure of Figure 1 and with focus v2, is shown in Figure 2.
Note that in a view the same cell may appear in different

positions as it may represent the intersection of different
dimensions.

1

V6 V2 V4

V10

V5

V9

V2

V11

V4

V3

V2

D
d
o
tt
e
d

Dthick

V3V11

V2

V3

V11

V3

V4

Figure 2: An H-view related to the zz-structure of

Figure 1.

3. THE FORMAL MODEL
A detailed formal description of zz-structures is presented in
[11]; in this section we summarize the main ideas concerning
the development of formal models.

The first formal model was proposed in [20], and later recon-
sidered and extended in [21]. These works deploy the idea
that a zz-structure resembles a graph, where nodes repre-
sent cells and sequence of edges represent dimensions. A
zz-structure is so defined as a directed multigraph with col-
ored edges (i.e., a graph where pair of nodes may have mul-
tiple colored edges connecting them), where each node has
at most one outcoming edge and one outgoing edge for each
color. Moreover, each of the edge colors corresponds to a
different spatial dimension, thus there are paths or cycles of
the same color.

These structures can be visualized, via H or I views, as trees.
An interesting issue is discussed in [20, 21]: zz-structures are
compared with mSpaces and Polyarchies, generating a tax-
onomy of a graph structure, where zz-structures generalize
lists, 2D arrays, trees and also polyarchies; polyarchies gen-
eralize mSpace polyarchies. Finally zz-structures and edge-
colored multigraph generalize each other. The works [20, 21]
have been re-considered, and extended in [13, 14, 15] where
the authors propose a better and deeply formalized model,
together with some novel concepts. In particular, in [13]
the authors re-propose the notion of local orientation used
in the field of distributed computing, in order to formally
define the concept of posward and negward directions.

Reference Characteristics
[20, 21] zz-structure as a directed multigraph with

colored edges, edge colors are dimensions, H/I

views are trees, taxonomy of graph structure
[13] deeply formalized model, notion of local ori−

entation dynamical addition of connections
[14] extend notion of view to to n-dimensions H/I

views, 3-dimensions extended H/I views, etc.
[15] displaying of neighbouring views

Table 1: Formal definitions.

The resulting refined model is also the base for the defini-
tion of a dynamic actor-based model where actors can add
new connections between cells of the zz-structure, i.e., can
modify its structure. In [14] the authors also extend the
standard notion of view to higher dimensional views, e.g.,
to n-dimensions H and I views, 3-dimensions extended H

and I views, etc.. Finally, in [15] they propose techniques
that allow users to display neighbouring views, i.e., views
centered in a cell at distance one from the previous one.

Table 1 summarizes all the known formal models.

4. IMPLEMENTATIONS
This section presents the ZigZag

TM
1 implementations, di-

viding them into three categories: ZigZag Virtual Interac-
tive Machines, languages and demonstrations.

4.1 Zzvims
A zzvim (term used by Nelson in [30]) is a ZigZag Virtual
Interactive Machine, implemented to view and manipulate
the universe of zzcells. The literature proposes a list of dif-
ferent zzvims, each of which presents some new features with
respect to the previous ones. A list of zzvims that have al-
ready been programmed (Azz, Ezz, Gzz and Zzz, and Lzz)
is cited in [30].
The first implementation of ZigZag was realized by Andrews
Pam in 1997 with Azz, a full open-source implementation of
zzvim, that offers only row and column views. Initially pro-
posed only for Linux, in 1998 Azz was also able to run under
Windows.
From 2000 to 2003, the Hyperstructure Group of the Univer-
sity of Jyväskylä (Finland), directed by Tuomas J. Lukka,
implemented in Java a collaborative, open-source version
GZigZag [17], successively called Gzz and finally replaced
by the Fenfire project [16]. Gzz extends the features of Azz,
by offering several views (not only row and column views),
moreover, it accepts zz-structures via XML, and represents
them using RDF (Resource Description Framework) graphs.
In the same years, Les Carr of the University of Southamp-
ton implemented, in different platforms, i.e., HTML/XML/
XSLT, Lzz [8], a prototype that works client-side with vari-
ous results in different browsers and implements much of the
ZigZag infrastructure directly as JavaScript variables rather
than ZigZag cells.
Successively, in 2003, Mikhail Seliverstov generated a re-
implementation of Azz, called Ezz. Implemented in Java,
Ezz runs on Mac and Windows and puts out and accepts
XML as Gzz.
A successive version by Jeremy Alan Smith is Zzz: De-
veloped in C with Python and running on many different
platforms, i.e., Windows, Linux and Mac, it supports the
routine-by-routine conversion of Azz and it is extensible in
Python. It also offers some 3D views in OpenGL.
A research project on bio-informatics [23] (by Adam Moore,
Tim Brailsford, and Helen Ashman of the University of Not-
tigham) highlights some limitations of the Gzz platform for
real applications: Gzz is not designed to handle large vol-
umes of data; it is dependent upon an obsolete version of
Java; and it is no longer maintained by the original develop-
ers. On this basis, [23] develops a new server-based imple-

1”ZigZag” is a registered trademark in the U.S.A. for the
zzstructure-based software of Project Xanadu.

2

Name Chracteristics Platforms
Azz Only row/ column views Linux/Windows
Gzz [17] several views, accepts zz-structure via XML, Java Unix and MS-Windows
Lzz [8] applied client side HTML/XML/XSLT
Ezz reimplementation of Azz, accepts zz-structure via XML Java, on Mac/Windows
Zzz C with Python, Windows/Linux/Mac OS Routine-by-routine conversion of Azz, exten

sible in Python some 3D views in OpenGL
Mantra server [23] C++, client-server model, Mac OSX/Ubuntu Linux

new language Mantra
Diablo [1] Python, replacement back-end for Mantra Mac OSX/ Ubuntu Linux
BigBag [4] implementation in XML of an EAD finding aid Windows, Linux and Mac
Rzz [2] industrial version of ZigZag Unix and MS-Windows

Table 2: Zzvim implementations.

mentation of ZigZag, called the Mantra server (2002-2006)
that uses a client-server model, and introduces a new lan-
guage, called Mantra. The Mantra server is written in C++
and runs on Mac OSX and Ubuntu Linux.
In order to demonstrate the ZigZag navigation in the mantraf
client (Flash) without the need to patch and build from
source, in 2008 it has been developed Diablo [1], a simple
ad-hoc replacement back-end for Mantra with a single-user
server and partial query processor implemented in Python.
Diablo is not a database and it stores zz-structures using
JSON (JavaScript Object Notation).
A new prototype, called BigBag, has been created by a
project [4] directed by Ian G. Anderson of the University
of Glasgow; BigBag is a ZigZag implementation in XML of
an EAD finding aid (Gateway to Archives of Scottish Higher
Education - GASHE) to support a flexible visualization cre-
ated in Flash.
Currently on the pages [2] of Xanadu project it is announced
an industrial version of ZigZag, called Rzz. Table 2 summa-
rizes the zzvim implementations.

4.2 Languages
Different zz-structured languages [18] have been proposed
by a research group at the University of Jyväskylä (Fin-
land). One of the first ZigZag-based languages is Thales
Clang whose main feature is that everything is an expression
(ranks, dimensions, etc.) thus can be evaluated to a value.
This language has however never been fully implemented.
Flowing Clang, is the first ZigZag scripting language in Gzz
and the first ZigZag language implementation that features
a debugger showing the entire operation of the program in-
side the zz-structure. The third implementation of GZigZag
is Clasm and is used to implement some essential features
of the GZigZag client.

Finally, Nuzzl (NU ZigZag Language), is a spatial program-
ming language in ZigZag space implemented by Jeremy Smith
(see [29]). Table 3 summarizes ZigZag languages.

4.3 Demos for Web browsers
Different demonstrations, ranging in a big variety of fields,
have been developed by Les Carr of the University of Southamp-
ton [7]; they use an XML/XSL/JavaScript implementation
of Zigzag in a Web browser, achieving interaction by dy-
namic HTML and storing the data either as XML or Java-
Script declarations embedded in an HTML framework:

Name Characteristic
Thales Clang [18] everything is an expression, never

fully implemented
Flowing Clang [18] ZigZag scripting language in Gzz,

debugs showing operation of the
program inside the zz-structure

Clasm [18] implements essential features of
the GZigZag client

Nuzzl [29] spatial programming language
in ZigZag space

Table 3: Zigzag languages.

• the Schedule Demo highlights how new dimensions can
make personal record-keeping easier;

• the Holm Family Demo models a complicated structure
such as the family tree using GZigZag; in GZigZag, the
user only needs to create new cells and connect them
along different dimensions, in usual computer systems
instead this requires the generation of a specific dedi-
cated program;

• the PicZag Demo is a test which just demonstrates
that in ZigZag it is possible use any kind of data: Pic-
tures, sound or videos.

• the Function Demo shows how a function can be eval-
uated as part of the automatic rendering of a cell, or
when requested by a user.

• the London Underground Demo contains the basic in-
frastructure of the Central London underground routes
in terms of the major lines (cells are train stations, di-
mensions are train lines). It also links underground
stations to attractions above, and different touristic
attractions above ground.

Table 4 summarizes the demos.

5. APPLITUDES
An interesting characteristic of zz-structures is their flexibil-
ity: data may be stored and efficiently retrieved by following
the ”meaning” of each dimension. E.g., in an e-learning con-
text, a dimension may represent a studying topic, let us say
ancient history, thus following this particular dimension the

3

Name Characteristic
Schedule Personal record-keeping
Holm Family A family tree
PicZag Test proving the use of

any kind of data
Function Function evaluation
London Underground London underground routes

Table 4: Zigzag demos.

user may navigate and extract all the information related to
ancient Greeks. Another nice feature of zz-structures is that
they allow to display cells, i.e., data, on the space, providing
a nice overview and an easy reading of its contents. Given
its powerful characteristics, these structures have been ex-
ploited to solve many different real-world problems. In this
section, we give a very short description of the ones that, to
the best of our knowledge, have been proposed in the litera-
ture. As the reader will notice, these problems range in very
different and not closely related fields. As we have men-
tioned in the introduction, we will use the term applitude to
refer to “a part of a zz-structure, utilizing a set of views and
dimensions in order to express a specific functionality over
a particular part of that space” [24].

Bionformatics Workspace. Bioinformatics is a field in which
computer science techniques are applied to biology. In bi-
ology information is wide, complex, interrelated, thus there
is a very strong need for efficient storage and query mecha-
nisms, and zz-structures easily provide all these features. In
particular, bioinformatics aims at properly reorganizing this
information in order to, e.g., devise treatments for diseases.
Two different applications of zz-structures to bioinformatics
have been presented in [22, 24].
In [22], the authors propose the use zz-structures for the
structure/binding prediction of new molecules that are nec-
essary for the design of new drugs. To this aim, it is im-
portant to define efficient mechanisms for the choice of a
molecule that will mimic an interaction at a specific place
(called “active site”) with a particular protein.
In [24] the authors propose a Bioinformatics Workbench, i.e.,
an information manager for bioinformatics. They store dif-
ferent information in a zz-structure and organize it in what
they call zzLists.

Grid models. The massive use of the Web’s functionality
and the need to gather enough computational resources for
running different applications at different heterogeneous lo-
cations are some of the aspects that have led to the birth of
the grid infrastructure.
In [13], the authors concentrate on AZ, a grid model based
on an extension Actor-based of Zz-structures. They provide
a formal description of virtual organizations (V Os), mean-
ingful part of a particular grid infrastructure, the data grid.
The choice of modeling with zz-structures some fundamen-
tal parts of a grid, such as the organizations, responds to
key aspects of grids, that are, e.g., composition of resources,
closure and fractal properties [19]; also, zz-structures are
minimalist and may be defined in a recursive way, by com-
position, generating local and global grids, or a hierarchy
of grids, and larger grids can be constructed by composing
smaller (perhaps local) grids.

Cellular phones. Typically, cellular phones contain several
items of information, almost all of which are related to each
other: contacts are associated to individual phone numbers;
phone numbers are related to both individual phone conver-
sations and SMS texts; contacts also have addresses; and so
on. Although the intertwined relationships of these items
are complex, in the current generations of phones, this in-
formation is stored using a simplistic model, and often the
underlying connectivity is severely constrained.
zzPhone [24] is a ZigZag phone applitude which exploits the
powerful viewing features of zz-structures; by selecting an
item of information and the connected dimensions of inter-
est, it is possible to see the item in the desired context and
manage a wide set of connections, not directly accessible in
traditional systems.

Web-based education. Web-based education has become a
very important area of educational technology and a chal-
lenge for semantic Web techniques. Web-based education
enables learners and authors (teachers) to access a wide
quantity of continuously updated educational sources. In
order to simplify the learning process of learners and the
course organization process of authors, it is important to of-
fer them tools to: 1) Identify the collection of “interesting”
documents; 2) store the found collection of documents in
adequate structures; create personalized adaptive paths and
views for learners.
In this area, we discuss of two works [14] and [5], that exploit
the power of zz-structures for the organization and retrieval
of information.
In [14] the authors concentrate their attention on point 2);
in particular, they assume that an author has a collection of
available documents on a given topic that have to be orga-
nized in concept maps, suitable for different learners. Au-
thors need adequate tools to organize documents in a con-
cept space, and to create semantic interconnections and per-
sonalized maps. The proposed solution is based on the use
of zz-structures, and extends the concepts of H and I views
from a number 2 towards a number n > 2 of dimensions,
in order to present a new concept map model for e-learning
environments. [5] provides a tool for supporting the authors
in their tasks of selecting and grouping the learning mate-
rial. The ‘à la’ (Associative Linking of Attributes) in Edu-
cation enhances the search engine results by extracting the
attributes (keywords and document formats) from the text.
The relationships between the attributes are established and
visualized using the ZigZag principles.

Virtual museum tours. Guided tours inside virtual muse-
ums have strong similarities to standard information sys-
tems searches. In virtual learning museums, users explore a
structured hyperspace with context-adapted narration, in-
teracting with a system that recreates a real life museum
tour guided by a real museum guide. Generally, museums
have sites that assume standard figures of users and do not
allow personalized visits, based on different interests, back-
grounds, etc.
In [15] the authors present an application to the user tours
of virtual museums, that exploits the retrieval power of zz-
structures. In particular, the authors consider the formal
model presented in [14] for the visualization of personalized
views, recreate it in the context of virtual museum tours,
and extend it in order to allow the users to interact with

4

the system and (partially) choose and personalize the path
to follow during their navigation. That is, they show how
users may first create and display personalized H-views, and
then personalize their paths, by deciding to which neighbor-
ing view they will move, what dimension they would like to
add/remove, and so on. During this navigation process, the
users can also store the information they find interesting in
an album, in order to create a personal, re-usable workspace.

Archival finding aids. As more archival finding aids, of in-
creasing complexity, become available on-line the difficulty
of browsing and navigating the results increases. This is
particularly the case when the finding aids are implemented
in EAD (Encoded Archival Description) a hierarchical or-
ganization of archival collections, typically implemented in
XML. In part, navigational difficulties are inherent in any
hierarchical structure, but also they are a symptom of the
lack of innovation in visualizing archival information.
In [4], the author develops a novel approach for structuring
and visualizing archival information by applying a flexible
visualization interface to an EAD finding aid that has been
transformed into Ted Nelson’s zz-structure. BigBag uses a
development of the XML zz-structure produced for London
Underground demo (see Section 4.3).

Electronic Editions of musical works. Archimedes [6] is a
project devoted to the preservation and the access to electro-
acoustic music documents. These documents cluster an ex-
tended set of data that provide essential insights in produc-
tion schemes and copy generations, and need to be preserved
and compared.
Archimedes proposes the application of a new actor-based
extension of zz-structures. The cooperation activity of dif-
ferent actor classes allows to create innovative, graph-centric
browsing perspectives for the users and to offer to them au-
thoring tools for the runtime creation of new virtual sources.

Personal information spaces.

In [9] the authors present an innovative architecture, con-
ceived in terms of a multi-agent systems and aimed at cre-
ating, managing and sharing personal information spaces.
Data and knowledge may be directly added by users, but
also collected and structured with the support of content
retrieval, filtering and automatic tagging techniques. Con-
ceptual spaces organize personal information spaces using
zz-structures, and propose, by means graph-centric views,
contextual interconnections among heterogeneous informa-
tion. The structure of each conceptual space, constituted
by a set of links to items (cells and edges) included into the
Knowledge Base and a set of private items, is stored into the
User Profile (UP). A UP is assigned to each registered user;
it is used to store, in addition to data representing user’s
conceptual spaces, user information collected both implic-
itly and explicitly.

Sentiment Classification. In [10], the authors consider the
problem of tracking the opinion polarity, in terms of positive
or negative orientation, expressed in documents written in
natural language and extracted from a heterogeneous set of
Web sources. More specifically, they focus their attention
on the movie reviews domain and are interested in evaluat-
ing the performance obtained by a set of high performance

opinion polarity classifiers for the Italian language. Clas-
sification of polarity expressed by the input documents is
achieved by means of several sets of specialized autonomous
or interacting agents, devoted, respectively, to document
gathering, classification and visualization. In particular the
results of opinion analysis are represented by means of a
graphical interface, where a multi agent based implementa-
tion of zz-structures is exploited to offer graph-centric views
and navigation of results. The specific experimental eval-
uation performed so far shows an accuracy level, which is
higher than previous results reported in the literature.

Associative writing tool. AWT (Associative writing tool) [31]
is a tool for supporting the writing process. Textual artifacts
are organized in different layers, have explicit links connect-
ing them, and implicit Xanadu links between their contents.
The tool supports spatial positioning of textual artifacts that
are stored in zz-structure cells, but depending on the type
of connections they can be atomic elements or parts of a set.
Table 4 summarizes all the known applitudes.

Applitude Chracteristics
Bioinformatics Workspace structure binding prediction
[22, 24] of new molecules, a Bio-

informatics Workbench
Grid models [13] Actor-based grid model
Cellular phones [24] ZigZag phone
Web-based education concept map model
[14, 5] e-learning
Virtual museum tours visualization/navigation
[15] in virtual museums
Archival finding aids [4] structuring/

visualizing archival data
Electroninc Editions preservation/access to electro-
of musical works [6] acoustic music documents
Personal information spaces creating/managing/
[9] sharing personal
Sentiment Classification [10] opinion polarity
Associative writing tool [31] writing process support

Table 5: Applitudes.

6. CONCLUSION
In this paper we have presented a state of art survey of
formal descriptions, implementations and applications of zz-
structures. As we have shown these structures are widely ac-
cepted and adopted. Implementations have been developed
for different platforms (Windows, Linux, Mac), applitudes
have been designed in different fields, from bioinformatics,
to e-learning, etc.. In our opinion, the state of art is very
promising and implementations and applitudes of the future
promise to be very intuitive and accessible in different fields.
We hope this survey will stimulate further discussion on the
topic.

7. REFERENCES
[1] Diablo. https://code.launchpad.net/python-diablo.

[2] Rzz. http://www.xanadu.com/zigzag/.

[3] I. Anderson. Bigbag. http://www.hatii.arts.gla.ac.uk/
research/visual/visual.htm.

5

[4] I. Anderson. From ZigZagTM to BigBag: Seeing the
wood and the trees in online archive finding aids. In
Proceedings of Workshop on New Forms of
Xanalogical Storage and Function, June 29 2009.

[5] M. Andric, V. Devedzic, W. Hall, and L. Carr.
Keywords linking method for selecting educational
web resources à la zigzag. International Journal of
Knowledge and Learning, 3(1):30–45, 2007.

[6] S. Canazza and A. Dattolo. Open, dynamic electronic
editions of multidimensional documents. In IASTED
Proceedings of European Conference on Internet and
Multimedia Systems and Applications, pages 230–235.
Chamonix (France), March 14-16 2007.

[7] L. Carr. http://users.ecs.soton.ac.uk/lac/zigzag/.

[8] L. Carr. Zigzag for web browsers, 2001.
http://www.ecs.soton.ac.uk/∼lac/zigzag.

[9] P. Casoto, A. Dattolo, F. Ferrara, N. Pudota,
P. Omero, and C. Tasso. Toward making agent uml
practical: a textual notation and a tool. In Proceedings
of the Workshop on Adaptation for the Social Web,
5th ACM Int. Conf. on Adaptive Hypermedia and
Adaptive Web-Based Systems, pages 14–23. Germany,
29 July - 1 August 2008.

[10] P. Casoto, A. Dattolo, and C. Tasso. Sentiment
classification for the italian language: A case study on
movie reviews. Journal of Internet Technology, Special
issue on Intelligent Agent and Knowledge Mining,
9(4):365–373, 2008.

[11] A. Dattolo and F. Luccio. A formal description of
zigzag-structures. In Proceedings of Workshop on New
Forms of Xanalogical Storage and Function, June 29
2009.

[12] A. Dattolo and F. L. Luccio. A New Concept Map
Model for E-learning Environments. Lecture Notes in
Business Information Processing, ISSN 1865-1348,
LNBIP 18, 2009.

[13] A. Dattolo and F. L. Luccio. A new actor-based
structure for distributed systems. In International
Conference on Hypermedia and Grid Systems
(HGS07), pages 195–201. Opatija, Adriatic Coast
(Croatia), May 21-25 2007.

[14] A. Dattolo and F. L. Luccio. Formalizing a model to
represent and visualize concept spaces in e-learning
environments. In Proceedings of the 4th Webist
International Conference (WEBIST08), pages
339–346. Funchal, Madeira, Portugal, 4-7 May 2008.

[15] A. Dattolo and F. L. Luccio. Visualizing personalized
views in virtual museum tours. In International
Conference on Human System Interaction (HSI08),
pages 109–114. Krakow, Poland, 25-27 May 2008.

[16] Fenfire. http://fenfire.org/.

[17] GZigZag. Home page. http://gzigzag.sourceforge.net.

[18] A. J. Kaijanaho and B. Fallenstein. Totally different
structural programming programming languages in
zigzag. In Proceedings of the First International
ZigZag Conference, part of ACM Hypertext
Conference 2001. Aarhus, Denmark, August 2001.

http://www.mit.jyu.fi/antkaij/plinzz.html.

[19] F. Manola and C. Thompson. Characterizing
Computer-Related Grid Concepts. Object Services and
Consulting, Inc., 1999.

[20] M. McGuffin. A graph-theoretic introduction to ted
nelson’s zzstructures. January 2004.
http://www.dgp.toronto.edu/∼mjmcguff
/research/zigzag/.

[21] M. McGuffin and m. c. schraefel. A comparison of
hyperstructures: Zzstructures, mspaces, and
polyarchies. In Proceedings of the 15th ACM
Conference on Hypertext and Hypermedia (HT’04),
pages 153–162. Santa Cruz, California, USA, August
9-13 2004.

[22] A. Moore and T. Brailsford. Unified hyperstructures
for bioinformatics: escaping the application prison.
Journal of Digital Information, 5(1):Article No.254,
2004.

[23] A. Moore, T. Brailsford, and H. Ashman. Zigzag for
bioinformatics, 2002-2006.
http://www.cs.nott.ac.uk/Research/webtech/zzbio/.

[24] A. Moore, J. Goulding, T. Brailsford, and H. Ashman.
Practical applitudes: Case studies of applications. In
Proceedings of the 15th ACM Conference on Hypertext
and Hypermedia (HT’04), pages 143–152. Santa Cruz,
California, USA, August 9-13 2004.

[25] T. H. Nelson. What’s on my mind. In Invited talk at
the first Wearable Computer Conference. Fairfax VA,
May 12-13 1998.
http://www.xanadu.com.au/ted/zigzag/xybrap.html.

[26] T. H. Nelson. Welcome to zigzag. 1999.
http://xanadu.com/zigzag/tutorial/ZZwelcome.html.

[27] T. H. Nelson. Xanalogical structure, needed now more
than ever: parallel documents, deep links to content,
deep versioning, and deep re-use. ACM Computing
Surveys, 31(4:33), 1999.

[28] T. H. Nelson. Zigzag (tech briefing): Deeper
cosmology, deeper documents. In Proceedings of the
12-th ACM conference on Hypertext and Hypermedia
(HT’01), pages 261–262. University of Aarhus,
Aarhus, Denmark, August 14-18 2001.

[29] T. H. Nelson. Structure, tradition and possibility. In
Proceedings of 14th ACM Conference on Hypertext
and Hypermedia (HT’03). Nottingham, United
Kingdom, August 26-30 2003.
http://www.ht03.org/keynote-ted.html.

[30] T. H. Nelson. A cosmology for a different computer
universe: data model mechanism, virtual machine
and visualization infrastructure. Journal of Digital
Information: Special Issue on Future Visions of
Common-Use Hypertext, 5(1):298, 2004.

[31] K. Wideroos. Awt (associative writing tool):
supporting writing process with a zigzag based writing
tool - work in progress. In Proceedings of the 12-th
ACM conference on Hypertext and Hypermedia
(HT’01), pages 35–36. University of Aarhus, Aarhus,
Denmark, August 14-18 2001.

6

A formal description of zz-structures

Antonina Dattolo
Dipartimento di Matematica e Informatica

Università degli Studi di Udine, Italy
antonina.dattolo@uniud.it

Flaminia L. Luccio
Dipartimento di Informatica

Università Ca’ Foscari, Venezia, Italy
luccio@unive.it

ABSTRACT
The focus of this paper is on particular and innovative struc-
tures for storing, linking and manipulating information: the
zz-structures.

In the last years, we worked at the formalization of these
structures, retaining that the description of the formal as-
pects can provide a better understanding of them, and can
also stimulate new ideas, projects and research.
This work presents our contribution for a deeper discussion
on zz-structures.

1. INTRODUCTION
At the first Wearable Computer Conference [18], Ted Nel-

son proposed “a prototype that implements some interesting
ideas, intended to lead to such a new kind of simple and
unified world, possibly to permit the unification of every-
thing that non-computer people want to do with comput-

ers”. The software was ZigZag
TM

1, a “principled system of
interconnections” [19] and a new, graph-centric system of
conventions for data and computing, based on the so-called
zz-structures.

Nelson writes [19]: “The ZigZag system is very hard to ex-
plain, especially since it resembles nothing else in the com-
puter field that we know of, except perhaps a spreadsheet cut
into strips and glued into loops”. Zz-structures are hyper-
orthogonal, non-hierarchical structures for storing, linking
and manipulating data. Intuitively, data are contained in
cells that are connected by crossing dimensions forming a
structure that resembles a spreadsheet but contains intri-
cate connections [18, 19, 20, 21, 22, 23].

Zz-structures have been seen from many different perspec-
tives: merely a large variety of implementations and appli-
tudes, and some formal models have been proposed. We
specify that we use the term “applitude” instead of “appli-
cation”. Nelson states [23]: “Instead of “applications”, sep-
arated zones of function and usage connected by the nar-
row channels of clipboard and file export/import, we have
“applitudes” which are deeply interconnected to the whole,
amongst themselves, and amongst their parts”. The main
difference is that, unlike applications, applitudes exploit the
dense and intricate connections among the information con-
tained in a zz-structure. Applitudes can also be combined
with each other and are not “walled off” from the rest of
the system. Table 1 collects a list of research contribu-
tions (applitudes and implementations), developed using zz-

1”ZigZag” is a registered trademark in the U.S.A. for the
zzstructure-based software of Project Xanadu.

structures.

Year Domain Reference

1984-2004 zz-vims (Azz, Ezz, [23]
Gzz and Zzz, and Lzz)

2001 Associative writing [24]
2001 Various Demos [4]

2002-2006 Bionformatics [16, 17]
2004 Cellular phones [17]

2006-2007 Archival finding aids [1]
2007 Grid Systems [9]

2007-2009 Web-based Education [2, 10, 12]
2007-2009 Audio Archives [3, 7]

2008 Personal Information Space [5]
2008 Sentiment Classification [6]
2008 Virtual Museums [11]
2009 Publication Sharing Systems [8]

Table 1: Models and applitudes

Zz-structures are “a generalized representation for all data
and a new set of mechanisms for all computing” [23]: inno-
vative structures for storing, linking and manipulating in-
formation.

The intention of this work is to present our contribution to
the formalization of zz-structures and to encourage further
discussion. In our opinion, the description of a formal model
can provide a deeper understanding of the model and can
stimulate new ideas, projects and research.

The paper is organized as follows: in Section 2, we give
an informal description of zz-structures, that prepares the
reader to the formal model presented in Section 3. We
conclude in Section 4 with a brief discussion and future look.

2. THE ZZ-STRUCTURES
Zz-structures introduce a new, graph-centric system of

conventions for data and computing [19]. A zz-structure
can be thought of as a space filled with cells. Each cell may
have a content (such as integers, text, images, audio, etc.),
and it is called atomic if it contains only one unit of data of
one type, or it is called referential if it represents a package
of different cells [23].

Cells are connected together with links of the same color
into linear sequences called dimensions. A single series of
cells connected in the same dimension is called rank, i.e.,
a rank is in a particular dimension and a dimension may
contain many different ranks. The starting and the ending

7

cells of a rank are called, headcell and tailcell, respectively,
and the direction from the starting (ending) to the ending
(starting) cell is called posward (respectively, negward). For
any dimension, a cell can only have one connection in the
posward direction, and one in the negward direction. This
ensures that all paths are non-branching, and thus embodies
the simplest possible mechanism for traversing links. Dimen-
sions are used to project different structures: Ordinary lists
are viewed in one dimension; spreadsheets and hierarchical
directories in many dimensions.

There are many different ways to view these structures: A
raster is a way of selecting the cells from a structure, while
a view is a way of placing the cells on a screen. Generic
views are designed to be used in a big variety of cases and
usually show only few dimensions or few steps in each di-
mension. Among them the most common views are the two-
dimensional rectangular views: The cells are placed, using
different rasters, on a Cartesian plane where the dimensions
increase going down and to the right. The simplest raster
is the row and column raster, i.e., two rasters which are the
same but rotated of 90 degrees from each other. A cell is
chosen and placed at the center of the plane (cursor centric
view). The chosen cell, called focus, may be changed by
moving the cursor horizontally and vertically. In a row view
I, a rank is chosen and placed vertically. Then the ranks
related to the cells in the vertical rank are placed horizon-
tally. Vice versa, in the column view H, a rank is chosen and
placed horizontally and the related ranks are placed verti-
cally. All the cells are denoted by different numbers. Note
that in a view the same cell may appear in different positions
as it may represent the intersection of different dimensions.

3. FORMALIZING ZZ-STRUCTURES
As we have mentioned in the introduction, zz-structures

have been studied from many perspectives, and many imple-
mentations and applitudes have been proposed in different
fields. Some research has also been provided towards a for-
mal definition of these structures. In the seminal work of
[14], we find the first proposal of formalizing these struc-
tures in terms of graphs; this work has been extended and
motivated in [15], where the authors use this formalization
in order to compare these structures with mSpaces and Pol-
yarchies. This comparison is done building a taxonomy as
a subsumption diagram, a subsumption being a generaliza-
tion of something. The general result is that zz-structures
subsume lists, 2D arrays, trees and also polyarchies; pol-
yarchies subsume mSpace polyarchies. Finally zz-structures
and edge-colored multigraph subsume each other.

Later, in [9, 10, 11, 12] we have revisited and redefined
into more precise mathematical terms, the definitions of zz-
structures provided in [14, 15], and have also introduced
new notions such as the one of local orientation, borrowed
from the field of distributed computing, and required to pro-
vide a formal definition of local posward and negward direc-
tions. The formal model is a requirement in [9] for the con-
struction of an actor-based model where actors can add new
connections between cells of the zz-structure, i.e., dynami-
cally modifying its structure. Moreover, this formalization
has provided interesting tools for the introduction of new
formal concepts, such as the extension of the standard no-
tion of view to higher dimensional views (e.g., n-dimensions
H and I views, 3-dimensions extended H and I views, etc.)
[10, 12], and for the definition of techniques that allow users

V1

V2

V4

V3

V5 V6

Figure 1: An example of zz-structure.

to display neighbouring views (i.e., views centered in a cell
at distance one from the previous one) [11].

The aim of this section is to summarize, analyze, and il-
lustrate with new examples, discuss and relate all the above
proposals in order to provide a general overview of the formal
model, at least for the original concepts defined by Nelson
in [18].

Zz-structure.

In [14, 15] the authors define a zz-structure as a directed
multigraph with colored edges (i.e., a graph where pair of
nodes may have multiple colored edges connecting them),
where each node has at most one outcoming edge and one
outgoing edge for each color. In [9] the authors further for-
malize these concepts (choosing however bidirectional links)
as follows.

Consider an edge-colored multigraph ECMG = (MG, C, c)
where: MG = (V, E, f) is a multigraph composed of a set
of vertices V , a set of edges E and a surjective function
f : E → {{u, v} | u, v ∈ V, u 6= v}. C is a set of colors,
and c : E → C is an assignment of colors to edges of the
multigraph. Finally, deg(x) (respectively, degk(x)) denotes
the number of edges incident to x, (respectively, of color ck).

Definition 1. : Zz-structure - A zz-structure is an edge-
colored multigraph S = (MG, C, c), where MG = (V, E, f),
and ∀x ∈ V, ∀k = 1, 2, ..., |C|, degk(x) = 0, 1, 2. Each vertex
of a zz-structure is called zz-cell and each edge a zz-link. The
set of isolated vertices is V0 = {x ∈ V : deg(x) = 0}.

An example of a zz-structure is shown in Figure 1. Normal,
dotted and thick lines represent different colors.

Dimension.

In [15] the authors state that “each of the edge colors
correspond to a different spatial dimension”. This concept,
together with all the following definitions, is further formal-
ized in [9] where the authors state that an alternative way of
viewing a zz-structure is a union of subgraphs, each of them
containing edges of a unique color.

Proposition 1. Consider a set of colors C = {c1, c2, ..., c|C|}

and a family of indirect edge-colored graphs {D
1
, D

2
, ...,

D
|C|

}, where D
k = (V, E

k
, f, {ck}, c), with k = 1, ..., |C|, is

a graph such that: 1) E
k
6= ∅; 2) ∀x ∈ V , degk(x) = 0, 1, 2.

Then, S =
S|C|

k=1
D

k is a zz-structure.

Definition 2. : Dimension - Given a zz-structure S =
S|C|

k=1
D

k, then each graph D
k, k = 1, . . . , |C|, is a distinct

dimension of S.

8

The zz-structure of Figure 1 contains three dimensions D
thick,

D
normal and D

dotted, respectively represented by thick, nor-
mal, and dotted lines and shown in Figure 2. In turn, each

V3 V1 V2 V4 V5 V6

V1 V2 V4 V3 V5 V6

V2 V3 V5 V4
V1V6

Dnormal

Ddotted

Dthick

Figure 2: The dimensions D
thick, D

normal and D
dotted.

dimension is composed by a set of connected components
and a set (eventually empty) of isolated vertices. As an
example, D

normal is composed of a cycle {v1, v2, v4, v1}, a
path {v3, v5}, and one isolated vertex v6, while D

thick is
composed of two distinct paths {v3, v1}, {v2, v4, v5, v6}, and
no isolated vertex.

Rank.

Each “series of cells connected sequentially in any dimen-
sion” identifies a rank [23].

Definition 3. : Rank - Consider a dimension D
k = (V,

E
k
, f, {ck}, c), k = 1, . . . , |C| of a zz-structure S = ∪

|C|
k=1

D
k.

Then, each of the lk (lk ≥ 1) connected components of D
k

is called a rank.

Thus a rank is an indirect graph R
k

i = (V k

i , E
k

i , f, {ck}, c)
(i = 1, 2, . . . , lk) such that 1) E

k

i ∈ E
k and E

k

i 6= ∅; 2)
∀x ∈ V

k

i , V
k

i ∈ V , degk(x) = 1, 2.

Definition 4. : Ringrank - A ringrank is a rank R
k

i ,
where ∀x ∈ V

k

i , degk(x) = 2.

In Figure 2, the dimension D
thick has two ranks: {v3, v1}

and {v2, v4, v5, v6}; the dimension D
normal has one rank

{v3, v5}, and one ringrank {v1, v2, v4, v1}.

Cells and their orientation.

A vertex [9] has local orientation on a rank if each of its
(1 or 2) incident edges has assigned a distinct label (1 or -1).
More formally (see also [13]):

Definition 5. : Local orientation - Consider a rank

R
k

i = (V k

i , E
k

i , f, {ck}, c) of a zz-structure S = ∪
|C|
k=1

D
k.

Then, ∃ a function g
i

x : E
k

i → {−1, 1}, such that, ∀x ∈ V
k

i ,
if ∃y, z ∈ V

k

i : {x, y}, {x, z} ∈ E
k

i , then g
i

x({x, y}) 6=
g

i

x({x, z}). Thus, we say that each vertex x ∈ V
k

i has a
local orientation in R

k

i .

Definition 6. : Posward and negward directions -
Given an edge {a, b} ∈ E

k

i , we say that {a, b} is in a posward
direction from a in R

k

i , and that b is its posward cell iff
g

i

a({a, b}) = 1, else {a, b} is in a negward direction and a

is its negward cell. Moreover, a path in rank R
k

i follows a
posward (negward) direction if it is composed of a sequence
of edges of value 1 (respectively, -1).

Head and tail cells.

If we focus on a vertex x, R
k

i = . . . x
−2

x
−1

xx
+1

x
+2

. . . is
expressed in terms of negward and posward cells of x: x

−1

is the negward cell of x and x
+1 the posward cell. We also

assume x
0 = x. In general x

−i (x+i) is a cell at distance i

in the negward (posward) direction.

Definition 7. : Headcell and tailcell - Given a rank
R

k

i = (V k

i , E
k

i , f, {ck}, c), a cell x is the headcell of R
k

i iff ∃ its
posward cell x

+1 and 6 ∃ its negward cell x
−1. Analogously,

a cell x is the tailcell of R
k

i iff ∃ its negward cell x
−1 and 6 ∃

its posward cell x
+1.

Views.

In the following, we denote with x ∈ R
a

(x)
the rank R

a

(x)

related to vertex x, of color ca.

Definition 8. : H-view - Given a zz-structure S = ∪
|C|
k=1

D
k,

where D
k = ∪

lk

i=1
(Rk

i ∪V
k

0), and where R
k

i = (V k

i , E
k

i , f, {ck},

c), the H-view of size l = 2m + 1 and of focus x ∈ V =

∪
lk

i=0
V

k

i , on main vertical dimension D
a and secondary hor-

izontal dimension D
b (a, b ∈ {1, ..., lk}), is defined as a tree

whose embedding in the plane is a partially connected col-
ored l × l mesh in which:

• the central node, in position ((m + 1), (m + 1)), is the
focus x;

• the horizontal central path (the m + 1-th row) from
left to right, focused in vertex x ∈ R

b

(x)
is:

x
−g

. . . x
−1

xx
+1

. . . x
+p where x

s
∈ R

b

(x)
, for s =

−g, . . . , +p (g, p ≤ m).

• for each cell x
s, s = −g, . . . , +p, the related vertical

path, from top to bottom, is:
(xs)−gs . . . (xs)−1

x
s(xs)+1

. . . (xs)+ps , where (xs)t
∈

R
a

(xs)
, for t = −gs, . . . , +ps (gs, ps ≤ m).

Intuitively, the H-view extracts ranks along the two chosen
dimensions. Note that, the name H-view comes from the
fact that the columns remind the vertical bars in a capital
letter H. Observe also that the cell x

−g (in the m + 1-th
row) is the headcell of R

b

(x)
if g < m and the cell x

+p (in

the same row) is the tailcell of R
b

(x)
if p < m. Analogously,

the cell x
−gs is the headcell of R

a

(xs)
if gs < m and the cell

x
+ps is the tailcell of R

a

(xs)
if ps < m. Intuitively, the view

is composed of l × l cells unless some of the displayed ranks
have their headcell or tailcell very close (less than m steps)
to the chosen focus.

As an example consider Figure 3 left that refers to the
zz-structure of Figure 1. The main vertical dimension is
D

dotted and the secondary horizontal dimension is D
thick.

The view has size l = 2m + 1 = 5, the focus is the node v5,
the horizontal central path is {v2, v4, v5, v6}. The vertical
path related to v4 is {v3, v5, v4, v6}, that is v6 is the tailcell
of the rank as ps = 1 < m = 2.

The I-view can be defined analogously to the H-view
[9]. An example of I-view with main horizontal dimension
D

dotted, secondary vertical dimension D
thick, size l = 5 and

focus v5 is shown in Figure 3 right.
We can now extend the known definition of H and I views

to a number n > 2 of dimensions [10]. Intuitively, we will

9

V5

V3

V2 V4 V6

V3

V5

V3

V2

V4

V4

V5

D
d
o
tt
e
d

Dthick

V2 V4 V5 V6

V2

V4

D
d
o
tt
e
d

Dthick

V5

V6V2

V6 V6
V4

V6

V5

V3

V5

V4 V5

V1

Figure 3: An example of H-view and I-view.

build n − 1 different H-views (respectively, I-views), cen-
tered in the same focus, with a fixed main dimension and a
secondary dimension chosen among the other n − 1 dimen-
sions. Formally:

Definition 9. n-dimensions H-view - Given a zz-struc-

ture S = ∪
|C|
k=1

D
k, where D

k = ∪
lk

i=1
(Rk

i ∪ V
k

0), and where

R
k

i = (V k

i , E
k

i , f, {ck}, c), the n-dimensions H-view of size

l = 2m + 1 and of focus x, x ∈ V = ∪
lk

i=0
V

k

i , on dimensions
D

1
, D

2
, . . . , D

n is composed of n − 1 rectangular H-views,
of main dimension D

1 and secondary dimensions D
i, i =

2, . . . , n, all centered in the same focus x.

Analogously, we can define an n-dimensions I-view. An
example of a 3-dimensions H-view is provided in Figure 4.

V5

V2

V2 V5

V5

V3

V6

V3

V2

D
d
o
tt
e
d

Dthick

V4

Dnormal

V1

V1

V6

V5

V3

V6

V4

V5

V4

V2

V5

V3

V3

Figure 4: An example of a 3-dimensions H-view.

This view has focus on v4, size l = 5, main dimension
Ddotted, and secondary dimensions Dthick and Dnormal.

A star view [12] visualizes information related to a focus
vertex and a set of n chosen dimensions. There are two
typologies of star views: the star view and the m-extended
star view.

Definition 10. Star view - Given a zz-structure S =
S|C|

k=1
D

k, where D
k =

S

lk

i=1
R

k

i ∪ V
k

0 , and where R
k

i =

(V k

i , E
k

i , f, {ck}, c), the star view of focus x ∈ V =
S

lk

i=0
V

k

i

and dimensions D
1
, D

2
, . . . , D

n is a star graph n+1-star on

central vertex x and neighborhood N(x) = {y ∈ V : y =
x

+1
, x

+1
∈ R

i

(x)
, i ∈ {1, . . . , n}}.

The m-extended star view extends the number of cells di-
rectly accessible from a view; it is based on a star view, but,
for each vertex y in the neighborhood N(x), adds the set of
the p (p ≤ m) posward cells related to the given dimensions.

Definition 11. m-extended star view - Given a zz-struc-

ture S =
S|C|

k=1
D

k, where D
k =

S

lk

i=1
R

k

i ∪ V
k

0 , and where

R
k

i = (V k

i , E
k

i , f, {ck}, c), the m-extended star view is a star

view of focus x ∈ V =
S

lk

i=0
V

k

i , dimensions D
1
, D

2
, . . . , D

n,
and each extension constituted, ∀y ∈ N(x) and ∀i ∈ {1, . . . , n},
by the paths (y+1

, . . . , y
+p) ⊆ R

i

(x)
(p ≤ m).

Fig. 5 shows an schematic example of 5-extended star view.

V6

V3

*

V5

V1

V5

V10

V21

Figure 5: A 5-extended star view.

The view has focus v3 and shows the connections along six
dimensions. Note that cells v1 and v5 have, e.g., extension
p = 0, while the maximum extension (p = m = 5) is reached
only by the connection along the dashed and double lines.

For lack of space, we cannot provide all the formal ex-
tensions to multidimensional views, the algorithms for the
additions of new connections and the displaying of neigh-
bouring views and we refer interested readers to [9, 10, 11,
12]. Just note that the above formal models have found
interesting real world applications. Very briefly, in [9] the
authors present an actor-based model, capable of represent-
ing both hypermedia distribution and collaborative schemes
among different and heterogeneous entities which are part
of a particular grid infrastructure and cooperate in order
to achieve common goals and solve problems. In [10, 12],
the authors propose the use zz-structures in order to help
an author of an e-learning environment, to organize docu-
ments on a given topic in a concept space, and to create
semantic interconnections and personalized maps. Finally,
in [11] the authors propose a multi-agent adaptive system to
support tours of virtual museums. In particular, the agents
collaborate in order to help users visualizing their personal-
ized views and choosing their navigational path inside the
virtual museum.

4. DISCUSSION AND CONCLUSIONS
In this paper we have concentrated our attention on the

formal models for representing zz-structures. Besides the
motivations, above provided, in our opinion a formal model
can help the navigation of a user by providing extra informa-
tion, such as, e.g., the distances between the cell where (s)he

10

is located and one where (s)he wants to move. Defining zz-
structures as graphs allows, e.g., the application of known al-
gorithms for the (dynamical) computation of shortest paths,
or of paths with small stretch factor (i.e., ratio between the
best path connecting two nodes and the shortest path). A
user may thus compute a general shortest path, or, e.g., a
shortest path (given that the two nodes are connected) in the
subgraph induced by a particular color, meaning that (s)he
wants to move following a unique dimension, i.e., concept.

Currently we are extending the formal model and prepar-
ing a survey of current literature on zz-structures, in order
to analyze and synthesize it, and to stimulate new reflec-
tions and studies on this innovative way of conceiving the
organization of information and knowledge.

5. REFERENCES
[1] I. Anderson. From ZigZagTM to BigBag: Seeing the

wood and the trees in online archive finding aids. In
Proceedings of the Workshop on New Forms of
Xanalogical Storage and Function. Turin, Italy, 29
June 2009.

[2] M. Andric, V. Devedzic, W. Hall, and L. Carr.
Keywords linking method for selecting educational
web resources à la ZigZag. International Journal of
Knowledge and Learning, 3(1):30–45, 2007.

[3] S. Canazza and A. Dattolo. Open, dynamic electronic
editions of multidimensional documents. In IASTED
Proceedings of European Conference on Internet and
Multimedia Systems and Applications, pages 230–235.
Chamonix (France), 14-16 March 2007.

[4] L. Carr. ZigZag for web browsers, 2001.
http://www.ecs.soton.ac.uk/∼lac/zigzag.

[5] P. Casoto, A. Dattolo, F. Ferrara, N. Pudota,
P. Omero, and C. Tasso. Toward making agent uml
practical: a textual notation and a tool. In Proceedings
of the Workshop on Adaptation for the Social Web,
5th ACM Int. Conf. on Adaptive Hypermedia and
Adaptive Web-Based Systems, pages 14–23. Germany,
29 July - 1 August 2008.

[6] P. Casoto, A. Dattolo, and C. Tasso. Sentiment
classification for the italian language: A case study on
movie reviews. Journal of Internet Technology, Special
issue on Intelligent Agent and Knowledge Mining,
9(4):365–373, 2008.

[7] A. Dattolo. Authoring and navigating ethnic music
audio archives. Signal Processing, 2009 (to appear).

[8] A. Dattolo, F. Ferrara, and C. Tasso. Supporting
personalized user concept spaces and recommendations
for a publication sharing system. In UMAP ’09:
Proceedings of the 1th and 17th international
conference on User Modeling, Adaptation, and
Personalization. Trento, Italy, 22-29 June 2009.

[9] A. Dattolo and F. L. Luccio. A new actor-based
structure for distributed systems. In International
Conference on Hypermedia and Grid Systems
(HGS07), pages 195–201. Opatija, Adriatic Coast
(Croatia), 21-25 May 2007.

[10] A. Dattolo and F. L. Luccio. Formalizing a model to
represent and visualize concept spaces in e-learning
environments. In Proceedings of the 4th Webist
International Conference (WEBIST08), pages

339–346. Funchal, Madeira, Portugal, 4-7 May 2008.

[11] A. Dattolo and F. L. Luccio. Visualizing personalized
views in virtual museum tours. In International
Conference on Human System Interaction (HSI08),
pages 109–114. Krakow, Poland, 25-27 May 2008.

[12] A. Dattolo and F. L. Luccio. A new concept map
model for e-learning environment. In Lecture Notes in
Business Information Processing 18, pages 404–417,
April 2009.

[13] P. Flocchini, B. Mans, and N. Santoro. Sense of
direction: Definitions, properties and classes.
Networks, 32(3):165–180, 1998.

[14] M. McGuffin. A graph-theoretic introduction to Ted
Nelson’s Zzstructures. January 2004. http://www.dgp.
toronto.edu/∼mjmcguff/research/zigzag/.

[15] M. McGuffin and m. c. schraefel. A comparison of
Hyperstructures: Zzstructures, mSpaces, and
Polyarchies. In Proceedings of the 15th ACM
Conference on Hypertext and Hypermedia (HT’04),
pages 153–162. Santa Cruz, California, USA, 9-13
August 2004.

[16] A. Moore and T. Brailsford. Unified hyperstructures
for bioinformatics: escaping the application prison.
Journal of Digital Information, 5(1):Article No.254,
2004.

[17] A. Moore, J. Goulding, T. Brailsford, and H. Ashman.
Practical applitudes: Case studies of applications. In
Proceedings of the 15th ACM Conference on Hypertext
and Hypermedia (HT’04), pages 143–152. Santa Cruz,
California, USA, 9-13 August 2004.

[18] T. H. Nelson. What’s on my mind. In Invited talk at
the first Wearable Computer Conference. Fairfax VA,
12-13 May 1998.
http://www.xanadu.com.au/ted/zigzag/xybrap.html.

[19] T. H. Nelson. Welcome to ZigZag. 1999.
http://xanadu.com/zigzag/tutorial/ZZwelcome.html.

[20] T. H. Nelson. Xanalogical structure, needed now more
than ever: parallel documents, deep links to content,
deep versioning, and deep re-use. ACM Computing
Surveys, 31(4:33), 1999.

[21] T. H. Nelson. ZigZag (tech briefing): Deeper
cosmology, deeper documents. In Proceedings of the
12-th ACM conference on Hypertext and Hypermedia
(HT’01), pages 261–262. University of Aarhus,
Aarhus, Denmark, 14-18 August 2001.

[22] T. H. Nelson. Structure, tradition and possibility. In
Proceedings of 14th ACM Conference on Hypertext
and Hypermedia (HT’03). Nottingham, United
Kingdom, 26-30 August 2003.
http://www.ht03.org/keynote-ted.html.

[23] T. H. Nelson. A cosmology for a different computer
universe: data model mechanism, virtual machine
and visualization infrastructure. Journal of Digital
Information: Special Issue on Future Visions of
Common-Use Hypertext, 5(1):298, 2004.

[24] K. Wideroos. Awt (associative writing tool):
supporting writing process with a ZigZag based
writing tool - work in progress. In Proceedings of the
12-th ACM conference on Hypertext and Hypermedia
(HT’01), pages 35–36. University of Aarhus, Aarhus,
Denmark, 14-18 August 2001.

11

From ZigZag™ to BigBag: Seeing the wood and the trees
in online archive finding aids

Ian G. Anderson
University of Glasgow
11 University Gardens

Glasgow G12 8QH
+44 (0)141 330 3843

I.Anderson@hatii.arts.gla.ac.uk

ABSTRACT
This paper reports on a one year speculative research project that
sought to test the technical feasibility, practical implications and
usability of transforming an XML Encoded Archival Description
(EAD) finding aid into an XML ZigZag™ structure and applying
a relational browser interface.

Categories and Subject Descriptors
H.5.4 [Hypetext/Hypermedia]: Navigation; User Issues

General Terms
Design, Experimentation, Human Factors.

Keywords
EAD, ZigZag™, Ted Nelson, XML, Browsing, Visualisation.

1. INTRODUCTION
On the whole the archive profession is a conservative and
traditional one. Since its inception the principles of provenance,
or Respect des Fond, and adherence to original order have been
dominant characteristics in most archive communities. As a result
the practice of describing archive collections in hierarchical
arrangements is firmly embedded. Compared to other information
services, however, standardisation, both in terms of descriptive
standards and arrangement have been relatively late
developments, as has the provision of online finding aids.

However, as more archival finding aids, of increasing complexity,
become available online the difficulty of seeing the 'wood from
the trees' increases. This is particularly the case when these are
implemented in Encoded Archival Description (EAD) [1]. EAD is
an XML DTD for the creation of machine readable, cross
searchable archival finding aids and its creators consciously based
its structure on hierarchical analogue finding aids. Whilst this
provided an important comfort zone for archivists to migrate to
encoded finding aids, it is also meant EAD inherited the innate
difficulty of navigating hierarchical structures.

Whilst an archive's physical space, catalogue arrangement and
archivist’s assistance all help to guide users' navigation in the
analogue world, this paradigm does not easily translate to the
electronic. Nor has there been a significant body of research
established on archive user's information seeking behaviour.
Indeed there is little evidence that traditional archival
arrangement adequately served the needs of users in the analogue
world. It is unlikely, therefore, that replicating such arrangements
in the digital world would prove any more successful.

Where research on archive user needs has been undertaken a
range of characteristics have been discovered that suggest a more
flexible approach to archival access is required. The very earliest
studies in the late 1990s indicated that time, training and access to
information about information were crucial barriers to electronic
access, even though this access had become a critical component
of historians’ research methods [2]. Later studies have revealed
the plurality of historians’ information seeking behavior but also
the need for both research and archival context that was common
amongst the most popular methods [3] and the importance of
intermediaries in the use of online material [4]. Academic
historians require multiple pathways to access primary research
materials and the need for user education on electronic searches
suggests that current provision hinders access [5]. Moreover, the
need for orientation in even the most experienced user has been
emphasized [6].

Archive portal sites such as the Archives Hub, A2A, AIM25,
ANW and SCAN are evidence of the desire to search across
collections and repositories but typical means of browsing or
displaying search results, such as lists and directories, severely
restrict users’ ability to see where they are, how they got there
and where they can go next [7, 8, 9, 10, 11]. Providing linked
‘cross-walks’ such as subject keywords, functional descriptions,
person, place and corporate names can only go so far in
addressing this problem. Points at which these cross-walks
intersect can not easily be displayed and users wishing to move
from one to another need to repeat searches or navigate up and
down the hierarchy.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

This problem increases exponentially where related material is
held in different series, collections or repositories. In these
circumstances trying to follow a particular person, function or
responsibility is extremely difficult. In following one path, users
lose sight of others, where they cross and what their relationships
are. In essence the multidimensional relationships that exist
within the finding aid are subordinate to its hierarchical structure.

12

The threads of this research all combine to suggest that a means
by which archive users can quickly and intuitively orientate
themselves within collections and identify the relationships and
context of the resources they are viewing would be immensely
beneficial. This project, funded by the UK's Arts and Humanities
Research Council (AHRC) through a one year speculative
research grant, sought to test a novel approach to structuring and
visualising archival information by applying a relational browsing
interface to EAD finding aids that have been transformed into a
multidimensional structure.

2. A MULTIDIMENSIONAL SOLUTION
One potential solution to this problem is to structure and visualise
this information multidimensionally. For example, repository,
collection, date and function could each be a separate dimension,
rather like lines on a London Underground map. Therefore, a user
viewing the person name dimension (or line) would see each
individual represented in a finding aid as a cell. This person may
appear in different parts of a collection, separate collections at the
same repository and at other repositories, quite possibility related
to different organisations, functions or roles. Whilst well
developed finding aids can make these links, it is very difficult for
users to see and navigate them.

One such means of organising information multidimensionally is
the ZigZag™ concept developed by Ted Nelson [12]. In other
words, a piece of information can exist in different places at the
same time and have many connections to other information that
may also exist in more than one place. The beauty of the
ZigZag™ system is that the user can bring multiple instances of
the same information into one view and by changing the
dimensions can instantaneously see how the related bits of
information are connected. Thus the user is always presented with
a locally relevant view of the information, irrespective of how
complex the structure is, and without losing the ability to navigate
and view all the interconnections. The possibility to represent
archival information in this way may provide both functionality
and usability that reflects the deep interlinked structures of today's
online finding aids. These additional dimensions could be used to
provide a whole range of context specific information, such as
related bibliographies, digital surrogates, user comments and help
files. This would allow online finding aids to move from an
access tool to an expert system.

The advent of XML encoded finding aids, particularly EAD, and
the wide scale implementation of descriptive standards made this
an ideal time to test the viability of a ZigZag™ structure and
visualisation.

The number and extent of dimensions it is possible to represent,
does of course, depend upon the quality and extent of the
underlying data. For this project two finding aids, Gateway to
Archives of Scottish Higher Education (GASHE) and
Navigational Aids for the History of Science and Technology
(NAHSTE), provided by the University of Glasgow Archive
Services were selected [13, 14]. These finding aids provided the
project with the opportunity to test the concept against EAD, the
descriptive standards General International Standard Archival
Description (ISAD(G)2) and International Standard Archival
Authority Record for Corporate Bodies, Persons, and Families
(ISAAR(CPF)). The GASHE finding aid also including function

and activity 'cross walks' within it. Both finding aids cross
multiple collections and repositories.

Overall, the project aimed to achieve 'proof of concept' status -
that it was technically feasible to map between EAD and a
ZigZag™ structure; that the transformation between the two could
be automated; that a web based interface could represent the
multidimensions and; that it supported more intuitive browsing
for users.

3. DEVELOPMENT
Several working examples of ZigZag™ structures have already
been created in other projects using Perl, C, Python and Java to
run on Windows, Linux and Mac. Initially the most promising of
these for this project was the combination of XML, XSL and
JavaScript, successfully demonstrated by Les Carr at the IAM
Research Group, University of Southampton on a map of the
London Underground, see Figure 1 below [15].

Figure 1. ZigZag™ for Web Browsers London Underground
Demo

Taking this project as an inspiration and re-using the ZigZag™
for Web Browsers XML dialect kindly provided by Les Carr the
project's functional and technical specification was defined using
the Unified Modeling Language (UML), in particular use-case
and activity diagrams. During this process it was decided that
static, rather than 'on the fly', transformation of the finding aids
were most appropriate in this context, given that the source data
was static and the additional computational demands that online
dynamic transformations would entail.

Mapping the EAD finding aids to the ZigZag™ structure through
XSL was the first major project milestone. The finding aids
actually comprise hundreds of files, in the case of GASHE, an
XML EAD file using the ISAD(G)2 descriptive standard, XML
ISAAR authority file, XML FANDA file (for functional and
activity descriptions) for each individual collection, in each
repository. The relationship between these files needed to be
understood before the EAD file could be mapped to the ZigZag™
structure. At this point the application was named BigBag, partly
as it was a nice alliteration of ZigZag™ but also because the
dimension lines between cells in the mapping diagrams resembled

13

the large string shopping bags used to carry groceries, see Figure
2 below.

Figure 2. Archive Structure to ZigZag™ Structure Mapping

Thirteen EAD features were mapped to the ZigZag™ output tree
by the projects 'Transform Finding Aid to ZigZag' stylesheet so
each of the many ways to categorise an archival component
became a dimension: subject, repository, personal name, location
(shelf number etc.), container (box, folder, album etc.), format
(book, film, letter etc.). function, date, century, business or
corporate name, a daisy chain crossover linking all archive
components, a crossover linking collection and series, and a
crossover linking series and objects. As the underlying structure is
one of linked circular lists the same cells may appear
simultaneously in different orders in several linked lists.

The stylesheet had to manage some peculiarities of EAD and
handle function, subject and place dimensions differently from
other elements as multiple elements were possible, nested within a
<p> tag. For example the stylesheet had to avoid adding the
current place if it was the same as a place that had already been
added, unless the current place was a sibling of the place that had
already been added.

The stylesheet expected six required EAD elements, sixteen
optional EAD elements and six optional multiple and recursive
EAD elements. Seven escaped character codes were also stripped
from the input tree as well as 13 characters that were illegal in
JavaScript.

The cells of the output tree could be one of three types: collection
(this included collection, fonds, class and record group
descriptions), series (this included series, subfonds, subgroups or
subseries descriptions) or object (this included item or file
descriptions). Fragments from the XML ZigZag™ structure are
provided in Figure 3 below.

<dimensions>
<dimension name="AllComponentsandObjects"
description="All Components and Objects" />
<dimension name="12thCentury"
description="12th Century" />
<dimension name="Subject:Accounting"
description="Subject: Accounting" />
<dimension name="Date:1971/1993"
description="Date: 1971/1993" />
<dimension name="Repository:Glasgow
Caledonian University Archives"
description="Repository: Glasgow Caledonian
University Archives" />
<dimension name="Format:file"
description="Format: file" />

<cells>
<cell n="1">
<url>http://www.gashe.ac.uk:443/cgi-
bin/view_isad.pl?id=GB-1847-
GP&view=basic</url>
<title>Records of Glasgow Polytechnic
formerly Glasgow Collegeformerly Glasgow
College of Technology</title>
<content>fonds</content>
<link direction="AllArchiveComponents"
posward="2" />
<link
direction="AllCollectionsandComponents"
posward="2" />
<link direction="20thCentury"
posward="2"></link>
<link direction="Place:Cowcaddens Road
Glasgow" posward="2"></link>
<link direction="CorporateName:Glasgow
Polytechnic" posward="4"></link>
<link direction="Date:1971/1993"
posward="2"></link>
<link direction="Repository:Glasgow
Caledonian University Archives"
posward="2"></link>
</cell>

Figure 3. ZigZag XML Code

The transformation from EAD to ZigZag™ used Microsoft's
Command Line Transformation Utility (MSXSL). This process
was a two step transformation of archival finding aid data, from
EAD XML into ZigZag™ XML and then into ZigZag™ HTML.
Les Carr's ZigZag™ for Web Browsers is limited to 40 cells so a
test file was selected that outputted 27 cells.

However, initial tests of a sample of data from the GASHE
finding aid using Les Carr's XML dialect and JavaScript interface
proved problematic. The transformation produced a functionally
correct interface, but one that had limited usability, comprising
hundreds of small black arrows dispersed across several screen
widths, see Figure 4 below. Furthermore, even with the small
sample data set, well specified PCs (dual core Pentium
processors, 2GB RAM and 256MB dedicated graphics memory)

14

were returning warnings that the JavaScript was causing the
computer to run slowly. Although the number of cells was small,
the number of dimensions associated with each cell in GASHE
was far greater than in the original London Underground demo.
These factors suggested that the JavaScript development path was
unlikely to scale well enough for the amount of data and number
of relationships required or provide sufficient complexity for the
visualisation.

Figure 4. Section of BigBag JavaScript Demo

Whilst the appearance of the interface and the efficiency of the
data handling could undoubtedly have been improved a decision
was taken to seek an alternative means of visualisation. Initially
an SVG interface was an attractive solution. It would keep the
data within the XML family and the Parip Explorer project had
successfully demonstrated a visualisation style that could suit the
data [16]. However, the lack of project experience with SVG and
the limitations of browser support led the project, after further
research, to develop its interface using Macromedia/Adobe Flash
based on an original idea by Moritz Stefaner [17]. Stefaner's
relational browser for the CIA World Fact Book provided the
underlying physics for an interface that positioned the selected
'cell' in the centre of the screen with lines spanning out to related
cells of information. Selecting an outlying cell brought this to the
centre of the screen and redrew the relationships. In other words it
provided users with locally relevant view of their selected
information without losing sight of the immediately bigger
picture. An initial trial with a simple greyscale version of the
relational browser interface demonstrated that it was capable of
being modified to reflect, in part at least, the underlying ZigZag™
structure.

The second version of the interface, and the first to be tested with
users, added a colour keyed sliding selector for the various
dimensions as well as drop down menus for selecting instances of
dimensions and archive components. A breakout box that linked
to the original finding aid for each selected cell was also added as
well as history and home buttons, see Figure 5 below [18].

Figure 5. BigBag Flash Demo Version 2

A small, targeted sample of six people, two archivists, two
historians and two students were selected to test this first version.
Although the feedback was positive on the whole, with
participants finding the interface clear, intuitive and supporting
their browsing behaviour it was also evident that the
multidimensionality of the underlying ZigZag™ structure was not
being adequately expressed. Stefaner’s relational browser only
had to express one type of ‘part of’ relationship between two cells
at a time and employed a single line to do so. However, with the
finding aid ZigZag™ data there are potentially many different
relationships between each cell that a single line cannot
adequately convey. The sliding dimension selector was an attempt
to overcome this problem but users did not like having to scroll
through each dimension on the slider to see if it applied to their
selected cells. It was evident that a means of immediately
representing the number and type of relationships between cells
was needed.

The next version of the interface, version three, tested the
technical possibility of having multiple lines, each representing a
different dimension, connect each cell and for the width of these
lines to reflect the number of instances within that relationship.
Once the project had established that this was technically and
aesthetically possible version four of the interface was released.
This removed the sliding dimension selector and replaced it with a
simple key to the coloured lines. The format of the breakout box
to link to the original finding aid was simplified and the screen
split to show the original finding aid to the right [19]. In this
version of the visualisation the colour of the line again indicates
the dimension type with line widths indicating the number of
instances for each type, the thicker the line, the greater the
number of instances. Icons indicated whether the cell data existed

15

at the collection, series or object level in the original finding aid,
see Figure 6 below.

Figure 6. BigBag Flash Demo Version 4

The same six users who previously evaluated the project were
shown the final version of the interface. In this case the
underlying relationships within the data were agreed to be more
explicit and enhanced the browsing of the finding aid data.
However, users now instinctively wanted to click on the
connecting lines to isolate a particular dimension, a functionality
that was not possible, rather than use the dimension instance drop
down menu. Furthermore, bugs and inconsistencies, particularly
in the way dimension instances were selected significantly
hampered users. Selecting a subject dimension form the drop
down menu did not alter the cell display, an error that was not
present in the previous version of the interface, and an additional
erroneous subject instance also appeared on the menu.

By this late stage in the project time was a major constraint and it
was not possible to either complete the scheduled interface testing
or implement the zoom in and out function, or the add and
subtract cells feature. Indeed it was a struggle to get the final
version of the visualisation working in time at all.

4. STRENGTHS & WEAKNESSES
In part the project has fulfilled its main objectives. It established
that it was conceptually possible to map from EAD to ZigZag™
and that a stylesheet could be developed that automated this
process. However, it was not possible to establish that this
transformation could be undertaken on all instances of EAD
finding aids. Even working within the GASHE collection,
variations in EAD encoding practices posed a challenge to
efficient transformations. In part this is an inherent weakness of
EAD in that its minimal compliance requirement amounts to little
more than a collection description, akin to a minimally compliant
TEI header. In the projects test data the lack of entity declarations
for special characters also interfered with attempts to create
suitable visualisations. In retrospect, editing the GASHE EAD
prior to transformation would have created a far more efficient
process. However, in trying to create a transformation that would
be applicable to real life situations it would be unrealistic to
expect archivists to amend their EAD files in order to

accommodate our visualization. One useful spin-off from this,
however, was the development of a set of EAD templates for the
NoteTab text editor that placed greater constraints on coding
choices. The objective of this exercise was that archivists might
adopt them when creating new EAD finding aids and so avoid
many of the common problems found in the EAD finding aids
that hindered this project.

Although the project was able demonstrate the technical viability
of an XML ZigZag™ for web browsers on larger and more
complex data than the London Underground demo, this was not
significantly so and time did not allow for the transformation and
visualisation of the entire GASHE finding aid let alone test the
stylesheet against NAHSTE.

Throughout the project a difficult balance had to be struck
between refining and testing the stylesheet against larger and
more varied sets of source data and developing a meaningful
visualisation to test with users. In the end neither component was
as fully developed as it could have been, but the project would
have failed in an important respect if it had successfully
transformed a large amount of data without any means of
displaying the results. In retrospect the project may simply have
been too ambitious in its scope.

After a few false starts the project did create a visualisation that
reflected the underlying multidimensionality of the ZigZag™
data, albeit imperfectly. Although the fourth and final interface is
the closest conceptually to the goals the project set itself its
limited development time, even compared to the second version,
proved a hindrance to establishing with certainty that this
provided a significantly more beneficial interface to online
archive users. It was never the projects intention to undertake
extensive user evaluation or usability testing but within the
constraints of what was possible the generally positive feedback is
sufficient to suggest that the approach adopted does bring benefits
for browsing archive finding aids online. How great those benefits
are, for what type of information seeking behaviour and in what
circumstances are questions that this project is unable to answer.

5. CONCLUSION
Perhaps inevitably for speculative research this project ultimately
raises more questions than it answers, but has at least
demonstrated sufficient merit to warrant those questions being
investigated further. In particular the relative importance of the
underlying EAD finding aid, ZigZag™ structure and visualisation
on the end user's understanding of the data needs to be examined.

It is the intention to continue this research by creating a set of
alternative structures and visualizations based on the same
underlying archive data – a relational visualisation directly on an
EAD fining aid; archive data that has been directly inputted to a
ZigZag™ structure rather transformed; an EAD to ZigZag™
transformed visualisation (essentially an updated version of the
current visualization) and; the archive data as displayed in its
native state.

These alternative representations will provide a test bed through
which end users understanding of the archive data will be
examined using reception theory. Reception theory, sometimes
called audience response theory, is a version of reader response

16

theory that first developed in literary studies and was
subsequently extended to include performance works. Reception
theory proposes that a text does not have an inherent meaning, but
meaning is created within the relationship between the text and
the reader, shaped by the reader’s background, influences and
biases. By applying this theory to archival data it is hoped to
explore the extent to which meaning is created by the user, is
inherent to some extent in the data itself, and/or meaning is
shaped by the way in which the data is structured or visualized.

There is also the potential for the approach tested here to be
applied to information domains other than archives. Since this
research was completed a brief market analysis was conducted to
try and identify other areas that might benefit from this approach.
Although this survey was by no means comprehensive, and there
are a range of commercial data visualization products already
available, the areas of social networks, personal or business
contact lists, customer relationship management and enterprise
relationship management are potentially new areas that future
research could address.

6. ACKNOWLEDGMENTS
My thanks to the AHRC for funding, the Humanities Advanced
Technology and Information Institute and the Faculty of Arts at
the University of Glasgow for additional support, Lesley
Richmond and Victoria Peters of University of Glasgow Archive
Services for the supply of data and advice, Les Carr at the
University of Southampton for permission to re-use his XML
ZigZag™ for Web Browsers dialect, Moritz Stefaner for
permission to re-use the underlying design of his relational
browser and Steve North, Research Assistant, for his creativity,
dedication and hard work.

7. REFERENCES
[1] EAD http://www.loc.gov/ead/

[2] Andersen, D.L. “Academic Historians, Electronic
Information Access Technologies, and the World Wide Web: A
Longitudinal Study of Factors Affecting Use and Barriers to that
Use”, The Journal of the American Association for History and

Computing 1, June 1998. Available at:
http://mcel.pacificu.edu/jahc/1998/issue1/articles/andersen/

[3] Anderson, I. “Are you being served? Historians and the
Search for Primary Sources”, Archivaria, 58, Fall 2004.

[4] Duff, W. Craig, B. Cherry, J. “Historians Use of Archival
Sources: Promises and Pitfalls of the Digital Age,” The Public
Historian 26, no 2, Spring 2004.

[5] Tibbo, H. “Primarily History: How US Historians Search for
Primary Sources at the Dawn of the Digital Age,” American
Archivist 66, no 1. Spring/Summer 2003.

[6] Duff, W. and Johnson, C. “Accidentally Found on Purpose:
Information Seeking Behaviour of Historians in Archives,”
Library Quarterly 72, no. 4, 2002.

[7] Archives Hub http://www.archiveshub.ac.uk/

[8] Access to Archives (A2A)
http://www.nationalarchives.gov.uk/a2a/

[9] AIM25 http://www.aim25.ac.uk/

[10] Archives Network Wales (ANW)
http://www.archivesnetworkwales.info/

[11] Scottish archives Network http://www.scan.org.uk/

[12] ZigZag http://www.xanadu.com/zigzag/

[13] GASHE http://www.gashe.ac.uk/

[14] NAHSTE http://www.nahste.ac.uk/

[15] Les Carr’s Zigzag for Web Browsers London Underground
demo http://users.ecs.soton.ac.uk/lac/zigzag/

[16] Parip Explorer Project http://parip.ilrt.org/

[17] Moritz Stefaner’s Web Site http://der-mo.net/

[18] BigBag Interfacev2
http://www.hatii.arts.gla.ac.uk/research/visual/demov2/index.html

[19] BigBag Interfacev4
http://www.hatii.arts.gla.ac.uk/research/visual/demov4/index.html

17

http://www.loc.gov/ead/
http://mcel.pacificu.edu/jahc/1998/issue1/articles/andersen/
http://www.archiveshub.ac.uk/
http://www.nationalarchives.gov.uk/a2a/
http://www.aim25.ac.uk/
http://www.archivesnetworkwales.info/
http://www.scan.org.uk/
http://www.xanadu.com/zigzag/
http://www.gashe.ac.uk/
http://www.nahste.ac.uk/
http://users.ecs.soton.ac.uk/lac/zigzag/
http://parip.ilrt.org/
http://der-mo.net/
http://www.hatii.arts.gla.ac.uk/research/visual/demov2/index.html
http://www.hatii.arts.gla.ac.uk/research/visual/demov4/index.html

Creating Dynamic Wiki Pages with Section-Tagging
Denis Helic
IWM, TU-Graz

Inffeldgasse 16c
8010 Graz, Austria

dhelic@iicm.edu

Anwar Us Saeed
IWM, TU-Graz

Inffeldgasse 21A
8010 Graz, Austria

anwar.ussaeed@student.tugraz.at

Christoph Trattner
IICM, TU-Graz

Inffeldgasse 16c
8010 Graz, Austria

ctrattner@iicm.edu

ABSTRACT

Authoring and editing processes in wiki systems are often tedious.

Sheer amount of information makes it difficult for authors to

organize the related information in a way that is easily accessible

and retrievable for future reference. Social bookmarking systems

provide possibilities to tag and organize related resources that can

be later retrieved by navigating in so-called tag clouds. Usually,

tagging systems do not offer a possibility to tag sections of

resources but only a resource as a whole. However, authors of

new wiki pages are typically interested only in certain parts of

other wiki pages that are related to their current editing process.

This paper describes a new approach applied in a wiki-based

online encyclopedia that allows authors to tag interesting wiki

pages sections. The tags are then used to dynamically create new

wiki pages out of tagged sections for further editing.

Categories and Subject Descriptors
I.7.1 [Document and Text Processing]: Document and Text

Editing – Document management, Version control.

General Terms
Design, Experimentation

Keywords
Section Tagging, Wiki systems, Austria-Forum

1. INTRODUCTION
The popularity of social software has brought up new user

generated content and metadata resources in the form of wikis,

blogs, social tagging and bookmarking applications. These new

systems have emerged as a major force driving the

reshaping of information spaces on the World Wide Web to better

serve both collaborative and personalized information needs of

users. In social software applications Web has drifted towards

users’ content creation instead of the commercial content as a

major contributing factor to Web resources.

For instance, wikis are used for sharing, management, and

organization of knowledge. Wikipedia is a user-created

encyclopedia and a well known example of a wiki system. Wiki

systems are asynchronous, collaborative authoring and content

versioning systems where any user can add and edit content. A

new version of the page is stored in the system after each editing

operation [2].

In wiki systems, user’s content-creation/authoring processes

involve laborious tasks like information selection from diverse

resources, restructuring, modification, and adaptation of

information object according to the perceived context [6]. The

reuse of existing content in the form of copy-paste mechanisms in

order to restructure and create new documents is applied by

authors frequently. For example, a typical editing workflow in

wiki systems involves investigating volumes of information where

in fact only small part of that information is relevant to the current

user need. Thus, the user has to browse all the resources again and

again to review the related pieces of information from their

relevant or selected resources. This typically requires a lot of

effort and time.

On the other hand resource organization with tagging and

bookmarking services like Delicious, Citeulike or bibsonomy

have received community focus due to ease of use and

information discovery mechanisms. In social tagging and

bookmarking applications users assign free form keywords and

annotations to the addresses (URLs) of an information resource

(e.g., a web page) [8]. These keywords relate the current user

context to the content of a tagged resource. The weighted set of

keywords (tags) assigned to a resource by all users within a

system is called the tag cloud. Tag cloud is a visual representation

of tag terms in which their font is scaled according to their

frequency weights.

As [3] suggests the user motivation to tag a resource might be

organizational or communicational on one hand, and on the other

hand the users tag resources for their personal use and/or to share

them with others. For example, users who tag resources for their

personal use in an organizational sense use social tagging

applications to organize interesting, important, and related

resources according to their current needs. The tags are applied as

a support for later search and retrieval of tagged resources via

search or navigating the tag cloud. Typically, the tag cloud

provides an overview of defined tags showing only the tags

themselves but not the actual content of the tagged resources. The

resources are represented via navigable links. Another motivation

of using tags is to share them with other users and in such a

scenario tags are typically used in a communicational sense to

send signals to other users about resources that might be of

interest in a more general case.

Regardless of users tagging scope- personal resource organization

or sharing it with others- they have to tag the whole resource.

This, however, does not always fulfill the users need. For

example, users are often viewing content and are interested only

in one part of the whole content. For future use users tag and

bookmark it with a keyword that would be helpful later to retrieve

the content. In this case users tag the whole content with a

navigational keyword useless to represent the context of resource

18

but a useful one for them to reach the content section of their

interest. This unrelated navigational tag in tag cloud will create

noise. But users have no option to tag a particular interesting

section within the whole resource. Such an option of tagging a

part of resource may increase the user efficiency for later content

retrieving, as well as help reducing noise from document tag

cloud and providing a separate content-focused section tag cloud.

To overcome above mentioned problems we present a novel

modified social tagging approach. The benefit of such an

approach has been illustrated in a wiki system on the example of

simplifying the editing process. We call this new approach

section-tagging as it supports users to assign keywords and

annotate sections of a wiki page.

To practically implement and test the idea we extended the

functionality of an online encyclopedia called Austria-Forum with

section tagging along with the conventional social tagging. The

rest of the paper is organized as follows. The next section

describes in more details the Austria-Forum system. The third

section discusses the idea of section tagging in Austria-Forum and

how it may be used to support content retrieval and to simplify a

typical editing workflow. The fourth section describes the

implementation of section-tagging idea within Austria-Forum.

The last section provides conclusions and an overview of the

future work.

2. AUSTRIA-FORUM
Austria-Forum [4] is a networked information system that

manages a very large repository of information items, where new

information items are easily published, edited, checked, assessed,

and certified, and where the correctness and a high quality of each

of these items is backed by a person that is accepted as an expert

in a particular field. Consequently, each of the information items

is citable as any other editorially checked content and might be

used in education, scientific research, or journalism. The content

of Austria-Forum is always related to Austria – as such Austria-

Forum might be seen as an Austrian online encyclopedia.

In the first experimental phase of Austria-Forum the system had

an editorial board of more than 20 editors and a growing

community of users. The number of users who contributed with

the content was more than 100. The number of unique users who

have visited the site is around 4000 each month.

The current number of contributions is around 80000 (including

pictures and videos as well as the content converted from the

well-known Austrian cultural information system AEIOU [1]), out

of which around 6000 are user-generated contributions –

approximately 8% of all contributions. Most of these user

contributions are pictures and photos, with a small number of

blogs, discussion forum posts, and comments. Although these

numbers are quite substantial for a site that has been online

experimentally a more active community involvement is desired.

Community tools and facilities are already present in the system.

However, as a number of users suggested, usability and a better

integration of different community tools with the main system

needs to be improved.

Therefore, the original system that was technically based on an in-

house developed content-management system has been replaced

by an open-source wiki software called JSPWiki [5]. The idea

here is that more users will be attracted to a well-known

collaborative authoring tool such as wiki. Moreover, the intention

is to offer a number of community tools that will support users in

retrieving information quickly and reduce the complexity of

editing workflow. Among such tools is also the above presented

section-tagging tool.

Even if the Austria-Forum wiki is still under development, it

nearly offers ideal environment to test the concept because a huge

amount of test data is available.

3. SECTION TAGGING AND

PERSONALIZATION
Section tagging is a novel social tagging approach which allows

users to annotate the content of interest within a resource using

free form keywords.

The implemented approach differs from existing tagging and

bookmarking services in the following way. First, it allows the

tagging of subdocument level content. Second, tag retrieves not

merely the set of links annotated by tag keyword but also the

actual content of the tagged sections. Thus, when the user clicks

on a tag all sections from wiki pages that have been tagged with

the particular term by the specific user are dynamically loaded and

presented to the user in the form of a standard wiki page.

The section of a wiki page is a self explaining piece of

information about some topic of interest. Tagged content snippets

in the case of section tagging have conceptual relationship to

perceived structure of an information object that the user relates to

the tag terms. Hence, the context of information snippet of user’s

interest is more relevant to the user perception of an information

object in relation to the tag terms. The underlying idea of such an

approach is based on personalized content aggregation from

different wiki pages because the wiki system may not hold the

required information in one page but typically in various pages.

Personalization in Austria-Forum refers to the content annotation

and aggregation from different wiki pages according to users’

intent. A typical personalization scenario involves users

collecting, customizing, and modifying diverse text snippets from

different wiki pages within an informational focus being described

by the given tag keyword.

System offers two levels of personalization:

- Users can tag and annotate sections of wiki pages as well as

full pages and hence personalize the content of interest.

- A dynamic personalized wiki page content view is created

for a user by aggregating all sections tagged by him with a

particular keyword. The aggregated sections are retrieved

from the same versions of wiki pages which were used while

tagging. The rank of a particular section within this

aggregated set is determined by the frequency of same tag

assigned by other users to this section.

The resulting dynamic personalized wiki page can further be

collaboratively edited to create a logically complete information

object reflecting the particular user context. The system facilitates

further the personal/collaborative knowledge creation and

management. Dynamic wiki pages created by collecting snippets

of information from diverse wiki pages allow users to restructure

and organize information on multiple axes of personalization.

19

Currently, the section tagging is primarily used for supporting

editing workflow in the system. For example, suppose that an

author is writing a new contribution on the Mozart’s birth house.

Before writing about the birth house the author wants to have an

introductory section about Mozart that includes the basic

biographical information, the list of Mozart symphonies and a

picture of the Mozart monument in Vienna. The basic

biographical information is included in the first section of the

page on Mozart biography, the list of symphonies is described in

the page on Mozart’s work and the Mozart monument is depicted

in the page that talks about monuments in Vienna. Thus, the

author tags all the appropriate section in pages in question with a

tag “Mozart”. In the personal section-tag cloud the tag “Mozart”

is now visible. When the author clicks on that tag a new dynamic

wiki page including three tagged sections from three different

wiki pages is created on the fly. The author chooses to save the

dynamically created page in the system. Now, the author can

access the new page as any other wiki page and edit it by

restructuring sections and adding new sections about Mozart’s

birth house.

4. IMPLEMENTATION ASPECTS
As described before, the core of the section-tagging mechanism is

to allow users to tag not only a whole wiki page, but also to tag a

particular section (identified with a heading). In this way users

add semantic information to arbitrary sections of different wiki

pages. In the next step, it is possible to extract sections referred by

a particular tag and to create a new personalized wiki page out of

tagged content snippets.

The implementation of the section concept is comprised of two

functional modules, called Section-Tagging (ST) and

Personalized-Content-Creation (PCC) module.

The JSPWiki system is based on a clean and extensible plug-in

and filter architecture that allows easy addition and configuration

of new modules.

The filter mechanism allows on the fly parsing and modifying of

wiki pages before they are rendered.

 On the other hand, the plug-in mechanism allows server-side

code to be referenced from within a wiki page. This code

dynamically produces wiki content that can be included in the

wiki page that refers to the plug-in.

Thus, technically the ST module is a filter module as it inserts

section-tagging functionality into already existing wiki pages by

pre-processing them; the PCC module is a plug-in module that

dynamically creates a new wiki page according to the selected tag

and the tagged sections from various wiki pages.

4.1 Section-Tagging Module
ST module is a filter for pre-processing of rendered wiki pages.

This unit is responsible for extending document object model

(DOM) of a rendered wiki page via a JavaScript module called ST

form module. As shown in Figure 1, this module supplies a simple

to use pop-up form (red colored box in front of section) that

visualizes particular semantic section information by an

onmouseover effect and letting the user tag a section using the

onclick event. Moreover the ST form module also supplies the

database connector module with information about the currently

tagged section number and page version.

The actual centerpiece of the ST module is a unit called ST plug-

in. It loads and manipulates the data from the ST data storage

backend module, extracts user data from the ST security module

and handles data sent by the ST form module via

XMLHTTPRequest (see Figure 2).

Figure 1: ST form module

20

As a data storage module the open-source content-management

system Scuttle [7] is deployed. The database itself is not accessed

by the API which the systems offers but by the database connector

module which extracts user data such as username and IP address

directly from the JSPWiki user session module. This user data

record is stored together with a special section URI to the Scuttle

database by the plug-in module every time a section is tagged by

the user, in order to guarantee an unambiguous relationship

between user and tagged sections.

In order to have a clear relationship between page sections, page

versions and corresponding tags and still offer a readable URI

without changing the database structure itself, the well known

(X)HTML method of creating links within a hypertext document

was adopted in the following form:

http://<URI>#<section ID>_<version>

Thus a section of a wiki page can be easily addressed to a tag and

vice versa by adding a fraction identifier holding information

about the section ID (<section ID>) and page version (<version>).

Figure 2: Architectural diagram of the ST module

4.2 Personalized-Content-Creation Module
The PCC module is implemented as a plug-in that can be included

in any wiki page. Currently, this module is included in a

personalized wiki page that is shown on the right-side of the user

screen. It shows a standard tag cloud with tags assigned by a

particular user to wiki page sections of interest. When a user

clicks on a tag the PCC module retrieves all tagged sections using

the appropriate wiki page versions. The sections are then

dynamically combined into a wiki page that is shown to the user.

The user has then the possibility to edit and modify this new wiki

page using the standard wiki editor and to save the editing

operations in a completely new wiki page for later retrieval.

Moreover, the dynamic page can be still retrieved at all times by

simply clicking on the appropriate tag. Note that the dynamic

page is always created on the fly, thus whenever the user adds tags

to sections of some other wiki pages this will be reflected in the

dynamic page as the page will include the new sections.

5. CONCLUSIONS AND FUTURE WORK
A novel approach for tagging sections of wiki pages has been

presented. This approach is able to personalize the users’ content

in an efficient way. This approach has reduced the manual effort

required to author a wiki-page about a topic. Often, the wiki

system may not have the required info in one page but typically in

various pages. Therefore, a combination of the social tagging

approach with the wiki concept in an innovative manner facilitates

an easy retrieval of the relevant content in the form of a new

dynamically created wiki page. Such dynamic wiki pages created

by collecting snippets of information from diverse wiki pages

allow users to restructure and organize information on multiple

axes that best fit their current needs.

The future work includes:

- Testing and evaluating the section-tagging approach with a

number of users during the experimental phase of Austria-

Forum.

Filter
Module

Data Storage
Module (Scuttle)

 Database

Section1
Text Text Text Text Text Text Text
Text Text Text Text Text …
Section2
Text Text Text Text Text Text
Text Text Text Text Text Text
Section3
Text Text Text Text Text Text
Text Text Text Text Text Text
…

View

Plugin
 Module

ST Module

JSPWiki
Engine

Browser

Security
 Module

Tag1, Tag2 ok

Section1
Text Text Text Text Text Text Text
Text Text Text Text Text …
Section2
Text Text Text Text Text Text
Text Text Text Text Text Text
Section3
Text Text Text Text Text Text
Text Text Text Text Text Text
…

GetPage
Version()

GetUser
Data ()

 Connector

21

- Sharing of section tags between users, i.e. not only a

personalized section-tag cloud should be generated but also

a global one with tags from all users.

- Interesting aspects of global section-tag clouds will be the

tag and section selection strategy in the case that there are

numerous sections tagged by a particular tag. A

collaborative filtering approach taking into the account the

user profiles might be needed to limit the sections only to

those that are most relevant.

- Extending the section-tagging approach to arbitrary Web

resources. This can be implemented as browser plug-in in

future which will gather the tagged content in a dynamic

wiki system as a Web based service.

6. ACKNOWLEDGMENTS
We would like to thank Prof. Hermann Maurer and Mr.

Muhammad Tanvir Afzal for providing supporting discussions,

valued inputs, and comments. The research of this contribution is

funded by Higher Education Commission of Pakistan and

TUGraz.

7. REFERENCES
[1] AEIOU - Annotierbare Elektronische Interaktive

Oesterreichische Universal-Informationssystem,

http://aeiou.iicm.tugraz.at. (Last visited: March 30, 2009).

[2] Alain Désilets , Sébastien Paquet , Norman G. Vinson, Are

wikis usable?, Proceedings of the 2005 international

symposium on wikis, p.3-15, October 16-18, 2005, San

Diego, California.

DOI= http://doi.acm.org/10.1145/1104973.1104974.

[3] Ames, M. and Naaman, M. 2007. Why we tag: motivations

for annotation in mobile and online media. In Proceedings of

the SIGCHI Conference on Human Factors in Computing

Systems (San Jose, California, USA, April 28 - May 03,

2007). CHI '07. ACM, New York, NY, 971-980. DOI=

http://doi.acm.org/10.1145/1240624.1240772.

[4] Austria-Forum, http://www.austria-forum.org. (Last visited:

March 30, 2009).

[5] JSPWiki, http://www.jspwiki.org. (Last visited: March 30,

2009).

[6] Nelson, L., Smetters, D., and Churchill, E. F. 2008.

Keyholes: selective sharing in close collaboration. In CHI '08

Extended Abstracts on Human Factors in Computing

Systems (Florence, Italy, April 05 - 10, 2008). CHI '08.

ACM, New York, NY, 2443-2452. DOI=

http://doi.acm.org/10.1145/1358628.1358701.

[7] Scuttle, http://sourceforge.net/projects/scuttle. (Last visited:

March 30, 2009).

[8] Tony Hammond, Timo Hannay, Ben Lund, and Joanna Scott.

Social Bookmarking Tools (I): A General Review. D-Lib

Magazine, 11(4), April 2005.

22

Towards XML Transclusions

Angelo Di Iorio, Silvio Peroni, Fabio Vitali
Dept. of Computer Science

University of Bologna
Mura Anteo Zamboni, 7
40127, Bologna, Italy

{diiorio | speroni | fabio}@cs.unibo.it

John Lumley, Tony Wiley
HPLabs Bristol

Filton Road, Stoke Gifford
Bristol BS34 8QZ
United Kingdom

{john.lumley | anthony.wiley}@hp.com

ABSTRACT
The idea of transclusion has been at the same time the
strength and weakness of Xanadu: some people considered
it as an extremely powerful mechanism to get any version
of any fragment of any document in a global shared docu-
ment space, others as a very complex solution too difficult to
be actually implemented and delivered. We believe transclu-
sions are still worth implementing and would allow designers
to build very sophisticated hypermedia applications. On the
other hand, we are aware that the original design of Xanadu
cannot be implemented without uprooting current systems,
protocols and technologies - in primis the World Wide Web
and XML. In fact, there is a great distance between the
original data model of transclusions - strongly based on ex-
ternal referencing mechanisms - and the XML data model
- strongly based on hierarchical structures and embedded
markup.
This paper investigates to what extent the concept of tran-
sclusion can be shaped for the world of XML, and stud-
ies simplified models for building functionalities inspired by
Xanadu. Particular attention is given to the support for
tracing fragments provenance in multi-source documents and
for synchronizing distributed content through transclusions.
The paper also traces a roadmap to actually implement tran-
sclusions for XML - identifying three incremental steps - and
briefly describes some experimental prototypes.

Categories and Subject Descriptors
H.5.4 [INFORMATION INTERFACES AND PRE-
SENTATION (I.7)]: Hypertext/Hypermedia

1. INTRODUCTION
The concept of transclusion is rooted in the early days of
hypertext[13]. A transclusion is a very advanced inclusion,
whose content is not actually copied but stored as a virtual
reference to the original source. There is only one copy of
each fragment in the whole document space and transcluded
data is permanently connected to the original.

Transclusions were the core idea of Xanadu. Xanadu doc-
uments were built on-the-fly from fine-grained references so
that users could access, modify and reuse any fragment from
any document in a safe and controlled way. The implemen-
tation of transclusions relies on external referencing to lo-
cations in a text data stream, through complex addressing
mechanisms. Mark-up information, links and metadata are
expressly distinct from the flow of text in order to guarantee
flexibility and expressiveness.

The world of XML (and SGML) relies on a completely differ-
ent strategy: mark-up is embedded, documents are strictly
hierarchical and assertions about text fragments are made
by wrapping them with elements, enriched by attributes.
Ted Nelson himself pointed out disadvantages of such an
approach in relation with transclusions[12]. The three objec-
tions he raised can be summarized as: (1) SGML approach
interposes a ‘forced’ structure between users and actual con-
tent while editing, (2) SGML approach only supports well-
formed inclusions and does not allow users to change in-
cluded content, (3) SGML approach does not support over-
lap and non-hierarchical relationships.

Thus, these two positions seem to be irreconcilable. The
goal of this paper is to investigate whether and how tran-
sclusions can be implemented for XML documents and trace
a possible course towards that goal.

The preliminary step is to understand what we mean by
‘XML transclusions’. Our goal is not to re-implement a re-
vised version of Xanadu based on XML technologies, rather
to support users in creating and editing composite XML
documents that make some Xanalogical functionalities pos-
sible. In particular, we are interested in: tracing fragment
provenance and remote manipulation. First of all, compos-
ite XML documents would benefit from rich information
about the origin of each fragment. That makes it possible to
identify single contributions in collaboratively edited docu-
ments, to display multiple changes in a single document, to
go back to original resources and navigate documents in a
free and powerful way. The permanent connection between
transcluded content and original sources would also make
possible sophisticated forms of editing. Changes to remote
documents could be propagated through transclusions or -
the other way round - local modifications could actually up-
date remote resources. Yet, such scenarios also require other
tricky issues to be addressed such as content merging, syn-
chronization, access permissions, reliability and so on.

23

The core of this paper discusses three approaches for imple-
menting XML transclusions, in section 4. These solutions
use different syntaxes and are progressively expressive and
powerful. Before that, we briefly review the recent litera-
ture about transclusions and XML. The paper also mentions
some prototypes we are developing.

2. TRANSCLUSIONS AND XML
The two most recent research efforts for implementing tran-
sclusions are outside the XML universe. Nelson and his
team proposed Transliterature[11] a revision of the original
Xanadu project built on newer technologies. Transliteral
documents are dynamically built on top of transcluded frag-
ments, so that rich and fine-grained connections between
documents are permanently available. Two prototypes are
worth mentioning: Transquoter, that allows users to hide,
highlight and surf multi-source quotations and XanaduS-
pace, that provides users a 3D view of the overall document
space and shows some of the advanced surfing and display-
ing functionalities envisioned for such inter-connected doc-
uments.

Kolbitsch at al.[8] investigated transclusions for HTML, pre-
senting a prototype that allows users to select content from
web pages and transclude them into new documents. Tran-
sclusions directives are stored as in-line elements and very
complex URLs. Interesting issues are still open about con-
tent addressing and merging, especially considering that web
pages may change often and may have complex (and badly-
formed) internal structures.

The closest solution to transclusions in the XML universe
is XInclude[10]. XInclude is a W3C standard for merging
XML documents, by writing inclusion directives and retriev-
ing other (parts of) documents. The focus of XInclude is
on well-formed XML fragments. Although even text frag-
ments can be included (parse="text"), XInclude does not
allow users to include bad-formed fragments or ranges. That
makes it impossible to implement fully-fledged transclusions.
Simplified forms of transclusions are possible through XIn-
clude anyway. XIPr[17] is an implementation of XInclude
in XSLT 2.0, very efficient and simple to be integrated in
other XML applications. XSLT technologies could be also
used straightforwardly for simplified transclusions: a general
approach is discussed in [5].

XLink[3] could also be cited as a way to transclude pieces
of content. The @show and @actuate attributes allow users
to define hot-links, that are similar to transclusions apart
from implementation details. On the other hand, such a
solution is only partial and XLink does not seem to succeed
as expected.

XLink is a relative recent effort, rooted in a very long ex-
perience in the hypermedia research. Since the early 90s
researchers of the Open Hypermedia community have been
designing systems that let users to add sophisticated links to
a wide range of documents, merging original content and ex-
ternal interventions. Chimera[1], Microcosm[6] and DLS[2]
are only few representatives of these systems. More recently
Tzagarakis et al.[16] presented CB-OHS (Component-Based
Open Hypermedia Systems), an extensible infrastructure for
managing complex and distributed hypermedia elements.

The design and implementation of CB-OHS follows the ‘phi-
losophy of the primacy of structure over data’[16]. This is
a key feature of the Open Hypermedia approach, strongly
related with the idea of transclusions: the separation be-
tween the relationships and the information they relate to.
It makes possible to handle data separately, to create links
pointing to read-only reasorces, to create multiple and over-
lapped links on the same content and so on.

3. A CASE-STUDY: COLLABORATIVE RE-
VIEWS

The idea of transcluding fragments from and to XML doc-
uments is still under-developed. Hereinafter we discuss a
road-map to make that development possible, by using a
case study throughout the paper.

Let us suppose we are building a system for supporting mul-
tiple users to write collaborative reviews about movies. It
would be useful to let reviewers quote fragments from other
reviews, keep trace of their source and maintain a ‘live’ chan-
nel between connected fragments. In fact, a review process
can be improved by quoting opposite criticism, by letting
reviewers access related reviews, by automatically updating
distributed reviews with new material and by fostering dis-
cussion among reviewers. It is worth noting that such an
idea is both rooted in the early days of hypermedia (the
essence itself of hypermedia is the inter-connection between
documents) and central in the recent trend of the World
Wide Web (one of the milestones of the so-called Web 2.0 is
just collaboration).

Consider now that reviewers are writing their comments
about ‘Australia’, starring Nicole Kidman and Hugh Jack-
man1. The film is one of the most controversial of the early
2009. David wrote a quite positive review: “Baz Luhrmann’s
Australia is good, but not a masterpiece”.2 Brad has an op-
posite opinion: “A major miscalculation if there ever was
one”3. Assume that Brad replied to David quoting his orig-
inal note. In fact, a third reviewer - say Mike - might be
interested in quoting both these opinions, even by citing a
different comment by a fourth reviewer (for instance, Re-
becca saying “I actually regret having seen the film through
to the end.”4). Figure 1 shows a possible view of such a
composite review, highlighting multiple contributions5.

The multi-contribution view is only one of the applications
of such an advanced quoting. Users might also be given the
possibility to surf to the original review, in order to col-
lect more information about the movie. Moreover, perma-
nent connections between fragments could be enriched with
metadata (stating, for instance, that the remote review is
‘positive’ or ’negative’), so that advanced search could be
performed over the network of documents. Note also that

1http://www.australiamovie.com/
2http://www.theaustralian.news.com.au/story/0,25197,24670334-
601,00.html
3http://www.ropeofsilicon.com/article/movie-review-
australia-2008
4http://movies.about.com/od/australia/fr/austral-
review.htm
5The picture, shown in the following page, contains the final
rendering of the document rather than its internal (XML)
markup

24

Figure 1: A possible view of Mike’s review, high-
lighting multiple contributions

such a composite view makes it possible to rebuild links be-
tween all reviews (even the first two) from the document
itself, without requiring remote documents to be available.

Last, but not least, connections across fragments can be
used as ‘channels to make documents communicate’. Such
an approach can be considered as a simplified form of tran-
sclusions: transclusion as a ‘live and bidirectional channel’
between pieces of content. The term ‘channel’ stresses the
fact that such a mechanism would allow automatic updates
of content, in both directions: from a remote review to all re-
views including that fragment and from a transcluded frag-
ment to the original review it belongs to. Yet, the auto-
matic update of content opens tricky issues of synchroniza-
tion, conflict resolution, priority, content merging and so on.
On the other hand, it opens fascinating perspectives for col-
laborative documents accessing and editing.

The natural candidate to mark-up these composite docu-
ments is XML. It is standard, universally supported and
very powerful. Surprisingly enough, none of the XML appli-
cations we are aware of provides users all these Xanalogical
functionalities together. The problem is paradoxically the
same hierarchical structure of XML, that makes impossible
to address and overlap fine-grained transclusions[12]. The
question is now at a different level: to what extent XML
transclusions can be implemented? Is it possible to create a
fully-fledged Xanalogical environment even for XML docu-
ments and use it for ‘collaborative reviews’?6

4. CHARTING A COURSE FOR XML TRAN-
SCLUSIONS

Intermediate results are also interesting, leading to a full im-
plementation of XML transclusions. This section first dis-
cusses some partial objectives - that can be achieved today
- and then focuses on long-term developments.

4.1 Step 1: Embedding simplified forms of XML
transclusions

An extension of XInclude can support simplified forms of
XML transclusions. Let us encode the use-case reviews as
DocBook documents, whose quotations are actually XIn-

6Note that many other scenarios would benefit such col-
laborative reviews approach. Just think about the creation
of multi-source reports in a company that collect informa-
tion from existing resources, internal documents and exter-
nal publications.

clude inclusions. Figure 2 and 3 show simplified source codes
for Mike’s review (including Brad’s and Rebecca’s reviews)
and Brad’s one (including David’s).

<para>Just read Brad’s review: "<xi:include

href="brad.xml" xpointer="..." parse="..."/>".

And Rebecca’s review is even worse: she actually

"<xi:include href="rebecca.xml" xpointer="..."

parse="..."/>".</para>

Figure 2: XInclude instructions in mike.xml

<para>I have to fully disagree with David. How

can you say that ‘<xi:include href="david.xml"

xpointer="..." parse="..."/>’? I would rather

define it ‘a major miscalculation if there

ever was one’</para>

Figure 3: XInclude instructions in brad.xml

An XInclude processor transforms mike.xml into a final doc-
ument where all inclusions are resolved and content frag-
ments are merged together. The (partial) result we want
to achieve enriches that document with detailed informa-
tion about the origin of each fragment. It is crucial that all
inclusions traversed to reach the content are stored in the
document.

XInclude supports two types of inclusions: (i) text fragments
(parse="text" and xpointer addresses a sequence of char-
acters) or (ii) XML elements (parse="xml" and xpointer

addresses a well-formed XML fragment). The second case
obviously requires that the source documents already con-
tain the XML elements to be included. In the example, all
quotations are encoded through the DocBook quote element
in brad.xml, rebecca.xml and david.xml.

A first solution consists of introducing in the output new ele-
ments wrapping the included content. For instance, we could
use a new element <xi:included> decorated with metadata
about the inclusion. With that information, we can build
applications to let users access metadata, surf to original
content, identify contributions, update content, etc.

There are two main drawbacks to such an approach. Firstly,
any tool processing the final document has to know about
the element xi:included. It is then impossible to directly
reuse legacy tools such as DocBook converters or renderers.
Tools that directly process children of unknown elements
(basically ‘ignoring’ the presence of xi:included) could be
used as well, but we cannot take such a ‘transparent’ be-
havior for granted. A second issue is related to the way
users define inclusions. Consider a fifth reviewer quoting
fragments from (the expanded view of) mike.xml : how can
she/he set the xpointer attribute of inclusion instructions?
She/he has to also consider the xi:included elements and
write very complex expressions, unless XPointer addresses
are filtered to ‘ignore’ those elements. In any case, a tan-
gled and error-prone management of internal addresses is
required. A detailed discussion about these issues can be
found in[7], along with a possible solution based on Archi-
tectural Forms[15]. A running prototype is also presented
in the same paper.

25

The basic idea of Architectural Forms is to extend the at-
tribute set for an element to express semantic information.
Since attributes (that belong to a different namespace) can
be added to SGML and XML elements without impacting
the document’s integrity and without interfering with other
applications, Architectural Forms can be exploited to mix
information in a transparent manner.

The same approach can be applied to inclusions. The idea
presented in [7] is to process all inclusions and ‘embed’ in-
formation in qualified attributes (belonging to a reserved
namespace), so that the main structure of the XML docu-
ment is not altered. The presence of these attributes does
not impact the basic processing, parsing and integrity of the
document. On the other hand, full expressive information
about inclusions is available. Figure 4 shows such a solution
applied to the use case.

<para>Just read Brad’s review: "<quote

xi:inclusion_history="brad.xml#xpointer(...)">I have

to fully disagree with David. How can you say that

‘<quote xi:inclusion_history="brad.xml#xpointer(),

david.xml#xpointer(...)"> Australia is good,but not

a masterpiece </quote>’? I would rather define it

‘a major miscalculation if there ever was one’

</quote>". And Rebecca’s review is even worse: she

actually "<quote xi:inclusion_history="rebecca.xml

#xpointer(...)">regret having seen the film through

to the end</quote>".</para>

Figure 4: Resolving and embedding inclusions in
mike.xml

The attribute xi:inclusion_history is an extension prop-
erty of the XInclude standard to record data about inclu-
sions. The example uses that attribute to store information
about nested inclusions and spread that information all over
the XML tree. Consider, for instance, the quotation ‘Aus-
tralia is good, but not a masterpiece’: the document knows
that it has been included from brad.xml but it was actually
originated in david.xml. Thus, all copies of a given fragment
are very well connected in a complex network of inclusions,
available to both users and applications.

In practice, xi:inclusion_history was never given great
importance and it was never really supported by the XIn-
clude implementations. In fact, the prototype presented in
[7] uses a different syntax. Syntactic details are not relevant
here: what is really important is that record of inclusions are
hidden within documents and can be activated on-demand.
That information can be exploited to build the aforemen-
tioned simplified form of XML transclusions, allowing users
to navigate transclusion metadata, to retrieve original con-
tent, to highlight multiple contributions and to automati-
cally update content.

There many reasons why such a solution is only a partial
step towards our goal. First of all, it only applies to the
inclusion of well-formed XML, since qualified attributes -
meant to be added to the included infoset - can be only
added on elements. One of the consequences is that no in-
formation about ‘dangling’ inclusions is eventually stored in
the document. The term ‘dangling inclusion’ indicates an
inclusion that failed because content was not available. It

may happen for different reasons: errors in the document
address or in the internal location of a fragment, temporary
or permanent disconnectivity, permission issues and so on.
Solutions exploiting XML comments or decoration of pre-
ceding/following siblings might be investigated but seem to
be tortuous and awkward.

The second - and more important - issue is that such a model
does not allow a lot of very common inclusions. Consider,
for instance, a reviewer interested in quoting only few words
of an existing quotation, or a sentence that partially spans
over two paragraphs, or an interval that spans over a bad-
formed XML fragment. Such selections can be supported
only by exploiting external referencing mechanisms, that go
beyond the scope of the strictly hierarchical organization of
XML.

4.2 Step 2: Externalizing XML transclusions
A further step to overcome the aforementioned limitations
consists of storing data about transcluded content in exter-
nal and ad-hoc data structures, instead of embedding that
information in the document itself. The prototype presented
in [7] exports a module handling such externalization, al-
though only some transclusions are actually supported. Fig-
ure 5 shows the example document mike.xml represented
through externalized transclusions.

<ted:out-of-band>

<ted:transclusion

transclusion-id="d6e7"

source="brad.xml#xpointer(...)"/>

<ted:transclusion

transclusion-id="d9e11"

source="david.xml#xpointer(...)"/>

</ted:out-of-band>

<para>Just read Brad’s review: "I have to fully

disagree with David. How can you say that

‘Australia is good, but not a masterpiece’?I would

rather define it ‘a major miscalculation if there

ever was one’". And Rebecca’s review is even worse:

she actually "regret having seen the film through

to the end".</para>

Figure 5: Resolving and externalizing inclusions in
brad.xml

The content - even the transcluded one - is stored as a plain
stream of text while the ted:out-of-band data-structure
contains pointers to text fragments and metadata about
each fragment. Several advantages of such a representa-
tion can be outlined. First of all, it contains rich infor-
mation about the nesting of transclusions as well as rich
metadata about original sources, without interfering with
users and applications that interact with the document. In
fact, all transclusions data are stored externally and can be
ignored by transclusion-unaware processors. The position
of the ted:out-of-band data-structure is also worth dis-
cussing: it can be placed within the XML document itself
(for instance, as a first child of the root) or even in a com-
pletely external file. The first approach produces a single
self-contained resource that can be moved from one system
to another without requiring any management of relative

26

links; on the other hand, it adds extra structures to the orig-
inal XML tree. The second approach is completely trans-
parent and decoupled from the document tree-structure but
it requires applications to process links and set of resources.
Both these approaches are valid, according to users needs
and preferences.

However, the main strength of such an externalized solution
is its capability of defining transclusions that span over text
fragments, ranges or even overlapped transcluded content.
While Architectural Forms only work for transcluding well-
formed XML fragments - as information is embedded into
attributes of the transcluded elements - external pointers
may refer to any location in the document, through proper
XPointer expressions. For instance, it is possible to iden-
tify a transcluded fragment by simply indicating a pointer
to the start- and end- offset of that fragment, and without
altering the document itself. Note also that this approach al-
lows users to store information about dangling transclusions
(whose content is not available because of network errors or
simply because of different regimes in accessing content) by
simply adding a reference to the point where the transcluded
content was supposed to be. There is no ‘intruder’ structure
in the XML tree but very rich information is available about
nested or empty transclusions.

On the other hand, such an approach opens very tricky
issues of content merging and manipulation of references.
The main problem is related to the ‘bad-formedness’ of in-
cluded fragments. External references - and in particular
XPointer expressions - allow users to also include any piece
of an XML tree. Consider, for instance, a user selecting the
last sentence of a paragraph and the first one of the follow-
ing paragraph (a possible HTML source code: ‘concluding

paragraph</p><p>And starting a new one’). Several ques-
tions arise from that simple selection: which is the best way
to include that fragment into a new document? Is it a plain
string (without the p elements), or does it generate two para-
graphs or is it a completely different structure? The adop-
tion of an externalized approach require us to address these
issues and to build a general and flexible document archi-
tecture for manipulating fine-grained fragments. The con-
sistence of external data structures is another very difficult
issue to face. Consider as example the implementation of
an editor for such documents: it requires any edit operation
to be propagated to the external data structure in a consis-
tent way. Even small changes require a complex network of
statements and relations to be updated and manipulated.

4.3 Step 3: Further generalization and exter-
nalization via RDF and EARMARK

The previous approach can be improved, although it is enough
to provide users with a fully-fledged Xanalogical environ-
ment. The idea is to exploit existing XML standards: in-
stead of using ad-hoc data structures and operations, XML
transclusions could be described through RDF (and OWL)
statements. RDF is a language for representing informa-
tion about resources in the World Wide Web[9], that allows
users to make any assertion on any identifiable resource:
statements on any fragment of text, multiple statements on
the same resource and overlapped statements are all possi-
ble in RDF. The additional benefit of RDF lies on its stan-
dardization: expressing transclusions in RDF would allow

us to exploit legacy tools of the Semantic Web community
and to create sophisticated services of searching and rea-
soning over transcluded content. Nevertheless, the adoption
of RDF leaves still open all the very complex issues related
to consistent update and manipulation of externalized tran-
sclusions.

We finally propose a further generalization of RDF to in-
tegrate in a single approach advantages of both embedded
markup (a la XML, presented as a first step of our roadmap)
and external annotations. A detailed discussion of that
proposal - called EARMARK (Extreme Annotational RDF
Markup) - can be found in [14]. EARMARK derived from
the analysis of some limitations of RDF. The main prob-
lem is that RDF assertions need URIs to address resources:
statements only apply to whole documents, fragments pro-
vided with an identifier, or fragments addressable by some
URI schema. The XPointer standard (actually, the full
XPointer schema of XPointer [4]) makes it possible to re-
fer to arbitrary pieces of text and XML documents. The
adoption of that standard in conjunction with RDF would
solve all the URI-related issues. The problem is that the
XPointer full schema has never been confirmed by the W3C
and its approval seems remote.

The second interesting aspect of RDF is the fact that all
URIs are considered ‘opaque’ strings regardless of the type
of resource they refer to. It is very difficult to differenti-
ate an assertion about a text fragment from an assertion
about an element, to differentiate classes of assertions and
relations among assertions. The solution we propose, EAR-
MARK, defines an ontologically sound model that formal-
izes the concepts of the XPointer schema, and a natural way
to express externally both RDF assertions and embedded
markup constructs in the same framework. We also imple-
mented a first prototype translating documents from and to
EARMARK format, RDF and embedded XML. Although
the implementation of EARMARK is at a very early stage,
such a ‘semantic layer on top of transclusion’ is very flexible
and promising.

5. CONCLUSIONS
Transclusions have contributed to shape the most successful
hypermedia projects, although they were never fully imple-
mented. After several years from their invention - dated
back to the early 60s - they still keep the original attractive-
ness and potentialities. The challenge for the community is
now to adapt the original Xanalogical design to the current
technologies and systems, in particular to the World Wide
Web and XML.

The contribution of this paper is manifold: (i) a preliminary
discussion of simplified forms of transclusions, viable for the
world of XML, (ii) a roadmap to actually implement XML
transclusions and (iii) a brief presentation of early proto-
types we are developing in that direction.

There are actually other crucial issues not discussed in this
work: content merging, synchronization and access rights.
They all require a much deeper analysis and experientation
we haven’t done yet. Our impression, however, is that ex-
ternalizing transclusions pave the way towards these goals.
In fact, a flexible and fine-grained model makes it possible

27

to integrate multi-source and multi-author fragments. An
orthogonal step will be designing a distributed architecture
that propagates changes - in both directions - and that han-
dles access permissions.

In conclusion, a lot fascinating challenges await us on the
horizon. It is our intention to foster the discussion within
the community and to actually integrate Xanalogical func-
tionalities in a renewed generation of Xanadu-like systems.

6. REFERENCES
[1] K. M. Anderson, R. N. Taylor, and E. J. Whitehead,

Jr. Chimera: hypermedia for heterogeneous software
development enviroments. ACM Trans. Inf. Syst.,
18(3):211–245, 2000.

[2] L. Carr, D. De Roure, W. Hall, and G. Hill. The
Distributed Link Service: A Tool for Publishers,
Authors and Readers. The Web Journal, (1), 1995.

[3] S. DeRose, E. Maler, and D. Orchard. XML Linking
Language (XLink) Version 1.0.
http://www.w3.org/TR/xlink/, 2001. W3C
Recommendation.

[4] S. J. DeRose, E. Maler, and R. Daniel. XPointer
xpointer() Scheme. World Wide Web Consortium,
Working Draft WD-xptr-xpointer-20021219, December
2002.

[5] B. DuCharme. Transclusion with XSLT 2.0.
http://www.xml.com/pub/a/2003/07/09/xslt.html,
2003.

[6] W. Hall, H. Davis, and G. Hutchings. Rethinking
Hypermedia: The Microcosm Approach. Kluwer
Academic Publishers, Norwell, MA, USA, 1996.

[7] A. D. Iorio and J. Lumley. From XML Inclusions to
XML Transclusions. To appear in the Proceedings of
ACM Hypertext 09.

[8] J. Kolbitsch and H. Maurer. Transclusions in an
HTML-based environment. Journal of Computing and
Information Technology, 14(2):161–174, 2006.

[9] F. Manola and E. Miller. RDF Primer.
http://www.w3.org/TR/rdf-primer/, 2004. W3C
Recommendation.

[10] J. Marsh, D. Orchard, and D. Veillard. XML
Inclusions (XInclude) Version 1.0.
http://www.w3.org/TR/xinclude/, 2006. W3C
Recommendation.

[11] T. H. Nelson. Transliterature: A Humanist Format for
Re-Usable Documents and Media. http://translit.org/.

[12] T. H. Nelson. Embedded markup considered harmful.
World Wide Web J., 2(4):129–134, 1997.

[13] T. H. Nelson. Xanalogical structure, needed now more
than ever: parallel documents, deep links to content,
deep versioning, and deep re-use. ACM Comput.
Surv., page 33, 1999.

[14] S. Peroni and F. Vitali. EARMARKing documents for
arbitrary, overlapping and out-of-order annotations.
To appear in the Proceedings of ACM DocEng 09.

[15] J. K. Truss. International Organization for
Standardization. A.3 Architectural Form Definition
Requirements (AFDR). In In ISO/IEC 10744:1997,
Annex A, SGML Extended Facilities, pages
1601–1608, 1997.

[16] M. Tzagarakis, D. Avramidis, M. Kyriakopoulou,
m. c. schraefel, M. Vaitis, and D. Christodoulakis.
Structuring primitives in the callimachus
component-based open hypermedia system. J. Netw.
Comput. Appl., 26(1):139–162, 2003.

[17] E. Wilde. XIPr: XInclude Processor.
http://dret.net/projects/xipr/, 2007.

28

	paper1
	paper2
	paper3
	1. INTRODUCTION
	2. A MULTIDIMENSIONAL SOLUTION
	3. DEVELOPMENT
	4. STRENGTHS & WEAKNESSES
	5. CONCLUSION
	6. ACKNOWLEDGMENTS
	7. REFERENCES

	paper4
	paper5

