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Preface

Since 1999 the ECML PKDD embraces the tradition of organizing a Discovery
Challenge, allowing researchers to develop and test algorithms for novel and
real world datasets. This year’s Discovery Challenge1 presents a dataset from
the field of social bookmarking to deal with the recommendation of tags. The
results submitted by the challenge’s participants are presented at an ECML
PKDD workshop on September 7th, 2009, in Bled, Slovenia.

The provided dataset has been created using data of the social bookmark
and publication sharing system BibSonomy,2 operated by the organizers of the
challenge. The training data was released on March 25th 2009, the test data on
July 6th. The participants had time until July 8th to submit their results. This
gave researchers 14 weeks time to tune their algorithms on a snapshot of a real
world folksonomy dataset and 48 hours to compute results on the test data.

To support the user during the tagging process and to facilitate the tagging,
BibSonomy includes a tag recommender. When a user finds an interesting web
page (or publication) and posts it to BibSonomy, the system offers up to five
recommended tags on the posting page. The goal of the challenge is to learn a
model which effectively predicts the keywords a user has in mind when describing
a web page (or publication). We divided the problem into three tasks, each of
which focusing on a certain aspect. All three tasks get the same dataset for
training. It is a snapshot of BibSonomy until December 31st 2008. The dataset
is cleaned and consists of two parts, the core part and the complete snapshot.
The test dataset is different for each task.

Task 1: Content-Based Tag Recommendations. The test data for this task con-
tains posts, whose user, resource or tags are not contained in the post-core at
level 2 of the training data. Thus, methods which can’t produce tag recommen-
dations for new resources or are unable to suggest new tags very probably won’t
produce good results here.

Task 2: Graph-Based Recommendations. This task is especially intended for
methods relying on the graph structure of the training data only. The user,
resource, and tags of each post in the test data are all contained in the training
data’s post-core at level 2.

Task 3: Online Tag Recommendations. This is a bonus task which will take place
after Tasks 1 and 2. The participants shall implement a recommendation service
which can be called via HTTP by BibSonomy’s recommender infrastructure
when a user posts a bookmark or publication. All participating recommenders
are called on each posting process, one of them is chosen to actually deliver the
results to the user. We can then measure the performance of the recommenders
in an online setting, where timeouts are important and where we can measure
which tags the user has clicked on.
1 http://www.kde.cs.uni-kassel.de/ws/dc09/
2 http://www.bibsonomy.org
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Results. More than 150 participants registered for the mailing list which enabled
them to download the dataset. At the end, we received 42 submissions – 21 for
each of the Tasks 1 & 2. Additionally, 24 participants submitted a paper that
can be found in the proceedings at hand.

We used the F1-Measure common in Information Retrieval to evaluate the
submitted recommendations. Therefore, we first computed for each post in the
test data precision and recall by comparing the first five recommended tags
against the tags the user has originally assigned to this post. Then we averaged
precision and recall over all posts in the test data and used the resulting precision
and recall to compute the F1-Measure as f1m = 2·precision · recall

precision + recall .
The winning team of Task 1 has an f1m of 0.18740, the second and third follow

with 0.18001 and 0.17975. For Task 2, the winner achieved an f1m of 0.35594,
followed by 0.33185 and 0.32461. The winner of Task 3 will be announced at the
conference and later on the website of the challenge.

Lipczak et al. from Dalhousie University, Halifax, Canada (cf. page 157) are
the winners of Task 1. With a method based on the combination of tags from
the resource’s title, tags assigned to the resource by other users and tags in the
user’s profile they reached an f1m of 0.18740 in Task 1 and additionally achieved
the third place in Task 2 with an f1m of 0.32461. The system is composed of six
recommenders and the basic idea is to augment the tags from the title by related
tags extracted from two tag-tag–co-occurrence graphs and from the user’s profile
and then rescore and merge them.

The winners of Task 2, Rendle and Schmidt-Thieme from University of
Hildesheim, Germany (cf. page 235) achieved an f1m of 0.35594 with a statis-
tical method based on factor models. Therefore, they factorize the folksonomy
structure to find latent interactions between users, resources and tags. Using
a variant of the stochastic gradient descent algorithm the authors optimize an
adaptation of the Bayesian Personal Ranking criterion. Finally, they estimate
how many tags to recommend to further improve precision.

The second of Task 1 (Mrosek et al., page 189) harvests tags from sources
like Delicious, Google Scholar, and CiteULike. They also employ the full-text of
web pages and PDFs. The third (Ju and Hwang, page 109) merges tags which
have been earlier assigned to the resource or used by the user as well as resource
descriptions by a weighting scheme. Finally, the second of Task 2 (Balby Marinho
et al., page 7) uses relational classification methods in a semi-supervised learning
scenario to recommend tags.

We thank all participants of the challenge for their contributions and the
organizers of the ECML PKDD 2009 conference for their support. Furthermore,
we want to thank our sponsors Nokia3 and Tagora4 for supporting the challenge
by awarding prizes for the winners of each task. We are looking forward to a
very exciting and interesting workshop.

Kassel, August 2009
Folke Eisterlehner, Andreas Hotho, Robert Jäschke

3 http://www.nokia.com/
4 http://www.tagora-project.eu/
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Relational Classification for Personalized Tag
Recommendation

Leandro Balby Marinho, Christine Preisach, and Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL)
Samelsonplatz 1, University of Hildesheim, D-31141 Hildesheim, Germany

{marinho,preisach,schmidt-thieme}@ismll.uni-hildesheim.de
http://www.ismll.uni-hildesheim.com/

Abstract. Folksonomy data is relational by nature, and therefore methods that
directly exploit these relations are prominent for the tag recommendation prob-
lem. Relational methods have been successfully applied to areas in which en-
tities are linked in an explicit manner, like hypertext documents and scientific
publications. For approaching the graph-based tag recommendation task of the
ECML PKDD Discovery Challenge 2009, we propose to turn the folksonomy
graph into a homogeneous post graph and use relational classification techniques
for predicting tags. Our approach features adherence to multiple kinds of rela-
tions, semi-supervised learning and fast predictions.

1 Introduction

One might want tag recommendations for several reasons, as for example: simplifying
the tagging process for the user, exposing different facets of a resource and helping
the tag vocabulary to converge. Given that users are free to tag, i.e., the same resource
can be tagged differently by different people, it is important to personalize the recom-
mended tags for an individual user.

Tagging data forms a ternary relation between users, resources and tags, differently
from typical recommender systems in which the relation is usually binary between users
and resources. The best methods presented so far explore this ternary relation to com-
pute tag predictions, either by means of tensor factorization [8] or PageRank [3], on the
hypergraph induced by the ternary relational data. We, on the other hand, propose to
explore the underlying relational graph between posts by means of relational classifica-
tion.

In this paper we describe our approaches for addressing the graph-based tag rec-
ommendation task of the ECML PKDD Discovery Challenge 2009. We present two
basic algorithms: PWA* (probabilistic weighted average), an iterative relational clas-
sification algorithm enhanced with relaxation labelling, and WA* (weighted average),
an iterative relational classification method without relaxation labelling. These meth-
ods feature: adherence to multiple kinds of relations, training free, fast predictions, and
semi-supervised classification. Semi-supervised classification is particularly appealing
because it allows us to evtl. benefit from the information contained in the test dataset.
Furthermore, we propose to combine these methods through unweighted voting.
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The paper is organized as follows. Section 2 presents the notation used throughout
the paper. In Section 3 we show how we turned the folksonomy into a post relational
graph. Section 4 introduces the individual classifiers and the ensemble technique we
used. In Section 5 we elaborate on the evaluation and experiments conducted for tuning
the parameters of our models, and report the results obtained on the test dataset released
for the challenge. The paper closes with conclusions and directions for future work.

2 Notation

Foksonomy data usually comprises a set of users U , a set of resources R, a set of tags
T , and a set Y of ternary relations between them, i.e., Y ⊆ U ×R× T .

Let
X := {(u, r) | ∃t ∈ T : (u, r, t) ∈ Y }

be the set of all unique user/resources combinations in the data, where each pair is called
a post. For convenience, let T (x = (u, r)) := {t ∈ T | (u, r, t) ∈ Y } be the set of all
tags assigned to a given post x ∈ X . We consider train/test splits based on posts, i.e.,
Xtrain, Xtest ⊂ X disjoint and covering all of X:

Xtrain∪̇Xtest = X

For training, the learner has access to the set Xtrain of training posts and their true
tags T |Xtrain . The tag recommendation task is then to predict, for a given x ∈ Xtest, a set
T̂ (x) ⊆ T of tags that are most likely to be used by the resp. user for the resp. resource.

3 Relation Engineering

We propose to represent folksonomy data as a homogeneous, undirected relational
graph over the post set, i.e., G := (X,E) in which edges are annotated with a weight
w : X × X → R denoting the strength of the relation. Besides making the input data
more compact – we have only a binary relationR ⊆ X×X between objects of the same
type – this representation will allow us to trivially cast the problem of personalized tag
recommendations as a relational classification problem.

Relational classifiers usually consider, additionally to the typical attribute-value data
of objects, relational information. A scientific paper, for example, can be connected to
another paper that has been written by the same author or because they share common
citations. It has been shown in many classification problems that relational classifiers
perform better than purely attribute-based classifiers [1, 4, 6].

In our case, we assume that posts are related to each other if they share the same
user: Ruser := {(x, x′) ∈ X × X |user(x) = user(x′)}, the same resource: Rres :=
{(x, x′) ∈ X × X|res(x) = res(x′)}, or either share the same user or resource:
Rres

user := Ruser ∪ Rres (see Figure 1). For convenience, let user(x) and res(x) denote
the user and resource of post x respectively. Thus, each post is connected to each other
either in terms of other users that tagged the same resource, or the resources tagged by
the same user. Weights are discussed in Section 4.
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Fig. 1.Ruser (top left),Rres (bottom left) andRres
user (right) of a given test post (nodes in grey)

Note that it may happen that some of the related posts belong themselves to the
test dataset, allowing us to evtl. profit from the unlabeled information of test nodes
through, e.g., collective inference (see Section 4). Thus, differently from other ap-
proaches (e.g., [3, 8]) that are only restricted to Xtrain, we can also exploit the set Xtest
of test posts, but of course not their associated true tags.

Now, for a given x ∈ Xtest, one can use the tagging information of related instances
to estimate T̂ (x). A simple way to do that is, e.g., through tag frequencies of related
posts:

P (t|x) :=
|{x′ ∈ Nx|t ∈ T (x′)}|

|Nx| , x ∈ X, t ∈ T (1)

while Nx is the neighborhood of x:

Nx := {x′ ∈ X | (x, x′) ∈ R, T (x) 6= ∅} (2)

In section 4 we will present the actual relational classifiers we have used to approach
the challenge.

4 Relational Classification for Tag Recommendation

We extract the relational information by adapting simple statistical relational methods,
usually used for classification of hypertext documents, scientific publications or movies,
to the tag recommendation scenario. The aim is to recommend tags to users by using the
neighborhood encoded in the homogeneous graph G(X,E). Therefore we described a
very simple method in eq. (1), where the probability for a tag t ∈ T given a node x
(post) is computed by counting the frequency of neighboring posts x′ ∈ Nx that have
used the same tag t. In this case the strength of the relations is not taken into account,
i.e., all considered neighbors of x have the same influence on the probability of tag t
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given x. But this is not an optimal solution, the more similar posts are to each other the
higher the weight of this edge should be.

Hence, a more suitable relational method for tag recommendation is the
WeightedAverage (WA) which sums up all the weights of posts x′ ∈ Nx that share the
same tag t ∈ T and normalizes this by the sum over all weights in the neighborhood.

P (t|x) =

∑
x′∈Nx|t∈T (x′) w(x, x′)∑

x′∈Nx
w(x, x′)

(3)

Thus, WA does only consider neighbors that belong to the training set.
A more sophisticated relational method that takes probabilities into account is the

probabilistic weighted average (PWA), it calculates the probability of t given x by build-
ing the weighted average of the tag probabilities of neighbor nodes x′ ∈ Nx:

P (t|x) =

∑
x′∈Nx

w(x, x′)P (t|x′)∑
x′∈Nx

w(x, x′)
(4)

Where P (t|x′) = 1 for x′ ∈ Xtrain, i.e., we are only exploiting nodes contained
in the training set (see eq. (2)). We will see in the next paragraph how one can exploit
these probabilities in a more clever way. Both approaches have been introduced in [5]
and applied to relational datasets.

Since we want to recommend more than one tag we need to cast the tag recommen-
dation problem as a multilabel classification problem, i.e., assign one or more classes to
a test node. We accomplish the multilabel problem by sorting the calculated probabili-
ties P (t|x) for all x ∈ Xtest and recommend the top n tags with highest probabilities.

The proposed relational methods could either be applied on Rres
user, i.e., the union of

the user and resource relation or on each relation Ruser, Rres individually. If applied on
each relation the results could be combined by using ensemble techniques.

4.1 Semi-Supervised Learning

As mentioned before, we would like additionally, to exploit unlabeled information con-
tained in the graph and use the test nodes that have not been tagged yet, but are related
to other nodes. This can be achieved by applying collective inference methods, being
iterative procedures, which classify related nodes simultaneously and exploit relational
autocorrelation and unlabeled data. Relational autocorrelation is the correlation among
a variable of an entity to the same variable (here the class) of a related entity, i.e., con-
nected entities are likely to have the same classes assigned. Collective Classification is
semi-supervised by nature, since one exploits the unlabeled part of the data. One of this
semi-supervised methods is relaxation labeling [1], it can be formally expressed as:

P (t|x)(i+1) = M(P (t|x′)(i)x′∈Nx
) (5)

We first initialize the unlabeled nodes with the prior probability calculated using the
train set, then compute the probability of tag t given x iteratively using a relational clas-
sification method M based on the neighborhood Nx in the inner loop. The procedure
stops when the algorithm converges (i.e., the difference of the tag probability between
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iteration i and i + 1 is less than a very small ε) or a certain number of iterations is
reached.

We used eq. (4) as relational method inside the loop, where we do not require that
the neighbors x′ are in the training set, but are using the probabilities of unlabeled
nodes. For PWA this means that in each iteration we use the probabilities of the neigh-
borhood estimated in the previous iteration collectively. PWA combined with collective
inference is denoted as PWA* in the following.

For WeightedAverage we did not use relaxation labeling but applied a so called one-
shot-estimation [5, 7]. We did only use the neighbors with known classes, i.e., in the first
iteration we exploit only nodes from the training set, while in the next iteration we used
also test nodes that have been classified in the previous iterations. The procedure stops
when all test nodes could be classified or a specific number of iterations is reached.
Hence, the tag probabilities are not being re-estimated like for the relaxation labeling
but only estimated once. Thus, WA combined with the one-shot-estimation procedure is
denoted as WA*.

4.2 Ensemble

Ensemble classification may lead to significant improvement on classification accu-
racy, since uncorrelated errors made by the individual classifiers are removed by the
combination of different classifiers [2, 6]. Furthermore, ensemble classification reduces
variance and bias.

We have decided to combine WA* and PWA* through a simple unweighted voting,
since voting performs particularly well when the results of individual classifiers are
similar; as we will see in Section 5, WA* and PWA* yielded very similar results in our
holdout set.

After performing the individual classifiers, we receive probability distributions for
each classifier Kl as output and build the arithmetic mean of the tag-assignment proba-
bilities for each test post and tag:

P (t|x) =
1
L
·

L∑
l=1

Pl(t|x), L := |Kl|Pl(t|x) 6= 0, t ∈ T | (6)

4.3 Weighting Schemes

The weight w in eq. (3) and (4) is an important factor in the estimation of tag probabil-
ities, since it describes the strength of the relation between x and x′. There are several
ways to estimate these weights:

1. For two nodes (x, x′) ∈ Rres, compute their similarity by representing x and x′ as
user-tag profile vectors. Each component of the profile vector corresponds to the
count of co-occurrences between users and tags:

φuser-tag := (|Y ∩ ({user(x)} ×R× {t})|)t∈T

11



2. Similarly to 1, for two nodes (x, x′) ∈ Ruser, the node similarity is computed by
representing x and x′ as resource-tag profile vectors:

φres-tag := (|Y ∩ (U × {res(x)} × {t})|)t∈T

3. Similar to 2, but x and x′ are represented as resource-user profile vectors where
each component corresponds to the count of co-occurrences between resources and
users:

φres-user := (|Y ∩ ({u} × {res(x)} × T )|)u∈U

4. The same as in 1, but the node similarity is computed w.r.t. to user-resource profile
vectors:

φuser-res := (|Y ∩ ({user(x)} × {r} × T )|)r∈R

The edge weight is finally computed by applying the cosine similarity over the
desired profile vectors:

sim(φ(x), φ(x′)) :=
〈φ(x), φ(x′)〉
‖φ(x)‖‖φ(x′)‖ (7)

In our experiments we basically used the scheme 1, since there is no new user in the
data and therefore we can always build user-tag profile vectors.

5 Evaluation

All the results presented in this section are reported in terms of F1-score, the official
measure used by the graph-based tag recommendation task of the ECML PKDD Dis-
covery Challenge 2009. For a given x ∈ Xtest the F1-Score is computed as follows:

F1-score
(
T̂ (x)

)
=

2 · Recall
(
T̂ (x)

)
· Precision

(
T̂ (x)

)
Recall

(
T̂ (x)

)
+ Precision

(
T̂ (x)

) (8)

Although the methods presented in Section 4 usually do not have free parameters,
we realized that Ruser and Rres can have a different impact in the recommendation
quality (cf. Figures 2 and 3), and thereby we introduced a parameter to reward the best
relations in Rres

user by a factor c ∈ N: if Rres yields better recommendations than Ruser
for example, all edge weights inRres

user that refer toRres are multiplied by c.
For searching the best c value we performed a greedy search over the factor range

{1, ..., 4} on a holdout set created by randomly selecting 800 posts from the training
data. Tables 1 and 2 show the characteristics of the training and test/holdout datasets
respectively. Figure 2 presents the results of WA*-Full1, i.e., WA* performed overRres

user,
for different c values on the holdout set according to the F1-score. We also plot the
results of WA*-Res and WA*-Usr (i.e., WA* onRres andRuser resp.).

After finding the best c value on the holdout set, we applied WA*-Full, PWA*-Full,
and the ensemble (c.f. eq. 6) to the challenge test dataset (see Figure 3). Note that the

1 Since the results of PWA* and WA* are very similar, we just report on WA*.
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dataset |U | |R| |T | |Y | |X|
BibSonomy 1,185 22,389 13,276 253,615 64,406

Table 1. Characteristics of 2-core BibSonomy.

dataset |U | |R| |Xtest|
Holdout 292 788 800
Challenge test 136 667 778

Table 2. Characteristics of the holdout set and the challenge test dataset.

results on the challenge test dataset are much lower than those on the holdout set. It may
indicate that either our holdout set was not a good representative of the population or
that the challenge test dataset represents a concept drift. We plan to further investigate
the reasons underlying this large deviation.

According to the rules of the challenge, the F1-score is measured over the Top-5
recommended tags, even though one is not forced to always recommend 5 tags. This is
an important remark because if one recommends more tags than the true number of tags
attached to a particular test post, one can lower precision. Therefore, we estimate the
number of tags to be recommended to each test post by taking the average number of
tags used by each test user to his resources. If a given test user has tagged his resources
with 3 tags in average, for example, we recommend the Top-3 tags delivered by our
algorithms for all test posts in which this user appears.

6 Conclusions

In this paper we proposed to approach the graph-based tag recommendation task of
the ECML PKDD Discovery Challenge 2009 by means of relational classification. We
first turned the usual tripartite graph of social tagging systems into a homogeneous post
graph, whereby simple statistical relational methods can be easily applied. Our methods
are training free and the prediction runtime only depends on the number of neighbors
and tags, which is fast since the training data is sparse. The models we presented also
incorporate a semi-supervised component that can evtl. benefit from test data. We pre-
sented two relational classification methods, namely WA* and PWA*, and one ensemble
based on unweighted voting over the tag probabilities delivered by these methods.

We also introduced a parameter in order to reward more informative relations, which
was learned through a greedy search in a holdout set.

In future work we want to investigate new kinds of relations between the posts (e.g.
content-based), other ensemble techniques, and new methods for automatically learning
more informative weights.
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Fig. 2. Parameter search of WA*-Full in a holdout set. Best c value found equals 3.5
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Abstract. We present a social tag recommendation model for collaborative 

bookmarking systems. This model receives as input a bookmark of a web page 

or scientific publication, and automatically suggests a set of social tags useful 

for annotating the bookmarked document. Analysing and processing the 

bookmark textual contents - document title, URL, abstract and descriptions - we 

extract a set of keywords, forming a query that is launched against an index, 

and retrieves a number of similar tagged bookmarks. Afterwards, we take the 

social tags of these bookmarks, and build their global co-occurrence sub-graph. 

The tags (vertices) of this reduced graph that have the highest vertex centrality 

constitute our recommendations, which are finally ranked based on TF-IDF and 

personalisation based techniques. 

Keywords: social tag recommendation, co-occurrence, graph vertex centrality, 

collaborative bookmarking. 

1   Introduction 

Social tagging systems allow users to create or upload resources (web pages1, 

scientific publications2, photos3, video clips4, music tracks5), annotate them with 

freely chosen words – so called tags – and share them with others. The set of users, 

resources, tags and annotations (i.e., triplets user-tag-resource) is commonly known as 

folksonomy, and constitutes a collective unstructured knowledge classification. This 

implicit classification is then used by users to organise, explore and search for 

resources, and by systems to recommend users interesting resources. 

These systems usually include tag recommendation mechanisms to ease the finding 

of relevant tags for a resource, and consolidate the tag vocabulary across users. 

However, as stated in [7], no algorithmic details have been published, and it is 

assumed that, in general, tag recommendations in current applications are based on 

suggesting those tags that most frequently were assigned to the resource, or to similar 

resources. 

                                                 
1  Delicious – Social bookmarking, http://delicious.com/ 
2  CiteULike – Scholarly reference management and discovery, http://www.citeulike.com/ 
3 Flickr – Photo sharing, http://www.flickr.com/ 
4  YouTube – Video sharing, http://www.youtube.com/ 
5  Last.fm – Personal online radio, http://www.last.fm/ 
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Recent works have proposed more sophisticated and accurate methods for tag 

recommendation. These methods can be roughly classified into content-based and 

collaborative approaches. Content-based techniques [3, 4, 10, 16] analyse the contents 

and/or meta-information of the resources to extract keywords, which are directly 

suggested to the user or matched with existing tags. Collaborative strategies [6, 7, 17], 

on the other hand, exploit folksonomy relations between users, resources and tags to 

infer which of the tags of the system folksonomy are most suitable for a particular 

resource. Hybrid techniques, combining content and collaborative features, have been 

also investigated [5, 15]. 

In this paper, we present a hybrid tag recommendation model for an online 

bookmarking system where users annotate online web pages and scientific 

publications. The model receives as input a bookmark, analyses and processes its 

textual contents – document title, URL, abstract and description – extracting a set of 

keywords, and forms a query that is launched against an index to retrieve a number of 

similar tagged bookmarks. Afterwards, its takes the social tags of these bookmarks, 

and builds their global co-occurrence sub-graph. The tags (vertices) of this reduced 

graph that have the highest vertex centrality constitute the recommendations, which 

are finally ranked based on TF-IDF [14] and personalisation based techniques. 

Participating at the ECML PKDD 2009 Discovery Challenge6, we have tested our 

approach with a dataset from BibSonomy system7, obtaining precision values of 42% 

and 25% when, respectively, one and five tags are recommended per bookmark. As 

we explain herein, the benefits of our approach are its low computational cost, and its 

capability of suggesting diverse tags in comparison to selecting the most popular tags 

matched with each bookmark. 

The rest of the paper is organised as follows. Section 2 summarises state-of-the-art 

tag recommendation techniques. Section 3 describes the document and index models 

used by our tag recommender. Section 4 explains the stages of the recommendation 

process. Section 5 describes the experiments conducted to evaluate the proposal. 

Finally, Section 6 provides some conclusions and future work. 

2   Related work 

Analogously to recommender systems [1], tag recommendation techniques can be 

roughly classified into two categories: content-based and collaborative techniques. 

Whereas content-based approaches focus on the suggestion of keywords extracted 

from resource contents and meta-data, collaborative approaches exploit the relations 

between users, resources and tags of the folksonomy graph to select the set of 

recommended tags. Continuing with the previous analogy, tag recommendation 

techniques that combine content-based and collaborative models can be called hybrid 

approaches, and techniques that make tag recommendations biased by the user’s (tag-

based) profile can be called personalised models. 

Based on the previous classification, in this section, we describe state-of-the-art tag 

recommendation techniques that have been proposed for social bookmarking systems. 

                                                 
6  ECML PKDD 2009 Discovery Challenge, http://www.kde.cs.uni-kassel.de/ws/dc09/ 
7  BibSonomy – Social bookmark and publication sharing, http://www.bibsonomy.org/ 
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2.1   Content-based tag recommenders 

Mishne [10] presents a simple content-based tag recommender. Once a user supplies a 

new bookmark, bookmarks that are similar to it are identified. The tags assigned to 

these bookmarks are aggregated, creating a ranked list of likely tags. Then, the system 

filters and re-ranks the tag list. The top ranked tags are finally suggested to the user. 

To find similar bookmarks, the author utilises a document index, and keywords of the 

input bookmark to form a query that is launched against the index. The tags are 

scored according to their frequencies in the top results of the above query, and those 

tags that have been used previously by the user are boosted by a constant factor. Our 

approach follows the same stages, also using an index to retrieve similar bookmarks. 

It includes, however, more sophisticated methods of tag ranking based on tag 

popularity and personalisation aspects. 

Byde et al. [3] present a personalised tag recommendation method on the basis of 

similarity metrics between a new document and documents previously tagged by the 

user. These metrics are derived either from tagging data, or from content analysis, and 

are based on the cosine similarity metric [14]. Similar metrics are used by our 

approach in some of its stages. 

Chirita et al. [4] suggest a method called P-TAG that automatically generates 

personalised tags for web pages. Given a particular web page, P-TAG produces 

keywords relevant both to the page contents and data residing on the user’s desktop, 

thus expressing a personalised viewpoint. A number of techniques to extract 

keywords from textual contents, and several metrics to compare web pages and 

desktop documents, are investigated. Our approach applies natural language 

processing techniques to extract keywords from bookmark attributes, but it can be 

enriched with techniques like [4] to also analyse and exploit the textual contents of 

the bookmarked documents. 

Tatu et al. [16] propose to extract important concepts from the textual metadata 

associated to bookmarks, and use semantic analysis to generate normalised versions 

of the concepts. For instance, European Union, EU and European 

Community would be normalised to the concept european_union. Then, users 

and resources are represented in terms of the created conceptual space, and 

personalised tag recommendations are based on intersections between such 

representations. In our approach, synonym relations and lexical derivations between 

tags are implicitly taking into consideration through the exploitation of tag co-

occurrence graphs. 

2.2   Collaborative tag recommenders 

Xu et al. [17] propose a collaborative tag recommender that favours tags used by a 

large number of users on the target resource (high authority in the HITS algorithm 

[8]), and minimises the overlap of concepts among the recommended tags to allow for 

high coverage of multiple facets. Our approach also attempts to take into account tag 

popularity and diversity in the recommendations through the consideration of vertex 

centralities in the tag co-occurrence graph. 

19



Hotho et al. [6] present a graph-based tag recommendation approach called 

FolkRank, which is an adaptation of PageRank algorithm [12], and is applied in the 

folksonomy user-resource-tag graph. Its basis is the idea that a resource tagged with 

important tags by important users becomes important itself. The same holds, 

symmetrically, for users and tags. Having a graph whose vertices are associated to 

users, resources and tags, the algorithm reinforces each of them by spreading their 

weights through the graph edges. In this work, we restrict our study to the original 

folksonomy graph. As a future research goal, PageRank, HITS or other graph based 

techniques could be applied to enhance the identification of tags with high graph 

centrality values. 
Jäscke et al. [7] evaluate and compare several tag recommendation algorithms: an 

adaptation of user-based collaborative filtering [13], FolkRank strategy [6], and 

methods that are based on counting tag co-occurrences. The authors show that graph-

based and collaborative filtering approaches provide better results that non-

personalised methods, and state that methods based on counting co-occurrences have 

low computational costs, thus being preferable for real time scenarios. Our approach 

is computationally cheap because it is based on a simple analysis of tag co-occurrence 

graphs, and includes a personalisation stage to better adjust the tag recommendations 

to the user’s profile. 

2.3   Hybrid tag recommenders 

Heymann et al. [5] present a technique that predicts tags for a website based on page 

text, anchor text, surrounding hosts, and other tags assigned to the website by users. 

The tag predictions are based on association rules, which, as stated by the authors, 

may serve as a way to link disparate vocabularies among users, and may indicate 

synonym and polysemy cases. As a hybrid approach, our tag recommender makes use 

of content-based and collaborative tag information. Nonetheless, we simplify the 

process limiting it to the exploitation of meta-information of the contents available in 

the bookmarks. 

Song et al. [15] suggest a tag recommendation method that combines clustering 

and mixture models. Tagged documents are represented as a triplet (words, 

documents, tags) by two bipartite graphs. These graphs are clustered into topics by a 

spectral recursive embedding technique [18]. The sparsity of the obtained clusters is 

dealt with a two-way Poisson mixture model [9], which groups documents into 

components and clusters words. Inference for new documents is based on the 

posterior probability of topic distributions, and tags recommendations are given 

according to the within-cluster tag rankings. 

3   Document and index models 

To suggest tags for an input bookmark, our recommender exploits meta-information 

associated to it. The text contents of bookmarked documents (web pages or scientific 

publications) could be also taken into account, but we decided to firstly study how 

accurate tag recommendations can be by only using bookmarking meta-information. 
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In this work, we test our approach with a dataset obtained from BibSonomy system, 

whose bookmarks have, among others, the attributes shown in Table 1. 

Table 1. Meta-information available in BibSonomy system about two different bookmarks: a 

web page and a scientific publication. 

URL 
http://www.adammathes.com/academic/computer-mediated-communication/ 

folksonomies.html 

Description Folksonomies - Cooperative Classification and Communication Through Shared 

Metadata 

Extended General overview of tagging and folksonomies. Difference between controlled 

vocabularies, author and user tagging. Advantages and shortcomings of 

folksonomies 
 

Title Semantic Modelling of User Interests Based on Cross-Folksonomy Analysis 

Author M. Szomszor and H. Alani and I. Cantador and K. O'hara and N. Shadbolt 

Booktitle  Proceedings of the 7th International Semantic Web Conference (ISWC 2008) 

Journal  The Semantic Web - ISWC 2008 

Pages  632-648 

URL http://dx.doi.org/10.1007/978-3-540-88564-1_40 

Year  2008 

Month October 

Location  Karlsruhe, Germany 

Abstract The continued increase in Web usage, in particular participation in folksonomies, 

reveals a trend towards a more dynamic and interactive Web where individuals 

can organise and share resources. Tagging has emerged as the de-facto standard 

for the organisation of such resources, providing a versatile and reactive 

knowledge management mechanism that users find easy to use and understand. It 

is common nowadays for users to have multiple profiles in various folksonomies, 

thus distributing their tagging activities. In this paper, we present a method for the 

automatic consolidation of user profiles across two popular social networking 

sites, and subsequent semantic modelling of their interests utilising Wikipedia as 

a multi-domain model. We evaluate how much can be learned from such sites, 

and in which domains the knowledge acquired is focussed. Results show that far 

richer interest profiles can be generated for users when multiple tag-clouds are 

combined. 

In our approach, for each bookmark, using a set of NLP tools [2], the text attributes 

title, URL, abstract and description, and extended description are processed and 

transformed into a weighted list of keywords. These simplified bookmark 

representations are then stored into an index, which will allow fast searches for 

bookmarks that satisfy keyword- and tag-based queries. In our implementation, we 

used Lucene8, which allowed us to apply keyword stemming, stop words removal, 

and term TF-IDF weighting. 

                                                 
8  Apache Lucene – Open-source Information Retrieval library, http://lucene.apache.org/ 
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4   Social tag recommendation 

In this section, we describe our approach to recommend social tags for a bookmark, 

which does not need to be already tagged. The recommendation process is divided in 

5 stages, depicted in Figure 1. Each of these stages is explained in detail in the next 

subsections. For a better understanding, the explanations follow a common illustrative 

example. 

 

Figure 1. Tag recommendation process. 

4.1   Extracting bookmark keywords 

The first stage of our tag recommendation approach (identified by label 1 in Figure 1) 

is the extraction of keywords from some of the textual contents of the input 

bookmark. 

According to the document model explained in Section 2, we extract such 

keywords from the title, URL, abstract, description and extended description of the 

bookmark. We made experiments processing other attributes such as authors, user 

comments, and book and journal titles, but we obtained worse recommendation 

results. The noise (in the case of personal comments) and generality (in the case of 

authors and book/journal titles) implied the suggestion of social tags not related to the 

content topics of the web page or scientific publication associated to the bookmark. 

For plain text fields of the bookmark, such as title, abstract and descriptions, we 

filter out numeric characters and discard stop words from English, Spanish, French, 

German and Italian, which were identified as the predominant languages of the 

bookmarks available in our experimental datasets. We also carry out transformations 

to LATEX expressions. Finally, we remove punctuation symbols, parentheses, and 

exclamation and question marks, and discard special terms like paper, work, 

section, chapter, among others. For the URL field, we firstly remove the 

network protocol (HTTP, FTP, etc.), the web domain (com, org, edu, etc.), the file 

extension (html, pdf, doc, etc.), and possible GET arguments for CGI scripts. 

Next, we tokenise the remaining text removing the dots (.) and slashes (/). Finally, we 

discard numeric words and several special words like index, main, default, 

home, among others. In both cases, a natural language processing tool [2] is used to 

singularise the resultant keywords, and filter out those that were not nouns. 
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Table 2 shows the content of an example bookmark whose tag recommendations 

are going to be explained in the rest of this section. It also lists the keywords extracted 

from the bookmark in the first stage of our approach. The bookmarked document is a 

scientific publication. Its main research fields are recommender systems and semantic 

web technologies. It describes a content-based collaborative recommendation model 

that exploits semantic (ontology-based) descriptions of user and item profiles. 

Table 2. Example of bookmark for which the tag recommendation is performed, and the set of 

keywords extracted from it. 

Title A Multilayer Ontology-based Hybrid Recommendation Model 

Authors Iván Cantador, Alejandro Bellogín, Pablo Castells 

URL http://www.configworks.com/AICOM/ 

Journal title AI Communications 

Abstract We propose a novel hybrid recommendation model in which user 

preferences and item features are described in terms of semantic 

concepts defined in domain ontologies. The concept, item and user 

spaces are clustered in a coordinated way, and the resulting clusters 

are used to find similarities among individuals at multiple semantic 

layers. Such layers correspond to implicit Communities of Interest, 

and enable enhanced recommendation. 

Extracted keywords multilayer, ontology, hybrid, recommendation, configwork, aicom, 

ai, communication, user, preference, semantic, concept, domain, 

ontology, item, space, way, cluster, similarity, individual, layer, 

community, interest 

 
In this stage, we performed a simple mechanism to obtain a keyword-based 

description of the bookmarked document (web page or scientific publication) 

contents. Note that more complex approaches can be performed. For example, instead 

of only being limited to the bookmark attributes, we could also extract additional 

keywords from the bookmarked document itself. Moreover, external knowledge bases 

could be exploited to infer new keywords related to the ones extracted from the 

bookmark. These are issues to be investigated in future work. 

4.2   Searching for similar bookmarks 

The second stage (label 2 in Figure 1) consists of searching for bookmarks that 

contain some of the keywords obtained in the previous stage. 

The list of keywords extracted from the input bookmark are weighted based on 

their appearance frequency in the bookmark attributes, and are included in a weighted 

keyword-based query. This query represents an initial description of the input 

bookmark. 

More specifically, in the query �� for bookmark ��, the weight ��,� ∈ [0,1] 
assigned to each keyword � is computed as the number of times the keyword appears 
in the bookmark attributes divided by the total number of keywords extracted from 

the bookmark: 
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� = ����� = {��,�, … , ��,�, … , ��,�} 
where 

��,� = ��,�∑ ��,�������  , 
being ��,� the number of times keyword � appears in bookmark �� fields. 
The query is then launched against the index described in Section 2. Thus, we are 

not only taking into account the relevance of the keywords for the input bookmark, 

but also ranking the list of retrieved similar bookmarks. The searching result is a set 

of bookmarks that are similar to the input bookmark, assuming that “similar” 

bookmarks have common keywords. Using the cosine similarity measure for the 

vector space model [14], the retrieved bookmarks are assigned scores ��,� ∈ [0,1] that 
measure the similarity between the query �� (i.e., the input bookmark ��) and the 
retrieved bookmarks ��: 

��,� = ������ , ��� = cos��, "#� = � ∙ "#%�%%"#% 
For the example input bookmark, Table 3 shows the keywords, query, and some 

similar bookmarks obtained in the second stage of our tag recommendation model. 

Table 3. Extracted keywords, generated query, and retrieved similar bookmarks for the 

example input bookmark. 

Input bookmark: A Multilayer Ontology-based Hybrid Recommendation Model 

Keywords multilayer, ontology, hybrid, recommendation, configwork, aicom, 

ai, communication, user, preference, semantic, concept, domain, 

ontology, item, space, way, cluster, similarity, individual, layer, 

community, interest 

Query recommendation^0.125, ontology^0.09375, concept^0.0625, 

hybrid^0.0625, item^0.0625, layer^0.0625, multilayer^0.0625, 

semantic^0.0625, user^0.0625, aicom^0.03125, cluster^0.03125, 

configwork^0.03125, individual^0.03125, interest^0.03125, 

communication^0.03125, community^0.03125, preference^0.03125, 

similarity^0.03125, space^0.03125, way^0.03125 

Similar bookmarks • Improving Recommendation Lists Through Topic 

Diversification 

• Item-Based Collaborative Filtering Recommendation 

Algorithms 

• Probabilistic Models for Unified Collaborative and Content-

Based Recommendation in Sparse-Data Environments 

• Automatic Tag Recommendation for the Web 2.0 Blogosphere 

using Collaborative Tagging and Hybrid ANN semantic 

structures 

• PIMO - a Framework for Representing Personal Information 

Models 
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In this stage, we attempted to define and contextualise the vocabulary that is likely 

to describe the contents of the bookmarked document. For that purpose, the initial set 

of keywords extracted from the input bookmark was used to find related bookmarks, 

assuming that the keywords and social tags of the latter are useful to describe the 

content topics of the former. 

4.3   Obtaining related social tags 

Once the set of similar bookmarks has been retrieved, in the third stage (label 3 in 

Figure 1), we collect and weight all their social tags. 

The weight assigned to each tag represents how much it contributes to the 

definition of the vocabulary that describes the input bookmark. Based on the scores ��,� of the bookmarks retrieved in the previous stage, the weight &� of a tag ' for the 
input bookmark �� is given by: 

&��'� = ∑ ��,��:) ∈ *+,-�./� . 

At this point, we could finish the recommendation process suggesting those social 

tags with highest weights &�. However, doing this, we are not taking into account tag 
popularities and tag correlations, very important features of any collaborative tagging 

system. In fact, we conducted experiments evaluating recommendations based on the 

highest weighted tags, and we obtained worse results that the ones provided by the 

whole approach presented herein. 

Table 4 shows a subset of the tags retrieved from the bookmarks that were 

retrieved in Stage 2 for the example input bookmark. The weights &� for each tag are 
also given in the table. 

Table 4. Weighted subset of tags retrieved from the list of bookmarks that are similar to the 

example input bookmark. 

Input bookmark: A Multilayer Ontology-based Hybrid Recommendation Model 

Related tag  Weight Related tag Weight Related tag Weight 

recommender 10.538 clustering 2.013 dataset 0.871 

recommendation 6.562 recommendersystems 1.669 evaluation 0.786 

collaborative 5.142 web 1.669 suggestion 0.786 

filtering 5.142 information 1.539 semantics 0.786 

collaborativefiltering 3.585 ir 1.378 tag 0.786 

ecommerce 3.138 retrieval 1.378 tagging 0.786 

personalization 3.138 contentbasedfiltering 1.006 knowledgemanagement 0.290 

cf 2.757 ontologies 1.006 network 0.290 

semantic 2.745 ontology 1.006 neural 0.290 

semanticweb 2.259 userprofileservices 1.006 neuralnetwork 0.290 
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In this stage, we collected the social tags that are potentially relevant for describing 

the input bookmarked document based on a set of related bookmarks. We assigned a 

weight to each tag capturing the strength of its contribution to the bookmark 

description. However, we realised that this measure is not enough for tag 

recommendation purposes, and global metrics regarding the folksonomy graph, such 

as tag popularities and tag correlations, have to be taken into consideration. 

4.4   Building the global social tag co-occurrence sub-graph 

In the fourth stage (label 4 in Figure 1), we interconnect the social tags obtained in the 

previous stage through the co-occurrence values of each pair of tags. 

The co-occurrence of two tags '� and '0 is usually defined in terms of the number 
of resources (bookmarks) that have been tagged with both '� and '0. In this work, we 
make use of the asymmetric co-occurrence metric: 

123'�, '04 = #{6: '� 7 tags���� ^ '0 7 tags����}#{6: '� 7 tags����}  , 
which assigns different values for 123'� , '04 and 123'0, '�4 dividing the number of 
resources tagged with the two tags by the number of resources tagged with one of 

them. 

Computing the co-occurrence values for each pair of tags existing in a training 

dataset, we build a global graph where the vertices correspond to the available tags, 

and the edges link tags that co-occur within at least one resource. This graph is 

directed and weighted: each pair of co-occurring tags is linked by two edges whose 

weights are the asymmetric co-occurrence values of the tags. 

We propose to exploit this global graph to interconnect the tags obtained in the 

previous stage, and extract the ones that are more related with the input bookmark. 

Specifically, we create a sub-graph where the vertices are the above tags, and the 

edges are the same as these tags have in the global co-occurrence graph. From this 

sub-graph, we remove those edges whose co-occurrence values 123'� , '04 are lower 
than the average co-occurrence value of the sub-graph vertices: 

<&=_12���� = ∑ 12�'� , '0��,0#{��, ?�: 123'� , '04 > 0} , 
where '� and '0 are the pairs of social tags related to the input bookmark ��. 
Removing these edges, we aim to isolate (and later discard) “noise” tags that less 

frequently appear in bookmark annotations. 

We hypothesise that vertices of the generated sub-graph that are most “strongly” 

connected with the rest of the vertices correspond to tags that should be 

recommended, assuming that high graph vertex centralities are associated to the most 

informative or representative vertices. In this context, it is important to note that 

related tags with high weights &� do not necessarily have to be the ones with highest 
vertex centralities in the co-occurrence sub-graph. We hypothesise that a combination 
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of both measures – local weights representing the bookmark content topics and global 

co-occurrences taking into account collaborative popularities – is an appropriate 

strategy for tag recommendation. 

Figure 2 shows the resultant co-occurrence graph associated to the tags retrieved 

from the example input bookmark. The tags with highest vertex in-degree seem to be 

good candidates to describe the contents of the bookmarked document. 

Input bookmark: A Multilayer Ontology-based Hybrid Recommendation Model 

 
Figure 2. Filtered tag co-occurrence graph associated to the example input bookmark. Edge 

weights and non-connected vertices are not shown. Two main clusters can be identified in the 

graph, which correspond to two research areas related to the bookmarked document: 

recommender systems, and semantic web technologies. 
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The goal of this stage was to establish global relations between the social tags that 

are potentially useful for describing the input bookmark. Exploiting these relations, 

we aimed to take into account tag popularity and tag co-occurrence aspects, and 

expected to identify which are the most informative tags to be recommended. 

4.5   Recommending social tags 

In the fifth stage (label 5 in Figure 1), we select and recommend a subset of the 

related tags from previous stages. The selection criterion we propose is based on three 

aspects: the tag frequency in bookmarks similar to the input bookmark (stage 3), the 

tag co-occurrence graph centrality (stage 4), and a personalisation strategy that 

prioritises those tags that are related to the input bookmark and belong to the set of 

tags already used by the user to whom the recommendations are directed. 

For each tag ', the first two aspects are combined as follows: 
1��'� = �6_AB=CBB��'� ∙ �&��'��D 

where �6_AB=CBB��'� is the number of edges that have as destination the vertex of tag ' in the co-occurrence sub-graph built in stage 4 for the input bookmark ��. 
In order to penalise too generic tags we conduct a TF-IDF based reformulation of 

the centralities 1��'�: 
C��'� = 1��'� ∙ E2= F G#{�: ' 7 tags����}H 

where G is the total number of bookmarks in the repository. 
Finally, to take into account information about the user’s tagging activity, we 

increase the C��'� values of those tags that have already been used by the user: 
I�,J�'� = C��'� ∙ �1 + IJ�'�� 

where IJ�'� is the normalised preference of user L for tag ': 
IJ�'� = M �J,)max� P *+,-�J� �J,� if ' ∈ '<=��L�

0 otherwise
W , 

�J,� being the number of times tag ' has been used by user L. 
The tags with highest preference values I�,J�'� constitute the set of final 

recommendations. Both the TF-IDF and personalisation based mechanisms were 

evaluated isolated and in conjunction with the baseline approach 1��'� improving its 
results. 
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Table 5 shows the final sorted list of tags recommended for the example input 

bookmark: recommender, collaborative, filtering, semanticweb, 

personalization. It is important to note that these tags are not the same as the 

top tags obtained in Stage 3 (see Table 4). In that case, all those tags 

(recommender, recommendation, collaborative, filtering, 

collaborativefiltering) were biased to vocabulary about “recommender 

systems”, and no diversity in the suggested tags was provided. 

Table 5. Final tag recommendations for the example input bookmark. 

Input bookmark: A Multilayer Ontology-based Hybrid Recommendation Model 

Tag 1 recommender 

Tag 2 collaborative 

Tag 3 filtering 

Tag 4 semanticweb 

Tag 5 personalization 

In the fifth and last stage, we ranked the social tags extracted from the bookmarks 

similar to the input one. For that purpose, a combination of tag co-occurrence graph 

centrality, tag frequency, and tag-based personalisation metrics was performed. With 

an illustrative example, we showed that this strategy seems to offer more diversity in 

the recommendations than simply selecting the tags that more times were assigned to 

similar bookmarks. 

5   Experiments 

5.1   Tasks 

Forming part of the ECML PKDD 2009 Discovery Challenge, two experimental tasks 

have been designed to evaluate the tag recommendations. Both of them get the same 

dataset for training, a snapshot of BibSonomy system until December 31st 2008, but 

different test datasets: 

• Task 1. The test data contains bookmarks, whose user, resource or tags are not 

contained in the training data. 

• Task 2. The test data contains bookmarks, whose user, resource or tags are all 

contained in the training data. 

5.2   Datasets 

Table 6 shows the statistics of the training and test datasets used in the experiments. 

Tag assignments (user-tag-resource) are abbreviated as tas. 
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Table 6. ECML PKDD 2009 Discovery Challenge dataset. 

  
Web pages 

Scientific 

publications 

All 

bookmarks 

Training 

users 2679 1790 3617 

resources 263004 158924 421928 

tags 56424 50855 93756 

tas 916469 484635 1401104 

tas/resource 3.48 3.05 3.32 

Test (task 1) 

users 891 1045 1591 

resources 16898 26104 43002 

tags 14395 24393 34051 

tas 64460 99603 164063 

tas/resource 3.81 3.82 3.82 

Test (task 2) 

users 91 81 136 

resources 431 347 778 

tags 587 397 862 

tas 1465 1139 3382 

tas/resource 3.40 3.28 4.35 

5.3   Evaluation metrics 

As evaluation metric, we use the average X-measure, computed over all the 
bookmarks in the test dataset as follows: 

X3'<=�Y�L, ��4 = 2 ∙ ICB1���263'<=�Y�L, ��4 ∙ CB1<EE3'<=�Y�L, ��4ICB1���263'<=�Y�L, ��4 + CB1<EE3'<=�Y�L, ��4  
where: 

CB1<EE3'<=�Y�L, ��4 = ['<=��L, �� ∩ '<=�Y�L, ��[|'<=��L, ��|  
ICB1���263'<=�Y�L, ��4 = ['<=��L, �� ∩ '<=�Y�L, ��[['<=�Y�L, ��[  

being '<=��L, �� the set of tags assigned to bookmark � by user L, and '<=�Y�L, �� 
the set of tags predicted by the tag recommender for bookmark � and user L. 
For each bookmark in the test dataset, we compute the X-measure by comparing 

the recommended tags against the tags the user originally assigned to the bookmark. 

The comparison is done ignoring case of tags and removing all characters which are 

neither letters nor numbers. 
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5.4   Results 

The tag recommendation approach presented in this work exploits training bookmark 

meta-information and tags, but does not analyse document contents, and does not 

make use of external knowledge bases, to enrich the set of suggested tags. Thus, all 

our recommended tags belong to the training collection, and our algorithm is only 

suitable for Task 2 of the ECML PKDD 2009 Discovery Challenge. 

Table 7 shows recall, precision and X-measure values for the test datasets provided 
in the tasks. In task 2, recommending 5 tags, we reach an average X-measure value of 
0.3065. We obtain a precision of 42% if we only recommend one tag, and 25% when 

we recommend 5 tags. 

Table 7. Average recall, precision and F-measure values obtained in tasks 1 and 2 of ECML 

PKDD 2009 Discovery Challenge for different numbers of recommended tags. 

 6umber of 

recommended tags 
Recall Precision F-measure 

Task 1 

1 0.0593 0.1810 0.0894 

2 0.0910 0.1453 0.1120 

3 0.1131 0.1233 0.1179 

4 0.1309 0.1091 0.1190 

5 0.1454 0.0991 0.1179 

Task 2 

1 0.1454 0.4190 0.2159 

2 0.2351 0.3477 0.2805 

3 0.2991 0.3059 0.3025 

4 0.3462 0.2716 0.3044 

5 0.3916 0.2518 0.3065 

6   Conclusions and future work 

In this work, we have presented a social tag recommendation model for a 

collaborative bookmarking system. Our approach receives as input a bookmark (of a 

web page or a research publication), analyses and processes its textual metadata 

(document title, URL, abstract and descriptions), and suggests tags relevant to 

bookmarks whose metadata are similar to those of the input bookmark. 

Besides focusing on those tags that best fit the bookmark metadata, our strategy 

also takes into account global characteristics of the system folksonomy. More 

specifically, it makes use of the tag co-occurrence graph to compute vertex 

centralities of related tags. Assuming that tags with higher vertex centralities are more 

informative to describe the bookmark contents, our model weights the retrieved tags 

through their centrality values in a small co-occurrence sub-graph generated for the 

input bookmark. As additional features, the weighting mechanism also penalises tags 

that are too generic, and strengthens tags that have been previously used by the user to 

whom the tag recommendations are conducted. 
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Two are the main benefits of our approach: a low computational cost, and the 

capability of providing diversity in the recommended tag sets. On one hand, an index 

of keywords and tags for the available bookmarks, and the global tag co-occurrence 

graph, are the only information resources needed. On the other hand, the combination 

of exploiting content-based features, tag popularity and personalisation in the 

recommendation process allows suggesting tags that not only are relevant for the 

input bookmark, but also might belong to different domains. 

A main drawback of our approach is its limitation to recommend tags that already 

exist in the system folksonomy. The suggestion of new terms, for example extracted 

from the bookmarked text contents or from external knowledge bases such as 

dictionaries or thesauri, is thus an open research line. 

More investigation is needed to improve and evaluate the effectiveness of our tag 

recommender. In this context, the study of alternative graph vertex centrality 

measures (e.g. [11]), and the exploitation of extra folksonomic information obtained 

from the user and item spaces (e.g., as done in [6]), represent priority tasks to address 

in the future. The evaluation has to be also done comparing our approach with other 

state-of-the-art techniques. 
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Abstract. Recently, social tag recommendation has gained more at-
tention in web research, and many approaches were proposed, which
can be classified into two types: rule-based and classification-based ap-
proaches. However, too much expert experience and manual work are
needed in rule-based approaches, and its generalization is limited. Ad-
ditionally, there are some essential barriers in classification-based ap-
proaches, since tag recommendation is transformed into a multi-classes
classification problem, such as tag collection is not fixed. Different from
them, ranking model is more suitable, in which supervised learning can
be used. In additions, the whole tag recommendation task can be divided
into 4 subtasks according to the existence of users and resources. In dif-
ferent subtasks, different features are constructed, in order that existed
information can be used sufficiently. The experimental results show that
the proposed supervised ranking model performs well on the training and
test dataset of RSDC 2008 recovered by ourselves.

1 Introduction

Tag is a new form to index web resources, which help users to categorize and
share the resources, and later search them. Also, the tags assigned by specified
user reveal the user’s interests, therefore, according to the tags user have already
tagged, someone can find other users who have the similar interests, as well as
similar interesting resources. Therefore, it is widely used in social network such
as Bibsonmy, Del.icio.us, Last.fm , etc.

A tag recommendation system can suggest someone a few tags to specified
web resource, thus it can save the user time and effort when them mark up re-
sources. Further, the recommended tags and existing tags can be used to predict
the profile of the user and the interesting to the web resource, for example, to
predict what they like and dislike. The research of tag recommendation is also
very suggestive for other applications, such as online advertisement. In the field
of online advertisement, we can predict what advertisement the browser might
be interested in with the help of the surrounding text and his browsing history.

Recently, social tag recommendation has gained more attention in web re-
search. It has been a hot issue for both industry and research area. For example,
tag recommendation is one of the tasks in ECML RSDC’s 08. Now, in ECML

35



PKDD 09, tag recommendation has become the exclusive task. However, the
performance of tag recommendation is not good enough to be widely used, more
research work is needed and progress is essential for the practical use of tag rec-
ommendation in commercial system. In this paper, supervise ranking model is
applied to tackle tag recommendation problem, and good result is achieved on
test data.

The rest of paper is organized as follows: Section 2 lists the previous work on
tag recommendation. Section 3 gives a description of supervised ranking model.
Section 4 lists our experiment settings, experiment procedure and our analysis of
the results on recovered 08’s dataset. The model’s performance on 09’s dataset
is presented in Section 5. Section 6 summarizes our work.

2 Previous Work

Much research work has been done for tag recommendation, most of which
can be categorized into two types, one is rule-based, the other is classification-
based.

Rule based approach is used by many researchers. Lipczak [1] proposed a
three-step tag recommendation system in their paper : Basic tags are extracted
from the resource title. In the next step, the set of potential recommendations is
extended by related tags proposed by a lexicon based on co-occurrences of tags
within resource’s posts. Finally, tags are filtered by the user’s personomy - a set
of tags previously used by the user. Tatu, et al. [2]used document and user models
derived from the textual content associated with URLs and publications by social
bookmarking tool users, the textual information includes information present in
a URL’s title, a user’s description of a document, or a bibtex field associated
with a scientific publication, they used natural language understanding approach
for producing tag recommendations, such as extraction of concepts, extraction
of conflated tags which group tags to semantically related groups. However, too
much expert experience and manual work are needed in rule-based approaches,
and its generalization is limited.

Classification-based approach is also used for the tag recommendation task.
Katakis et al. [3] tried to model the automated tag suggestion problem as a
multilabel text classification task. Heymann et al. [4] predicted tags based on
page text, anchor text, surrounding hosts, and other tags applied to the URL.
They found an entropy-based metric which captures the generality of a particu-
lar tag and informs an analysis of how well that tag can be predicted. They also
found that tag-based association rules can produce very high-precision predic-
tions as well as giving deeper understanding into the relationships between tags.
Their results have implications for both the study of tagging systems as poten-
tial information retrieval tools, and for the design of such systems. However ,
the application of classification does not suggest a good solution to the tag pre-
diction problem: first, the tag space is fixed , all the resource can be categorized
to the existed tags only, also, the amount of tags number could be very large,
the traditional classification model would be rather low efficient.
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Collaborative filtering is a commonly used technical for user-oriented task.
Many researchers tried collaborative filtering in tag recommendation. Gilad
Mishne [5] used collaborative approach to automated tag assignment for weblog
posts. Robert Jaschke, et al [6] evaluated and compared user-based collaborative
filtering and graph-based recommender, the result shows that both of these two
methods provide better results than non-personalized baseline method, especially
the graph-based recommender outperforms existing methods considerably.

Adriana Budura et al. [7] used neighborhood based tag recommendation,
which make use of content similarity. Principle and simple score approach is used
to select the candidate tags, however, in our paper, machine learning method
is used, a ranking model is learned automatically, then the candidate tags are
ranked and top-ranked tags are suggested as recommending tags.

3 Supervised Ranking Model for Tag Recommendation

3.1 Problem Statement

The tag recommendation problem can be described as follows:
For a given post P whose user is U and resource is R, a set of tags are

suggested as tags for the post. Here we denote post as P, tag as T, resource as
R, user as U.

A possible and most nature way to solve the tag recommendation problem
is as follows: First, a set of candidate tags are selected for the post, and then
tags which are most likely to be the tags for the post are selected as recom-
mending tags. The commonly used approach to choose the tags is rule-based
and classification-based methods, but both of them have defects: rule-based ap-
proach relies on expert experience and manual efforts to set up the rules and
tuning the parameters; classification-based is restrict to the fix of tag space and
is inefficient when it is treated as a multi-label problem. In this paper, tag recom-
mendation is conveyed to a problem of ranking candidate tags. A ranking model
is constructed to ensure tags that are most likely to be post’s tags rank higher
than tags that are not. Supervised learning model is used to construct the rank-
ing model satisfying the restriction. Ranking-SVM model is the most frequently
used supervised ranking model and is proofed to be a successful model, so it is
used as our supervised ranking model in the experiments. All the candidate tags
for one post are grouped as a ranking group and the top-ranked candidate tags
are selected as recommendation tags.

3.2 Introduction to Ranking SVM

Here we briefly describe the Ranking Support Vector Machine(Ranking SVM)
model for tag recommendation.

Assume that X ∈ ℜm is the input feature space which represents feature of
a candidate tag given a user and resource, and m denotes the feature number.
Y = {0, 1} is the output rank space which is represented by the labels, and 1
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represents the tag is labeled by user, and 0 is not. (x, y) ∈ X ×Y denotes feature
and label as the training instance.

Given a training set with tags T = {t1, t2, ..., tn}, for each tag ti there would
be a {x, y} associated with it, the whole training set could be formulate as
S = {xi, yi}N

i=1, where N represents the number of all tags.
In Ranking SVM [8], ranking model f is a linear function represented by

〈w, x〉, where w is the weight vector and 〈·, ·〉 denotes the inner product. In
RSVM we need to construct a new training set S′ according to the original
training set S = {xi, yi}N

i=1. For every yi 6= yj in S, construct (xi − xj , zij) and
add it into S′, where zij = +1 if yi ≻ yj , and otherwise −1. Here ≻ denotes the
preference relationship, for example, y = 1 is preferred to y = 0. For denotation
consistency, we denotes S′ as {x1

i − x2
i , zi}D

i=1. The final model is formalized as
the following Quadratic Programming problem:

minw,ξi

1
2C

‖w‖2 +
D∑

i=1

ξi

s.t. ξi > 0, zi〈w, x1
i − x2

i 〉 ≥ 1− ξi

(1)

And (1) could be solved using existing Quadratic Programming methods.
Figure 1 is an example of ranking SVM model.

Fig. 1. Example of ranking SVM model

The ranking SVM model convey the problem of ranking into binary classi-
fication problem: for each objects to be ranked, the model compare it with all
other objects in the same ranking group. For n objects, the model compares the
objects C2

n times, and then outputs the ranking result.This is the advantage over
classification model: in classification model, the existence of other candidate tags
is not being considered, but in ranking model, the existence of other candidate
tags is taken into consideration.

3.3 Ranking Process

For any post Pij in test dataset, we denote collection of all candidate tags
for post Pij as CT {Pij} and CTk(k = 1, 2, ..., n) as the k-th candidate tag for
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the post Pij , CT {Pij} = {CT1, CT2, ..., CTn} . The ranking model ranks the
candidate tags to {CT 1

′, CT 2
′, ..., CT n

′} from top to bottom. Then top-k tags
are selected as prediction of the tags of post Pij . Table 1 shows the steps to rank
the candidate tags.

Table 1. Algorithm of rank the candidate tags

Input: candidate tags {CT1, CT2, ..., CTn}
Output: top-k tags {CT ′

1, CT ′
2, ..., CT ′

k}

1. Extract feature x = {xi}(i = 1, 2, ..., n) for a sequence
of candidate tags CT{Pij} = {CT1, CT2, ..., CTn}.

2. Rank the features using the learned ranking model as
{CT ′

1, CT ′
2, ..., CT ′

n}.
3. select top-k tags {CT ′

1, CT ′
2, ..., CT ′

k} as recommending tags.

Also, the number of recommended tags affects the performance of the system.
For example, if the actual number of tags for post whose content id=123456 is
3, a loss of precision is suffered when 4 tags are recommend to the user. So a
proper number of tags to recommend should be found. The number used in our
experiment is half the number of all candidate tags. If the number is bigger than
5, we cut them into 5, that means we recommend 5 tags at most.

3.4 Training Process

For all the post in the test dataset, candidate tags CT {Pij} for each post Pij

are extracted. Then they are grouped by the post, and features are extracted for
each of them in the post content. For those CTk ∈ T {Pij}, we label them ’1’,
else label them with ’0’. Then we use SVM-light tool to train a ranking-SVM
model. When predicting the tags of the post in test dataset, the model learned
on the training dataset is applied to rank the candidate tags, and top ranked
tags are selected as recommending tags.

4 Experiments on 08’s recovered dataset

4.1 Experiment settings

2008’s dataset recovery In order to compare our experiments’ performance
with that of the 08’s teams, we try to get the 08’s dataset (both training and
test data) and test our model’s performance on the recovered dataset. Though
the 08’s test data can be downloaded from the web, we found that user IDs have
been changed between the datasets. However, the content id field in 08’s test
data is consistent with 09’s data, so we try to recover the 08’s dataset on the
09’s dataset using the content id field and date time field. The 08’s real training
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data and test data are subset of 09’s data, so it is possible to recover 08’s data
on 09’s data. After observing 08’s real test data, we found that all posts in 08’s
test data are between Mar. 31, 2008 and May. 15, 2009, so we use the posts
during this period on 09’s training data as recovered 08’s test data and posts
before Mar. 31, 2008 as our recovered 08’s training data. There are still slight
difference between our recovered data and the 08’s real data. We assume that
the difference won’t affect our performance seriously, so the result is comparable
with 08’s results.

Some statistics have been made on our recovered 08’s dataset. Table 2 shows
the statistics of posts on this recovered dataset. Table 3 shows the statistics
of posts according to the existence of their user and resource in the recovered
training data. In following part in section 4, the training data refers to the
recovered training data, the test data refers to the recovered test data.

Table 2. Statistics of posts on recovered 08’s dataset

Post in recovered training data 234,134
BOOKMARK 184,655
BIBTEX 49,479

Post in recovered test data 63,192
BOOKMARK 20,647
BIBTEX 42,545

Table 3. Statistics of posts according to their user and resource status

Users in recovered test data appear in recovered training data 265

Users in recovered test data do not appear in recovered training data 225

Resources in recovered test data appear in recovered training data 1230

Resources in recovered test data do not appear in recovered training data 61970

Data format description The dataset used in experiments is released by
ECML. The data consists of three tables: TAS table, BOOKMARK table and
BIBTEX table.

Table 4 is a description of the fields of the three tables. Only the fields we
used in experiments are listed in the table.

Data preprocess Firstly, the terms are converted into lowercase. Then the
stop words are removed, such as ”a, the, is, an”, these terms are not likely to be
the tags of the post. Finally, the punctuations as ’:’, ’,’, etc are removed. Latex
symbols such as ’{’ and ’}’ is also removed using regular expressions.

Table 5 shows example results of data preprocess.

4.2 Post Division

It can be observed from data distribution that some users of posts exist in
the training data (54%) and some do not exist in the training data (46%). Also
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Table 4. Data fields of TAS, BOOKMARK and BIBTEX

Table name Fields name

TAS user, tag, content id, content type, date

BOOKMARK content id (matches tas.content id) ,url
description ,extended ,description ,date ,bibtex

BIBTEX content id (matches tas.content id) ,simhash1 (hash for duplicate detection
among users) ,title

Table 5. Example results of data preprocess

Before data preprocess After data preprocess

Ben Mezrich: the telling of a true
story

ben mezrich telling true story

{XQ}uery 1.0: An {XML} Query
Language, {W3C} Working Draft

xquery 1.0 xml query language w3c
working draft

some resources of posts exist in the training data (2%) and others do not exist
in the training data (98%).

In the analysis above, we divide the posts in test dataset into two categories
according to the existence of their users in the training data: existed user posts,
non-existed user posts. Also, the posts in test dataset can be divided into two
categories according to the existence of their resource in the training data: existed
resource posts, non-existed resource posts.

The posts can be divided into four different categories according to their user
status and resource status in the training data: existed user existed resource post,
existed user non-existed resource post, non-existed user existed resource post,
non-existed user non-existed resource post.

We denote symbols as shown in Table 6 to simplify the language.
Table 7 and Table 8 show statistics after our post division on our recovered

08’s data.

Table 6. Simplified symbols

EUER post Existed user existed resource post

EUNR post Existed user non-existed resource post

NUER post Non-existed user existed resource post

NUNR post Non-existed user non-existed resource post

It can be observed from statistics that not every category of posts occupies
the same ratio of the posts. In BOOKMARK, EUNR posts occupied about
82.80% of all BOOKMARK posts. In BIBTEX, NUNR posts occupied about
93.43% of all BIBTEX posts. In order to promote our model’s performance on
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Table 7. Distribution of different categories of BOOKMARK posts in test dataset

Category Posts number ratio

EUER post 621 3.01%

EUNR post 17099 82.80%

NUER post 346 1.68%

NUNR post 2585 12.52%

Table 8. Distribution of different categories of BIBTEX posts in test dataset

Category Posts number ratio

EUER post 164 0.39%

EUNR post 2532 5.95%

NUER post 99 0.23%

NUNR post 39754 93.43%

the test dataset, we should focus on those data which occupy high proportion of
the posts, that is: EUNR posts of BOOKMARK and NUNR posts in BIBTEX.

After data division, the following steps are carried out for our tag recommen-
dation task.

1. Extract candidate tags by different methods according to the category of
post.

2. Rank the candidate tags, and select top ranked tags as recommendation
tags.

4.3 Candidate tags extraction

According to the statistics of the sources of the tags on the dataset, we can
find that tags can be retrieved from three sources mainly: 1.The content infor-
mation of the post, such as ’description’ field in BOOKMARK and ’title’ field
in BIBTEX. 2. T {Rj}: The tags being assigned to the same resource previously.
3.T {Ui}: The tags assigned by the same user previously. Statistics of tags from
different sources for BOOKMARK and BIBTEX posts are listed in Table 9 and
Table 10.

Table 9. Statistics of the tags from 3 sources of BOOKMARK Post

Total tags 56267

Tags from terms of description 5253

Tags from terms of URL 1353

Tags from user’s previous tags 29672
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Table 10. Statistics of the tags from 3 sources of BIBTEX Post

Total tags 95782

Tags from terms of title 41801

Tags from terms of URL 547

Tags from user’s previous tags 5377

The four different categories of test dataset have different characters, for
example, we can explore the tags assigned by user previously and the tags as-
signed to the resource previously for EUER posts. But for NUNR posts, we lack
this information. So we should explore different features for the four different
categories of posts individually, in order that existed information can be used
sufficiently. In the following part, while using the supervised ranking model, we
train four models to handle these four categories of posts individually.

The candidate tags extraction strategies for different categories of posts:
For EUER post and NUER post, CT {Pij} = { terms in post (Pij)

⋃
T {Rj}}.

For EUNR post and NUNR post, CT {Pij} = { terms in post (Pij)}.
We denote the candidate tags for post whose user id=i and resource is j

as CT {Pij}. { terms in post (Pij)} denotes the remaining set of words after
trimming and removing of the stop words in the text information of post Pij .

Notice should be paid here that we do not take T {Ui} (the user’s pervious
tags) as candidate tags because we find the tags are too massive. When they are
added, the precision of the system drops down and the F-1 value on the whole
dataset also declines dramatically. However, in the ranking procedure, we will
use T {Ui} as one of the features in SVM model to rank the candidate tags.

4.4 SVM Features construction

While using SVM, we select features that discern high ranked tags and low
ranked tags well and add the features according to our experience. For example,
the term frequency in the post content: those words which have high term fre-
quency within the post content tend to rank higher than those which have low
term frequency. Also, whether the candidate words have been used as tags for
other post in the training data is an excellent feature.

Table 11 is a brief description of features of ranking SVM model for BOOK-
MARK posts. The features for BIBTEX posts are almost the same except for
the different data fields:

4.5 Analysis of Model

Table 12 and Table 13 show the results of our supervised Ranking SVM
model on the recovered 08’s data.

Combing different types and category of data together, we can get the overall
performance on the recovered 08’s test data, as shown in Table 14.
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Table 11. Some of the features for ranking SVM model for BOOKMARK

Feature1 Candidate tag’s TF (term frequency) in post’s description terms.

Feature2 Candidate tag’s TF in post’s URL terms.

Feature3 Candidate tag’s TF in post’s extended description terms.

Feature4 Candidate tag’s TF in T{Rj} (tags assigned to the post of the same URL
in the training data).

Feature5 Candidate tag’s TF in T{Ui} (tags assigned previously by user in the train-
ing data.)

Feature6 Times of candidate tag being assigned as a tag in the training data.

Table 12. Individual and overall Performance on BOOKMARK posts

Post category Recall Precision F1-value ratio

EUER Post 0.369699 0.394973 0.381918 3.01%

EUNR Post 0.046591 0.053739 0.04991 82.80%

NUER Post 0.160883 0.255652 0.197487 1.68%

NUNR Post 0.069158 0.106366 0.083819 12.52%

overall-performance on BOOKMARK 0.061067 0.073997 0.066633

Table 13. Individual and overall Performance on BIBTEX posts

Post category Recall Precision F1-value ratio

EUER Post 0.4219356 0.3472393 0.3809605 0.39%

EUNR Post 0.2250226 0.1628605 0.1889605 5.95%

NUER Post 0.5667162 0.3715986 0.4488706 0.23%

NUNR Post 0.3561221 0.1603686 0.2211494 93.43%

overall-performance on BIBTEX 0.349063 0.161732 0.220381

Table 14. Overall performance on test dataset using ranking SVM model

Recall Precision F1-value

0.153 0.185 0.167
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The F1-value is 0.167, less than the F1-value 0.193 of the team ranked first
in 08’s competition.

It can be observed from the results that the performance of the model is poor
on EUNR posts, which occupied most of the BOOKMARK posts. However, the
model performs well on EUER posts. When comparing the two types of data, we
find that the only difference is that the candidate tags of EUER posts are not
only come from the post content but also from the tags of the same resource in
the training data, however, the candidate tags for EUNR posts come from post
content only. In order to overcome the weakness of lacking candidate tags, we
relax restriction on the definition of the same resource. For those posts whose
resources have not appeared in the training data, the role of the same post is
substituted by the similar post. This method is based on the assumption that
users tend to tag the similar posts with the same tags.

We try to use post content similarity to measure the similarity of posts. For
those EUNR posts, which have no same resources in the training data, we add
the tags of those posts whose content similarity with the current post content is
above a certain threshold to the candidate tags set of the post.

4.6 Post content similarity based KNN model

For EUNR post, the candidate tags come from text of the post content only,
that is CT {Pij} = { terms in post (Pij)}. We attribute the poor performance
of the model on such kind of data to the sparse of candidate tags. So we use
content similarity to expand the candidate tags set. For any EUNR post Pij ,
we set a similarity threshold t, and find in the training dataset content Pmn,
whose sim(text(Pij), text(pmn) > t). Then the tags of post Pmn are added to
the candidate tags ofPij : CT {Pij} = { terms in post (Pij)}

⋃
T {Pmn}.

Post content Pij and Pmn are mapped into vector space:
text(Pij) = {W1, W2, ..., Wn} , text(Pmn) = {W 1

′, W 2
′, ..., Wn

′},Then we
use vector space model to calculate the similarity between two posts Pij and
Pmn.

sim(text(Pij), text(Pmn)) =
text(Pij) ∗ text(Pmn)
|text(Pij)| ∗ |text(Pmn)| (2)

Wi means the weigh of word i in the content. The simplest way to define Wi

is as following:Wi = 0,word i in post content, Wi 6= 0,word i not in post content.
In our experiment, we define the Wi as TF(Term Frequency) multiply IDF

(Inverted document frequency) :Wi = TFi ∗ IDFi.We applied open source soft-
ware Lucene to calculate the similarity of two content , the scoring function of
Lucene is a derivation of vector space model formula using TF/IDF weighing
schema.

The modification of threshold value T and the corresponding performance
on EUNR content in BOOKMARK are shown in Figure 2.

It can be observed that the value of recall, precision and F1 value reach
highest when threshold T=0.5. So, in the further experiment settings, we set
threshold value T to 0.5.

45



Fig. 2. KNN performance on various threshold t on BOOKMARK EUNR posts, k=5

However, we find that the application of content similarity based KNN model
works for BOOKMARK posts but not for BIBTEX posts. After investigation,
we attribute it to the uneven distribution of the dataset in training datasets
and test datasets. In training datasets, the number of BOOKMARK posts is
184,655 and the number of BIBTEX posts is 20,647. But in test dataset, the
number of BOOKMARK post is 20,647 and the number of BIBTEX post is
49,479, it is easy for 20,647 BOOKMARK posts to find similar posts in 184,655
BOOKMARK posts, but difficult for 42,545 BIBTEX posts in only 20,647 posts.
So this method is especially useful for BOOKMARK posts but not for BIBTEX
posts.

After applying content similarity based KNN model on BOOKMARK EUNR
posts, the performance on overall test dataset is as listed in Table 15.

Table 15. Overall performance on test dataset adding content similarity based KNN
model

Recall Precision F1-value

0.323828 0.200926 0.238803

The F1-value is 0.238, higher than the F1-value 0.193 of the team ranked
first in 08s competition.

5 Experiment on 09’s dataset

5.1 Statistics of 09’s dataset

Table 16 and Table 17 show the distribution of different categories of posts
on 09’s dataset after data division according to the existence of their user and
resource in the training data. In our experiment settings on 09’s test data, clean-
dump dataset is used as training dataset in Task 1, Post-core dataset is used as
training dataset in Task 2.
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Table 16. Different categories of BOOKMARK posts in 09s test dataset for Task 1

Category Posts number ratio

EUER Post 821 4.86%

EUNR Post 10622 62.86%

NUER Post 872 5.16%

NUNR Post 4583 27.12%

Table 17. Different categories of BIBTEX posts in 09s test dataset for Task 1

Category Posts number ratio

EUER Post 365 1.40%

EUNR Post 9287 35.71%

NUER Post 591 2.27%

NUNR Post 15761 60.61%

It can be observed from the statistics of the distribution of categories in 09’s
test data for Task 1 agrees with the recovered 08’s dataset: EUER posts occupied
most of the BOOKMARK post and NUNR post occupied large proportion of
BIBTEX posts, so we can expect our model a good result on such data. The
whole posts in 09’s test dataset for Task2 can be classified to EUER posts. Since
the good performance of our model on EUER posts, we can also expect a good
result on task 2.

Eight different models are trained on 09’s clean-dump training data and
applied in 09’s test data for Task 1. For Task 2, we apply the BOOKMARK
EUER post model and the BIBTEX EUER post model trained on 09’s post-
core dataset.

5.2 Experiment results on 09’s test dataset

The performance on the whole 09’s test data of both task 1 and task 2 is
shown in Table 18.

Table 18. Performance on 09’s dataset @5

Task No. Submission ID Precision Recall F1-value

1 67797 0.162478 0.146582 0.154121

2 13651 0.31622 0.222065 0.260908
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6 Conclusion

In this paper, we briefly describe an approach utilizes supervised ranking
model for tag recommendations. Our tag prediction contains three steps. First,
posts are divided into four categories according to the existence of the user
and the resource in the training data and then candidate tags are extracted for
the different categories with different strategies. Second, features are decided
according to categories. Then we rank the candidate tags, using the supervised
ranking model, and pick the top tags as recommendation tags.

For the existed user non-existed resource post, we use post content similarity
based KNN model to expand the candidate tags set. Performance of this exper-
iment for the corresponding module is promoted after adding this model on 08’s
dataset. Our tag recommendation system is generated from the combination of
these two models and applied to the 09’s tags recommendation task 1 and task
2.
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Abstract. The purpose of this paper is to describe our approach to Tag 

Recommendation Task during ECML PKDD 2009 Challenge. The organizers 

supplied a training set of tagged webpages and publications from BibSonomy 

portal. Our goal was to build a model which can predict tags for new users 

bookmarking digital resources. Our strategy was based on an assumption that 

users tend to tag the same resources in various systems. Therefore, have we 

developed a tracking engine, which was adjusted to the profile of BibSonomy 

users in selection of RSS feeds and utilized the training data to optimize the list 

of tracked URLs. We had over 90 days to collect the data from the feeds, but 

this period did not overlap with the dates of posts from the training set. As a 

result we had to set manually parameters responsible for a trade-off between 

recall and accuracy of the model. We stored all downloaded feed entries in a 

searching engine. The recommendation was based on tags attached to the 

documents retrieved from the engine by means of typical information retrieval 

query.  

Keywords: Information Retrieval, Searching Engines, Tag Recommendations. 

1 Introduction 

The development of collaborative society that we experience in recent years can be 

characterized by four principles: being open, peering, sharing and acting globally [6]. 

These principles determine the way we exchange information and organize the 

knowledge. Very important part of this phenomenon is the popularity of social 

classification, indexing and tagging. Attaching labels to common resources 

(webpages, blogs, music, videos, photos) can on one hand shed a new light on 

information retrieval problems, on the other hand poses new challenges concerning 

uncontrolled explosion of folksonomy size and its usability. The goal of our research 

is to build a tag recommendation system that would influence user’s selection of tags 

and as a result enable us to reuse folksonomy entries in more efficient way than we 

observe currently 

This paper describes our attempt to predict tags already chosen by BibSonomy 

users. This was the Task 1 in ECML PKDD 2009 Challenge. However, we believe 
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that our system is better suited for the third Task, in which the Teams have an 

opportunity to deliver recommendations online. 

2 Related work 

The growing interest of research community in the field of social bookmarking was 

fueled by last year’s ECML challenge, during which the evaluation measures were 

standardized and benchmark data sets prepared. Thirteen solutions were submitted to 

the tag spam detection task and only five to tag recommendation task. We were 

inspired by the best teams in the Challenge, which relied on several external resources 

[7] and used only data available in title/description fields [5]. The team from the 

Aristotle University of Thessaloniki [3] reformulated the task as a multilabel 

classification problem. 

3 Examined datasets 

We used cleaned dump dataset which consisted of three tables: bibtex (158 924 

records), bookmark (263 004 records) and tas (1 401 104 records). The dump 

contained all public bookmarks and publication posts of BibSonomy until (but not 

including) 2009-01-01. Posts from the user dblp (a mirror of the DBLP Computer 

Science Bibliography) as well as all posts from users which have been flagged as 

spammers have been excluded. Furthermore, the tags were cleaned. Java method was 

used to remove all characters which were neither numbers nor letters and removed 

those tags, which were empty after cleansing or matched one of the tags imported, 

public, systemimported, nn, systemunfiled.  

The tas table (Tag Assignments) was a fact table with information about who 

attached which tag to which resource/content. The bookmark table consisted of 

following columns (content_id, url_hash, url, description, extended description and 

date). The bibtex table was described by following dimensions (content_id, journal, 

volume, chapter, edition, month, day, booktitle, howPublished, institution, 

organization, publisher, address, school, series, bibteXKey, url, type, description, 

annote, note, pages, key, number, crossref, misc, bibtexAbstract, simhash0, simhash1, 

simhash2, entrytype, title, author, edition, year). 

4 Our approach 

In this section we describe three main parts of our system. Firstly we focus on a 

selection of RSS feeds and the problems we encountered while downloading the 

posts. In the second part we define the vector space in which the posts were stored as 

well as main characteristics of deployed database. Finally we present the details of the 

tag recommendation algorithm. The algorithm is divided into four steps: searching of 

matching resources based on URL address, retrieval of the most similar cluster, 

selection of the post with highest overlap score and ranking of suggested tags.    
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4.1 RSS Feeds selection 

Our strategy was to optimize a set of keywords that we were going to track in popular 

bookmarking systems as well as in a variety of domain portals. We analyzed 

distribution of most common tags in BibSonomy and Delicious and decided that 

tracking only the most recent posts would be biased (Table 1). We decided to enrich 

the most recent posts with a set of 100 most popular tags (out of 93 757 unique tags) 

in BibSonomy training data. 

Table 1. The most common tags in Delicious and Bibsonomy 

Tag Delicious1 
 

BibSonomy2 

1 design 1.69% 
 

27 

2 blog 1.29% 
 

13 

3 tools 1.05% 
 

10 

4 software 0.96% 
 

4 

5 webdesign 0.92% 
 

54 

6 programming 0.89% 
 

5 

7 tutorial 0.85% 
 

44 

8 art 0.75% 
 

83 

9 reference 0.72% 
 

33 

10 video 0.72% 
 

3 

11 inspiration 0.71% 
 

587 

12 music 0.66% 
 

25 

13 web2.0 0.65% 
 

7 

14 education 0.63% 
 

17 

15 photography 0.52%   166 

 

We had to face different problems in case of bookmarking systems and domain 

portals. We used Google Reader to search for top 10 domain portals and their RSS 

URLs for each chosen keyword. Because some feeds appeared in different searching 

results we end up with 734 feeds. 

An example of feeds recommended by Google Reader for a keyword “linux” is 

presented in Table 2. Even though numerous feeds use the most recent RSS or Atom 

standard and we could easily parse the content of XML files, it is uncommon to fill in 

the category field by feed editors. We can see in the Table 2, that out of 10 sources: 

one did not contain proper URL, four did not deliver information about category, one 

marked each feed entry with the same category. 

                                                           
1 Relative frequency of a tag in a random collection of 603 750 downloaded from the Delicious. 
2 Rank of a corresponding tag in the BibSonomy. 
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Table 2. Results of searching first ten feeds for “Linux” keyword in Google Reader.  

RSS Feed Categories of updated entries 

Linux Insider3 

| Community | Community | Distros | Licensing | 

Financial News | Mobile | Community | 

Community | Mobile 

Linux Magazine4 No Categories 

DistroWatch.com: News5 No Categories 

Linux Today6 No Categories 

Slashdot: Linux7 

| programming | xwindows | google | gui | 

software | microsoft | portables | os | storage | 

linuxbusiness | security | gnu | education | caldera | 

portables 

Linux.com :: Features8 URL broken 

HowtoForge - Linux Howtos 

and Tutorials9 

| Ubuntu | Debian | Ubuntu | Desktop | Debian | 

Lighttpd | Ubuntu | Desktop | Virtualization | 

Ubuntu | Desktop | Security | Ubuntu | CentOS | 

Samba | Ubuntu | Desktop | Linux | Ubuntu | 

Security | Ubuntu | Desktop | Fedora | Security 

Linux and Open Source - RSS 

Feeds10 
No Categories 

LinuxQuestions.org11 

| Linux - Newbie | Linux - Newbie | Linux - 

Newbie | Linux - Software | Programming | Red 

Hat | Linux - General | Linux - General | Linux - 

Laptop and Netbook | Puppy | Ubuntu | Linux - 

Desktop | Ubuntu | Ubuntu | Linux - Security 

LXer Linux News12 

| linux | linux | linux | linux | linux | linux | linux | 

linux | linux | linux | linux | linux | linux | linux | 

linux | linux | linux | linux | linux  

 

On the other hand the problem with typical bookmarking systems is the fact that when 

we subscribe most recent posts for a given keyword we get only tags of a particular 

user who bookmarked the resource. As a consequence we need to crawl a service in 

order to find out about most typical tags for a given resource. The problem of 

                                                           
3 http://www.linuxinsider.com/perl/syndication/rssfull.pl 
4 http://www.linux-mag.com/cache/rss20.xml 
5 http://distrowatch.com/news/dw.xml 
6 http://linuxtoday.com/backend/biglt.rss 
7 http://rss.slashdot.org/Slashdot/slashdotLinux 
8 http://www.linux.com/index.rss 
9 http://www.howtoforge.com/node/feed 
10 http://rssnewsapps.ziffdavis.com/eweeklinux.xml 
11 http://www.linuxquestions.org/syndicate/lqlatest.xml 
12 http://lxer.com/module/newswire/headlines.rss 
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connection limits arises when we want to crawl every out of 100 entries downloaded 

for a given keyword. Because of this, we decided to verify if we can cluster tags 

based on their cooccurence score.  

Table 3 contains 20 pairs of tags with highest symmetric Jaccard cooccurance 

coefficient calculated as a division of number of posts with both tags by a number of 

all posts with any of the tags. 

Table 3. Co-occurances of pairs of tags, occurances and normalized Jaccard coefficient. 

Tag 1 Tag 2 ��� � ��� |t1| |t2| 
��� � ���
��� � ��� 

ccp jrr 4294 4294 4294 1.00 

algorithms genetic 5775 6220 5888 0.91 

aaaemulation-

topgames 

emulation-

videogames 
3653 3653 4576 0.80 

emulationgames 
emulation-

videogames 
4576 6055 4576 0.76 

aaaemulation-

topgames 

classicemulated-

remakeretrogames 
2472 3653 2472 0.68 

aaaemulation-

topgames 
emulationgames 3653 3653 6055 0.60 

classicemulated-

remakeretrogames 

emulation-

videogames 
2472 2472 4576 0.54 

genetic programming 5262 5888 9491 0.52 

journal medical 1693 2566 2448 0.51 

algorithms programming 5303 6220 9491 0.51 

classicemulated-

remakeretrogames 
emulationgames 2472 2472 6055 0.41 

book nlp 1230 2614 2027 0.36 

education learning 2143 5021 4751 0.28 

media texts 1998 7149 2012 0.28 

analysis data 1187 3352 2589 0.25 

folksonomy tagging 1027 2561 3083 0.22 

emulationgames zzztosort 2844 6055 11839 0.19 

audio music 919 1857 4142 0.18 

howto tutorial 850 2876 2798 0.18 

bookmarks indexforum 9164 52795 9183 0.17 

 

We can see that “ccp” and “jrr” always appear together. Also “genetic”, “algorithms” 

and “programming” create a cloud of tags. Four tags “emulationgames”, 

“emulationvideogames”, “aaaemulationgames”, “classicemulatedremakeretrogames” 

create another cloud. However, the Jaccard coefficient drops very fast below 20% 

level and therefore we decided not to abandon the idea of tag clustering.  
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4.2 Data storage 

In order to recommend tags online we needed a fast engine that does not need to be 

taught every time we get need posts from a scratch. The Beatca system (developed in 

our Institute [1,4]) is an example of such engine. It performs online incremental 

hierarchical clustering of documents and proved very effective in the field of 

intelligent Information Retrieval. Soft classification of documents and construction of 

conceptual closeness graph is based on large-scale Bayesian networks. Optimal 

document map search and document clustering is based on SOM (self-organizing 

maps), AIS (artificial immune systems), and GNG (growing neural gas). 

Each post is defined as a point in a multidimensional space in which coordinates 

represent frequency of a token appearing in a post’s title or description. Because some 

tokens are very common and others are present in only few posts we selected only the 

most informative tokens as coordinates in our vector space. The dictionary 

optimization was based on a entropy-like quality measure Q(ti) of a token ti: 

���	
 � �	
� 

�� �	��	  ���
�	��	����

����	  
(1) 

 

where Nij is the number of occurrences of term ti in document dj, Nj is the number of 

documents that contains term ti and N is the total number of documents. We removed 

tokens with Q(ti) measure below 0.01 or above 0.95. 

We implemented term frequency inverse document frequency weighting scheme. 

According to the scheme we divided term frequency in a single document by the 

number of documents in which the term appears.  

4.3 Tag recommendations 

Our tag recommendation consisted of four steps. If we had a positive result in the first 

step then we went directly to the final fourth step. 

Step One 

In the first step we checked if a post is present in the BibSonomy training set or an 

URL of the post is among downloaded RSS entries. If the answer was true then we 

selected all tags attached to these resources and moved to the Step Four. 

Step Two 

In the second step we retrieved a group (cluster) of documents that was the most 

similar to the post’s description or title field. The similarity was measured as a cosine 

of an angel between vectors x={x1,…,xn} and y={y1,…,yn} representing the resources 

in our database and the post (Eq. 2). For example, one of the posts had following title: 

“Attribute Grammar Based Programming and its Environment”. The query consisting 
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of the first five informative tokens from the above title returned a cluster of four 

documents: 

1. “A purely functional high order attribute grammar based system” from 

Deliciuos.com; tagged with [lisp;rag;compilers] 

2. “AspectAG 0.1.1 strong typed attribute grammar implemented using type-level 

programming” from Reedit.com; tagged with [haskell] 

3. “A 2D game programming environment based around the Ruby programming 

language” from Dzone.com; tagged with [frameworks,games,ruby] 

4. “Attribute grammar based language extension for Java” from CiteULike.org tagged 

with [metaprogramming] 

 

�����
 � � ��������
�� ������� �� �������

 
(2) 

 

A cluster of all the retrieved posts was transferred to the next step. 

Step Three 

For all the posts retrieved in the second step we calculated normalized overlap score 

and chosen the post with the highest score. The overlap was defined as a maximum 

length of n-gram appearing in both posts. In order to compute the score we used all 

the words from title/description fields (not only the most informative tokens). The 

overlap score was divided by the length of title/description field of the candidate 

posts. For example, normalized overlap score between “Attribute Grammar Based 

Programming and its Environment” and “Attribute grammar based language 

extension for Java” equals to 3/7=0.42. The post with highest score was transferred to 

the final fourth step if the value of a score was greater than 0.6 threshold. 

Step four 

In the last step we ordered the tags of selected post according to their count in 

BibSonomy training set. Top five tags were selected as predictions in the Challenge. 

5 Evaluation 

The F1-Measure common in Information Retrieval was used to evaluate the 

recommendations. The precision and recall were first computed for each post in the 

test data by comparing the recommended tags against the tags the user has originally 

assigned to this post [2]. Then the average precision and recall over all posts in the 

test data was used to calculate the F1-Measure as f1 = (2 * precision * recall) / 

(precision + recall). The number of tags one can recommend was not restricted. 

However, the organizers regarded the first five tags only. We computed both 
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precision and recall measures for various levels of a threshold parameter from step 

three in our recommendation algorithm (Fig. 1).   According to these simulations 

optimum level of the threshold is approximately 0.6 and yields F1-measure between 

3% and 4%. 

 

 

Fig. 1. Values of precision, recall and F1 measures for different levels of overlap threshold.  

During the challenge we obtained overall F1-measure of 4,6%, which was slightly 

better than in our simulations, but incomparable to the results of the best teams. 

6 Conclusions 

We must admit that the way we approached the problem needs substantial computing 

power and disc space. Unfortunately the quality of our tag recommendations was 

below an average and probably this direction of research in the field of tag 

recommending systems is not a promising one. However we believe that there are 

certain situations in which best tags are not a function of words contained in title of a 

post and in our future research we would like to focus on such examples. Despite of 

unsatisfactory result in the first Task of ECML PKDD 2009 Challenge we are going 

to verify our recommendations within the third online recommendation task. 
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Abstract. Collaborative tagging applications allow users to annotate
online resources, resulting in a complex three dimensional network of
interrelated users, resources and tags often called a folksonom A piv-
otal challenge of these systems remains the inclusion of the varied infor-
mation channels introduced by the multi-dimensional folksonomy into
recommendation techniques. In this paper we propose a composite tag
recommender based upon popularity and collaborative filtering. These
recommenders were chosen based on their speed, memory requirements
and ability to cover complimentary channels of the folksonomy. Alone
these recommenders perform poorly; together they achieve a synergy
which proves to be as effective as state of the art tag recommenders.

Key words: Folksonomies, Tag Recommenders, Hybrid Recommenders

1 Introduction

Collaborative tagging has emerged as a popular method for organizing and shar-
ing online content with user-defined keywords. Delicious1, Flickr2 and Last.fm3

are among the most popular destinations on the Web allowing users to annotate
bookmarks, digital photographs and music. Other less popular tagging applica-
tions serve niche communities enabling users to tag blogs, business documents
or scholarly articles.

At the heart of collaborative tagging is the post; a user describes a resource
with a set of tags. A collection of posts results in a complex network of interre-
lated users, resources and tags commonly referred to as a folksonomy [10].

The rich tapestry of a folksonomy presents an enticing target for data mining
techniques such as recommenders. Recommenders reduce a burdensome number
of items to a manageable size correlated to the user’s interests. Recommendation
in folksonomies can include resources, tags or even other users. In this work

1 delicious.com
2 www.flickr.com
3 www.last.fm
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we focus on tag recommendation, the suggestion of tags during the annotation
process.

Tag recommendation reduces the cognitive effort from generation to recogni-
tion. Users are therefore encouraged to tag more frequently, apply more tags to
a resource, reuse common tags and perhaps use tags the user had not previously
considered. User error is reduced by eliminating capitalization inconsistencies,
punctuation errors, misspellings and other discrepancies. The final result is a
cleaner denser dataset that is useful in its own right or for further data mining
techniques.

Despite the richness folksonomies offer, they present unique challenges for tag
recommenders. Traditional recommendation strategies, often developed to work
with two dimensional data, must be adapted to work with the three dimensional
nature of folksonomies. Otherwise they risk disregarding potentially useful infor-
mation. To date the most successful tag recommenders are graph-based models,
which exploit the links between users, resources and tags. However, this approach
is computationally intense and ill suited for large scale implementation.

In this work we propose a composite tag recommender incorporating several
distinct recommendation strategies. These recommenders are combined to gen-
erate a new hybrid. As such no single recommender is required to fully exploit
the data structure of the folksonomy. Instead the recommenders may specialize
in a single channel. The aggregation of these recommenders, none of which per-
forms well on its own, produce a synergy allowing the composite recommender
to outperform its constituent parts.

Our hybrid includes popularity models and item-based collaborative filtering
techniques. Popularity based approaches include information garnered from the
crowd with little computational cost. Item-based collaborative filtering focuses
more closely on the user’s profile incorporating a degree of personalization.

We provide a through evaluation of the composite recommender and its con-
stituent parts. Our experiments reveal that the composite model produces re-
sults far superior to the capabilities of their individual components. We further
include a comparison with the highly effective but computationally inefficient
graph-based approach. We show that a low cost alternative can be constructed
from less time consuming recommenders and perform nearly as well as the state
or the art graph based approaches.

The rest of the paper is organized as follows. In Section 2 we discuss related
work. In Section 3 we offer a model of folksonomies and describe tag recom-
mendation. We further describe four recommendation algorithms. Informational
channels in folksonomies are discussed in Section 4. We design a hybrid rec-
ommender in Section 5. Our experimental evaluation is presented in Section 6
including a discussion of the dataset, methodology and results. Finally we end
the paper with a discussion of our conclusions and directions for future work in
Section 7.
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2 Related Work

As collaborative tagging applications have gained in popularity researchers have
begun to explore and characterize the tagging phenomenon. In [9] and [4] the
authors studied the information dynamics of Delicious, one of the most popular
folksonomies. The authors discussed how tags have been used by individual users
over time and how tags for an individual resource stabilize over time. They also
explored two semantic difficulties: tag redundancy, when multiple tags have the
same meaning, and tag ambiguity, when a single tag has multiple meanings. In
[9] the authors provide an overview of the phenomenon and explore reasons why
both folksonomies and ontologies will have a place in the future of information
access.

There have been several recent research investigations into recommendation
within folksonomies. Unlike traditional recommender systems which have a two-
dimensional relation between users and items, tagging systems have a three
dimensional relation between users, tags and resources. Recommender systems
can be used to recommend each of the dimensions based on one or two of the
other dimensions. In [17] the authors apply user-based and item-based collab-
orative filtering to recommend resources in a tagging system and uses tags as
an extension to the user-item matrices. Tags are used as context information to
recommend resources in [13] and [12].

Other researchers have studied tag recommendation in folksonomies. In [7]
user-based collaborative filtering is compared to a graph-based recommender
based on the Pagerank algorithm for tag recommendation. The authors in [5]
use association rules to recommend tags and introduce an entropy-based metric
to define how predictable a tag is. In [8] the title of a resource, the posts of a
resource and the user’s vocabulary are used to recommend tags.

General criteria for a good tagging system including high coverage of multiple
channels, high popularity and least-effort are presented in [18]. They categorize
tags as content-based tags, context-based tags, attribute tags, subjective tags,
and organizational tags and use a probabilistic method to recommend tags. In
[2] the authors propose a classification algorithm for tag recommendation. The
authors in [15] use a co-occurrence-based technique to recommend tags for
photos in Flickr. The assumption is that the user has already assigned a set of
tags to a photo and the recommender uses those tags to recommend more tags.
Semantic tag recommendation systems in the context of a semantic desktop are
explored in [1]. Clustering to make real-time tag recommendation is developed
in [16].

3 Tag Recommendation

Here we first provide a model of folksonomies, then review several common
recommendation techniques which we employ in our evaluation. A folksonomy
can be described as a four-tuple D = 〈U,R, T,A〉, where, U is a set of users; R
is a set of resources; T is a set of tags; and A is a set of annotations, represented
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as user-tag-resource triples: A ⊆ {〈u, r, t〉 : u ∈ U, r ∈ R, t ∈ T}. A folksonomy
can, therefore, be viewed as a tripartite hyper-graph [11] with users, tags, and
resources represented as nodes and the annotations represented as hyper-edges
connecting a user, a tag and a resource.

Aggregate projections of the data can be constructed, reducing the dimen-
sionality but sacrificing information [14]. The relation between resources and
tags, RT , can be formulated such that each entry, RT (r, t), is the weight asso-
ciated with the resource, r, and the tag, t. This weight may be binary, merely
showing that one or more users have applied that tag to the resource. In this
work we assume RT (r, t) to be the number of users that have applied t to the
r: RTtf (r, t) = |{a = 〈u, r, t〉 ∈ A : u ∈ U}|. Analogous two-dimensional projec-
tions can be constructed for UT in which the weights correspond to users and
tags, and UR in which the weights correspond to users and resources.

Many authors have attempted to exploit the data model for recommendation
in folksonomies. In traditional recommendation algorithms the input is often a
user, u, and the output is a set of items, I. Tag recommendation differs in that
the input is both a user and a resource. The output remains a set of items,
in this case a set of recommended tags, Tr. Given a user-resource pair, the
recommendation set is constructed by calculating a weight for each tag, w(u, r, t),
and recommending the top n tags.

3.1 Popularity Based Approaches

We consider two popularity based models which rely on the frequency a tag
is used. PopRes ignores the user and relies on the popularity of a tag within
the context of a particular resource. We define the resource based popularity
measure as:

w(u, r, t) =
|{a = 〈u, r, t〉 ∈ A : u ∈ U}|

|{a = 〈u, r, t〉 ∈ A : u ∈ U, t ∈ T}| (1)

PopUser, on the other hand, ignores the resource and focuses on the fre-
quency of a tag within the user profile. We define the user based popularity
measure as:

w(u, r, t) =
|{a = 〈u, r, t〉 ∈ A : r ∈ R}|

|{a = 〈u, r, t〉 ∈ A : r ∈ R, t ∈ T}| (2)

Popularity based recommenders require little online computation. Models
are built offline and can be incrementally updated. However both these models
focus on a single channel of the folksonomy and may not incorporate otherwise
relevant information into the recommendation.

3.2 Item-Based Collaborative Filtering

KNN RT models resources as a vector over the tag space. As before the weights
of the vectors may be calculated through a variety of means. Given a resource
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and a tag, we define the weight as the entry of the two dimensional projection,
RT (r, t), the number of times r has been tagged with t.

When a user selects a resource to annotate, the similarity between it and
every resource in the user profile is calculated. A neighborhood of the k most
similar resources, S, is thus constructed. We then define the item-based collab-
orative filtering measure as:

w(u, r, t) =
∑S

s sim(s, r) ∗ d(u, s, t)
k

(3)

where d(u, s, t) is 1 if the user has applied t to s and 0 otherwise. Like popUser,
this recommender focuses strongly on the user’s tagging practice. However this
recommender includes an additional informational channel, identifying resources
in the user profile that are similar to the query resource. This technique therefore
includes resource-to-resource information.

If the system waits to compute the similarity between resources until query
time, this recommender will also scale well to larger datasets so long as user pro-
files remain small. Alternatively similarities between resources can be computed
offline. Consequently the computation at query time is dramatically reduced and
the algorithm becomes viable for large collaborative tagging implementations.

3.3 Folkrank

Folkrank was proposed in [6]. It computes a Pagerank vector from the tripartite
graph of the folksonomy. This graph is generated by regarding U ∪R∪ T as the
set of vertices. Edges are defined by the three two-dimensional projections of the
hypergraph, RT , UR and UT .

If we regard the adjacency matrix of this graph, W , (normalized to be
column-stochastic), a damping factor, d, and a preference vector, p, then we iter-
atively compute the Pagerank vector, w, in the usual manner: w = dAw+(1−d)p.

However due to the symmetry inherent in the graph, this basic Pagerank
may focus too heavily on the most popular elements. The Folkrank vector is
taken as a difference between two computations of Pagerank: one with and one
without a preference vector. Tag recommendations are generated by biasing the
preference vector towards the query user and resource [7]. These elements are
given a substantial weight while all other elements have uniformly small weights.

We include this method as a benchmark as it has demonstrated to be an
effective method of generating tag recommendations. However, it imposes steep
computational costs.

4 Informational Channels of Folksonomies

The model of a folksonomy suggests several informational channels which may be
exploited by data mining applications such as tag recommenders. The relation
between users, resources and tags generate a complex network of interrelated
items as shown in Figure 1.
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Fig. 1. Informational channels of a folksonomy.

The channel between resources and tags reveals a highly descriptive model
of the resources. The accumulation of many users’ opinions (often numbered in
the thousands or millions) results in a richness which taxonomies are unable to
approximate. Conversely the tags themselves are characterized by the resources
to which they have been assigned.

As users annotate resource with tags they define their interests in as much
as they describe a resource. The user-tag channel therefore reveals the users
interests and provides opportunities for data mining algorithms to offer a high
degree of personalization. Likewise a user may be defined by the resources which
he has annotated as in the user-resource channel.

These primary channels can be used to produce secondary informational
channels. The user-user channel can be constructed by modeling users as a vector
of tags or as a vector of resources and applying a similarity measure such as
cosine similarity. Many variations exist. However the result reveals a network
of users that can be explored directly or incorporated into further data mining
approaches. The resource-resource and tag-tag channels provide similar utility,
presenting navigational opportunities for users to explore similar resources or
tags.

5 A Multi-Channeled Tag Recommender

The most successful tag recommenders to date have included multiple infor-
mational channels. Folkrank explicitly includes the user-resource, user-tag and
resource-tag channels in the graph model. Moreover since the algorithm calcu-
lates the Pagerank vector of the graph it implicitly includes the secondary chan-
nels of the folksonomy. The success Folkrank has achieved is due to its ability
to incorporate multiple informational channels into a single tag recommender.
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However the success it has achieved is blunted by the computational effort re-
quired to produce a recommendation; a new Pagerank vector is computed for
each query.

Here we construct a hybrid recommender. The constituent parts by them-
selves perform poorly when compared to Folkrank. However, when aggregated
into a single recommender they achieve a synergy which exploits several channels
of the folksonomy while retaining their modest computational needs.

Our model includes PopRes, PopUser and KNN RT. We employ a weighted
approach to combine the recommenders. First in order to ensure that weight
assignments are on the same scale for each recommendation approach, we nor-
malize the weights given to the tags by w(u, r, t) to 1 producing w′(u, r, t). We
then combine the weights in a linear combination:

w(u, r, t) = αw′
PopRes(u, r, t) + βw′

PopUser(u, r, t) + γw′
KNN RT (u, r, t) (4)

such that weights α + β + γ = 1 and all values are positive. If α is set near 1
then hybrid would rely mostly on PopRes.

Tags promoted by PopRes will have a strong relevance to the resource, while
tags promoted by PopUser will include tags in the user’s profile. PopRes alone
will ignore personal tags that the user often users. PopUser, on the other hand,
will ignore tags related to the context of the query resource. Together these
recommenders can include both aspects in the recommendation set. Moreover
by including KNN RT tags which the user has applied to resources similar to
the query resource are promoted.

PopRes explicitly includes the resource-tag information. PopUser, on the
other hand, includes user-tag information. Both these models are based on pop-
ularity and are single-minded in their approach ignoring all data except the
informational channel to which they are employed. We use KNN RT to intro-
duce more subtlety into the hybrid. It focuses heavily on the user-tag channel,
but gives more weight to tags that have been applied to similar resources. Hence
it also includes resource-tag information. Moreover by focusing exclusively on re-
sources in the user profile it includes the user-resource channel. Finally, KNN RT
includes resource-resource information when it calculates the neighborhood of
similar resources.

This hybrid does not include user-user information or tag-tag information.
Additional recommenders could be included to cover these informational chan-
nels. However, we have built this hybrid with the goals of speed and simplicity.
The two popularity based approaches are among the fastest and simplest rec-
ommendation algorithms. The item-based collaborative filtering recommender is
used to tie together these approaches incorporating similarities among resources
into the model while retaining its speed.
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Complete PostCore(2)

Users 3,617 253,615
URLs 235,328 41,268
BibTeXs 143,050 22,852
Tags 93,756 1,185
Tag Assignments 1,401,104 14,443
Bookmark Posts 263,004 7,946
BibTeX Posts 158,924 13,276

Table 1. Bibsonomy datasets.

6 Experimental Evaluation

In this section we describe the dataset used for experimentation. We then de-
scribe our experimental methodology and metrics. Finally we discuss the results
of our experiments.

6.1 Data Set

The dataset was provided by Bibsonomy4 for the European Conference on Ma-
chine Learning and Principles and Practice of Knowledge Discovery in Databases
(ECML-PKDD) 2009 Challenge. BibSonomy was originally launched as a col-
laborative tagging application allowing users to organize and share scholarly
references. It has since expanded its scope allowing users to annotate URLs.

The data includes all public bookmarks and publication posts of BibSonomy
until 2009-01-01. The data was cleaned by removing all characters which are
neither numbers nor letters from tags. Additionally the system tags imported,
public, systemimported, nn and systemunfiled where removed.

Task 1 for the 2009 Challenge utilizes the complete dataset. Task 2 how-
ever focuses on the post-core at level 2 geared toward graph based approaches.
For the post-core all users, tags, and resources which appear in only one post
were removed. This process was repeated until convergence and produced a core
in which each user, tag, and resource occurs in at least two posts. Reducing a
dataset to its core was first proposed in [3]. In [6] it was adapted for folk-
sonomies. The experiments for this work rely on post-core at level 2.

6.2 Experimental Methodologies

We employ the leave one post out methodology as described in [7]. One post
from each user was placed in the testing set consisting of a user, u, a resource,
r, and all the tags the user has applied to that resource. These tags, Th, are
analogous to the holdout set commonly used in Information Retrieval evaluation.
The remaining posts are used to generate the recommendation models.

4 www.bibsonomy.org
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The tag recommendation algorithms accepts the user-resource pair and re-
turns an ordered set of recommended tags, Tr. From the holdout set and recom-
mendation set utility metrics were calculated. For each metric the average value
was calculated across all test cases.

6.3 Experimental Metrics

Recall is a common metric of recommendation algorithms that measures cover-
age. It measures the percentage of items in the holdout set, Th, that appear in
the recommendation set Tr. It is defined as:

r = (|Th ∩ Tr|)/|Th| (5)

Precision is another common metric that measures specificity and is defined
as:

p = (|Th ∩ Tr|)/|Tr| (6)

In order to conform to the evaluation methods of the ECML-PKDD 2009
Challenge, we use the F1-Measure common in Information Retrieval to evaluate
the recommendations. We compute for each post the recall and precision for a
recommendation set of five tags. Then we average precision and recall over all
posts in the test data and use the resulting precision and recall to compute the
F1-Measure as:

f1 = (2 ∗ p ∗ r)/(p+ r) (7)

6.4 Experimental Results

Our approach required that several variables be tuned. For KNN RT, after ex-
tensive experimentation of k in increments of 1 we set k equal to 15. We observed
that as k increased from 0 to 15 recall and precision both increased rapidly until
it suffers from diminishing returns.

We evaluated the weights α, β and γ in .05 increments attempting every
possible combination. Best results were found when α = 0.35, β = 0.15 andγ =
0.50. As such KNN RT accounts for 50% of the model, PopRes acounts for 35%
and PopUser acounts for 15%.

KNN RT identifies resources in the user profile most similar to the query
resource and promotes the tags applied to these resources. This approach is
most effective when the user has generated a large user profile. Since users often
employ tags as an organizational tool they often reuse tags. Hence the success of
KNN RT stems from its ability to identify which previously used tags are most
appropiate given the context of the query resource.

PopRes, on the other hand, ignores the user profile and concentrates on the
popularity of a tag given the query resource. When the tags provided by KNN RT
are insufficient, perhaps because the user has yet to build a deep user profile or
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Fig. 2. Evaluation of recommendation techniques: recall vs. precision.

is tagging a resource dissimilar to items in the profile, PopRes is able to provide
relevant suggestions.

Finally PopUser promotes tags in the user profile regardless of the similarity
to the query resource. It may promote idiosyncratic, subjective or organizational
tags that do not necessarily relate to the context of the query resource but are
often applied by the user.

Our evaluation of the composite recommenders in Figures 2 and 3 reveals
that PopRes, PopUser and KNN RT achieve only modest success when used
alone. However when combined together as a hybrid recommender the three are
able to cover multiple informational channels and produce a synergy allowing
the hybrid to produce superior results.

Not only is the hybrid recommender able to outperform the baseline recom-
menders it is also able to outperform Folkrank, a highly effective tag recom-
mender. Moreover the hybrid retains the computationally efficiency of its parts
making it suitable for deployment in large real work collaborative filtering ap-
plications.

7 Conclusions and Future Work

In this paper we have introduced the idea of informational channels in folk-
sonomies and have proposed a fast yet effective tag recommender composed of
three separate algorithms. The constituent recommenders were chosen for their
speed and simplicity as well as their ability to cover complimentary informa-
tional channels. We have demonstrated that these recommenders while perform-
ing poorly alone, create a synergy when combined in a linear combination. The
hybrid recommender is able to surpass the effective graph based approaches while
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Fig. 3. Evaluation of recommendation techniques: F1-measure.

retaining the efficiency of its parts. Future work will include an examination of
alternative hybrid recommenders and present work on other datasets.
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Abstract. A modified and fast to converge Perceptron learning rule
algorithm is proposed as a general classification algorithm for linearly
separable data. The strategy of the algorithm takes advantage of training
errors to successively refine an initial Perceptron Classifier.

Original Perceptron learning rule uses training errors along with a pa-
rameter α (learning rate parameter that has to be determined) to define
a better classifier. The proposed modification does not need such a pa-
rameter (in fact it is automatically determined during execution of the
algorithm).

Experimental evaluation of the proposed algorithm on standard text clas-
sification collections, show that results compared favorably to those from
state of the art algorithms such as SVMs. Experiments also show a sig-
nificant improvement of the convergence rate of the proposed Perceptron
algorithm compared to the original one.

Seeing the problem of this year’s Discovery Challenge (Tag Recommen-
dation), as an automatic text classification problem, where tags play
the role of categories and posts play the role of text documents, we ap-
plied the proposed algorithm on the datasets for Task 2. In this paper
we briefly present the proposed algorithm and its experimental results
when applied on the Challenge’s data.

1 Introduction

Text categorization is the process of making binary decisions about related or
non-related documents to a given set of predefined thematic topics or categories.
This task is an important component in many information management organi-
zations. In our participation on the ECML/PKDD challenge 2009, we treat Task
2 as a standard text classification problem and try to solve it using a machine
learning, supervised, automatic classification method.

The rest of the paper is organized as follows. Section 2 provides a description
of the algorithm that we used. Section 3 briefly present the tasks of this year’s
Challenge. Section 4 presents the experimental setup, data processing and results
and finally in section 5 we conclude on the results.
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2 The Learning Algorithm

The algorithm that we used is an evolution of the algorithm that appeared in [1]
as a text classification algorithm and then a revised version in [2] won last year’s
ECML PKDD Discovery Challenge on Spam Detection. The proposed algorithm
is a binary linear classifier and it combines a centroid with a batch perceptron
classifier and a modified perceptron learning rule that does not need any param-
eter estimation. Details on this modified algorithm, its experimental evaluation,
theoretical investigation etc, have already submitted and are under review for
publication at the time this paper was written. In the following paragraphs we
will briefly describe this method that we used for solving the problem of ECML
PKDD 2009 Discovery Challenge, Task 2.

2.1 Linear Classifiers

Linear Classifiers is a family of classifiers whose trained model is a linear combi-
nation of features. In another perspective linear classifiers train a model which
is a hyperplane in a high dimensional feature space. In this space each instance,
either of the train set or an unseen, is a point. The goal of a linear classifier is
then to find such a hyperplane that splits the space into two subspaces, where
one contains all the points of the positive class and the other contains all the
points of the negative class.

Assuming that feature space is of n dimensions, each instance xi will be
represented by an n dimensions vector

−→x i = (wi1, wi2, · · · , win) (1)

where wik is a real value of the kth feature for instance xi.
Apart of each vector representation −→x i, each instance xi may bears informa-

tion about being a member of a class or not. For example a document is known
to be spam or an image is known that shows a benign tumor. This information
can be coded using a variable yi for each instance xi which takes values as:

yi =
{

1 if xi ∈ C+

−1 if xi ∈ C− (2)

That is yi = 1 when xi is member of the positive class C+ and yi = −1 when
it is member of the negative class C−. So each instance xi is represented by a
tuple (−→x i, yi). A training set Tr would be

Tr = {(−→x 1, y1) , (−→x 2, y2) , · · · , (−→x m, ym)} (3)

A linear classifier then is defined by a model
〈−→
W, b

〉
where −→W is a vector in the

same n-dimensional space and b is a scalar bias (threshold) value. This model
defines a hyperplane h

h : −→W · x+ b = 0 (4)
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This is the equation of a hyperplane h in the n-dimensional space. This hyper-
plane is of n − 1 dimensions. −→W is a linear combination of n features (dimen-
sions). Hyperplane h splits space into two subspaces, the one where for every
vector −→x i : −→W ·−→x i + b > 0 and the other where −→W ·−→x i + b < 0. Every vector for
which −→W ·−→x i + b = 0 lies on hyperplane h. The objective of each linear classifier
is to define such h :

〈−→
W, b

〉
. Different linear classifiers have different ways to

define model vector −→W and bias b.

2.2 Perceptron

Perceptron is a flavor of Linear Classifiers. It starts with an initial model and
iteratively refines this model using the classifications errors during training. It
is the elementary particle of neural networks and it has been investigated and
studied since the 1950s [3]. It has been shown that when trained on a linearly
separable set of instances, it converges (it finds a separating hyperplane) in a
finite number of steps [4] (which depends on the geometric characteristics of the
instances on their feature space).

The Perceptron is a Linear Binary Classifier that maps its input −→x (a real-
valued vector) to an output value f(−→x ) (a single binary value) as:

f(−→x ) =
{

1 if −→W · −→x + b > 0
−1 else

(5)

where −→W is a vector of real-valued weights and −→W · −→x is the dot product (which
computes a weighted sum). b is the bias, a constant term that does not depend
on any input value. The value of f(−→x ) (1 or −1) is used to classify instance x
as either a positive or a negative instance, in the case of a binary classification
problem. The bias b can be thought of as offsetting the activation function,
or giving the output neuron a ”base” level of activity. If b is negative, then the
weighted combination of inputs must produce a positive value greater than −b in
order to push the classifier neuron over the 0 threshold. Spatially, the bias alters
the position (though not the orientation) of the decision boundary (separating
hyperplane h).

We can always assume for convenience that the bias term b is zero. This is
not a restriction since an extra dimension n + 1 can be added to all the input
vectors −→x i with −→x i(n+ 1) = 1, in which case −→W (n+ 1) replaces the bias term.

Learning is modeled as the weight vector −→W being updated for multiple
iterations over all training instances. Let

Tr = {(−→x 1, y1) , (−→x 2, y2) , · · · , (−→x m, ym)}
denote a training set of m training examples (instances). At each iteration k the
weight vector is updated as follows. For each (−→x i, yi) pair in Tr

−→
W

(k)
= −→W (k−1)

+
α(k−1)

2

(
yi − f (k−1) (−→x i)

)−→x i (6)
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where α is a constant real value in the range 0 < α ≤ 1 and is called the learning
rate. Note that equation 6 means that a change in the weight vector −→W will only
take place for a given training example (−→x i, yi) if its output f (−→x i) is different
from the desired output yi. In other words the weight vector will change only in
the case where the model has made an error. The initialization of −→W is usually
performed simply by setting −→W (0)

= 0.
The training set Tr is said to be linearly separable if there exists a positive

constant γ and a weight vector −→W such that

yi

(−→
W · −→x i + b

)
> γ, ∀ (−→x i, yi) ∈ Tr (7)

Novikoff [4] proved that the perceptron algorithm converges after a finite number
of iterations k if the train data set is linearly separable. The number of mistakes
(iterations) is bounded then by

k ≤
(

2R
γ

)2

(8)

where R = max{||−→x i||} is the maximum norm of an input train vector.

2.3 Batch Perceptron

Equation 6 defines a single sample fixed increment perceptron learning rule. It
is called fixed increment because parameter α is constant throughout training.
In the case where this parameter changes at each iteration, we say that it is a
variable increment perceptron. It is also called single sample because this rule
applies at each instance xi which was misclassified during iteration k. In other
words, at iteration k each (−→x i, yi) ∈ Tr is presented to model −→W (k−1)

and if it is
misclassified by it (f (k−1) (−→x i) 6= yi) then this single instance −→x i is used (along

with parameter α(k−1)) to alter −→W (k−1)
into −→W (k)

.
A modification of this perceptron can be made defining a set of instances

Err ⊂ Tr
Err = {(−→x i, yi)}, f (k−1) (−→x i) 6= yi (9)

that contains all the misclassified examples at iteration k and then modifying
weight vector as:

−→
W

(k)
= −→W (k−1)

+ α(k−1)
∑

(−→x i,yi)∈Err

yi
−→x i (10)

In the case where bias value is not incorporated into example and weight vectors
(via an additional n+1 dimension), then bias value is modified as:

b(k) = b(k−1) + α(k−1)
∑

(−→x i,yi)∈Err

yi (11)

Equations 10 and 11 are called a Batch Perceptron learning rule and as the
single sample perceptron, parameter α(k−1) can be constant (fixed increment)
or varying at each iteration (variable increment).
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2.4 Centroid Classifier

A Centroid classifier is a simple linear classifier, that will help us understand
the notion behind our modification presented in the next Section. In the simple
binary case there are two classes, the positive and the negative one. We define set
C+ and C− containing instances from the positive and respectively the negative
class. We call Centroid of the positive class and respectively the Centroid of the
negative class as

−→
C+ =

1
|C+|

∑
−→xi∈C+

−→xi (12)

−→
C− =

1
|C−|

∑
−→xi∈C−

−→xi (13)

We then define a linear classifier as

h : −→W · −→x + b = 0 (14)

where
−→
W = −→C+ −−→C− (15)

and bias value b is defined by some technique we discuss in the following para-
graphs.

Figure 1 illustrates a simple case of a centroid classifier in a 2-dimensional
space. Sets C+ of the positive class and C− of the negative class are shown along
with their centroid vectors −→C+ and −→C− respectively. We note that in this simple
example, these two classes are linearly separable and therefore it is possible to
find a value for bias b such that h is a perfect separating hyperplane.

A method for finding such a value is Scut [5], where we iteratively choose val-
ues for bias b and then keep the one that lead to the best classifier (as measured
by some evaluation measurement). Bias takes values as

bi = −→W · −→x i,∀−→x i ∈ Tr (16)

and then an evaluation measure (for example the F1 measure) is computed for
classifier h : −→W ·−→x + bi = 0. Finally as bias value is chosen the one that gave the
maximum evaluation measure. It is clear that the instance xi that corresponds
to the chosen bi lies on hyperplane h. In the shown 2-dimensional example of
Figure 1 this instance is marked by point −→x Scut.

This simple algorithm has previously investigated and
methods have been proposed for altering initial centroids or weights in order to
achieve a better classifier [6–8].

In the next subsection we present how ideas from Centroid Classifier and
Perceptron are combined to our modified version of Perceptron.
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Fig. 1. A simple Centroid Classifier in 2 dimensions. The positive class C+ is linearly
separable from the negative one C−.

2.5 The proposed modification to Perceptron

Centroid Classifier of the previous subsection can be seen as a perceptron with
initial weight vector −→W (0)

= −→C+−−→C−, bias value b as defined by an Scut method
and no other training adjustments at all. The case shown in Figure 1 is an ideal
case for a Centroid Classifier, meaning that it is possible to find a value for b
resulting to a perfect separating hyperplane h : −→W · −→x + b = 0.

This is not however true in all cases. Figure 2 shows such a case where finding
a perfect separating hyperplane is not possible for a simple Centroid Classifier.
Dark regions contains misclassified instances that cannot correctly classified.
A Simple Sample or a Batch Perceptron would use these errors to modify the
weight vector −→W .

If we define sets FP and FN as:

FP = {(−→x i, yi)}∀xi ∈ C−, f (−→x i) 6= yi (17)
FN = {(−→x i, yi)}∀xi ∈ C+, f (−→x i) 6= yi (18)

in other words set FP contains negative instances that were misclassified as
positive (False Positive), whereas set FN contains positive instances that were
misclassified as negative (False Negative). A Batch Perceptron then using mis-

76



Fig. 2. No perfect separating hyperplane exists for this Centroid Classifier. Dark re-
gions are misclassified.

classified instances modifies weight vector as Equation 10 or equivalently as:

−→
W

(k+1)
= −→W (k)

+ α(k)

 ∑
−→x i∈FN(k)

−→x i −
∑

−→x i∈FP (k)

−→x i

 (19)

However there is a parameter α, either constant or variable that needs to be
estimated. This learning rate parameter is strongly related to the field on which
perceptron learning is applied and train data itself. A way to estimate it is using
a validation set of instances and selecting a value for α that leads to maximum
performance. But this operation must be repeated whenever field of operation
or data is switched and costs very much in terms of time.

Another approach is to use a fixed value for the learning rate like α = 1 or
α = 0.5 for example, without attempting to find a optimal value. However this
could result to very unwanted effects because learning rate is too small or too
large for the specific field of operation and training instances.

The key idea of our approach is illustrated in Figure 3 where we concentrate
on the misclassified regions. Positive class and a portion of negative class are
shown. Initial weight vector −→W (0)

and hyperplane h(0) are defined by a simple
Centroid Classifier. The idea is, at the next iteration 1, to modify weight vector
and bias into−→W (1)

and b(1) such that the resulting hyperplane h(1) passes through
the points defined by centroid vectors of the misclassified regions FP and FN .
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Fig. 3. The proposed modification to batch perceptron.

We define these misclassified centroids at each iteration as

−−→
FP

(k)
=

1
|FP (k)|

∑
−→xi∈FP (k)

−→xi (20)

−−→
FN

(k)
=

1
|FN (k)|

∑
−→xi∈FN(k)

−→xi (21)

where sets FP and FN are defined in Equations 17 and 18. We then define the
error vector at each iteration as

−→e (k) = −−→FN (k) −−−→FP (k)
(22)

Batch Perceptron learning rule of Equation 19 is then modified to:

−→
W

(k+1)
= −→W (k)

+ α′(k)−→e (k) (23)

We can easily compute the value of this modified learning rate α′(k) if we note
that misclassified centroids −−→FN (k)

and −−→FP (k)
lie by construction on the new

hyperplane h(k+1). As a result error vector −→e (k) is vertical to the new normal
vector −→W (k+1)

. So

−→
W

(k+1) · −→e (k) = 0
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(−→
W

(k)
+ α′(k)−→e (k)

)
· −→e (k) = 0

−→
W

(k) · −→e (k) + α′(k)||−→e (k)||2 = 0

α′(k) = −
−→
W

(k) · −→e (k)

||−→e (k)||2

And then the modified learning rule of Equation 23 is

−→
W

(k+1)
= −→W (k) −

−→
W

(k) · −→e (k)

||−→e (k)||2
−→e (k) (24)

This is the normal vector defining the direction of the next hyperplane h(k+1).
The actual position of it is determined by the new bias value which is easily
computed (bringing in mind that misclassified centroids lie on the new hyper-
plane):

b(k+1) = −−→W (k+1) · −−→FP (k)
= −−→W (k+1) · −−→FN (k)

(25)

Equations 24 and 25 define the new hyperplane

h(k+1) : −→W (k+1) · −→x + b(k+1) = 0

3 Task Description

As last year’s, this year’s ECML PKDD Discovery Challenge deals with the well
known social bookmarking system called Bibsonomy 1. In such systems, users
can share with everyone links to web pages or scientific publications. The former
are called bookmark posts, where the later are called bibtex posts. Apart from
posting the link to the page or the publication, users can assign tags (labels)
to their posts. Users are free to choose their own tags or the system can assist
them by suggesting them the appropriate tags.

This year’s Discovery Challenge problem is about generating methods that
would assist users of social bookmarking systems by recommending them tags
for their posts. There are two distinct task for this problem. Task 1 is about
recommending tags to posts over an unknown set of tags. That means that the
methods developed for Task 1 must be able to suggest tags that are unknown (in
other words suggest new tags). Task 2, on the other hand, is about recommending
tags that have been already known to be ones. 2

3.1 Data Description

Data provided for these tasks was extracted from Bibsonomy databases. Two
datasets where provided, one for training participant’s methods, and the other
1 http://www.bibsonomy.org
2 More details about tasks can be found on Challenge’s site at

http://www.kde.cs.uni-kassel.de/ws/dc09/#tasks
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for evaluating their performance. Both of them where provided as a set of 3 files
(tas, bookmark, bibtex). Files bookmark and bibtex contain textual data of the
corresponding posts. File tas contains which user assigned which tags to which
bookmark or bibtex resource. Each triplet (user,tags,resource) defines a post.
Train and test files where of the same tabular format, except test tas file which
of course did not contain tag information, as this was Challenge’s goal. 3

More details about preprocessing of the datasets will be given on the following
section 4.

4 Experimental Setup and Results

Challenge’s organizers had suggest that graph method would fit better to task 2,
whereas content based method would fit to task 1. In our work we concentrated
on task 2, and from this point on whenever we mention a task, we mean task 2.
Although organizers suggested graph method for the task, we choose to use our
modified perceptron rule for solving this problem. We made this decision because
we wanted to test the performance and robustness of the proposed algorithm on a
domain with a large category set. As we are going to present in our under review
paper, we have evaluated the proposed algorithm on standard text classification
datasets as well as on artificially generated (and linearly separable) datasets.
Although feature spaces of these datasets are of tens or hundreds of thousands
features, their categories sets are of few to at most a thousand categories. We
wanted to investigate how this method is going to perform when both feature
and category spaces are large.

So, Task 2 can be seen as a standard text classification problem, and the
proposed algorithm as a machine learning, supervised, automatic classification
method that applies on it. In this problem, tags (labels) that assigned on posts
can be seen as categories. On the other hand, posts can be seen as text docu-
ments, where category labels (tags) are assigned on them.

4.1 Data Preprocessing

Viewing task 2 as a supervised text classification problem, implies that datasets
must transformed to a vector space, where the proposed linear classifier can be
used. For every post (user,tags,resource), we construct a text document and then
transform it to the vector space.

We choose to discard user information from the posts, so the only textual
information for each post came from the assigned tags and the resource. Further-
more for each bookmark post we kept url, description and extended description
fields. For each bibtex post we kept journal, booktitle, url, description, bibtexAb-
stract, title and author fields.

Fore every post, and using those field, we construct a text document. We
then transform document dataset to a vector space. First tokenization of the
3 More details about datasets can be found at

http://www.kde.cs.uni-kassel.de/ws/dc09/dataset
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text, then stop word removal, then stemming (using Porter’s stemmer [9], then
term and feature extraction and finally feature weighting using tf*idf statistics.

The following table 1 presents some statistics about categories (tags) and
documents (posts) in the train and the test dataset.

Train dataset Test dataset

Number of Documents 64,120 778
Number of Categories 13,276 -

Table 1. Statistics for categories and documents in datasets

The following diagram 4 presents the distribution of the sizes of categories in
the train dataset. Axis x denotes the number of categories that are of a certain
size. Axis y denotes the number of documents that a certain sized category
contains.
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Fig. 4. Distribution of the sizes of categories in the train dataset

We note that categories sizes are small in general. In fact 10,500 out of
13,276 categories have at most 10 documents. The average size of categories is
1.97 (average posts per tag).
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4.2 Experimental Setup and Train phase

After converting documents (posts) into vectors in a high-dimensional space,
we can apply the proposed text classification method for solving the multilabel
classification problem. Since the method trains a binary linear classifier, the
problem must be transformed into binary classification. This is done by cracking
the problem into multiple binary classification problems. So, at the end we have
to solve 13, 276 binary classification problems.

The number of problems is quite large and therefore the used method must be
as much fast as possible. After the train phase (which finishes after the reasonable
time of 2 hours in a mainstream laptop), the final classification system consists
of 13, 276 binary classifiers.

4.3 Test phase and Results

Test phase consists of presenting each document of the test dataset (778 in
total) to every binary classifier resulted from training phase (13, 276 in total).
Each classifier decides whether the presented document (post) belongs or not to
the corresponding category (tag). Time needed fore presenting all document to
all classifiers on a mainstream laptop was about 10 minutes (that is about 0.8
seconds for a document to pass through all classifiers).

We produced 2 types of results. The ones that come from binary classification
and the ones that come from ranking. During binary classification a document
could be assigned or not into a category. Therefore a document, after been
presented to every binary classifier, could be assigned to zero, one, or more
categories (max is 13, 276 of course).

On the ranking mode, a classifier gives a score to each presented document
(higher score mean higher confidence of the classifier that this document belongs
to the corresponding category). Therefore at this mode, a document can be
assigned to any number z of categories we select (simply by selecting the z
categories which gave the higher scores).

We chose our submission to the Challenge, to contain results of the ranking
mode (by selecting the 5 higher scored categories for each document).

After releasing the original tag assignments of the test dataset, our results
of the ranking mode achieved a performance of F1 = 0.1008. The results of the
first mode (binary mode), that where never submitted, achieved a performance of
F1 = 0.1622. Of course, those results could not have been known prior releasing
original test tas file, but we had a belief that the ranking mode (suggesting
5 tags for every post, instead of less or even zero) would had better results.
Unfortunately this belief was false.

5 Concluding Remarks

In this paper we described the application of a modified version of the Percep-
tron learning rule on Task 2 of ECML PKDD Discovery Challenge 2009. This
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algorithm acts as a supervised machine learning, automatic text classification
algorithm on the data of the task. Task 2 is transformed to a supervised text
classification problem by treating users’ posts ass text documents and assigned
tags as thematic categories.

This algorithm has been prior tested on various text classification datasets
and artificially generated linearly separable datasets, and it has shown a ro-
bust performance and efficiency. Compared with the original Batch Perceptron
learning algorithm, it shows a significant improvement on the convergence rate.

Its fast training phase made it feasible to be used on Task 2 dataset, which
consists of a large categories set (more than 13, 000 categories) and a linear
classifier had to be trained for each category.

Although its results on Task 2 test dataset where not so well, we think that
its fast training phase and fast evaluation (since it is just a dot product for each
category-document tuple) allow for further investigation.
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Abstract. We describe and evaluate a discriminative clustering approach for
content-based tag recommendation in social bookmarking systems. Our approach
uses a novel and efficient discriminative clustering method that groups posts
based on the textual contents of the posts. The method also generates a ranked
list of discriminating terms for each cluster. We apply the clustering method to
build two clustering models – one based on the tags assigned to posts and the
other based on the content terms of posts. Given a new posting, a ranked list of
tags and content terms is determined from the clustering models. The final tag
recommendation is based on these ranked lists. If the poster’s tagging history is
available then this is also utilized in the final tag recommendation. The approach
is evaluated on data from BibSonomy, a social bookmarking system. Prediction
results show that the tag-based clustering model is more accurate than the term-
based clustering model. Combining the predictions from both models is better
than either model’s predictions. Significant improvement in recommendation is
obtained over the baseline method of recommending the most frequent tags for
all posts.

1 Introduction

Social bookmarking systems have become popular in recent years for organizing and
sharing resources on the Web. Such systems allow users to build a database of resources,
typically Web pages and publications, by adding basic information (such as URLs and
titles) about them and by assigning one or more keywords or tags describing them.
The tags serve to organize the resources and help improve recall in searches. Individual
users’ databases are shared among all users of the system enabling the development
of an information repository which is commonly referred to as a folksonomy [1]. A
folksonomy is a collection of users, resources, and tags assigned by a user to a resource
posted by him or her. Tag recommendation for new posts by users is desirable for two
reasons. First, it ensures uniformity of tagging enabling better searches, and second,
it eases the task of users in selecting the most descriptive keywords for tagging the
resource.
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Tag recommendation can have one of two goals: (1) to suggest tags tailored to indi-
vidual users’ preferences (the ‘local’ goal). and (2) to suggest tags that promote unifor-
mity in tagging of resources (the ‘global’ goal). Tag recommendation can benefit from
the tagging history of users and resources. However, when a user posts for the first time
and/or the posted resource is new this historical information is less useful. In such cases,
content-based tag recommendation is necessary, in which the contents of the resource
are relied upon for tag recommendation.

This paper addresses task 1 of the ECML PKDD Discovery Challenge 2009 [2].
This task deals with content-based tag recommendation in BibSonomy, a social book-
marking system. The goal of tag recommendation is ‘local’, that is, to suggest tags
tailored to individual users’ preferences. Historical data of users, resources, and tags is
available; however, the tag recommendation system must be able to provide good rec-
ommendations for unseen users and/or resources. Thus, the contents of resources must
be utilized for tag recommendation.

Our solution to task 1 of the ECML PKDD Discovery Challenge 2009 relies on a
novel discriminative clustering and term ranking method for textual data. We cluster the
historical data of posted resources and develop a ranked list of discriminating tags and
content terms for each cluster. Given a new posting, based on its contents, we find the
best 3 clusters and develop a weighted list of tags and terms appropriate for tagging the
post. If the poster’s tagging history is available, then this provides a third ranked list of
tags appropriate for the post. The final tag recommendation for the post is done by rules
that select terms from the weighted lists. These rules also decide on the number of tags
to recommend for each known poster. Extensive performance results are presented for
the post-core training data provided by the challenge organizers.

The rest of the paper is organized as follows. We present the related work and mo-
tivation in Section 2. Section 3 presents details of our content-based tag recommenda-
tion approach, including description of the discriminative clustering and method. Data
preprocessing and analysis is discussed in Section 4. The results of our approach are
presented and discussed in Section 5. We conclude in Section 6.

2 Related Work and Motivation

Tagging resources with one or more words or terms is a common way of organizing,
sharing, and indexing information. Tagging has been popularized by Web applications
like image (e.g flickr), video (e.g. YouTube), bookmark (e.g. dec.icio.us), and publica-
tion (e.g. BibSonomy) sharing/organizing systems. Automatic tag recommendation for
these applications can improve the organization of the information through ‘purposeful’
tag recommendations. Moreover, automatic tag recommendations ease the task of users
while posting new resources.

The majority of the approaches proposed for tag recommendation assume that either
the user posting the resource and/or the resource itself has been seen in the historical
data available to the system [3–6]. If this is not the case, then only the contents of the
posted resource can be relied upon. For social bookmarking systems, contents of re-
sources are textual in nature requiring appropriate text and natural language processing
techniques.
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Content-based tag recommenders for social bookmarking systems have been pro-
posed by [7, 8]. Lipczak’s method extracts the terms in the title of a post, expands this
set by using a tag co-occurrence database, and then filters the result by the poster’s tag-
ging history [7]. He reports significant improvements in performance after each step of
this three step process. Tatu et al.’s method utilizes terms from several fields including
URL and title to build post and user based models [8] . It relies on natural language
processing to normalize terms from various sets before recommending them. We use
terms from several fields of the posts including URL and title. We also study the impact
of filling in missing and augmenting fields from information crawled from the Web.

A key challenge in tag recommendation is dealing with sparsity of information. In
a typical collaborative tagging system, the vast majority of tags are used very infre-
quently making learning tagging behavior very difficult. This issue is often sidestepped
in evaluation of tag recommenders when they are evaluated on post-core data with a
high level of duplication (e.g. in [4, 6] post-core at level 5 is used). Our evaluation is
done on post-core at level 2 data provided by the ECML PKDD Discovery Challenge
2009 [2].

Document clustering has been used extensively for organizing and summarizing
large document collections [9, 10]. A useful characteristic of clustering is that it can
handle sparse document spaces by identifying cohesive groups. However, clustering is
generally computationally expensive. In the domain of collaborative tagging systems,
clustering has been explored for information retrieval and post recommendation [11,
12]. In this paper, we explore the use of clustering for content-based tag recommenda-
tion. We use an efficient method that is practical for large data sets.

3 Discriminative Clustering for Content Based Tag
Recommendation

Our approach for content-based tag recommendation in social bookmarking systems is
based on discriminative clustering, content terms and tags rankings, and rules for fi-
nal recommendations. We use a novel and efficient discriminative clustering method to
group posts based on the tags assigned to them and based on their contents’ terms. This
method maximizes the sum of the discrimination information provided by posts and
outputs a weighted list of discriminating tags and terms for each cluster. We also main-
tain a ranked list of tags for seen users. Tags are suggested from these three rankings by
intuitive rules that fuse the information from the lists. The rest of this section presents
our approach in detail.

3.1 Problem Definition and Notation

A social bookmarking system, such as BibSonomy [13], allows users to post and tag two
kind of resources: Web bookmarks and publications. Each resource type is described by
a fixed set of textual fields. A bookmark is described by fields like URL, title, and de-
scription, while a publication is described by fields in the standard bibtex record. Some
of these fields (like title for bookmarks) are mandatory while others are optional. This
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textual information forms the content of the resource. Each user who posts a resource
must also assign one or more tags for describing the resource.

Let pi = {ui,xi, ti} denotes the ith post, where ui is the unique user/poster ID,
and xi and ti are the vector space representations of the post’s contents and tags, re-
spectively. If T is the size of the vocabulary then the ith post’s contents and tags can
be written as xi = {xi1, xi2, . . . , xiT } and ti = {ti1, ti2, . . . , tiT }, respectively, where
xij (tij) denotes the frequency of term j (tag j) in post i. Note that an identical vector
space model is used to represent both content terms and tags, tij ∈ {0, 1}, ∀i, j, and
xij ≥ 0, ∀i, j. The historical data contain N posts. The tag recommender suggests tags
for a new post i described by ui and xi. The user ui and resource described by content
xi may or may not appear in the historical data.

Let TG(i), TM(i), and TU(i) be the ranked list of tags from clustering, terms
from clustering, and user tags, respectively, corresponding to the ith post. The actual
tags recommended for post i, denoted by TR(i), are determined from these ranked lists
by intuitive rules.

Given a test data containing M posts, the performance of the tag recommender is
evaluated by averaging F1-score of each prediction over the entire test data.

3.2 Discriminative Clustering for Tag and Term Ranking

The historical data of N posts is clustered into K ¿ N groups using a novel dis-
criminative clustering method. This method is motivated from the recently proposed
DTWC algorithm for text classification [14]. It is an iterative partitioning method that
maximizes the sum of discrimination information provided by each textual content (a
post, in our setting) between its assigned cluster and the remaining clusters. The key
ideas include discriminative term weighting, discrimination information pooling, and
discriminative assignment. Unlike other partitioning clustering methods, this method
does not require the explicit definition of a similarity measure and a cluster represen-
tative. Furthermore, it builds a ranked list of discriminating terms for each cluster im-
plicitly. The method is computationally more efficient than popular methods like the
k-means clustering algorithm. We perform two clusterings of the historical data – one
based on the content terms x and the other based on the tags t of the posts in the data.
In the following description, we develop the method for content terms only; the method
as applied to tags will be similar.

First, an initial clustering of the data is done. This can be done randomly or, less
efficiently especially for large collections, by a single iteration of the k-means algorithm
with the cosine similarity measure. Given this clustering, a discriminative term weight
wk

j is computed for each term j in the vocabulary and for each cluster k as [14]

wk
j =

{
p(xj |k)/p(xj |¬k) when p(xj |k) > p(xj |¬k)
p(xj |¬k)/p(xj |k) otherwise

where p(xj |k) and p(xj |¬k) are the probabilities that term j belongs to cluster k and
the remaining clusters (¬k), respectively. The discriminative term weight quantifies
the discrimination information that term j provides for cluster k over the remaining
clusters. Note that this weight is expressed as a probability ratio and is always greater
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than or equal to 1. The probabilities are computed by maximum likelihood estimation
from the historical data.

Having computed the discriminative term weights for the current clustering, two dis-
crimination scores can be computed for each post i. One score, denoted as Scorek(xi),
expresses the discrimination information provided by post i for cluster k, whereas the
other score, denoted as Score¬k(xi), expresses the discrimination information pro-
vided by post i for clusters ¬k. These scores are computed by linearly pooling the
discrimination information provided by each term xj in post i as [14]

Scorek(xi) =

∑
j∈Zk xjw

k
j∑

j xj
and

Score¬k(xi) =

∑
j∈Z¬k xjw

k
j∑

j xj

In these equations, Zk = {j|p(xj |k) > p(xj |¬k)} and Z¬k = {j|p(xj |¬k) >
p(xj |k)} are sets of term indices that vouch for clusters k and ¬k, respectively. Each
post, described by its contents x, is then reassigned to the cluster k for which the cluster
score fk = Scorek(x)− Score¬k(x) is maximum. This is the cluster that makes each
post most discriminating among all the clusters.

The overall clustering objective is to maximize the sum of discrimination informa-
tion, or cluster scores, of all posts. Mathematically, this is written as

Maximize J =
N∑

i=1

K∑
k=1

Ik(xi) · fk

where Ik(xi) = 1 if post i is assigned to cluster k and zero otherwise. Iterative reas-
signment is continued until the change in the clustering objective becomes less than a
specified small value. Typically, the method converges satisfactorily in fewer than 15
iterations.

The discriminative term weights for the terms in the index set Zk are ranked to ob-
tain the weighted and ranked list of terms for cluster k. As mentioned earlier, clustering
is also performed based on the tags assigned to posts. This clustering yields another
weighted and ranked list of tags for each cluster.

It is worthwhile to point out that the term-based clustering is done on both the
training and testing data sets. This approach allows the terms that exist only in the
test data to be included in the vocabulary space, and for such terms to be available for
recommendation as tags.

Given a new post i described by xi, the best cluster for it is the cluster k for which
the cluster score fk is a maximum. The corresponding ranked list of terms and tags for
post i are denoted by TM(i) and TG(i), respectively. These ranked lists contain the
most discriminating tags for post i based on its contents.

3.3 Final Tag Recommendation

Given a new post, and based on the contents x of the post, two ranked lists of terms ap-
propriate for tagging are generated by the procedures described in the previous section.
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If the user of the post appears in the historical data, then an additional list of potential
tags can be generated. This is the ranked list of tags TU(i) used by the user of post i
The ranking is done based on frequency. Moreover, the average number of tags per user
is computed and used while recommending tags for seen users.

The final list of tags for post i is made by simple and intuitive rules that combine
information from all the lists. Let S be the number of tags to recommend for post i.
Then, the final list of tags for the post is given by the following algorithm:

TR(i) = TG(i)[1 : P ] ∩ TM(i)[1 : Q]

IF TU(i)| 6= ® THEN TR(i) = TR(i) ∩ TU(i)[1 : R]

IF |TR(i)| < S THEN add top terms from TG(i), TM(i)inTR(i)

In the above algorithm, P , Q, and R are integer parameters that define how many top
terms to include from each list. If after taking the set intersections |TR(i)| < S then
the remaining tags are obtained from the top tags and terms in TG(i) and TM(i),
respectively. In general, as seen from our evaluations, R ≤ Q ≤ P , indicating that
TG(i) is the least noisy source and TU(i) the most noisy source for tags.

4 Evaluation Setup

4.1 Data and their Characteristics

We evaluate our approach on data sets made available by the ECML PKDD Discovery
Challenge 2009 [2]. These data sets are obtained from dumps of public bookmark and
publication posts on BibSonomy [13]. The dumps are cleaned by removing spammers’
posts and posts from the user dblp (a mirror of the DBLP Computer Science Bibliog-
raphy). Furthermore, all characters from tags that are neither numbers nor letters are
removed. UTF-8 encoding and unicode normalization to normal form KC are also per-
formed.

The post-core at level 2 data is obtained from the cleaned dump (until 31 December
2008) and contain all posts whose user, resource, and tags appear in at least one more
post in the post-core data. The post-core at level 2 contain 64,120 posts (41,268 book-
marks and 22,852 publications), 1,185 distinct users, and 13,276 distinct tags. We use
the first 57,000 posts (in content ID order) for training and the remaining 7,120 posts
for testing.

We also present results on the test data released as part of task 1 of the ECML
PKDD Discovery Challenge 2009. This data is cleaned and processed as described
above, but it contain only those posts whose user, resource, or tags do not appear in the
post-core at level 2 data. This data contain 43,002 posts (16,898 bookmarks and 26,104
publications) and 1,591 distinct users. For this evaluation, we use the entire 64,120 posts
in the post-core at level 2 for training and test on the 43,002 posts in the test data.

These data sets are available in the form of 3 tables – tas, bookmark, and bibtex –
as described below. The content of a post is defined by the fields in the bookmark and
bibtex tables, while the tags appear in the tas table.
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tas fact table; who attached which tag to which post/content. Fields include: user (num-
ber; user names are anonymized), tag, content id (matches bookmark.content id or
bibtex.content id), content type (1 = bookmark, 2 = bibtex), date

bookmark dimension table for bookmark data. Fields include: content id (matches
tas.content id), url hash (the URL as md5 hash), url, description, extended descrip-
tion, date

bibtex dimension table for BibTeX data. Fields include: content id (matches tas.content
id), journal, volume, chapter, edition, month, day, booktitle, howPublished, insti-
tution, organization, publisher, address, school, series, bibtexKey (the bibtex key
(in the @... line)), url, type, description, annote, note, pages, bKey (the “key”
field), number, crossref, misc, bibtexAbstract, simhash0 (hash for duplicate detec-
tion within a user – strict – (obsolete)), simhash1 (hash for duplicate detection
among users – sloppy –), simhash2 (hash for duplicate detection within a user –
strict –), entrytype, title, author, editor, year

A few tagging statistics from the post-core data are given in Table 1 and Figure
1. These statistics are used to fix the parameter S (number of recommended tags) for
known users. For unseen users, S is set at 5.

Table 1. Post-core at level 2 data statistics

Avg Min Max Std. Deviation
No. of tags per post 4 1 81 3.3
No. of posts per user 54 2 2031 162.9
No. of tags per user 62 1 4711 214.5
Frequency of tags 19 2 4474 106.9

4.2 Data Preparation

We explore tag recommendation performance on original contents, contents that have
been augmented by crawled information, and contents that have been augmented and
lemmatized.

The vocabulary for the vector space representation is formed from the tags and con-
tent terms in the training and testing sets. Selected content fields are used for gathering
the content terms. For bookmark posts, the selected fields are url, description, and ex-
tended. For publication posts, the selected bibtex fields are booktitle, journal, howpub-
lished, publisher, series, bibtexkey, url, description, annote, note, bkey, crossref, misc,
bibtexAbstract, entrytype, title, and author. As mentioned earlier, the tags, which appear
in the tas table, are also included in the vocabulary.

We remove all the non-letter and non-digit characters, but retain umlauts and other
non-Latin characters due to UTF-8 encoding. All processed terms of length greater than
or equal to three are retained. The tags are processed similarly, but without considering
the token length constraint.
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Fig. 1. Number of tags assigned to posts by users

Crawling Crawling is done to fill in and augment important fields. For bookmark posts,
the extended description field is appended with textual information from <TITLE>,
<H1> and <H2> HTML fields of the URL provided in the posts.

For publication posts, missing abstract field are filled using online search. We use
the publication title to search for its abstract on CiteULike [15]. If the article is found,
and its abstract is available on CiteULike, the bibtexAbstract field of the post is up-
dated. CiteULike is selected because its structure is simpler and it does not have any
restrictions on the number of queries (in a day for example).

Lemmatization We also explore lemmatization of the vocabulary while developing
the vector space representation. Lemmatization is different from stemming as lemma-
tization returns the base form of a word rather than truncating it. We do lemmatization
using TreeTagger [16]. TreeTagger is capable of handling multiple languages besides
English. We lemmatize the vocabulary using English, French, German, Italian, Spanish
and Dutch languages. The procedure, in brief, is as below:

1. TreeTagger is run on the vocabulary file once for each language: English, French,
German, Italian, Spanish and Dutch.

2. TreeTagger returns the output file containing token, pos, lemma. The lemma is
“<unknown>” if a token is not recognized in that language.

3. Using this “<unknown>” word, we combine the output of all six lemmatized files.
If a term is not recognized by any language, the term itself is used as lemma.
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4. If a word is lemmatized by more than one language, then lemmas are prioritized
in the sequence: English, French, German, Italian, Spanish, Dutch. The first lemma
for the word is selected.

4.3 Evaluation Criteria

The performance of tag recommendation systems is typically evaluated using precision,
recall, and F1 score, where the F1 score is a single value obtained by combining both
precision and recall. We report the precision, recall, and F1 score averaged over all the
posts in the testing set.

5 Results

In this section, we present and discuss the results of our discriminative clustering ap-
proach for content based tag recommendation. We start off by evaluating the perfor-
mance of the clustering method.

5.1 Clustering Performance

The performance of the discriminative clustering method is evaluated on the entire
64,120 posts of the post-core at level 2 data. We cluster these posts based on the tags
assigned to them. After clustering and ranking of tags for each cluster, we recommend
the top 5 tags from the ranked list for all posts in each cluster. The average precision,
recall, and F1 score percentages obtained for different values of K (number of desired
clusters) is shown in Table 2.

The top 5 tags become increasingly accurate recommendations as the number of
clusters is increased, with the maximum recall of 48.7% and F1 score of 30.6% ob-
tained when K = 300. These results simulate the scenario when the entire tag space
(containing 13,276 tags) is known. Furthermore, there is no separation between train-
ing and testing data. Nonetheless, the results do highlight the worth of clustering in
grouping related posts that can be tagged similarly.

Table 2. Performance of discriminative clustering of posts using the tags assigned to them (post-
core at level 2 data)

K 10 50 100 200 300
Act. Clusters 10 48 95 189 274
Av. Precision (%) 12.5 19.2 22.3 25.2 26.9
Av. Recall (%) 21.0 32.8 38.6 45.9 48.7
Av. F1-score (%) 13.7 21.4 25.0 28.7 30.6

Table 3 shows the top ranked tags for selected clusters. It is seen that the discrimina-
tive clustering method is capable of grouping posts and identifying descriptive tags for
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Table 3. Top tags for selected clusters (K = 200)

/ No. Top Discriminating Tags
1 svm, ki2007webmining, mining, kernels, textmining, dm, textclassification
2 windows, freeware, utility, download, utilities, win, shareware
3 fun, flash, games, game, microfiction, flashfiction, sudden
4 tag, cloud, tagcloud, tags, folksonomia, tagging, vortragmnchen2008
5 library, books, archive, bibliothek, catalog, digital, opac
6 voip, mobile, skype, phone, im, messaging, hones
7 rss, feeds, aggregator, feed, atom, syndication, opml
8 bookmarks, bookmark, tags, bookmarking, delicious, diigo, socialbookmarking

each group of posts. Noisy tags are not ranked high in the lists. It is even able to discrim-
inate and group posts of different languages (not shown in this table), especially when
clustering is based on content terms. Two valuable characteristics of the discriminative
clustering method are its stability and efficiency. The method converges smoothly (Fig-
ure 2) usually within 15 iteration. More importantly, especially considering the large
post by vocabulary sizes involved, is the efficiency of the method. Each iteration of the
method completes within 3 minutes, even for the large 107, 122× 317, 283 data for the
content-based clustering of the post-core plus task 1 test data.
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Fig. 2. Discriminative clustering convergence curves (clustering posts based on tags)

5.2 Tag Recommendation Using TG and TM Only

In this section, we discuss the performance of recommending the top 5 tags from the
TG(i) or TM(i) list of each post i. This evaluation is done on the testing data of 7,120
posts held out from the post-core at level 2 data. The clustering model is based on the
first 57,000 posts (in content ID order) from the data. In this evaluation, the original
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data, without augmentation with crawled information, is used for creating the vector
space representation.

The recommendation results for different K values are given in Table 4. Results are
shown for the case when only the top cluster for each post is considered, and for the
case when the top three clusters of each post are merged in a weighted manner (using
cluster score and discriminative term weights). It is observed that merging the lists of the
top three clusters always gives better performance. Moreover, recommendations based
on TG(i) are always better than those based on TM(i) indicating that the term-based
clustering is more noisy than that based on tags. We also find out that K = 200 yields
the highest recommendation performances.

Table 4. Tag recommendation performance (average F1-score percentages) using TG or TM only
for original data

K 10 50 100 200 300
TG Only (Best Cluster) 6.6 7.4 8.7 8.7 7.2
TG Only (Top 3 Clusters) 7.3 8.2 9.5 10.6 9.1
TM Only (Best Cluster) 6.3
TM Only (Top 3 Clusters) 7.8

5.3 Tag Recommendation Using All Lists

In this section, we evaluate the performance of our approach when utilizing information
from all lists. We also evaluate performance on original, crawled, and crawled plus
lemmatized data. These results are shown in Table 5. For this evaluation, we fix K =
200 and use the top three clusters for building TG(i) and TM(i).

The first column (identified by the heading TF) shows the baseline result of recom-
mending the top 5 most frequent tags in the training data (57,000 posts from post-core
data). It is seen that our clustering based recommendation improves performance be-
yond the baseline performance. The second and third columns show the performance of
recommending the top 5 terms from TG(i) and TM(i), respectively. The predictions
of the tag-based clustering always outperform the predictions of the term-based cluster-
ing. In the fourth column, we report results for the case when the top 5 recommended
tags are obtained by combining TG(i) and TM(i), as described in Section 3.3. These
results are significantly better than those produced by each list independently.

The fifth column shows the results of combining all lists, including the user list
TU(i) when known. This strategy produces the best F1 score of 15.5% for the crawled
data. This is a significant improvement over the baseline F1 score of 7.0%.

Table 5 also shows that filling in missing fields and augmenting the fields with
crawled information improves performance. Lemmatization does not help, probably
because users do not necessarily assign base forms of words as tags.
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Table 5. Tag recommendation performance (average F1-score percentages) for processed data (K
= 200; prediction based on top 3 clusters). The bottom line shows performance on task 1 test data

Data / Lists) TF TG TM TG, TM TG, TM, TU
Original Contents 7.0 10.6 7.8 11.5 12.8
Crawled Contents 7.0 12.3 10.4 14.3 15.5
Crawled+Lemmatized Contents 7.0 11.7 9.7 13.3 14.6
Task 1 Test Data (Crawled) 1.1 4.9 3.2 5.2 5.4

5.4 Tag Recommendation for Task 1 Test Data

We report the performance of our approach on task 1 test data released by the chal-
lenge organizers on the bottom line of Table 5. We filled in missing and augmented
other fields by crawled information. No lemmatization is done. The final vocabulary
size is equal to 317,283 terms making the tag recommendation problem very sparse.
The baseline performance of using the 5 most frequent tags from the post-core at level
2 (the training data for this evaluation) is the F1 score of 1.1% only. By using our dis-
criminative clustering approach, the average F1 score reaches up to 5.4%. This low
value is attributable to the sparseness of the data, and it is unlikely that other methods
can cope better without extensive semantic normalization and micro modeling of the
tagging process.

6 Conclusion

In this paper, we explore a discriminative clustering approach for content-based tag rec-
ommendation in social bookmarking systems. We perform two clusterings of the posts:
one based on the tags assigned to the posts and the second based on the content terms of
the posts. The clustering method produces ranked lists of tags and terms for each cluster.
The final recommendation is done by using both lists, together with the user’s tagging
history if available. Our approach produces significantly better recommendations than
the baseline recommendation of most frequent tags.

In the future, we would like to explore language specific models, incorporation of a
tag extractor method, and semantic relatedness and normalization.
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Abstract. Tagging resources on the Web is a popular activity of stan-
dard users. Tag recommendations can help such users assign proper tags
and automatically extend the number of annotations available in order
to improve, for example, retrieval effectiveness for annotated resources.
In this paper we focus on the application of an algorithm designed for
Entity Retrieval in the Wikipedia setting. We show how it is possible
to map the hyperlink and category structure of Wikipedia to the so-
cial tagging setting. The main contribution is a time-based methodology
for recommending tags exploiting the structure in the dataset without
knowledge about the content of the resources.

1 Introduction

Tagging Web resources has become a popular activity mainly due to the avail-
ability of tools and systems making it easy to tag and also due to the advantage
users see in tagging their resources. People can for example get better search
results, or they can get new resources recommended based on tags other people
assigned. One particular problem is the one of recommending relevant tags to
users for resources they have introduced in the system.

Being able to effectively recommend tags would, firstly, simplify the tasks of
the users on the web who want to tag resources (e.g., bookmarks, pictures, . . . ),
and, secondly, would allow an automatic annotation of resources that enables, for
example, a better search for resources or an improved resource recommendation.

When we want to assign a tag to a resource (or, to predict which tag a user
would assign to a resource) a possible approach is to use the most popular tags for
the given resource of the given user. Of course, this is not working well because
users can tag resources which are different and people tag the same resource in
different ways. For this reason most effective approaches look at the content of
the resources and perform more complex analysis of the structure connecting
users, resources, and tags.

Previous approaches focus on the content for resources (e.g., textual con-
tent of a web page) or on the structure of the tripartite graph composed of
users, resources, and tags. The approaches we propose in this paper do not take
into account the content of the resources but only the connection structure in
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the graph. Additionally, we put more importance on more recent tags with the
assumption that users’ interests might change over time.

We adapt an algorithm proposed for ranking entities in Wikipedia [1] based
on a set of initial relevant examples (e.g., already tagged resources) and on the
structure of hyperlinks connecting pages and categories containing them. As
we defined hard links between documents and categories they belong to and
soft links between documents and categories containing linked documents, so we
define these types of links between resources/users and tags in the tag recom-
mendation setting.

The rest of the paper is structured as follows. In Section 2 we describe the
proposed algorithms also showing the correspondence to the Wikipedia setting.
In Section 3 we describe the experimental setting and results. In Section 4 we
compare our work with previously proposed approaches and, finally, in Section
5 we conclude the paper.

2 Graph Based Algorithms

In this section we describe the algorithms we designed and used for the graph
based task that have been run at Discovery Challenge (DC) 2009.

2.1 Using the Resource-User Graph

In both submitted approaches, starting from the input query post (i.e., the posts
from the test file) we retrieve the resource it refers to. We call this resource the
query resource. For the query resource we retrieve, using the train data, all the
users that have annotated it in different posts. We call this set of users the direct
user set. We then use this set of user as an input for the algorithm and retrieve
all tags the users have assigned. In the second algorithm, in addition to the set
of direct users, we also retrieve the user neighborhood (i.e., users that used at
least once a tag in common with the given user). We then use the reunion of
the two user sets as input for recommending tags. We call the reunion of the
two user sets, the extended user set. As a third approach we have also retrieved
just the tags that have previously been assigned to the resource as baseline for
comparison.

As seen in Figure 1, by traversing the post - resource - users graph, we obtain
the set of direct users that have annotated the resource given in the query post.
The extended user set is obtained by adding also the neighborhood users to the
direct user set, see Figure 2. We considered two users as being neighbors if they
had common tags.

As a baseline approach we considered the recommendation of the most pop-
ular tags for a resource, where we only kept the tags assigned by the direct users
to the resource of the query post.
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Fig. 1. Tags recommended based on the set of users who have annotated the query
resource.

Fig. 2. Tags recommended based on the set of users who have annotated the query
resource and users in the immediate neighborhood of the direct user set.
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2.2 Comparison to the Wikipedia scenario

The algorithms described in this paper are adapted from those developed for
finding relevant results for Entity Retrieval queries in the Wikipedia Setting [1].
This work was performed in the context of the Entity Ranking track at the
evaluation initiative INEX 2008 [2]. In the following we describe how we can
map the Entity Ranking setting with the tag recommendation one.

In the Wikipedia setting we have as input a set of example entities. The goal
is to extend such set with other relevant entities. If, for example, the initial set for
the query “European Countries” contains Italy, Germany, and France, then the
goal is to extend this list with entities such as Spain, Slovenia, Portugal, . . . Our
approach is to retrieve other entities based on common assigned Wikipedia cat-
egories. We extract two sets of categories, hard categories as direct categories
(similarly to the direct user set) and soft categories from the neighboring entities
(i.e., following hyperlinks between Wikipedia articles). As neighboring entities
we considered the most frequent entities the example entities linked to (similarly
to the extended user set). In the Wikipedia setting entities link to entities via
hyperlinks, and each entity has several categories assigned to it.

2.3 Time dependent tag ranking

Following the intuition that tags can get outdated over the years, and, thus,
older assigned tags should be weighted less for recommendation, we introduced
a time decaying function of posts. Scores are assigned to posts based on the time
when they have been issued compared to the time the latest test post has been
issued. The time decaying function is defined by the following formula:

postScorei = λ∆Timei (1)

with the decaying factor lambda being smaller than 1 and the time difference be-
ing calculated in years. The tag scores are computed based on the tag specificity
(i.e., how often they have been assigned) defined as:

tagSpecificity i = log(50 + tagCounti) (2)

Given the different user sets for a query post, we extract from the training
data the most frequent common tags the users have assigned. The tag score is
computed based on the formula:

tagScorei =

∑
j(postScorej)

tagSpecificityi
(3)

where a post j was considered only if it was posted by one of the users from
the direct user set for the first approach and from the extended user set for the
second approach. The tags are sorted based on this score and the top five tags
are kept and recommended.
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As a baseline, we ranked the tags based on popularity within the resource
(i.e., how often a tag has been assigned to a resource) also keeping into account
when they had been assigned to the resource, based on the formula:

tagScorei =
∑
j

(postScorej) (4)

3 Experiments

Experiments were performed on the DC 2009 benchmark1 in order to evaluate
the proposed algorithms.

Starting from the query posts in the test file we recommended for each post
the top five tags using the two described approaches and the baseline. In Figure
3 it is possible to see effectiveness values for the two approaches when a different
number of retrieved tags is considered. We can see that the direct user approach
performs better. Figure 4 shows the same result with Precision/Recall curves of
the two proposed approaches.

Fig. 3. F-Measure values for Direct user approach and Extended user approach (λ=0.9)

1 http://www.kde.cs.uni-kassel.de/ws/dc09
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Fig. 4. Precision/Recall curves for Direct user approach and Extended user approach
(λ=0.9)

In Figures 5 and 6 we measure the impact of using the time information
when recommending the most popular tags for a resource. With a value of 0.9
for λ, in the time decaying function, the scores were slightly lower than when
using just the popularity information (Figure 5). When using a value of 0.95
for λ, there is a small improvement over the baseline when considering 4 and 5
tags (see Figure 6). We ran experiments also with values smaller than 0.9 for
λ which have shown that Precision and F-measure decrease quite a lot (3% for
F-measure with λ = 0.1).

4 Related Work

Previous work on tag recommendation mainly distinguish between those looking
at the content of the resources and those looking at the structure connecting
users, resources, and tags.

Approaches looking at content of resources for tag recommendations are, for
example, [5] which looks at content-based filtering techniques. In [6] the authors
also look at collaborative tag suggestion in order to identify most appropriate
tags.

A specific area of this field looks at recommending tags focusing on an in-
dividual user rather than providing general recommendation for a resource. In
[4] they first create a set of candidate tags to be recommended and then they
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Fig. 5. F-Measure values for Most Popular Tags per Resource approach and Most
Popular and Recent Tags per Resource approach (λ=0.9)

filer it based on the previous tag a particular user has assigned in the past. In
[3] the FolkRank algorithm is evaluated and compared with simpler approaches.
This is a graph based approach that computes popularity scores for resources,
users, and tags based on the well-known PageRank algorithm exploiting the link
structure. The assumption is that resources which are tagged with important
tags by important users becomes important themself. Similarly to FolkRank,
our approach exploits the link structure between users, resources, and tags, but
rather looks at the vicinity of a post (i.e., a [resources,user] pair) in order to
compute a weight for the most appropriate tags.

5 Conclusions and Further Work

In this paper we presented our first approaches for tag recommendation using
graph information. We proposed two approaches, where, given a query post, we
retrieve two sets of users. Based on the tags assigned by users in these sets we
recommend new tags. The first set of users, the direct user set, consists of the
users that have tagged the resource referred to by the query post. The second set
of user, the extended user set, consists of the direct user set as well as the users
who are neighbours based on commonly assigned tags to the users in the direct
set. The tag scores have been computed keeping into account also the time when
they have been assigned.
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Fig. 6. F-Measure values for Most Popular Tags per Resource approach and Most
Popular and Recent Tags per Resource approach (λ=0.95)

With the proposed approaches, we evaluated the effect of the tag posting
time. We compared a time dependent ranking to a tag popularity. In the future,
we aim at giving a higher importance to the user given in the query post than
to the rest of the direct users.
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Abstract. Social bookmarking is an effective way for sharing knowledge about 
a vast amount of resources on the World Wide Web. In many social 
bookmarking systems, users bookmark Web resources with a set of informal 
tags which they think are appropriate for describing them. Hence, automatic tag 
recommendation for social bookmarking systems could facilitate and boost the 
annotation process. For the tag recommendation task, we exploited three kinds 
of information sources, i.e., resource descriptions, previously annotated tags on 
the same resource, and previously annotated tags by the same person. A 
filtering method for removing inappropriate candidates and a weighting scheme 
for combining information from multiple sources were devised and deployed 
for ECML PKDD Discovery Challenge 2009. F-measure values of the proposed 
approach are 0.17975 for task #1 and 0.32039 for task #2, respectively. 
 
Keywords: social bookmarking, folksonomy, tag recommendation 

1  Introduction 

Social bookmarking systems such as BibSonomy1 and Delicious2 have increasingly 
been used for sharing bookmarking information on the Web resource. Such systems 
are generally built on a set of collectively-annotated informal tags, comprising a 
folksonomy. A tag recommendation system could guide users during the 
bookmarking procedure by providing a suitable set of tags for a given resource. In this 
paper, we propose a simple but effective approach for tackling the tag 
recommendation problem. The gist of our method is to appropriately combine 
different information sources with pre-elimination of barely-used tags. 

The candidate tags for recommendation can be extracted from the following 
information sources. First, resources themselves may have the annotated tags. For 
example, the title of a journal article is likely to include some of the annotated 
keywords. Second, the tags previously annotated by other users for the same resource 

                                                           
1 http://www.bibsonomy.org/ 
2 formerly del.icio.us, http://delicious.com/ 

109



2 
 

could be a good candidate set. Third, previously annotated tags for other resources by 
the same user could also provide some information.3 

The paper is organized as follows. In Section 2, the proposed tag 
recommendation method is detailed. Then, Section 3 shows the results of 
experimental evaluation on the training dataset, confirming the effectiveness of the 
proposed method. Performance of our method on the test dataset is briefly described 
in Section 4. Finally, concluding remarks are drawn in Section 5. 

2 The Method 

In this section, we detail the proposed tag recommendation method. First, the 
procedure for keyword extraction from resource descriptions with importance 
estimation and filtering is explained. Then, the keyword extraction and importance 
estimation method from previously annotated information is described. Finally, tag 
recommendation by combining multiple information sources is explained. 

2.1  Keyword Extraction from Documents (Resource Descriptions) 

In our approach, candidate keywords are extracted from the columns url, description, 
and extended description of the table bookmark as well as the columns journal, 
booktitle, description, and title of the table bibtex. It should be noted here that the 
candidates extracted from different fields are processed separately. This means that 
even the same keywords could have multiple importance values according to the 
columns from which they are extracted.4 

In order to estimate the importance of each keyword, its accuracy and frequency 
ratios are calculated as follows. 
 
D: set of all documents (resources) such as bookmarks or BibTex references. 
EC(k, d): extraction count of keyword k in document d. 
MC(k, d): matching count of keyword k with one of the tags of document d.5 
TEC(d): extraction count of all the keywords in document d. 
 

Accuracy Ratio, AR(k) = ∑ MC(, ) ∈  ∑ EC(, )∈⁄ .  (1) 
Frequency Ratio, FR(k) = ∑ EC(, )∈   ∑ TEC()∈⁄ .  (2) 

 
The accuracy and frequency ratios of each keyword are calculated across all the 
documents. 

                                                           
3 [1] also exploited these kinds of information sources for tag recommendation. We extend this 

approach by extracting keywords from not only resource title but also other resource 
descriptions. 

4 It is because average importance values of keywords are different according to extracted 
columns. 

5 MC(k, d) is equal to EC(k, d) if d is tagged with k, 0 otherwise. 
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The keywords whose accuracy is lower than average are not considered for 
recommendation. This elimination procedure is implemented by the following 
criterion, which also penalizes frequent words. 
 
TMC(d): sum of MC(k, d) across all the keywords in document d. 

Limit Condition: AR(k) / (1 + FR(k)) > ∑ TMC()∈   ∑ TEC()∈⁄ .  (3) 

 
Some keywords with high accuracy ratio values are shown in Table 1. It should 

be noted that there exist a large amount of keywords having high AR(k) values and 
the keywords in Table 1 are a sample from them. 

Table 1. Example keywords with high accuracy ratios. 

Keywords Extracted 
columns 

Accuracy ratio, 
AR(k) 

Frequency ratio, 
FR(k) 

nejm extended 
description 

1.0000 0.0002579 

medscape extended 
description 

1.0000 0.0001146 

freebox description 1.0000 0.0000533 
harum description 0.9800 0.0000556 
ldap url 0.9354 0.0000403 

shipyard description 0.9146 0.0002734 
 
The keywords in Table 1 have accuracy ratios much higher than the average, 
satisfying Equation (3). In Table 2, we present some keywords on the border with 
respect to Limit Condition. 

Table 2. Example keywords on the border in terms of Limit Condition. 

Keywords Extracted 
columns 

Accuracy 
ratio, 
AR(k) 

Frequency 
ratio, FR(k) 

Difference 
in Limit 

Condition 

Limit 
Condition 
satisfied 

netbib url 0.0789 0.0002468 0.0004281 Yes 
guide url 0.0778 0.0006510 -0.0007060 No 
media url 0.0781 0.0008810 -0.0003974 No 
daily extended 

description 
0.0602 0.0002744 0.0005867 Yes 

list extended 
description 

0.0601 0.0008056 0.0005053 Yes 

engine extended 
description 

0.0590 0.0005598 -0.0006156 No 

tool description 0.1279 0.0007647 0.0006509 Yes 
ontologies description 0.1271 0.0001312 -0.0000749 No 

corpus description 0.1264 0.0000967 -0.0007337 No 
 
The average AR(k) values in url, description, and extended description are 
0.07849973, 0.12715830, and 0.05963773, respectively. We also show some example 
keywords with low accuracy ratios, which do not satisfy Equation (3) as follows. 
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url: org, co, ac, au, default, main, details, welcome. 
description: feeds, economy, review, images, help. 
extended description: a, have, that, one, other, are, person, its. 
 

Finally, each extracted keyword, satisfying Equation (3), is stored in d-keyword 
set (DS). The accuracy weight of each candidate is calculated by multiplying its 
accuracy ratio and extraction count from the present document as follows. 

Accuracy Weight from Document Set, AWDS(k) = EC(k, d)ⅹAR(k).  (4) 

 
The accuracy weight, AWDS(k), is calculated when recommending tags for a given 
document (resource) d. 

2.2 Keyword Extraction from Previously-Annotated Information 

Candidate keywords could be extracted from the previously annotated tags for the 
same resource. For the BibTex references, the field simhash1 of the table bibtex is 
adopted for the semantically-same resource detection. For the bookmarks, a pruning 
function, which has similar effect of the approach used in [2], was implemented and 
deployed in our experiments. These candidate keywords are stored in r-keyword set 
(RS). Their accuracy weight is calculated as follows. 
 
D: set of all documents (resources) satisfying the same document condition with the 

present document d. 
TC(k, d): 1 if document d has keyword k; 0 otherwise. 

Accuracy Weight from Resource Set, AWRS(k) = ∑ TC(, ).∈   (5) 

 
Candidate keywords are also extracted from the previously annotated tags by the 

same person. These candidate keywords are stored in u-keyword set (US). Their 
accuracy weight is obtained as follows. 

 
D: set of all documents (resources) which are previously tagged by user u. 
UC(k, d): 1 if document d has keyword k; 0 otherwise. 

Accuracy Weight from User Set, AWUS(k) = ∑ UC(, ).∈   (6) 

2.3 Tag Recommendation by Combining Multiple Information Sources 

The last step is to recommend appropriate tags from the three candidate keyword sets, 
i.e., d-keyword set (DS), r-keyword set (RS), and u-keyword set (US). Given a 
specific user and a document (resource) for tagging, these three candidate keyword 
sets are specified with accuracy weight for each candidate. Before unifying these 
candidates, the accuracy weights are normalized into [0, 1] as follows. 
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EK =  ∪  ∪  (
NWDS(ek) = AWDS(ek) / 
NWRS(ek) = AWRS(ek) / 
NWUS(ek) = AWUS(ek) / 
 

We also added tag frequency information, denoting how many times a tag was 
annotated during the training period.

 
TFR(ek) = ∑ TagCount∈
 
where TagCount(t, d) denotes the number of 
document d. T and D
(resources), respectively.

The above four factors are linearly combined with appropriate coefficients. We 
have experimented with different coefficient values
results. First, we focused on the fact that the 
d-keyword set (DS) is higher than that from 
Figure 1 compares the performance 
when the number of recommended tags 

 

Figure 1. Performance 
information sources. 

 
Accordingly, we tried high 
coefficient values on NW
produce better results than other 
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 ∈ ). 
) / ∑ AW()∈ . 
) / ∑ AW()∈ . 
) / ∑ AW()∈ . 

We also added tag frequency information, denoting how many times a tag was 
annotated during the training period. This tag frequency rate is calculated as follows.TagCount( , )  ∑ ∑ TagCount∈∈⁄ (, ); 0 ≤ TFR(

) denotes the number of occurrences of a tag t annotated for
D denote the set of all tags and the set of all documents 

(resources), respectively. 
The above four factors are linearly combined with appropriate coefficients. We 

have experimented with different coefficient values, trying to obtain nearly 
First, we focused on the fact that the performance of extracted keywords from 

) is higher than that from r-keyword or u-keyword sets (RS
Figure 1 compares the performance using each keyword set on the training dataset 
when the number of recommended tags is five. 

 
. Performance comparison of extracted keywords from different 

 

Accordingly, we tried high coefficient values on NWDS(ek) and relatively low 
coefficient values on NWRS(ek) and NWUS(ek). However, this scheme 
produce better results than other schemes as shown in Figure 2. 

We also added tag frequency information, denoting how many times a tag was 
This tag frequency rate is calculated as follows. ( ) ≤ 1, 

annotated for a 
denote the set of all tags and the set of all documents 

The above four factors are linearly combined with appropriate coefficients. We 
nearly optimal 

of extracted keywords from 
RS or US). 

each keyword set on the training dataset 

comparison of extracted keywords from different 

) and relatively low 
However, this scheme does not 
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Figure 2. Performance comparison among different weighting schemes.

 
In Figure 2, Uniform denotes the case of assigning an equal coefficient (0.3) to each 
keyword set and DS (RS or US) denotes the case of assigning 0.45 to 
and 0.25 to the other keyword sets. 
cases. On the contrary to our expectation, the weighting scheme assigning high 
coefficient value to US

The reason for this 
performance of the candidates extracted 
data columns. Such keywords are 
 

Table 3. Variation in accuracy 
from different data columns.
represented in bold. 

Keywords 

portal 
tag 
tech 

template 
time 

youtube 
 
In Table 3, it is observed that even the same keyword from 
different accuracy ratio values. For example, the keyword portal from 
description has much 
However, the accuracy ratio
than the averages. 

After several trials
which has shown fine results on the training dataset

NWDS(ek)ⅹ.2 + 
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. Performance comparison among different weighting schemes.

In Figure 2, Uniform denotes the case of assigning an equal coefficient (0.3) to each 
keyword set and DS (RS or US) denotes the case of assigning 0.45 to DS (RS

other keyword sets. TFR(ek) was assigned 0.1 or 0.05 in the above 
On the contrary to our expectation, the weighting scheme assigning high 

US showed the best performance. 
e reason for this phenomenon is not clear but one possible clue is that 

of the candidates extracted from DS varies much according to extracted 
data columns. Such keywords are illustrated in Table 3. 

. Variation in accuracy ratio, AR(k), of the same keywords extracted 
from different data columns. Accuracy values higher than the average are 

 

 url description extended 
description 

0.0439 0.1080 0.1250 
0.0410 0.1194 0.1237 
0.0318 0.0598 0.1406 

 0.0620 0.1911 0.2023 
0.1560 0.0951 0.0322 

 0.3217 0.0877 0.0319 

In Table 3, it is observed that even the same keyword from DS could have extremely 
different accuracy ratio values. For example, the keyword portal from 

has much higher AR(k) value than the average, i.e., about 0.05964. 
However, the accuracy ratios of the same keyword from url or description 

After several trials, we applied the following formula for the recommendation, 
results on the training dataset. 

.2 + NWRS(ek)ⅹ.35 + NWUS(ek)ⅹ.4 + TFR(ek)ⅹ.05. 

 
. Performance comparison among different weighting schemes. 

In Figure 2, Uniform denotes the case of assigning an equal coefficient (0.3) to each 
RS or US) 

in the above 
On the contrary to our expectation, the weighting scheme assigning high 

on is not clear but one possible clue is that 
varies much according to extracted 

of the same keywords extracted 
Accuracy values higher than the average are 

could have extremely 
different accuracy ratio values. For example, the keyword portal from extended 

about 0.05964. 
 are lower 

ing formula for the recommendation, 

  (7) 
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3 Experimental Evaluation 

To evaluate the proposed approach, we reserved the postings spanning the latest six 
months from the given training dataset like the real challenge. Hence, the training 
period is from January 1995 to June 2008 and the validation period is from July to 
December of 2008. The numbers of postings, resources, and users during these 
periods are shown in Tables 4 and 5. 

 

Table 4. The Post-Core dataset size 

 bookmark bibtex tas # of users 
Training 37037 17267 218682 982 
Validation 4231 5585 34933 433 

 

Table 5. The Cleaned Dump dataset size 

 bookmark bibtex tas # of users 
Training 212373 122115 1101387 2689 
Validation 50631 36809 299717 1292 

 

3.1 Effectiveness of Candidate Elimination 

In this subsection, we present the effect of our keyword elimination method (Equation 
(3)). Note that Limit Condition is applied to the candidate keywords whose accuracy 
ratio is lower than average with some penalizing effect on frequently-occurred 
keywords. Figures 3 and 4 show the effect of candidate elimination on the Post-Core 
and Cleaned Dump datasets, respectively. The results are obtained when the number 
of recommended tags is five. On the both validation datasets (i.e., Post-Core and 
Cleaned Dump), the proposed elimination method increases precision and F-measure 
values regardless of the number of recommended tags (from one to ten, although the 
results are not shown here). In the case of the Cleaned Dump dataset, recall is also 
improved by our filtering method. 
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Figure 3. Effect of candidate elimination on 

 

Figure 4. Effect of candidate elimination on 

 

4 Final Result

Here, we append the final result
Discovery Challenge 2009

 

Cleaned Dump
Post-C

8 

 
. Effect of candidate elimination on the Post-Core dataset

 
. Effect of candidate elimination on the Cleaned Dump data

Final Results 

the final results of our method on the test dataset of ECML PKDD 
2009. 

Table 6. The test dataset size 

 bookmark bibtex # of users 
Cleaned Dump 16898 26104 1591 

Core 431 347 136 

set 

Dump dataset 

ECML PKDD 
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Table 7. Final results on the test dataset (Post-Core, Task #1) 

# of tags Recall Precision F-measure 
1 0.074695721 0.243523557 0.114324737 
2 0.121408237 0.213594717 0.154817489 
3 0.152896044 0.193533634 0.170831363 
4 0.175617505 0.179512968 0.177543872 
5 0.191311486 0.169508783 0.179751416 
6 0.203439061 0.162068819 0.180412681 
7 0.213460494 0.156249045 0.180428119 
8 0.22072531 0.151207336 0.179469517 
9 0.227309809 0.147113534 0.178623208 
10 0.232596191 0.143564862 0.177544378 

 

Table 8. Final results on the test dataset (Cleaned Dump, Task #2) 

# of tags Recall Precision F-measure 
1 0.142522512 0.42159383 0.213029148 
2 0.241682971 0.367609254 0.291633121 
3 0.315328224 0.331191088 0.323065052 
4 0.367734647 0.295308483 0.327565903 
5 0.406172737 0.264524422 0.320390826 
6 0.443927734 0.242502142 0.313661833 
7 0.47018359 0.221477537 0.301115964 
8 0.49385481 0.204859836 0.289591798 
9 0.509440246 0.190310422 0.27710381 
10 0.520841594 0.176357265 0.263494978 

5 Conclusion 

We applied a simple weighting scheme for combining different information sources 
and a candidate filtering method for tag recommendation. The proposed filtering 
method was shown to improve precision and F-measure for the tag recommendation 
task in all the cases of our experiments. It has also shown to be effective for 
improving recall in some cases. Future works include finding more optimal scheme 
for combining multiple information sources. Evolutionary algorithms would be a 
suitable methodology for this task. 
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Abstract. This paper describes the tag recommender system ARKTiS,
our contribution to the 2009 ECML PKDD tag discovery challenge.
ARKTiS consists of two separate modules for BibTEX entries and for book-
marked web pages. For generating tags, we distinguish between so-called
internal and external methods, depending on whether a tag was ex-
tracted from the given information about a resource or whether addi-
tional resources were employed.

1 Introduction

The role of the end-user in the world wide web (WWW) has undergone a sub-
stantial change in recent years from a passive consumer of relatively static web
pages to a central content producer. The addition of backchannels from WWW
clients to internet servers empowers non-expert users to actively participate in
the generation of web content. This has led to a new paradigm of usage, collo-
quially coined “Web 2.0” [1].

These novel kinds of interactions can be divided into two categories: produc-
ing or making accessible of new information (e.g., web logs, forums, wiki wikis,
etc.) and enriching already existing contents (e.g., consumer reviews, recom-
mendations, tagging, etc.). One interpretation of the second type of interaction
is that it provides means to cope with one of the problems generated by the
first type of interaction, namely the massive growth of available content and the
increasing difficulty for traditional information retrieval approaches to support
efficient access to the contained information. In this sense, the meta-content pro-
duced in the second kind of interaction can be construed as mainly serving as a
navigation aid in an increasingly complex, but weakly structured online-world.

In particular, the possibility for users to attach keywords to web resources
in order to describe or classify their contents bares an enormous potential for
structuring information which facilitates subsequent access by both the original
user and other users. This task, commonly referred to as tagging is simple enough
not to scare users away, yet the benefit of web resources annotated in such a
way is obvious enough to keep the motivation to supply tags high. The process
of attaching tags to web resource must therefore show a fine balance between
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simplicity and quality. Both of these properties could be greatly improved if
an automatic system could support a user by recommending tags for a given
resource.

In this paper, we describe the ARKTiS system, developed to recommend tags
to a user for two specific types of web resources. The system was developed as a
contribution to an international challenge as part of the 2009 European Confer-
ence on Machine Learning and Principles and Practice of Knowledge Discovery
in Databases (ECML PKDD 2009).

2 Task and Data

The goal of this challenge is the implementation of a system that can auto-
matically generate tag recommendations1 for a given resource. Here, a resource
is either a bookmark of a web page or a BibTEX entry for different kinds of
documents. Tags typically are short English words although they may also be
artificially created terms, generated e.g. by concatenating words (“indexforum”)
or by using abbreviations (“langfr”, for “language french”). The number of tags
a system may generate is restricted to a maximum of five.

To prepare for the challenge, a training set of manually tagged resources
was provided. The data set consists of web page bookmarks and BibTEX entries
taken from the BibSonomy project2. Each entry has a unique id and was tagged
by at least two users. Thus a point in the data set can be viewed as a triple
<resource-id, user-id, tags>.

For each resource, the corpus contains meta-data describing the resource
with a number of different fields. These fields are different for BibTEX entries
and for bookmark entries. For instance, the meta-data for BibTEX entries contain
fields describing the title of an article, the authors, the year of publication, or
the number of pages. For bookmarks, one field gives a short description of the
resource while another one contains the web pages’ URL. A full list of all available
fields can be found on the homepage of the challenge.

In total, the training corpus contains 41,268 entries for bookmarks and 22,852
BibTEX entries, annotated with 1,3276 unique tags by 1,185 different users.

The data of the actual challenge (the eval set), was provided 48 hours before
the submission deadline. This set consists of unseen data that each system had
to tag and all results that are presented and analyzed in section 5 were achieved
on this set. The evaluation data set contains 43,002 entries in total, with 26,104
BibTEX- and 16,898 bookmark-entries - circa two thirds of the amount of the
training data.

1 For the remainder of this paper, we will refer to this process as “(automatic) tagging”
2 http://www.bibsonomy.org
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3 Approach

One key observation for our participation in the ECML PKDD challenge was
that time played a central role in two different senses. First, the task required
each system to suggest tags for quite a large number of resources in a rather
short period of time: 43,002 entries in only 48 hours, including retrieval and
parsing of the test data as well as formatting and uploading of the final result
data. Second, since the challenge had a fixed deadline, the time to develop a
running system faced a naturally limit with the release of the 48 hour evaluation
period.

Both points had a direct influence on the conceptualization and realization
of our system ARKTiS, in that a number of more sophisticated ideas had to be
sacrificed. As a result, ARKTiS can be seen as an exercise in software engineer-
ing rather than thorough science. The final system implements straight-forward
strategies with a focus on robustness and processing speed.

3.1 Motivation

As outlined above, the training corpus contains 13276 different tags for over
41268 data points, a proportion that indicates a potential data sparseness prob-
lem for classical machine learning approaches. We therefore opted for an algo-
rithmic approach instead, based on heuristic considerations.

Since the desired system output is (English) words, we can distinguish two
potential sources for output: from within the resource itself (internal words) or
from outside material (external words). This distinction is in so far blurred, as
the system input actually consists not of the resources themselves, but rather
of meta-data. In so far, even tags taken from the resources themselves could be
argued to be external. We take the view that words stemming from meta-data
or the resources referred to by the meta-data are considered internal.

Since we could not hope to implement a competitive system, we were mainly
interested in how useful such a distinction would be in terms of recommending
tags. Although we concentrated on internal methods as described below, we
explored using document similarity measures in the BibTEX module to re-use
tags that were manually assigned to documents similar to the current system
input. Also, some of our implemented techniques, such as translating German
words from the original resource to English, can be considered borderline between
internal and external.

For the internal approaches, we looked at the task of tagging a resource as an
analogy to automatic text summarization, somewhat taken to an extreme where
a “summary” consists only of five words. In extractive summarization, summaries
of documents are generated by identifying those sentences in a document which
when concatenated serve as surrogate for the original document. In that spirit,
tagging becomes the task of identifying those words from a resource that together
describe the “aboutness” of the resource.
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3.2 Related Work

A number of researchers in recent years have engaged in the task of developing
an automatic tagging system. [2] use a natural language resources to suggest tags
for BibTEX entries and web pages. They include conceptual information external
resources, such as WordNet [3], to create the notion of a “concept space”. On
top of this notion, they exploit the textual content that can be associated with
bookmarks, documents and users and generate models within the concept space
or the tag space derived from the training data.

[4] model the problem of automated tag suggestion as a multi-label text
classification problem with tags as categories.

In [5], the TagAssist system focuses on the task of the generation of tags
for web-log entries. They access tags of similar documents in a similar spirit to
our own method described in section 4.1.

In addition to these concrete systems, we find automatic tagging to bare some
similarities with research in automatic extractive summarization. In both task,
the identification of salient portions of a resource’s text is a central consideration.
For tagging which reduces extraction single words, we call such a method an
internal approach. (s. section 3.1).

For instance, in [6], the author conducted a wide range of tests to find predic-
tive features for relevant sentences. Despite relying on manual experiments, the
general results from this early research were later confirmed by machine learn-
ing approaches, e.g., [7]. For the bookmark modules, both the title and the first
sentence heuristic (see 4.2) were inspired by these findings.

4 Taggers

As hinted by the data set, the task can be viewed as two different sub-tasks,
the tagging of BibTEX entries and the tagging of bookmarked web pages. Con-
sequently, the ARKTiS system consists of two independent modules which are
both instances of a common framework architecture, depicted in Figure 1. The
modules can be run in two distinct processes.

Efficient processing of the input data is an important requirement for this
challenge. In a sequential architecture, processing 43002 data points in 48 hours
would leave a tagging system about 4 seconds per data point on average. Given
that the data points contain only metadata and that the actual documents, if
needed, have to be retrieved through the internet and parsed, a time span of
4 seconds poses quite a strong limitation on the complexity of the performed
computations. Running multiple instances of taggers concurrently relaxes this
limitation. In our current setup, both modules for BibTEX and bookmark tag-
ging internally run ten tagging threads in parallel which increases the maximum
average processing time to 80 seconds per data point.
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Fig. 1. The parallel architecture of ARKTiS.

4.1 The BibTEXTagger

The tagging system responsible for the BibTEX entries uses a combination of in-
ternal and external techniques. A thorough investigation of the provided training
material showed that most of the entries (95.4%) do not contain a valid link to
the actual PDF document. This is unfortunate, as it limits internal approaches
which draw tags from the contents of the document in question.

Internal approach To compensate the cases in which the PDF document is
unavailable, we use the remaining information from the meta-data, namely the
title of the document, its description and its abstract. The employed approach
analyzes these fields and extracts tags directly out of their textual information.
Before that, we lowercase all words in the text of each field and remove all punc-
tuation and symbols. After that, we apply the POS tagging system described in
[8] to extract content-words - nouns, adjectives and verbs - out of the text. The
sequential processing of the text is shown below:

Pre-processing
Original title: The PageRank Citation Ranking: Bringing Order to the Web
Lowercased: the pagerank citation ranking: bringing order to the web
No symbols: the pagerank citation ranking bringing order to the web

Extraction of Tags

POS-tagged:
the/DT pagerank/NN citation/NN ranking/NN bringing/VBG
order/NN to/TO the/DT web/NN

Content words: pagerank citation ranking order web

Fig. 2. Sequential processing of textual contents

After removing stop-words, the remaining words are directly used as tags,
giving preference to tags stemming from the title field over those from description
field over those from the abstract field. Only the first five tags are returned after
filtering out duplicates.
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External approach For the remaining entries - where the source documents
were available - we use a corpus-based approach inspired by standard information
retrieval techniques. The idea here is that if a new document is similar to a
document from the training corpus, we may re-use the tags that have been
added manually to the training document.

Hence, this part of the tagger first ranks all documents from the training data
by similarity to the current document. A second step then takes tags from the
documents in rank order and returns the first five of them, discarding duplicates.

To do so, all documents in the corpus are first transformed from PDF format
to plain text by the PDFBox toolkit3. After that, the whole text is segmented
into sentences using punctuation information (.!?;:\n) and then pre-processed
in the same way as described in the internal approach. After removing non-
content words, we calculate tf.idf values for each word in the document, resulting
in the following mapping:

<list of tags> → <vector of TF/IDF-values>

A tf.idf value is a value that calculates the relative importance of the word
wi for the current document j, in relation to a set of documents D (see equation
1, where ni,j is the number of occurrence of the word i in document j).

tfidfi,j =
ni,j∑
k nk,j

∗ log
|D|

|{d ∈ D : wi ∈ d}| (1)

This procedure is, of course, carried out only once and the resulting map-
ping is stored offline. In the actual tagging process, we generate the vector of
tf.idf values in the same way for the document to tag and compare the resulting
vector to with all document vectors in the corpus. We have experimented with
two different similarity measures.

The first variant compares of two documents by the normalized distance
between their tf.idf vectors, as shown in equation 2.

sim(t0, t1) =
∑N−1

i=0 |t0[i]− t1[i]|∑N−1
i=0 t0[i] + t1[i]

(2)

In addition, we implemented cosine similarity that measures similarity by the
cosine of the angle Θ between the two vectors that the two documents describe
(equation 3).

sim(t0, t1) = cosΘ =
∑N−1

i=0 t0[i]t1[i]√∑N−1
i=0 t0[i]

√∑N−1
i=0 t1[i]

(3)

In our experiments, the normalized distance measure yielded better perfor-
mance than cosine similarity and consequently we used only the former in the
final system.

3 http://incubator.apache.org/pdfbox/
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4.2 The Bookmark Tagger

As in the case for the BibTEX tagger, the bookmark tagger relies on relatively
simple heuristics to determine the keywords to recommend. The input data pro-
vides two kinds of information, the URL of the web page to tag and a short
description which in some cases is identical to the web page’s title string.

Processing the URL field In our system, the URL is used to fetch the contents
of the actual web page, but since the domain name and path may already contain
candidate terms, the URL string is also processed itself, in three sequential steps:
tokenizing, filtering, and dict/split.

For the tokenization, the URL is split up at every non-letter non-digit char-
acter, such as a forward slash. By matching against a manually crafted blacklist
of terms generally considered uninformative, typical artifacts such as “www” or
“html” that result from the tokenization process are filtered out. The following
examples illustrate these two steps:

Original URL: http://www.example.com/new-example/de/bibtex.htm
Tokenizing: http www example com new example de bibtex htm
Filtering: example new example de bibtex

Original URL: http://www.coloradoboomerangs.com
Tokenizing: http www coloradoboomerangs com
Filtering: coloradoboomerangs

A dictionary of American English together with a list of the names of all articles
in the English Wikipedia4 of 2007 are used to check if the resulting tokens are
actual words. The rationale for incorporating Wikipedia is that it gives additional
terms from article titles which often are not found in a dictionary, such as, e.g.
technical terms (“bibtex”). If a token cannot be found in either list, we try to
split the token up into two sub-tokens which, in case they are both contained in
the dictionary, are then used instead of the original tokens. This idea is based on
the observation that domain names in particular are sometimes a concatenation
of two terms.

Applied to the above example, this step generates the following keyword lists:

Keywords: example new example de bibtex
Dict/Split: example new example bibtex

Keywords: coloradoboomerangs
Dict/Split: colorado boomerangs

4 http://en.wikipedia.org
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Processing the description field The description that is part of the input
data is tokenized in the same way. However, no further attempts are made to
filter out tokenization artifacts or to split the resulting tokens into sub-parts in
case they are not contained in the dictionary. In other words, of the above three
steps, only tokenizing is performed on the description of the bookmark.

Processing the bookmarked web page With the provided URL, the content
of the given web page is retrieved at run-time. We do not attempt to detect
whether the server returns an actual content page or a specialized message, such
as a HTTP 404 Not Found error page. After the HTML content of a web page has
been downloaded, three different extraction methods are applied: HTML-meta,
title, and first sentence.

The first method operates on the head section of the document where it
locates and parses the <meta> elements “keywords” and “description”. The con-
tents of these elements are provided by the author of the HTML document and
may contain valuable hints on what the document actually is about. The con-
tents are extracted and then undergo the same tokenizing procedure as described
above.

HTML:

<html>

<head>

<meta name=keywords content="example, sample">

<meta name="description" content="A made-up

example webpage">

...

</head>

...

</html>

Extracting: example, sample
a made-up example webpage

Tokenizing: example sample a made up example webpage

Also in the head section is the declaration of the title of the document. This
is not only intuitively a good source for relevant keywords, but research in the
field of automatic text summarization has also shown in the past that headings
contain informative content [9].

HTML: <title>Hello, world - again, an example</title>
Extracting: hello, world - again, an example
Tokenizing: hello world again an example

Another finding from summarization research is that locational cues work
well for determining relevant content words. To apply this insight to the task
at hand, the third document-based method tokenizes the first sentence of each
HTML document in the same manner described above.
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The result of these steps is a set of basic terms. For the final recommendation,
two more processing steps are performed, a ranking step and a normalization
step.

Ranking keywords For the ranking, each of the previously extracted keywords
is described according to four predefined dimensions: Source, InDict, POS,
and Navigational.

The values for these dimensions are floating point numbers that represent
how valuable a keyword is with respect to being among the recommended tags.
For instance, analog to the first step described above, the Source dimension
may receive one of the following values:

– URL (= 0.4)
– Description (= 1)
– HTML-Meta (= 1)
– Title (= 0.8)
– First sentence (= 0.9)

The other dimensions describe whether a keyword is found in the English
dictionary (and/or list of Wikipedia articles), its part of speech (NN = 1, NNS
= 0.9, VBG = 0.8, VERB = 0.5, OTHER = −4) and whether it is found
on a blacklist of navigational terms, such as “impress”, “home”, etc. which was
created manually by the authors. As with other heuristics, the idea of using such
stigma word lists can also be tracked back to early summarization research, see
e.g. [6].

To rank the keywords, a weighted sum of the four values is computed for
each keyword. Since a training corpus was available, good practical weights could
have been determined with a machine learning approach. Unfortunately, since
time was scarce, we had to estimate sensible weights by hand–inspecting the
performance of the tagger on selected samples from the training corpus helped
in this part of the development.

Normalization In a final normalization step, a German-English dictionary is
used to translate German keywords to English ones and to re-weight those key-
words that contain other keywords as sub-strings. In such a case it was speculated
that the keyword contained as a sub-string would likely be the more general term
and thus its final score was slightly increased.

5 Results

In the evaluation, the results of our tagging system ARKTiS had to be compared
against the tags that were annotated by a human. The test data were provided
48 hours before the submission deadline. Considering at most five tags per en-
try, the evaluation uses precision, recall and f-score values as measurements. In
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the following, we will present our results, that were achieved on this data and
compare them against a baseline system. The baseline system predicts the five
most common tags from the training data (Figure 3) to each input entry.

BibTEX: ccp jrr programming genetic algorithms

Bookmarks: software indexforum video zzztosort bookmarks

Fig. 3. Most common tags in the data

The results of the baseline system are presented in Table 1 where we can see
a maximum f-score of 0.55%. Comparing this to the results of ARKTiS (Table 2),
we can see that our system clearly outperforms the baseline with an f-score of
almost 11%.

#(tags) recall precision f-score

1 0.0025 0.0114 0.0041

2 0.0025 0.0057 0.0035

3 0.0039 0.0057 0.0046

4 0.0041 0.0046 0.0043

5 0.0053 0.0058 0.0055
Table 1. Baseline

#(tags) recall precision f-score

1 0.0305 0.1072 0.0475

2 0.0595 0.1082 0.0768

3 0.0839 0.1064 0.0938

4 0.1032 0.1032 0.1032

5 0.1179 0.0995 0.1079
Table 2. Results of the ARKTiS system

6 Conclusion and Future Work

Our work shows that is is possible to design and implement a basic tag rec-
ommender system even with a very limited development time. The two tracks,
BibTEX and bookmark tagging, were designed and realized independently but
on top of a common, concurrent framework.

The overall task can be considered challenging, especially if results are eval-
uated on the basis of recall and precision: our final system scored a rather low
11% f-score. The large number of different gold-standard tags makes this number
difficult to interpret; however, it is clear that it leaves room for improvement.
The winning entry of the 2009 challenged reached an f-score of 19 percent.

In a more detailed analysis, we found that the bookmark module outper-
formed the BibTEX module to some degree. As described above, the two modules
employ rather different approaches, thus a next logical step will be to combine
the best ideas from both modules.

The biggest drawback for ARKTiS as described in this paper was the fact
that we entered the ECML PKDD challenge at a late point. As a consequence,
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a number of interesting and more sophisticated ideas had to be left out of the
system purely due to the lack of implementation time. For instance, the use of
tf.idfscores in the BibTEX module is very limited, as is the use of content terms
beyond the first sentence in the bookmark module.

At the same time, the ARKTiS system has proven its robustness and will be
a good starting point for further research in the area of automatic tagging.
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Abstract. Tagging systems have become major infrastructures on the
Web. They allow users to create tags that annotate and categorize con-
tent and share them with other users, very helpful in particular for
searching multimedia content. However, as tagging is not constrained by
a controlled vocabulary and annotation guidelines, tags tend to be noisy
and sparse. Especially new resources annotated by only a few users have
often rather idiosyncratic tags that do not reflect a common perspec-
tive useful for search. In this paper we introduce an approach based on
Latent Dirichlet Allocation (LDA) for recommending tags of resources.
Resources annotated by many users and thus equipped with a fairly sta-
ble and complete tag set are used to elicit latent topics represented as a
mixture of description tokens and tags. Based on this, new resources are
mapped to latent topics based on their content in order to recommend
the most likely tags from the latent topics. We evaluate recall and pre-
cision for the bibsonomy benchmark provided within the ECML PKDD
Discovery Challenge 2009.

1 Introduction

Tagging systems [1] like Flickr, Last.fm, Delicious or Bibsonomy have become
major infrastructures on the Web. These systems allow users to create and man-
age tags to annotate and categorize content. In social tagging systems like Deli-
cious the user can not only annotate his own content but also content of others.
The service offered by these systems is twofold: They allow users to publish
content and to search for content, thus tagging also serves two purposes for the
user:

1. Tags help to organize and manage own content, and
2. Find relevant content shared by other users.

Tag recommendation can focus on one of the two aspects. Personalized tag
recommendation helps individual users to annotate their content in order to
manage and retrieve their own resources. Collective tag recommendation aims
at making resources more visible to other users by recommending tags that
facilitate browsing and search.
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However, since tags are not restricted to a certain vocabulary, users can pick
any tags they like to describe resources. Thus, these tags can be inconsistent
and idiosyncratic, both due to users’ personal terminology as well as due to the
different purposes tags fulfill [2]. This reduces the usefulness of tags in particular
for resources annotated by only a few users (aka cold start problem in tagging),
whereas for popular resources collaborative tagging typically saturates at some
point, i.e., the rate of new descriptive tags quickly decreases with the number of
users annotating a resource [3].

The main goal of the approach presented in this paper is to overcome the cold
start problem for tagging new resources. To this end, we use Latent Dirichlet
Allocation (LDA) to elicit latent topics from resources with a fairly stable and
complete tag set. The latent topics are represented as a mixture of description
tokens like URL, title, and other metadata, and tags, which typically co-occur.
Based on this, new resources are mapped to latent topics based on their descrip-
tion in order to recommend the most likely tags from the latent topics.

The remainder of this paper is organized as follows. In Section 2, we define
the problem of tag recommendation more formally, and introduce the approach
based on LDA. In Section 3 we present our evaluation results. In Section 4 we
discuss related work, and in Section 5 we summarize and outline possible future
research directions.

2 Tag Recommendation

2.1 Problem Definition

Given a set of resources R, tags T , and users U , the ternary relation X ⊆
R×T ×U represents the user specific assignment of tags to resources. T consists
of two disjoint sets Ttag and Tdesc. Ttag contains all user assigned tags, Tdesc

contains the vocabulary of content and meta information, such as abstract or
resource description, which is represented as tag assignment by a special “user”.
A post b(ri, uj) for resource ri ∈ R and a user uj ∈ U comprises all tags assigned
by uj to ri: b(ri, uj) = πtσri,uj

X1. The goal of collective tag recommendation is
to suggest tags to a user uj for a resource ri based on tag assignments to other
resources by other users collected in Y = σr 6=ri∨u6=ujπr,tX ⊆ R× T .

2.2 Latent Dirichlet Allocation

The general idea of Latent Dirichlet Allocation (LDA) is based on the hypothesis
that a person writing a document has certain topics in mind. To write about
a topic then means to pick a word with a certain probability from the pool of
words of that topic. A whole document can then be represented as a mixture
of different topics. When the author of a document is one person, these topics
reflect the person’s view of a document and her particular vocabulary. In the
context of tagging systems where multiple users are annotating resources, the
1 projection π and selection σ operate on multisets without removing duplicate tuples
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resulting topics reflect a collaborative shared view of the document and the tags
of the topics reflect a common vocabulary to describe the document.

More generally, LDA helps to explain the similarity of data by grouping fea-
tures of this data into unobserved sets. A mixture of these sets then constitutes
the observable data. The method was first introduced by Blei, et. al. [4] and ap-
plied to solve various tasks including topic identification [5], entity resolution [6],
and Web spam classification [7].

The modeling process of LDA can be described as finding a mixture of topics
for each resource, i.e., P (z | d), with each topic described by terms following
another probability distribution, i.e., P (t | z). This can be formalized as

P (ti | d) =
N∑

j=1

P (ti|zi = j)P (zi = j | d), (1)

where P (ti) is the probability of the ith term for a given document and zi is
the latent topic. P (ti|zi = j) is the probability of ti within topic j. P (zi = j) is
the probability of picking a term from topic j in the document. These probability
distributions are specified by LDA using Dirichlet distributions. The number of
latent topics N has to be defined in advance and allows to adjust the degree of
specialization of the latent topics. The algorithm has to estimate the parameters
of an LDA model from an unlabeled corpus of documents given the two Dirichlet
priors and a fixed number of topics. Gibbs sampling [5] is one possible approach
to this end: It iterates multiple times over each tag t, and samples a new topic
j for the tag based on the probability P (zi = j|t, z−i), where z−i represents all
topic-word and document-topic assignments except the current assignment zi

for tag t, until the LDA model parameters converge.

Application to Tagging Systems LDA assigns to each document latent top-
ics together with a probability value that each topic contributes to the overall
document. For tagging systems the documents are resources r ∈ R, and each
resource in addition to its description from Tdesc is described by tags t ∈ Ttag

assigned by users u ∈ U . Instead of documents composed of terms, we have
resources composed of tags. To build an LDA model we need resources and asso-
ciated tags previously assigned by users. For each resource r we need some posts
b(r, ui) assigned by users ui, i ∈ {1 . . . n}. Note that for each resource, at least
the tag assignments from its description is available. Then we can represent each
resource in the system not with its actual tags but with the tags from topics
discovered by LDA.

For a new resource rnew with few or no posts, we can expand the latent
topic representation of this resource with the top tags of each latent topic. To
accomodate the fact of some tags being added by multiple users whereas others
are only added by one or two users we can use the probabilities that LDA assigns.
As formalized in Equation 1 this is a two level process. Probabilities are assigned
not only to the latent topics for a single resource but also to each tag within a
latent topic to indicate the probability of this tag being part of that particular
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Table 1. Top terms composing the latent topic “images” and “tutorial”

Tag Count Prob. Tag Count Prob.

images(tag) 243 0.064 tutorial(tag) 640 0.185
photo(tag) 218 0.057 howto(tag) 484 0.140

photography(tag) 205 0.054 tutorial(desc) 204 0.059
image(tag) 188 0.049 tutorials(tag) 184 0.053
photos(tag) 164 0.043 tutorials(desc) 173 0.050
photo(desc) 138 0.036 tips(tag) 126 0.037
images(desc) 106 0.028 reference(tag) 118 0.034
photos(desc) 98 0.026 guide(tag) 79 0.023

flickr(tag) 93 0.024 lessons(tag) 50 0.014
pictures(desc) 61 0.016 tips(desc) 48 0.014
graphics(tag) 49 0.013 wschools(desc) 45 0.013
media(tag) 48 0.013 tutoriel(tag) 33 0.010

art(tag) 48 0.013 comment(tag) 29 0.008

topic. We represent each resource ri as the probabilities P (zj |ri) for each latent
topic zj ∈ Z. Every topic zj is represented as the probabilities P (tn|zj) for
each tag tn ∈ T . By combining these two probabilities for each tag for rnew,
we get a probability value for each tag that can be interpreted similarly as the
tag frequency of a resource. Setting a threshold allows to adjust the number of
recommended tags and emphasis can be shifted from recall to precision.

Imagine a resource with the following tags: “photo”, “photography”, and
“howto”. Table 1 shows the top terms for two topics related with the assigned
tags. The latent topics comprise a broad notion of (digital) photography and the
various aspects of tutorial material. Given these topics we can easily extend the
current tag set or recommend new tags to users by looking at the latent topics.
If LDA assumes that our resource in question belongs to 66% to the “photo”-
topic and to 33% to the “howto”-topic, these probabilities are multiplied with
the individual topic/tag probabilities, and the top five tags recommended are
“tutorial”, “howto”, “images”, “photo”, and “photography”.

3 Evaluation

We used the data provided by the ECML PKDD Discovery Challenge 2009 to
evaluate our approach and fine-tune our parameters. For assessing precision,
recall, and f-measure we used the supplied evaluation script.

3.1 Dataset

Our dataset consists of the provided training data for the Discovery Challenge.
All experiments were performed on the post-core at Level 2, where all tags, users,
and resources occur at least in two posts. To measure the performance of our
system, we split the training data into a 90% training set and a 10% test set
based on posts (called content IDs in the dataset).
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Table 2. Fields parsed to represent a resource

Bibtex Bookmark

Author Title URL
Editor Description Description

Booktitle Journal Extended
Abstract

Table 3. Actual tags and recommended tags with computed probablity for URL
http://jo.irisson.free.fr/bstdatabase/

Real Tag LDA Tag LDA Prob.

latex bibtex(tag) 0.017
bibtex latex(tag) 0.017

bibliography bibtex(desc) 0.014
database latex(desc) 0.008
engine theory(desc) 0.005
style citeulike(desc) 0.005
tex bibliography(tag) 0.004

reference database(tag) 0.003
academic styles(desc) 0.003

For each resource, as defined by the hash values, we build up a textual repre-
sentation. This representation contains all the tags that were assigned by users
in the training set to a particular resource. In addition, we add terms extracted
from the description of the resource. More precisely, we tokenized different fields
describing a bookmark or bibtex entry. An overview of the fields can be seen in
Table 2. Afterwards, we removed stopwords and punctuation marks. Using also
the description ensures that we have some terms related to a resource even if no
other user before tagged it.

3.2 Results

The tag recommendation algorithm is implemented in Java. We used Mallet [8],
which provides an efficient SparseLDA implementation [9], to perform the Latent
Dirichlet Allocation with Gibbs sampling. The LDA algorithm takes three input
parameters: the number of terms to represent a latent topic, the number of latent
topics to represent a document, and the overall number of latent topics to be
identified in the given corpus.

Table 3 shows the actual tag distribution for a randomly selected resource
(http://jo.irisson.free.fr/bstdatabase/), the top tags recommended by
LDA with aggregated probabilities, and all the tags provided by a sample user.
As the actual tags indicate, the url is a database/latex related site. The tags
recommended by LDA come from six latent topics, comprising latex, databases,
academia, references, bibliography, and style. These tags characterize the re-
source quite well.
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Table 4. F-measure for different number of recommended tags and different
number of LDA topics compared with recommending the most frequent tags
(mf)

No.Tags
# LDA topics

50 100 200 400 600 800 1000 2500 5000 10000 mf

1 0.170 0.191 0.214 0.229 0.229 0.230 0.229 0.238 0.240 0.235 0.270
2 0.200 0.225 0.248 0.266 0.271 0.271 0.274 0.289 0.288 0.283 0.335
3 0.209 0.233 0.257 0.277 0.282 0.285 0.287 0.302 0.303 0.300 0.362
4 0.209 0.237 0.257 0.279 0.287 0.289 0.292 0.305 0.307 0.303 0.379
5 0.209 0.238 0.258 0.280 0.286 0.291 0.293 0.307 0.307 0.304 0.388

Table 4 compares the f-measure reached for various numbers of latent topics
and the baseline which simply recommends the top most frequent tags for each
resource (mf) 2. As can be seen, the best f-measure for LDA is reached between
2500 and 5000 latent topics, but it does not reach the baseline by far. The main
reason for this seems to be that the average number of tags per resource is
just 10.3 (7.4 distinct tags). This is significantly smaller than the number of
(distinct) tokens in a full-text abstract or document, to which LDA has been
applied traditionally. Moreover, there are only about 2.8 posts per resource.
Thus, there is on the one hand too little co-occurrence evidence for eliciting
latent topics, on the other hand there is too little overlap between users on a
resource to effectively predict tags via the latent topics of a resource for a new
post.

However, to deal with resources that have only few tags associated it makes
sense to combine tag recommendations based on most frequent tags with tag
recommendations based on latent topics. With freq(t, r) the frequency of tag t
annotated for resource r, one estimate of the probability of tag t given resource
r is as follows:

P1(t | r) =
freq(t, r)∑

ti∈r freq(ti, r)
(2)

This estimate can be combined with the estimate P2(t | r) via latent topics
in Equation 1 by means of a mixture:

P (t | r) = λP1(t | r) + (1− λ)P2(t | r). (3)

Table 5 shows that this combination achieves consistently better recall and
precision than the individual approaches. The largest gain is achieved for the
first recommended tag. Similar accuracies are achieved when varying the mixture
parameter λ between 0.3 and 0.9, and for a number of latent topics ≥ 1000.

2 Unless stated explicitly otherwise, we recommend at least one tag and at most the
number of tags annotated to a resource
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Table 5. Evaluation results for tag recommendation based on most frequent
tags, based on 5000 latent topics, and their combination with λ = 0.5.

No.Tags
Most Frequent Tags Latent Topics Combination
Recall Prec. F-Meas. Recall Prec. F-Meas. Recall Prec. F-Meas.

1 0.190 0.467 0.270 0.165 0.437 0.240 0.214 0.537 0.306
2 0.274 0.430 0.335 0.232 0.380 0.288 0.302 0.479 0.370
3 0.329 0.403 0.362 0.271 0.343 0.302 0.357 0.441 0.394
4 0.370 0.388 0.379 0.298 0.316 0.307 0.393 0.415 0.404
5 0.400 0.377 0.388 0.316 0.299 0.307 0.421 0.398 0.409

Table 6. Evaluation results DC09 challenge Task 1 based on most frequent tags,
based on 5000 latent topics, and their combination with λ = 0.5.

No.Tags
Most Frequent Tags Latent Topics Combination
Recall Prec. F-Meas. Recall Prec. F-Meas. Recall Prec. F-Meas.

1 0.010 0.032 0.015 0.045 0.158 0.070 0.049 0.169 0.076
2 0.018 0.031 0.022 0.073 0.131 0.094 0.078 0.140 0.100
3 0.022 0.029 0.025 0.092 0.114 0.102 0.099 0.122 0.110
4 0.026 0.028 0.027 0.094 0.112 0.103 0.102 0.120 0.111
5 0.028 0.027 0.028 0.096 0.112 0.103 0.105 0.120 0.112

3.3 Setups and Results for the Challenge Submission

We have submitted tag recommendations for Task 1 and Task 2 in the ECML
PKDD Discovery Challenge 2009. Task 1 aims at recommending tags for arbi-
trary users annotating a resource in 2009 based on tag assignments until 2008.
Thus the test data contain tags, resources, and users which are not available in
the training data. The topic models have been trained on the full dataset, com-
prising about 9.3 Mio tokens for 415 K resources. The test set consists of 43002
posts. Table 6 compares the results for 5000 latent topics with the results using
the most frequent tags, and the combination of the two approaches 3. Because
for the posts in the test set there are only about 0.3 posts per resource in the
training set, recommending only the most frequent tags does not recommend
any tags for most of the resources. Consequently, recall and precision are signif-
icantly lower than for the approach based on latent topics. The combination of
the two approaches achieves slightly but consistently better recall and precision.

Task 2 operates on the post-core at Level 2, where all tags, users, and re-
sources occur at least twice in the training data, which comprises about 750 K
tokens for 22389 resources. The test set consists of 778 posts, for which there
exist on average 5.8 posts in the training set. Table 7 again compares the results

3 Our submission to the DC09 challenge was based on 2500 latent topics without
combination with most frequent tags, which achieved an F-measure of 0.098.
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Table 7. Evaluation results DC09 challenge Task 2 based on most frequent tags,
based on 5000 latent topics, and their combination with λ = 0.5.

No.Tags
Most Frequent Tags Latent Topics Combination
Recall Prec. F-Meas. Recall Prec. F-Meas. Recall Prec. F-Meas.

1 0.147 0.411 0.216 0.133 0.404 0.200 0.156 0.450 0.232
2 0.223 0.341 0.270 0.204 0.326 0.251 0.252 0.386 0.305
3 0.284 0.305 0.294 0.258 0.281 0.269 0.313 0.339 0.326
4 0.325 0.275 0.298 0.298 0.251 0.272 0.352 0.300 0.324
5 0.357 0.256 0.298 0.319 0.224 0.263 0.386 0.276 0.322

Table 8. Evaluation results for DC09 challenge Task 2 for 5000 latent topics
without content

No.Tags Recall Precision F-Measure

1 0.128 0.362 0.189
2 0.191 0.293 0.232
3 0.236 0.254 0.245
4 0.267 0.225 0.244
5 0.299 0.207 0.245

for the two individual approaches and their combination 4. As is to be expected,
recall and precision are much better than for Task 1, because there is more knowl-
edge available about the tagging practices of users. Like in our internal tests tag
recommendation based on most frequent tags outperforms the approach based
on LDA, and the combination outperforms the individual approaches.

Table 8 shows the results when only tags are used to elicit latent topics. Re-
call and precision are consistently lower. Thus taking into account the content of
resources leads to more effective latent topics for tag recommendation. However,
this does not hold for tag recommendation based on most frequent tags. Rec-
ommending the most frequent content terms or tags consistently leads to lower
precision and recall.

4 Related Work

Tag recommendation has received considerable interest in recent years. Most
work has focused on personalized tag recommendation, suggesting tags to the
user bookmarking a new resource: This is often done using collaborative fil-
tering, taking into account similarities between users, resources, and tags. [10]
introduces an approach to recommend tags for weblogs, based on similar weblogs
tagged by the same user. Chirita et al. [11] realize this idea for the personal desk-
top, recommending tags for web resources by retrieving and ranking tags from

4 Our submission to the DC09 challenge was based on 5000 topics without combination
with the most frequent tags and no limit on the number of recommended tags. This
achieved an F-measure of 0.258.
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similar documents on the desktop. [12] aims at recommending a few descriptive
tags to users by rewarding co-occuring tags that have been assigned by the same
user, penalizing co-occuring tags that have been assigned by different users, and
boosting tags with high descriptiveness (TFIDF).

Sigurbjörnsson and van Zwol [13] also look at co-occurence of tags to rec-
ommend tags based on a user defined set of tags. The co-occuring tags are then
ranked and promoted based on e.g. descriptiveness. Jaeschke et al. [14] compare
two variants of collaborative filtering and Folkrank, a graph based algorithm for
personalized tag recommendation. For collaborative filtering, once the similarity
between users on tags, and once the similarity between users on resources is
used for recommendation. Folkrank uses random walk techniques on the user-
resource-tag (URT) graph based on the idea that popular users, resources, and
tags can reinforce each other. These algorithms take co-occurrence of tags into
account only indirectly, via the URT graph. Symeonidis et al. [15] employ dimen-
sionality reduction to personalized tag recommendation. Whereas [14] operate on
the URT graph directly, [15] use generalized techniques of SVD (Singular Value
Decomposition) for n-dimensional tensors. The 3 dimensional tensor correspond-
ing to the URT graph is unfolded into 3 matrices, which are reduced by means
of SVD individually, and combined again to arrive at a more dense URT tensor
approximating the original graph. Tag recommendation then suggests tags to
users, if their weight is above some threshold.

An interactive approach is presented in [16]. After the user enters a tag for a
new resource, the algorithm recommends tags based on co-occurence of tags for
resources which the user or others used together in the past. After each tag the
user assigns or selects, the set is narrowed down to make the tags more specific.
In [17], Shepitsen et al. propose a recommendation system based on hierarchical
clustering of the tag space. The recommended resources are identified using user
profiles and tag clusters to personalize the recommendation results. Note that
they use tag clusters to recommened resources whereas we use LDA topics, which
can be considered clusters, to recommend tags.

[3] introduce an approach to tag recommendation using association rules.
Resources are regarded as baskets consisting of tags, from which association
rules of the form T1 → T2 are mined. On this basis tags in T2 are recommended
whenever the resource contains all tags in T1. A comparison of this approach
with the approach presented in this paper can be found in [18].

When content of resources is available, tag recommendation can also be ap-
proached as a classification problem, predicting tags from content. A recent
approach in this direction is presented in [19]. They cluster the document-term-
tag matrix after an approximate dimensionality reduction, and obtain a ranked
membership of tags to clusters. Tags for new resources are recommended by
classifying the resources into clusters, and ranking the cluster tags accordingly.
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5 Conclusions and Future Work

In this paper we have presented and evaluated the use of Latent Dirichlet Alloca-
tion for collective tag recommendation. Using selected features from the content
of resources, tags, and users, we elicit latent topics that comprise typically co-
occuring tags and users. On this basis we can recommend tags for new users and
resources by mapping them to the latent topics and choosing the most likely
tags from the topics. The approach complements simple tag recommendation
based on most frequent tags especially for new resources with only few posts.
Consequently, combining tag recommendations based on latent topics with tag
recommendations based on most frequent tags outperforms the individual ap-
proaches.

For future work we want to investigate approaches that take into account
individual tagging practices for personalized tag recommendation.

Regarding data sets, we also want to experiment with datasets from different
domains, to check whether photo, video, or music tagging sites show different
system behavior influencing our algorithms. Another interesting direction we
want to follow is to apply LDA not only for tag recommendation but to employ
it in the context of recommending resources.
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Abstract. Social Tagging is a typical Web 2.0 application for users to
share knowledge and organize the massive web resources. Choosing ap-
propriate words as tags might be time consuming for users, thus a tag
recommendation system is needed for accelerating this procedure. In this
paper we formulate tag recommendation as a probabilistic ranking pro-
cess, especially we propose a hybrid probabilistic approach which com-
bines language model and statistical machine translation model. Exper-
imental results validate the effectiveness of our method.

1 Introduction

Folksonomy is a way to categorize Web resources via utilizing the “wisdom” of
web users, nowadays it is existing in many web applications such as Delicious3,
Filckr4, Bibsonomy5. One user could create and share her knowledge during the
tagging on resources that are interesting to her. Web resources come in many
forms, for example, one resource could be a Web pages, a published paper, or a
book. To tag a resource with appropriate words is not so easy and might cost
lots of time. Thus a tag recommendation system is needed for easing the time-
consuming step. Typically a recommendation system would suggest 5 or 10 tags
to the user for a given resource. Those suggested tags would help one user to
think about eligible words and to realize the interesting aspects concerned by
others. To solve the problems, ECML PKDD holds the second round discovery
challenge6 of tag recommendation. This paper presents a probabilistic ranking
approach submitted to the challenge.

Given a resource, users choose tags by different aspects of the resource and
their specific interests. To pick up a tag from the entire tag set and assign it to
the resource could be formulated as following process: given a resource and a
user, ranking the tags by their relevance to the resource and user. Here relevance
denotes the ‘value’ of how likely the user would label this tag on this resource.
3 http://del.icio.us
4 http://www.flickr.com/
5 http://www.bibsonomy.org/
6 http://www.kde.cs.uni-kassel.de/ws/dc09
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We suppose a tag recommendation system works best while recommending tags
are sorted by the relevance and then suggested to the user.

In this paper, the datasets provided by Bibsonomy is a set of post. Each post
denotes a triple {user, resource, a set of tag}. A resource type could be bookmark
or bibtex, where bookmark is Web page and bibtex is publication. Both bookmark
and bibtex resources contain many fields: URL, description, etc. The textural
information in the fields could be merged as a pseudo document.

A natural way of choosing tags is to select words from the pseudo document
of given resource. A TF-like maximum likelihood method could reach the goal.
The important problem is that maximum likelihood model could not generate
tags which are meaningful but not existing in the document. To incorporate pre-
viously popular tags and tags preferred by a user, a tag recommendation model
could be formulate into language model smoothed via Jelinek-Mercer method as
described in Section 3.2. However, the language modeling approach could not
learn the word-tag relateness which reflects how other users choose tags for those
words in the document. Since the textural information existing in a post could
be considered as a parallel corpus - {words in document, tags}, we propose to use
the statistical machine translation approach to learn the translation probability
from words to tags.

Finally, we propose a candidate set based tag recommendation algorithm
which generates candidate tags from the textual fields of a resource using max-
imum likelihood and statistical machine translation model. The effectiveness of
our approach is validated on the bookmark and bibtex tagging test datasets
provided by Bibsonomy. While textural content of a bookmark resource is inad-
equate, we utilize the tags used within same Domain to extend the candidate
set. We also found simple co-occurrence based translation probability estima-
tion performs as good as IBM Model 1 [6] which uses the EM algorithm to learn
the translation probability. An advantage of co-occurrence based approach is
its convenience for handling with new training data, since training the model
is just counting the co-occurrence of words and tags. However, EM-based ap-
proach needs to re-train translation model though iterations which might be
time consuming for large scale dataset.

The rest of this paper is organized as follows. In Section 2 the related work
is surveyed. In Section 3 our content based tag recommendation models are pre-
sented, and the recommendation algorithm is described in Section 4. In Section
5 we descrbe the data format and preprocessing step, and experimental results
are reported in Section 6. Finally in Section 7 we conclude this paper and give
out some possible future research issues.

2 Related Work

Most of existing tag recommendation approaches are based on the textual in-
formation of the resource and previous interests of users. Up to now, the infor-
mation retrieval, data mining and natural language processing techniques have
been used for solving the tag recommendation problem.

144



Heymann et al. [1] use one of the largest crawls from the social bookmarking
system Delicious and presents studies of the factors which could impact the
performance of tag prediction. The predictability of tags is measured by some
method such as entropy based metric. The tag-based association rule is proposed
to assist tag predictions. The method of learning the word-tag relateness via
association rule needs to tune the confidence and support to find meaningful
rules, but we transfer it into the translation probability which could get the
converged solution without tuning.

Tatu et al [2] uses document and user models derived from the textual content
associated with URLs and publications by social bookmarking tool users. The
natural language processing techniques are used to extract the concept(Part of
Speech, etc.) from the textual information. WordNet7 are used to stem the con-
cepts and link synonyms. The difference between our work and theirs is that they
expand the concept via WordNet, but do not have the word-to-tag translation
probability such as from ‘eclipse’ to ‘java’.

Lipczak [3] focus on the folksomomies towards individual users, and proposed
a three step tag recommendation system which conducts the Personmony based
filtering using previously used tags of users after the extraction and retrieving
of tags. The recommendation approach in [3] is similar with our work, but the
scores of candidate tags are computed differently. They use the multiply strategy
for different factors, but we conduct a weighted sums in which the weight could
be set to prefer different components. Besides, we use the statistical machine
translation approach to learn the word-tag relateness which is different from
model proposed in [3].

Language modeling approach [4] has been applied in Information Retrieval
with lots of smoothing strategies [5]. The statistical machine translation ap-
proaches [6] shows its theoretical soundness and effectiveness in translation, and
Berger et al [7] and Xue et al [8] incorporate the statistical translation approaches
into information retrieval and automatic question answering fields. The theoret-
ical soundness and effectiveness make it stable to adopt the language modeling
and statistical machine translation approach into tag recommendation. The sta-
tistical machine translation approach also naturally solve the problem of learning
the word-tag relateness of sharing the common tagging knowledge among users.

3 Content Based Tag Recommendation Models

3.1 Problem Definition

In this paper, a tag set is denoted as t = {ti}Qi=1 where ti is a single word or
term and Q is the number of tags in t.

The tag recommendation task is to suggest a tag set t for a user Uk while
given a bookmark/publication resource Rj which might be a web page, a book or
paper etc. The resource Rj contains several fields such as URL, title, description
and we denote the resource content as a pseudo document Dj .

7 http://wordnet.princeton.edu
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Suppose the recommendation system is required to suggest N tags, it is
to find N tags {ti}Ni=1 from the entire tag sets with the biggest probability
p(ti|Uk, Dj).

For solving the task, a training set S = {Si}Ki=1 is given, where Si specifies
a triple {ti, U i, Di}. The ti is a tag set, U i ∈ U = {U1, ..., UM} is a user and
Di ∈ D = {D1, ..., DN} is a resource . Then we can learn a tag recommendation
model M from S.

At the testing stage, a testing set T = {T j}Pj=1 where T j = {U j , Dj} is given.
The modelM is asked to suggest tag set tj for each T j . After that a groudtruth
tag sets G = {gj}Pj=1 is used to judge the recommendations {tj}Pj=1, and the
performance is get via some evaluation measures such as Precision, Recall and
F-measure.

For a specific user Uk, she would have her preference in choosing a word ti
as a tag, and if we have this user’s information in the training set S, we can
formulate this preference as P (ti|Uk) = c(ti;Uk)

|Uk| where c(ti;Uk) is frequency of ti
be used by user Uk, and |Uk| is total frequency of all tags used by Uk.

We define the tag generating probability a tag ti for a given user and docu-
ment tuple {Uk, Dj} as:

P (ti|Dj , Uk) = (1− β)P (ti|Dj) + βP (ti|Uk) (1)

Where β is a trade-off parameter between the resource content and user.
Following we will introduce language model and statistical machine transla-

tion approaches for estimating P (ti|Dj), and then we will combine them into
our final model.

3.2 Language Modeling Approach

A natural and simple way to estimate P (ti|Dj) is to use the maximum likelihood
approach as:

Pml(ti|Dj) =
c(ti;Dj)
|Dj | (2)

Where c(ti;Dj) is occurrence of ti in Dj , and |Dj | is document length of
Dj . The shortcoming of the maximum likelihood estimation is that it could not
generate tag which does not exist in Dj , thus we introduce language model
smoothed via Jelinek-Mercer method [5] as:

Plm(ti|Dj) = (1− λ)Pml(ti|Dj) + λPml(ti|C) (3)

Where λ is the smoothing parameter, and C corresponds to the entire corpus.
Actually the smoothing term P (ti|C) could be formulated as the probability of
the word ti be used as a tag. We define P (ti|C) as c(ti)

#tags where #tags is the total
number of tags in the training set S. The language modeling approach (3) could
be considered as the incorporation of words in the document and previously
popular tags of all users.
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3.3 Statistical Machine Translation Approach

However, the language modeling approach has not considered word-tag relateness
which would be important for tag recommendation. For solving the problem, we
further introduce the Statistical Machine Translation(SMT) approach [6] [7] [8]
for estimating the probability P (ti|Dj):

Psmt(ti|Dj) =
|Dj |
|Dj |+ 1

Ptr(ti|Dj) +
1

|Dj |+ 1
P (ti|null) (4)

Where P (ti|null) could be regarded as the background smoothing model
P (ti|C), and a more detailed comparison them could be found in [8]. Ptr(ti|Dj)
is the translation probability from Dj to ti as following:

Ptr(ti|Dj) =
∑

w∈Dj

Ptr(ti|w)Pml(w|D) (5)

To learn the word-word transition probability Ptr(ti|w), the EM algorithm
could be used. The detail of EM algorithm of learning the word-tag relateness
P (ti|w) in Statistical Machine Translation(SMT) Model is described in [6]. In
the training set S = {Sj}Kj=1, the parallel corpus of tag and document as Sj =
{tj , Dj} is utilized, and the EM step for learning P (ti|w) can be formulated as:

E-Step:

P 1
tr(ti|w) = δ−1

w

K∑
j=1

c(ti, w; tj , Dj) (6)

M-Step:

c(ti, w; tj , Dj) =
P (ti|w)

P (ti|w1) + ...+ P (ti|wo)
#(ti, tj)#(w,Dj) (7)

In Equation (6) δ−1
w =

∑
ti

∑K
j=1 c(ti, w; tj , Dj) is the normalization factor.

In Equation (7) {w1, ..., wo} is words contained in Dj , #(ti, tj) and #(w,Dj)
is the number of ti in tj and number of w in Dj . The convergency of this EM
algorithm is proved in [6].

In this paper, we also find that the co-occurrence based translation proba-
bility could be helpful in tag recommendation, and we denote it as:

P 2
tr(ti|w) =

∑K
j=1 #(ti; tj) ·#(w;Dj)∑K

j=1 #(w; tj , Dj)
(8)

Where #(ti; tj) denotes the number of tag ti exists in tj and the same to
#(w;Dj). This model could be regarded as a simple approximation of the EM
based translation model, and it is also effective. Note that the EM based trans-
lation probability is denoted as P 1

tr(ti|w) whereas the co-occurrence based trans-
lation probability is denoted as P 2

tr(ti|w) hereafter.
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3.4 Final Model

Now we combine above methods together to get our final model:

Pfinal(ti|Dj , Uk) =λP (ti|C) + βP (ti|Uk)

+ αPml(ti|Dj) + γ
∑
w

Ptr(ti|w)Pml(w|D) (9)

Where λ + β + α + γ = 1 and Ptr could be P 1
tr or P 2

tr. Tuning these four
parameters is not easy, and thus we split both Cleaned Dump and Post Core
dataset into a training set and a validation set respectively, train the model on the
training set and set parameters empirically several times for choosing one with
better performance on the validation set. We do not illustrate the detail due to
space restriction, and in the experiments we found the performance is relatively
well while λ = 0.15, β = 0.1, α = 0.05, γ = 0.7. We use these parameters with
Cleaned Dump dataset as our final training set for the challenge.

4 Candidate Set based Tag Recommendation Algorithm

Since the task of tag recommendation is to suggest tags for given document
and user, it is different from the task of Information Retrieval [7] or Question
Answering [8] where the query/question is given for finding the relevant docu-
ments/answers.

Given a document Dj and user Uk, we firstly find a recommendation tag
candidate set CS from the words in Dj , and we also add the top L related words
by Ptr(t|w) for every word w in Dj . Then we compute the P (ti|Dj , Uk) for each
tag ti ∈ CS. Finally we sort the tags descending according to P (ti|Dj , Uk), and
return the top N tags as required by the application system. The L is set to be
20 and N is set to 5 in the experiments. In summary, we get this algorithm in
Table 1.

5 Data Preparing and Preprocessing

The dataset we used is download from ECML PKDD Discovery Challenge 20098

which is provided by BibSonomy9. There are two datasets: Cleaned Dump and
Post Core. The Cleaned Dump contains all public bookmarks and publication
posts of BibSonomy until (but not including) 2009-01-01. The Post Core is a
subset of the Cleaned Dump, it removes all users, tags, and resources which ap-
pear in only one post from Cleaned Dump. Brief statistics of Cleaned Dump and
Post Core could be found in Table 2. One tag assignment means one user choose
a tag for a resource, and thus one posts could have several tag assignments. The
number of posts are shown for bookmark, bibtex, and entire set. The bookmark
and bibtex are seperated by ‘/’, and the entire set are illustrated after ‘:’.
8 http://www.kde.cs.uni-kassel.de/ws/dc09
9 http://www.bibsonomy.org/
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Table 1. Candidate Set based Tag Recommendation Algorithm

Input: testing sample: T j = {Dj , U j}, threshold N and L
Output: top N tags t = {t1, ..., tN}

1. candidate set CS ← ∅
2. for w in Dj

3. add w into CS
4. add top L tags t into CS according to P (t|w)
5. end for
6. for each word tk ∈ C
7. compute P (tk|Dj) using (9)
8. end for
9. sort tk ∈ CS with P (tk|Dj) in descending order
10. return top N tags in C as t

Table 2. Statistics of Cleaned Dump & Post Core datasets

tag assignments number of posts number of users

Cleaned Dump 1,401,104 263, 004 / 158, 924 : 421, 928 3, 617

Post Core 253,615 41,268 / 22,852 : 64, 120 1, 185

There are three tables tas, bookmark, and bibtex in the dataset. The fields of
these tables are list in Table 3. For bookmark resource the field ‘content type’
is 1 and that of bibtex resource is 2. The fields in bold are used to generate the
pseudo document Dj and the tags tj in the training process.

Table 3. Fields of Three Dataset Tables

table fields

tas user, tag, content type, content id, date

bookmark content id, url hash, URL, description, extended description, date

bibtex content id, journal, chapter, edition, month, day, booktitle,
howPublished, institution, organization, publisher, address, school,
series, bibtexKey, url, type, description, annote, note, pages, bKey,
number, crossref, misc, bibtexAbstract, simhash0, simhash1, simhash2,
entrytype, title, author, editor, year

We firstly remove the stop words in the bookmark and bibtex table since
they are seldom used as tags and usually meaningless. The stop word list are
download from Lextek10. Note that we do not remove stop words in the tas file,
and the top 5 stop words exist in Post Core and their frequency could be found
in Table 4. There are totally 19, 647 and 2, 513 stop word tag assignments in
Cleaned Dump and Post Core, corresponds to 1.39% and 0.99% respectively.
10 http://www.lextek.com/manuals/onix/stopwords1.html
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In contrast, the total frequency of stop words in pseudo documents of Cleaned
Dump and Post Core are over 588, 907 and 61, 113, which suggest not to consider
stop words as tags in most cases.

Table 4. Top 5 stop words in tags of Cleaned Dump & Post Core

dataset top 5 stop words and their frequency in tags

Cleaned Dump all:3105 of:1414 and:1227 best:1124 three:1081 c:806

Post Core all:655 open:211 c:165 best:152 work:77

In Table 5 we list out the top 10 tags in Cleaned Dump and Post Core.
We could see later that the co-occurrence based translation model are likely to
generate words which appear more times.

Table 5. Top 10 Tags and their Frequency

Cleaned Dump bookmarks:52795 → zzztosort:11839 → video:10788→
software:10171 → programming:9491 → indexforum:9183 →
web20:8777 → books:7934 → media:7149 → tools:6903

Post Core web20:4474 → software:3867 → juergen:3092 → tools:3058 →
web:2930 → tagging:2196 → semanticweb:2055 →
folksonomy:1944 → search:1896 → bookmarks:1840

6 Experimental Result

6.1 Tagging Performance

The evaluation measure in following experiments are widely used Precision, Re-
call, and F1-measure. The testing datasets are released by ECML-PKDD chal-
lenge in tasks. There are 2 tasks: task 1 and task 2, where task 1 is for content
based tag recommendation, and task 2 is for graph based tag recommendation11.
In task 1 the user, resource of a post might not exist before, so the content in-
formation of the resource would be critical for tag recommendation. In task 2
user, resource, and tags of each post in the test data are all contained in the
Post Core dataset, thus it intends for methods relying on the graph structure of
the training data only.

We use the whole Cleaned Dump dataset as the training set to train the
model and test the performance of our model on both tasks. For choosing the
parameters, we set α = 0.15, λ = 0.05, β = 0.1, γ = 0.7 as mentioned before in
Section 3.4. The results are shown in Figure 1. The final em denotes final model
with P 1

tr(EM-based), and final co denotes final model with P 2
tr(Co-occurrence

based). The x-axis is the top position and y-axis is the f-measure.
11 http://www.kde.cs.uni-kassel.de/ws/dc09
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Fig. 1. Performance of Selected Models

The results indicates that although P 2
tr(Co-occurrence) is more simpler, it

is comparable to P 1
tr. In our previous experiment, we also found sometimes the

textual information from the bookmark resource are not adequate enough to
generate some tags in the post and it needs to be expanded. Instead of using
extrinsic resource such as WordNet, we aggregate the tags in the same web site
domain for bookmark resource, and use them to expand the recommendations.
The reason we don’t expand the term in bibtex is because resources in bibtex
are publication and the web site provide less information about tags. Also, try-
ing other tag expansion methods would be our future work. We formulate this
expansion as P (ti|Site), and the recommendation model for bookmark would
become:

Pfinal ex(ti|Dj , Uk) =λP (ti|C) + βP (ti|Uk) + αPml(ti|Dj)

+ γ
∑
w

Ptr(ti|w)Pml(w|D) + θP (ti|Site) (10)

For illustrate the expansions of different domains, we sample some domains
and their top used tags with the probability in Table 6.

Table 6. Sample Domains with Top 5 used tags

domain tags and their previously used probability

www.apple.com apple:0.17 mac:0.13 software:0.09 osx:0.07 bookmarks:0.07

answers.yahoo.com knowledge:0.14 yahoo:0.14 web20:0.07 all:0.07 answer:0.07

ant.apache.org java:0.19 ant:0.17 programming:0.07 apache:0.07 tool:0.07

picasa.google.com google:0.21 image:0.14 download:0.14 linux:0.14 picasa:0.14

research.microsoft.com microsoft:0.10 research:0.09 people:0.04 social:0.04 award:0.03

www.research.ibm.com ibm:0.11 datamining:0.07 software:0.04 machinelearning:0.04
journal:0.04
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After the tag expansion via the URL domain, the candidates set CS for
the recommendation will have top used tags in the same domain of Dj . The
performance of (10) with the expansions on the testing set are shown in Table
7 and 8. The performance are shown for only bookmark, only bibtex, and on
entire set. The bookmark and bibtex are seperated by ‘/’, and the entire set
are illustrated after ‘:’. We choose the co-occurrence based model P 2

tr in the
competition, and actually the performance in terms of F-measure at 5 is also
good when using EM-based model P 1

tr. The F-measure of EM-based model with
the same parameters as Table 7 for task 1 and task 2 are shown in Table 9. We
can find that the P 2

tr and P 1
tr are comparable once again, on F-measure at 1, the

Co-occurrence based model are better, but on F-measure at 5, the EM-based
model are better.

Table 7. Performance for Task 1 ( α = 0.15, λ = 0.05, β = 0.05, γ = 0.5, θ = 0.25 for
bookmark, α = 0.15, λ = 0.05, β = 0.1, γ = 0.7 for bibtex with P 2

tr)

TOP N Recall Precision F-Measure

1 0.0702 / 0.0975 : 0.0809 0.2232 / 0.3056 : 0.2556 0.1067 / 0.1477 : 0.1229

2 0.1116 / 0.1584 : 0.1300 0.1905 / 0.2584 : 0.2172 0.1406 / 0.1961 : 0.1624

3 0.1412 / 0.2011 : 0.1648 0.1664 / 0.2251 : 0.1895 0.1525 / 0.2120 : 0.1760

4 0.1636 / 0.2318 : 0.1904 0.1489 / 0.2000 : 0.1690 0.1556 / 0.2143 : 0.1787

5 0.1810 / 0.2563 : 0.2106 0.1339 / 0.1802 : 0.1521 0.1536 / 0.2111 : 0.1762

Table 8. Performance on Task 2 data( α = 0.15, λ = 0.05, β = 0.05, γ = 0.5, θ = 0.25
for bookmark, α = 0.15, λ = 0.05, β = 0.1, γ = 0.7 for bibtex with P 2

tr)

TOP N Recall Precision F-Measure

1 0.1399 / 0.1215 : 0.1297 0.4063 / 0.3666 : 0.3843 0.2073 / 0.1823 : 0.1938

2 0.2136 / 0.1919 : 0.2016 0.3444 / 0.3086 : 0.3246 0.2625 / 0.2365 : 0.2485

3 0.2887 / 0.2379 : 0.2605 0.3093 / 0.2676 : 0.2862 0.2977 / 0.2517 : 0.2726

4 0.3212 / 0.2848 : 0.3010 0.2630 / 0.2454 : 0.2532 0.2883 / 0.2636 : 0.2749

5 0.3532 / 0.3220 : 0.3359 0.2346 / 0.2237 : 0.2285 0.2812 / 0.2639 : 0.2718

Next we conduct the experiment on each component of our final model
(9), the document maximum likelihood method, language model(‘LM + User
Model’), the EM-based translation model P 1

tr(ti|w), and co-occurrence based
translation model P 2

tr(ti|w) are chosen. In the ‘LM + User Model’ we set the pa-
rameters α = 0.5, λ = 0.3, β = 0.2, γ = 0. It could be considered as the language
model which incorporates the maximum likelihood, the previously tag probabil-
ity in the whole corpus, and the user’s preference model. The performance on
both testing datasets of task 1 and task 2 are illustrated in Figure 2. The x-axis
is the top position from top1 to top5 and the y-axis is the value of F-Measure.
We only list out the F1 measure because it reflects both precision and recall.
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Table 9. Performance of ( α = 0.15, λ = 0.05, β = 0.05, γ = 0.5, θ = 0.25 for bookmark,
α = 0.15, λ = 0.05, β = 0.1, γ = 0.7 for bibtex with P 1

tr)

TOP N task 1 F-Measure task 2 F-measure

1 0.1167 0.1909

2 0.1593 0.2548

3 0.1745 0.2790

4 0.1778 0.2866

5 0.1770 0.2833
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Fig. 2. Performance of Selected Models

From the experimental results we can see the translation based models are
better than maximum likelihood method and ‘LM + User Model’ in task 2.
The co-occurrence based model are worst in task 1, and the EM-based model is
better than co-occurrence based model on both task. We analyze the results of co-
occurrence based model on task 1 and find many recommendations are common
used tags, because the co-occurrence based model would prefer to generate those
tags occurred more times before. This suggest that if the resource/users have
been seen before, thus the co-occurrence based model would perform well, if not,
then it is better to choose EM based model. The ‘LM + User Model’ perform
best on task 1, but the performance is still lower than that in Table 7, and also,
‘LM + User Model’ performs worse than translation models on task 2.

For comparison between EM-based and co-occurrence based model, we pick
out several words w with their top translating words ti in both P 1

tr(ti|w)(EM-
based) and P 2

tr(ti|w)(Co-occurrence based). The sampling words could be found
in Table 10. We could find that in EM-based translation model, the words are
most likely to translate into itself. It indicates that we could consider the EM-
based translation model as the combination of the maximum likelihood which
only generates the word it self and the co-occurrence based translation model
which has higher probability to generate other words as tags. The co-occurrence
model are likely to generate those popular tags in the corpus, such as ‘tools’,
‘software’, ‘social’.
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Table 10. Sampled Words with their top tags ti: P
1
tr(ti|w)(EM); P 2

tr(CO)

w model Top tags ti with highest probability Ptr(ti|w)

web EM web:0.36 web20:0.26 semanticweb:0.12 semantic:0.01970 ajax:0.02
CO web20:0.05 semanticweb:0.04 web:0.04 semantic:0.02 tools:0.01

wiki EM wiki:0.85 web20:0.01 semantic:0.01 wikipedia:0.01 collaboration:0.01
CO wiki:0.15 semantic:0.03 semanticweb:0.03 web20:0.02 software:0.02

dynamics EM dynamics:0.18 loreto:0.06 tagging:0.05 rmpcfl:0.04 analysis:0.04
CO tagging:0.07 dynamics:0.04 folksonomy:0.03 juergen:0.03 social:0.02

eclipse EM eclipse:0.55 java:0.23 development:0.05 ide:0.03 plugin:0.02
CO eclipse:0.18 java:0.13 plugin:0.06 develop:0.04 tools:0.04

yahoo EM yahoo:0.52 search:0.09 news:0.04 bookmarks:0.03 email:0.02
CO yahoo:0.09 search:0.04 web20:0.02 web:0.02 news:0.02

7 Conclusion and Future Work

In this paper we propose a probabilistic ranking approach for tag recommenda-
tion. The textual information from the resources and the parallel textual corpus
from previously posts are used to learn the language and statistical translation
model. Our hybrid probabilistic approach incorporates both the content based
textural model and graph structure existing in posts for sharing the common
tagging knowledge among users.

As our future work, we intent to study how to choose parameters via machine
learning approaches to avoid heuristic setting. Further more, increasing the extra
information of the resources, for example, using the citations(references) of a
publication to augment the information of bookmark resource; using other tag
expansion techniques; conducting the natural language understanding of the tag
concept as well as studying the evaluation measures for tag recommendation are
all possible future research work.
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Abstract. Collaborative tagging systems are social data repositories, in
which users manage resources using descriptive keywords (tags). An im-
portant element of collaborative tagging systems is the tag recommender,
which proposes a set of tags to each newly posted resource. In this pa-
per we discuss the potential role of three tag sources: resource content as
well as resource and user profiles in the tag recommendation system. Our
system compiles a set of resource specific tags, which includes tags re-
lated to the title and tags previously used to describe the same resource
(resource profile). These tags are checked against user profile tags – a
rich, but imprecise source of information about user interests. The result
is a set of tags related both to the resource and user. Depending on the
character of processed posts this set can be an extension of the common
tag recommendation sources, namely resource title and resource profile.
The system was submitted to ECML PKDD Discovery Challenge 2009
for “content-based” and “graph-based” recommendation tasks, in which
it took the first and third place respectively.

1 Introduction

The emergence of social data repositories made a fundamental change in the
way information is created, stored and perceived. Instead of a rigid hierarchy
of folders, collaborative tagging systems (e.g., BibSonomy1, del.icio.us2, Flickr3,
Technorati4) use a flexible folksonomy of tags. The folksonomy is created col-
laboratively by system users. While adding a resource to the system, users are
asked to define a set of tags – keywords which describe it and relate it to other
resources gathered in the system. To ease this process, some folksonomy services
recommend a set of potentially appropriate tags. Proposing a tag recommenda-
tion system was a task of ECML PKDD Discovery Challenge 20095. This paper
presents a tag recommendation system submitted to the challenge.

1 http://bibsonomy.org/help/about/
2 http://del.icio.us/about/
3 http://flickr.com/about/
4 http://technorati.com/about/
5 http://www.kde.cs.uni-kassel.de/ws/dc09/
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1.1 Definitions

Collaborative tagging systems allow users (ui ∈ U) to store resources (rj ∈ R)
in the form of posts (pij ∈ P ). A post is a triple pij = (ui, rj , Tij), where
Tij = {tk} is a set of tags assigned by the user to the resource. The data structure
constructed by the collaborative tagging system (referred to as folksonomy [5])
is simply a set of posts. However, relations between three basic elements of the
post allow us to represent the folksonomy as a tripartite graph of resources, users
and tags. Each post can be then understood as a set of edges that form triangles
connecting resource, user and tag. Projections of this tripartite graph can be
used to examine the relations between folksonomy elements (e.g., two tags can
be considered as similar when they are both linked to a large number of common
resources, two users are similar when they are linked to the same tags).

Tag recommendation s is a pair (t, l), where t is a tag and l is a recommen-
dation score, which is supposed to reflect the likelihood of the tag t being chosen
by a user as a proper tag. A tag recommendation system returns a set of tag
recommendations S. In this paper we use the term tag recommendation set (or
simply recommendation) not only to refer to the final set of tags returned to the
user, but also to denote the results of intermediate tag recommendation steps.
In section 5 we define a set of operations on tag recommendation sets, which are
used by our tag recommendation system.

User profile is a set of tags used by the user prior to the post that is being
currently added to the system, Pu = {tk : ui = u, rj ∈ R, pij ∈ P, tk ∈ Tij}.
The user profile is usually referred to as personomy [5]. We use a more general
term, because it does not imply that the profile is personal. By analogy we
can define a resource profile, which contains all tags that were attached to the
resource (e.g., a scientific publication) by all users prior to the current post,
Pr = {tk : ui ∈ U, rj = r, pij ∈ P, tk ∈ Tij}. Both user and resource profiles
can serve as a simple tag recommendation set. For example, resource profile
recommendation SPr is a set of tags from resource profile of r. Their score is the
ratio of posts in which the tag was used to all posts of the resource (Eq. 1). The
intuition behind this formula is that tags frequently used to describe a resource
are likely to be used again, hence they are good recommendations.

l(tk, r) =
|{pij : ui ∈ U, rj = r, tk ∈ Tij}|

|{pij : ui ∈ U, rj = r}| (1)

1.2 Tag recommendation tasks

The off-line evaluation of a tag recommendation system for challenge purposes is
a complex task. Tags added to the resource are highly dependent on the state of
the system and previous decisions of the user. It is not possible to create a large,
realistic test dataset of posts, hiding at the same time the tags used in these
posts. A test dataset which is large enough to objectively measure the quality of
a recommendation system must cover a long period of time. If the tags in test
data are hidden we lose access to the information about the state of the system,
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especially newly joined users, which make the dataset not representative. To ease
this problem, the organizers of ECML PKDD Discovery Challenge 2009 divided
the recommendation task into two subtasks which simulate two complementary
recommendation approaches.

The first task “content-based recommendation” focuses on the content of
a resource that is tagged. In this task we assume that information about the
resource and user profile is in most cases not available in the folksonomy. A
recommender based on resource content is especially important for new users,
which are in the early stage of building their profile. Although, as shown in
Section 3.1, the need of creating the recommendation based only on the content
is rare, the content based recommender can be a valuable starting point for
more complex recommenders that use information gathered in the folksonomy.
Such more complex recommenders are evaluated in the second task – “graph-
based recommendation”. The test set in this task contains only users, resources
and tags that were present at least twice in the training data. To obtain this
set the organizers extracted k-core of order 2 [2] of tripartite graph of users,
resources and tags created from training data. The test set contained only posts
for which user, resource and all tags can be found in the k-core. It is important
to notice that the second task neglects the disproportion between the number
of unique resources and users. It also greatly simplifies the recommendation
task by removing posts with unique tags which are hardest to recommend in
real systems. To improve the results for this task the system must follow some
unrealistic assumptions. Although this paper describes an entry to the challenge,
we aimed to present a general system which can be applied to a real folksonomy
based repository of bookmarks or scientific publications. Each modification that
was made to match the specific constraints created by the dataset and the second
task of the challenge is clearly stated.

2 Related work

Most of the tag recommendation systems presented in the literature are graph-
based methods. It is a natural choice for folksonomies in which textual content
is hard to access. For example, a system by Sigurbjörnsson and van Zwol [9]
uses co-occurrence of tags to propose tags that complement user-defined tags of
photographs in Flickr. Jäschke et al. [6] proposed a graph-based recommenda-
tion system for social bookmarking services. The method is based on FolkRank,
a modification of PageRank, which is suited for folksonomies. The evaluation
on a dense core of folksonomy showed that the FolkRank based recommender
outperforms PageRank and collaborative filtering methods.

Even if a tag recommendation system extracts tags from the resource content,
usually it also uses the graph information. An example of a content-based recom-
mender is presented by Lee and Chun [7]. The system recommends tags retrieved
from the content of a blog, using an artificial neural network. The network is
trained based on statistical information about word frequencies and lexical in-
formation about word semantics extracted from WordNet. Another system de-
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signed to recommend tags for blog posts is TagAssist [10]. The recommendation
is built on tags previously attached to similar resources. Meaning disambiguation
is performed based on co-occurrence of tags in the complete repository.

Finally, we would like to mention two somewhat similar systems which took
the first and second place in the ECML PKDD Discovery Challenge 2008. The
winning system was proposed by Tatu et al. [11], while the second place was
taken by our submission [8]. Both systems utilize information from resource
content and the folksonomy graph. The graph is used to create a set of tags
related to the resource and a set of tags related to the user who is adding the
resource to the system. The winning system bases these sets on tags gathered
in the profile of resource or user. Natural language processing techniques are
later used to extend the set of tags related to resource or user (i.e., WordNet
based search for words that represent the same concept). Our system bases the
resource related tags on the resource title, the set is extended by finding tags
that co-occur with the base tags in the system. The user related tags are simply
the tags from the user profile. The intersection of both sets creates a set of tags
that are related to both resource and user. Our system tries to extend this set by
finding more related tags in user profile. Finally, both systems extract tags from
resource content and join the content tags with the resource and user related
tags to create the final recommendation.

3 BibSonomy dataset

All presented experiments and the evaluation of proposed tag recommendation
system were performed on a snapshot of BibSonomy [4], a collaborative tagging
system, which is a repository of website bookmarks and scientific publications
(represented by BibTeX entries). The training dataset contained posts entered
to the system before January 1, 2009. The test data contained posts entered
between January 1, 2009 and June 30, 2009. The snapshot was provided by
the organizers of the ECML PKDD Discovery Challenge 2009. The preprocess-
ing steps, applied prior to the release of the dataset, included removing useless
tags (e.g., system:unfiled), changing all letters to lower case and removing non-
alphabetical and non-numerical characters from tags. We decided to clean the
dataset further by removing sets of posts that were imported from an external
source. This preprocessing step involved posts for which one set of tags, defined
by user or system, was assigned to a large number of imported resources. An
example of such a set consists of 9, 183 posts tagged with tag indexforum by
one user. Leaving that tag in the system would result in a biased profile of its
author. Unfortunately, this cleaning step could not detect another type of im-
ported posts, for which the system automatically defines tags and timestamps
based on the information from an external source. An example of such posts is
a set of bookmarks imported from a web browser, for which the collaborative
tagging system can use the names of bookmark folders to automatically define
tags. The second preprocessing step applied to the released data was separation
of bookmark and BibTeX posts. We observed that the vocabulary used for both
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types of resources is different, even for individual users. Some of the tags (e.g.,
free) have different meaning when tagging websites or scientific publications. Fi-
nally, content based recommendation can be based on different metadata fields
in both resource types.

3.1 General characteristics

According to the statistical information about the dataset presented on the Dis-
covery Challenge website6 the BibSonomy snapshot matches the usual charac-
teristics of folksonomies, including large disproportion between the number of
unique resources and users (Table 1). Among the posts in the BibSonomy snap-
shot 90% contained unique resources. These resources cannot be found in any
other post, hence it is not possible to deduce tag recommendation based on re-
source profile. At the same time 0.8% of the posts, corresponding to 3,167 posts,
were entered by users with no previous posts in the system. Except those posts,
every time a post is added, the system is able to use the user profile to recom-
mend tags. Similar proportions can be observed for the CiteULike7 dataset.

BibSonomy CiteULike

number of tags 1,401,104 4,927,383
number of unique tags 93,756 (7% of tags) 206,911 (4% of tags)
number of bookmark posts 263,004 N/A
number of unique bookmarks 235,328 (89% of posts) N/A
number of BibTeX posts 158,924 1,610,011
number of unique BibTeX entries 143,050 (90% of posts) 1,390,747 (86% of posts)
number of users 3,617 (1% of posts) 42,452 (3% of posts)

Table 1. Statistics of BibSonomy training data compared to CiteULike dataset
(complete dump up to February 27, 2009). Both datasets have similar proportion
of unique tags, posts and users.

The disproportion between unique resources and users is ignored in the test
data of “graph-based recommendation” task. All users and resources present in
the dataset can be found in the training data at least twice. Despite this fact
the differences in statistical characteristics of resource and user profiles should
be taken into consideration while proposing a recommendation system for this
task. The cumulative frequency distribution of resources shows that both for
bookmark and BibTeX entries, even if we remove elements that occurred twice
or less, most of the remaining elements still have a very small profile (Fig. 1).
Looking at the same statistic for users we see that a significant fraction of them
have over 100 posts in their profiles. Hence user profiles are likely to contain more

6 http://www.kde.cs.uni-kassel.de/ws/dc09/dataset
7 http://www.citeulike.org/
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Fig. 1. Cummulative frequency distribution of resources and users for BibTeX
(left) and bookmark (right) data. Much steeper curve for resources shows that
we are much less likely to find a rich resource profile, comparing to the profiles
of users.
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Fig. 2. Precision and recall of most frequent tags from resource and user profiles
for BibTeX (left) and bookmark (right) “graph-based recommendation” task
data.

potentially useful tags. To confirm this hypothesis we ran another experiment
in which we simulated the test data of “graph-based recommendation” task and
checked what is the precision and recall of basic recommenders that propose tags
from resource/user profile sorted by frequency against real tags. To obtain a test
set we divided the training data into training posts (entered before September
1, 2008) and test posts (entered later). We pruned them to be sure that all
resources, users and tags occurred in the remaining part of the training set at
least twice. Although this setting favours resource profiles, their overall recall
is still lower than recall of the user profiles (Fig. 2). The fact that resource
profiles are smaller makes them, however, a more precise source of tags. High
recall of user profiles was observed by us repeatedly in many experiments. This
is the reason why in our work we focused on user profiles, trying to increase the
precision of this source of tags, while preserving reasonably high recall.
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4 Tag recommendation sources

The presented recommendation system is the evolution of the work on the sys-
tem [8] submitted to the ECML PKDD Discovery Challenge 20088. In this sec-
tion we summarize the results of experiments conducted during the work on the
previous version of the system. Their main objective was to evaluate the quality
of three basic sources of tags – words from resource title, tags assigned to the
resource by other users (resource profile) and tags in user profile.

Resource title We tested most of the metadata fields looking for potential
tags. Among them the resource title appears to be the most robust source of tag
recommendations. The title is a natural summarization of web page or scientific
publication, which means it plays a similar role as tags. In addition, the title is
present on the resource posting page, which means it can possibly suggest tags
to the user. It is easy to notice the evidence for this observation in the example
posts of User B and User C shown in Table 2. Both of them used the tags
prediction and social for “Social tag prediction” paper, which became the only
occurrence of these tags in their profiles, unlike tag recommender which was used
by them around fifty times, probably to describe the general area of interests.
The number of words in the title is comparable to the number of tags, hence no
additional cleaning steps are needed the achieve fairly high precision comparing
to other examined tag sources (around 0.1). The drawback of this source is low
recall (around 0.2), which makes the title inappropriate as a stand-alone tag
recommender. For bookmark posts the web page URL appears to be another
valuable source of tags. Although URL tags are less precise than title tags, their
union can increase the recall of recommendation.

Posts: Social tag prediction Towards the Semantic Web:
Collaborative Tag Suggestions

User A Heymann 08 tag recommendation Xu 06 tag recommendation

User B prediction tag recommender social tagging tag recommender tagging

User C folksonomy prediction recommender social
tag tagging toread

folksonomy recommender
summerschool tagging

Table 2. Example posts of three users tagging two publications related to the
tag recommendation problem (two tags were removed to increase anonymity
of posts). Bold tags seem to be suggested by the title. Tags in italics likely
represent the concept of tag recommendation problem in users’ profiles.

Resource profile Tags assigned to the resource by other folksonomy users are
not a good source of tag recommendations. One of the reasons is the sparsity of
8 http://www.kde.cs.uni-kassel.de/ws/rsdc08/
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data; 90% of resources were added to the system only once. This fact significantly
limits the possible recall of this source of tags. The other issue is the personal
character of posts and tags, which hurts the precision of retrieved tags. Given
the example of two resources about the same concept, we see that users can-
not agree on tags describing it: tag recommendation, tag recommender, tagging
recommender (Table 2). The variety of tags attached by users creates, however,
another application of resource tag sets. Mining relations between tags attached
to the same resource can result in a graph of relations between tags. Using a
relationship graph the system can identify tags which are also potential recomen-
dations. The graph consists of general relations between tags and can be used
independently of the resources, which reduces the negative impact of data spar-
sity. In our work we use two types of graphs. TagToTag graph is a directed graph
which captures the co-occurence of tags. The weight of an edge is analogous to the
confidence score (Eq. 2) in association rule mining [1], where support({t1∩t2}) is
the number of co-occurrences of tags t1 and t2 and support({t1}) is the number
of occurrences of tag t1. The second graph (TitleToTag) is created specifically
for the resource title as the base of the recommendation. Using the same model
it captures the relations between words from resource title and its tags.

confidence(t1, t2) =
support({t1 ∩ t2})

support({t1}) (2)

User profile For cognitive simplicity and effcient retrieval, a typical user em-
ploys the same limited set of tags to describe resources of the same topic (Ta-
ble 2). This pattern is the reason for high recall of user tags. On the other hand
the user profile is a combination of tags related to many user interests and ac-
tivities, which makes it a very imprecise source of tags. The most frequent tags
from the user profile are likely to be related to the most central interests of the
user. In our system we try to utilize the potential of user profile tags to extract
user’s tags that are related to the interests specific to the posted resource.

5 Tag recommendation system

Our tag recommendation system is a composition of six basic tag recommenders
(Fig. 3). The result of each recommender is a tag recommendation set with scores
in the range [0, 1]. The recommender makes a decision based on the resource
content, resource related tags and user profile tags. However, its design makes
it applicable to all posts even if the resource or user profile cannot be found in
the system database. In such cases, the corresponding basic recommenders are
not active. The following sections and Algorithm 1 give the detailed description
of each basic recommender and the data flow in the system.

5.1 Recommendation based on resource content

The process starts with the extraction of potential tags from the content of re-
source. For BibTeX posts the title of publication is used, for bookmarks the
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Algorithm 1: Tag recommendation system
Data: a resource r and user u
Result: a tag recommendation set Sfinal

begin
/*Step 1 – Extraction of content based tags*/
Wordstitle ←− extractT itleWords(r)
Stitle ←− ∅
foreach w ∈Wordstitle do

Stitle add makeTag(w, getPriorUsefullness(w))

removeLowQualityTags(Stitle, 0.05)
if isBookmark(r) then

WordsURL ←− extractUrlWords(r)
SURL ←− ∅
foreach w ∈WordsURL do

SURL add makeTag(w, getPriorUsefullness(w))

removeLowQualityTags(SURL, 0.05)
rescoreLeadingPrecision(Stitle, 0.2)
rescoreLeadingPrecision(SURL, 0.1)

Scontent ←− mergeSumProb(Stitle, SURL)
/*Step 2 – Retrieval of resource related tags*/
STitleToTag ←− ∅// related tags from TitleToTag graph

STagToTag ←− ∅// related tags from TagToTag graph

SPr ←− getProfileRecommendationBasic(Pr)
foreach sk ∈ Stitle do

Ssk,T itleToTag ←− ∅
foreach t ∈ getRelated(gTitleToTag, sk) do

Ssk,T itleToTag add makeTag(t, sk.l ∗ confidenceT itleToTag(sk.t, t))

foreach sk ∈ Scontent do
Ssk,TagToTag ←− ∅
foreach t ∈ getRelated(gTagToTag, sk) do

Ssk,TagToTag add makeTag(t, sk.l ∗ confidenceTagToTag(sk.t, t))

STitleToTag ←− unionProb(Ts1,T itleToTag, . . . , Tsn,T itleToTag)
STagToTag ←− unionProb(Ts1,TagToTag, . . . , Tsn,TagToTag)
Sr Related ←− unionProb(STitleToTag, STagToTag, SPr )
/*Step 3 – Retrieval of resource and user related tags*/
SPu ←− getProfileRecommendationByDay(Pu)
Sr,u Related ←− indersectionProb(Sr Related, SPu)
/*Final recommendation*/
rescoreLeadingPrecision(Stitle, 0.3)
rescoreLeadingPrecision(SPr , 0.3)
rescoreLeadingPrecision(Sr,u Related, 0.45)
Sfinal ←− unionProb(Stitle, SPr , Sr,u Related)

end
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Fig. 3. Data flow in proposed tag recommendation system.

title recommendation is combined with tags extracted from the resource URL.
Each word extracted from the title (or URL) is scored based on the usage of this
word in previous posts. The score is the ratio of the number of times the word
was used in the title (or URL) and as a tag to the total number of occurrences of
the word in the title (or URL). Low-frequency words (i.e., words that were used
in the title less than 50 times) are assigned an arbitrary score 0.1 which is the
estimated probability of using a low-frequency word as a tag. To improve pre-
cision, content based recommender tags with score lower than 0.05 are removed
from the recommendation set. This step serves also as a language independent
stop-words remover. Preliminary experiments indicated that the bookmark title
is more precise source of tag recommendation than its URL. This observation
should be reflected in the way both tag recommendation sets are merged for
bookmark posts. We tested a few rescoring functions, the best results were ob-
served for the leading precision rescorer (Eq. 3), which sets the average precision
(based on training data) as the score of first tag l1 and modifies the scores of
following tags li to preserve the proportion between all tag scores. Based on the
tests on training data, the average precision of the title tag with the highest
score is 0.2, while for URL it is 0.1.

l′i =
avgPrecisionAt1 ∗ li

l1
(3)
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5.2 Extraction of resource related tags

The result of title recommender is later used to propose title related tags in
TitleToTag recommender. The related tags are extracted for each title word
independently. The relation score, multiplied by the score of the word from the
title recommender, becomes the score of the tag. This process produces a set of
related tags for each title word. These sets are later merged, the scores of tags
that can be found in more than one set are summed as they were probabilities of
independent probabilistic events (Eq. 4). TagToTag recommender processes
tags analogously, however, the input of this recommender is a complete content
based tag recommendation set (title and URL for bookmarks). The aim of these
recommenders is to produce a large, but likely not precise set of tags related to
the resource. The third recommender that is able to produce a similar set is the
resource recommender, which returns a set of tags from resource profile. The
score of resource tag is the number of its occurrences divided by the number
of occurrences of the resource. Although for most real posts this recommender
would not return any tags, it plays a significant role in the “graph-based rec-
ommendation” task, where the resource of each tested post can be found in the
system database at least twice. The scores of the results of three recommenders
are summed in a probabilistic way (Eq. 4). This union of tags represents all the
tags that are somehow related to the resource, and we refer to them as resource
related tags.

lmerged = 1−
∏

i:ti=tmerged

(1− li) (4)

5.3 Recommendation based on user profile

The user recommender produces a set of tags that were used by the user
prior to the current post. Issues related to the construction of user profiles (i.e.,
import of posts, possible change of user interests) make a simple frequency value
not a good score for user profile based recommendation. Tags most likely to be
reused are the ones that were steadily assigned to posts while the user profile was
built. To capture these tags we counted the number of separate days in which
a tag was used by the user. To obtain the tag score we divided the number of
days the tag was used by the total number of days in which the user was adding
posts to the system. This approach allows a decrease in the importance of tags
that were assigned by the user in a short period of time only; however, it only
partially solves the problem of imported posts. For some of imported posts the
system automatically produces low-quality tags and assigns time stamps copied
from an external repository (e.g., importing web browser bookmarks, the system
copies the time they were created). The combination of artificial tags and real
time-stamps makes these posts very hard to detect. Removing such artificial
posts is likely to improve the accuracy of the user profile recommender in a
real recommendation system; however, it can have undesired consequences when
applied to the challenge datasets. If the user imported posts before both training

167



and test data were collected, it is possible that some of them can be found in both
datasets. Hence we should train the system for tags from these posts, because
it is possible that they can be found in test data as well. Even if we modify
the frequency score the representation of user profile still contains tags related
to various user interests. Checking the tags extracted from user profile against
resource related tags allows us to extract tags that are particularly important for
the processed posts. The intersection of both sets of tags produces tags related
both to user as well as resource. The score of a tag is the product of scores from
both source sets.

Finally the results of title recommender, resource recommender and the in-
tersection of resource related tags and user profile are merged. As all three sets
are results of independent recommenders, tags must be rescored to ensure that
tags from more accurate recommenders will have higher score in the final tag
recommendation set. Again the leading precision rescorer was used for the three
input tag recommendation sets. The top ten tags of this set create the final
recommendation set. The challenge organizers proposed to limit the recommen-
dation set size to five tags, which seems to be a good number to be presented to
a user, however, for evaluation purposes it is interesting to observe more tags.

6 Evaluation

This section presents the results of the off-line system evaluation based on the
available BibSonomy snapshot. The evaluation approach assumed that all and
only relevant tags were given by the user. Although this method simplifies the
problem, it is robust and objective. The quality metrics were precision and recall,
commonly used in recommender system evaluations [3].

6.1 Methodology

To keep the list of correct tags secret during the contest the organizers kept strict
division between training and test set. The test data contained posts entered to
to BibSonomy between January 1, 2009 and June 30, 2009. Each post of which
user, resource and all tags could be found in k-core of order 2 of training data was
used as test post for the “graph-based recommendation” task. The remaining
posts were used for the “content-based recommendation” task. Comparison of
training and test data for both tasks is presented in Table 3.

As we decided to separate the processing of BibTeX and bookmark posts
we present the results for two post types separately. The final recommendation
is presented together with the intermediate steps of the system: tags extracted
from the resource title (and URL), the most frequent tags from resource profile
and user profile and the combination of resource related tags and user profile
tags. As each tag from the tag recommendation set can be ranked by its score
it is straightforward to present any selected number of recommended tags. The
plots (Fig. 6.1) present consecutive results for the top n tags, where 1 ≤ n ≤ 10.
For the “graph-based recommendation” task the tags that could not be found in
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training test - Task 1 test - Task 2 test total

BibTex 158,924 26,104 (98.7% of test total) 347 (1.3% of test total) 26,451
bookmark 263,004 16,898 (97.5% of test total) 431 (2.5% of test total) 17,329
posts total 421,928 43,002 (98.2% of test total) 778 (1.8% of test total) 43,780

Table 3. Number of posts in training and test dataset. Sparsity of folksonomy
graph causes large disproportion between test set for “content-based recom-
mendation” task (Task 1) and “graph-based recommendation” task (Task 2).
Another interesting fact is a different ratio of BibTeX and bookmark posts in
training and test data.

the k-core of training data were removed from each recommendation set before
calculating precision and recall.
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(a) Results for “content-based recommendation” task dataset, for BibTeX (left) and
bookmark (right) data. (the precision and recall scale is limited to 0.4)
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(b) Results for “graph-based recommendation” task dataset, for BibTeX (left) and book-
mark (right) data.

Fig. 4. Precision and recall of proposed tag recommendation system and inter-
mediate steps. Test data was divided into BibTeX and bookmark part.
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6.2 Results

As expected, precision and recall of the recommendation results in the “content-
based recommendation” task are mostly driven by the content tags. Low score
of user profile recommenders for BibTeX data is likely caused by a large number
of posts by users who started to use the system after the training set was built.
According to the rules set by the organizers the precision score was averaged
over all posts in the test set, even if a recommender returned no tags for some
of them. Whenever a user profile was available the user based recommender
obtained significantly better results than content based recommender only.

The results for the “graph-based recommendation” task show surprisingly
high accuracy of resource profile tags (which was not observed to such a degree
on training data). For the test dataset in this task the intersection of resource
related tags and user profile has lower precision than resource profile tags. This
is an unexpected result, comparing to the previous results on training dataset,
where the intersection of resource related tags and user profile had comparable or
higher precision and recall to resource profile. Despite this unexpected behaviour
the tags from the user profile are able to increase the f1 score by 0.02 for tag
recommendation set of size 5. The open question is how representative the results
of this dataset are, considering the fact that less than 2% of test posts matched
the conditions of this task.

For both tasks there is a noticeable difference between the results for both
types of data. However, it is not clear if it is caused by some fundamental dif-
ferences between BibTeX and bookmark posts, or the differences between the
two particular test datasets used. It is important to notice that the high number
of tested posts has no impact on the statistical validity of results. The way the
test data was prepared makes it very dependent on the behavior of users in the
period of time the data was collected.

Finally we present the results of the final recommendation for combined Bib-
TeX and bookmark posts, which were submitted to the challenge (Table 4). The
systems were ranked based on the f1 score (Eq. 5) for the tag recommendation
set of size 5. Based on that criterion the presented tag recommendation system
took the first place in the “content-based recommendation” task (out of 21 par-
ticipants) and the third place in the “graph-based recommendation” task (again,
out of 21 participants).

f1 =
2 ∗ precision ∗ recall

precision + recall
(5)

7 Conclusions and future work

In creating the presented tag recommendation system we considered the title
of a resource as a natural starting point of the recommendation process. We
tried to extend the set by tags related to the title as well as tags present in
the profiles of resource and user. Our main aim was to extract valuable tags
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Table 4. The results of the presented tag recommendation system. In the chal-
lenge the systems were ranked based on the f1 score for the tag recommendation
set of size 5.

content-based recommendation graph-based recommendation
#result tags recall precision f1 recall precision f1

1 0.0805 0.2664 0.1236 0.1587 0.4679 0.2370

2 0.1275 0.2224 0.1621 0.2465 0.3869 0.3012

3 0.1626 0.1987 0.1788 0.3143 0.3361 0.3248

4 0.1885 0.1821 0.1852 0.3682 0.2998 0.3305

5 0.2080 0.1705 0.1874 0.4070 0.2700 0.3246

6 0.2218 0.1616 0.1869 0.4425 0.2468 0.3169

7 0.2323 0.1549 0.1858 0.4701 0.2282 0.3072

8 0.2403 0.1495 0.1843 0.4929 0.2116 0.2961

9 0.2467 0.1457 0.1832 0.5092 0.1967 0.2838

10 0.2515 0.1424 0.1819 0.5220 0.1842 0.2723

from user profile which is a very rich but imprecise source of tags. Designing the
system we mostly focused on the precision of the recommended tags. To avoid
the risk of recommending tags less precise than tags extracted from the title we
decided to leave it as the only recommendation whenever the user profile was
unavailable. This was a frequent case in “content-based recommendation” task,
which gives us hope that the system will be able to achieve even better results
for the final “on-line recommendation” task. The system is now connected to
BibSonomy and recommends tags to each newly added post in real time. This
evaluation setting will give a realistic assessment of system quality.

In our future work on this project we plan to focus on tagging patterns of
individual users which would allow us to tune the recommendation for each
specific user. Discovering strong patterns, like user who uses author name and
year of publication for each BibTeX post, can greatly increase the accuracy of
recommender for this specific user. Another interesting issue is handling of multi-
word concepts (e.g., is a user going to use two tags “information” “retrieval” or
one “information.retrieval”?). Finally, we hope that evaluation settings like “on-
line recommendation” task would allow us to investigate short temporal patterns
when a user adds a sequence of posts related to the same problem.

References
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4. Andreas Hotho, Robert Jäschke, Christoph Schmitz, and Gerd Stumme. Bib-
Sonomy: A social bookmark and publication sharing system. In Proc. the First

171



Conceptual Structures Tool Interoperability Workshop at the 14th Int. Conf. on
Conceptual Structures, pages 87–102, Aalborg, 2006. Aalborg Universitetsforlag.
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Abstract. This work proposes an approach to collaborative tag recom-
mendation based on a machine learning system for probabilistic regres-
sion. The goal of the method is to support users of current social network
systems by providing a rank of new meaningful tags for a resource. This
system provides a ranked tag set and it feeds on different posts depend-
ing on the resource for which the recommendation is requested and on
the user who requests the recommendation. Different kinds of collabora-
tion among users and resources are introduced. That collaboration adds
to the training set additional posts carefully selected according to the
interaction among users and/or resources. Furthermore, a selection of
post using scoring measures is also proposed including a penalization of
oldest post. The performance of these approaches is tested according to
F1 but just considering at most the first five tags of the ranking, which is
the evaluation measure proposed in ECML PKDD Discovery Challenge
2009. The experiments were carried out over two different kind of data
sets of Bibsonomy folksonomy, core and no core, reaching a performance
of 26.25% for the former and 6.98% for the latter.

1 Introduction

Recently, tag recommendation has been gained popularity as a result of the
interest of social networks. This task can be defined as the process of providing
promising keywords to the users of a social network in the presence of resources of
the network itself. These keywords are called tags and the users can assign them
to the resources [12]. Tagging resources present several advantages: they facilitate
other users a later search and browsing, they consolidate the vocabulary of the
users, they provide annotated resources and they build user profiles. An option
to perform such task could be to provide tags manually to each user, but this
time-consuming and tedious task could be avoided using a Tag Recommender
System (TRS).

Folksonomies are examples of large-scale systems that take advantage of a
TRS. A Folksonomy [9] is a set of posts included by a user who has attached
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a resource through a tag. Generally, each resource is specific to the user who
added it to the system, as Flickr, which shares photos, or BibSonomy, which
shares bookmarks and bibtex entries. However, for some types of networks iden-
tical resources can be added to the system by different users, as is the case of
Del.icio.us which shares bookmarks.

This paper proposes an approach to collaborative tag recommendation based
on a logistic regression learning process. The work starts from the hypothesis
that a learning process improves the performance of the recommendation task.
It explores several information the learner feeds on. In this sense, the training
set depends on each test post and it is specifically built for each of them. In
addition, a set of additional posts carefully selected are added to the training
set according to the collaboration among users and/or resources.

The remainder of the paper is structured as follows. Section 2 presents back-
ground information about tag recommendation in social networks. Our approach
is put in context in Section 3 while the proposed method is provided in Sections
4, 5 and 6. Section 7 describes the performance evaluation metric. The results
conducted on public data sets are presented and analyzed in Section 8. Finally,
Section 9 draws conclusions and points out some possible challenges to address
in the near future.

2 Related Work

Different approaches have been proposed to support the users during the tagging
process depending on the purpose they were built for. Some of them makes
recommendations by analyzing content [1], analyzing tag co-occurrences [23] or
studying graph-based approaches [10].

Brooks et al. [4] analyze the effectiveness of tags for classifying blog entries
by measuring the similarity of all articles that share a tag. Jäschke et al. [10]
adapt a user-based collaborative filtering as well as a graph-based recommender
built on top of FolkRank. TagAssist [24] recommends tags of blog posts relying
upon tags previously attached to similar resources.

Lee and Chun [14] propose an approach based on a hybrid artificial neural
network. ConTag [1] is an approach based on Semantic Web ontologies and Web
2.0 services. CoolRank [2] utilizes the quantitative value of the tags that users
provide for ranking bookmarked web resources. Vojnovic et al. [27] keep in view
collaborative tagging systems where users can attach tags to information objects.

Basile et al.[3] propose a smart TRS able to learn from past user interaction
as well as from the content of the resources to annotate. Krestel and Chen [13]
raise TRP-Rank (Tag-Resource Pair Rank), an algorithm to measure the quality
of tags by manually assessing a seed set and propagating the quality through
a graph. Zhao et al. [29] propose a collaborative filtering approach based on
the semantic distance among tags assigned by different users to improve the
effectiveness of neighbor selection.

Katakis et al. [12] model the automated tag suggestion problem as a multi-
label text classification task. If the item to tag exists in the training set, then it
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suggests the most popular tags for the item. Tatu et al. [25] use textual content
associated with bookmarks to model users and documents.

Sigurbjornsson et al. [23] present the results by means of a tag character-
ization focusing on how users tags photos of Flickr and what information is
contained in the tagging.

Most of these systems require information associated with the content of the
resource itself [3]. Others simply suggest a set of tags as a consequence of a
classification rather than providing a ranking of them [12]. Some of them require
a large quantity of supporting data [23]. The purpose of this work is to avoid
these drawbacks using a novel approach which establishes a tag ranking through
a machine learning approach based on logistic regression.

3 Tag Recommender Systems (TRS)

A folksonomy is a tuple F := (U , T ,R,Y) where U , T andR are finite sets, whose
elements are respectively called users, tags and resources, and Y is a ternary
relation between them, i. e., Y ⊆ U×T ×R, whose elements are tag assignments
(posts). When a user adds a new or existing resource to a folksonomy, it could
be helpful to recommend him/her some relevant tags.

TRS usually take the users, resources and the ratings of tags into account
to suggest a list of tags to the user. According to [15], a TRS can briefly be
formulated as a system that takes a given user u ∈ U and a resource r ∈ R as
input and produces a set T (u, r) ⊂ T of tags as output.

Jäschke et al. in [10] define a post of a folksonomy as a user, a resource and
all tags that this user has assigned to that resource. This work slightly modifies
this definition in the sense that it restricts the set of tags to the tags used
simultaneously by a user in order to tag a resource.

There are some simple but frequently used TRS [10] based on providing a
list of ranked tags extracted from the set of posts connected with the current
annotation.

– MPT (Most Popular Tags): For each tag ti, the posts with ti are counted and
the top tags (ranked by occurrence count) are utilized as recommendations.

– MPTR (Most Popular Tags by Resource): The number of posts in which a
tag occurs together with ri is counted for each tag. The tags occurring most
often together with ri are then proposed as recommendations.

– MPTU (Most Popular Tags by User): The number of posts in which a tag
occurs together with ui is counted for each tag. The tags occurring most
often together with ui are then proposed as recommendations.

– MPTRU (Most Popular Tags by Resource or User): The number of posts
in which a tag occurs together either with ri or ui is counted for each tag.
The tags occurring most often together with either ri or ui are taken as
recommendations.

Our hypothesis is that the introduction of a learning system is expected to
improve their performance of these systems. These are the key points of the
system:
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– The training set depends on each test post and it is specifically built for each
of them. Section 4 explains the way of building the initial training set and
the example representation.

– Several training sets are built according to different kinds of collaboration
among users and resources, performing post selection adapting several scor-
ing measures and penalizing oldest posts. Afterwards all of them are com-
pared and evaluated. This approaches are detailed in Section 5.

– The learning system adopted was LIBLINEAR [5], which provides a prob-
abilistic distribution before the classification. This probability distribution
is exerted to rank the tags taking as the most suitable tag the one with
highest probability value. The tags of the ranking will be all that appear in
the categories of each training set. This entails that some positive tags of a
test post might not be ranked. This issue is exposed in depth in Section 6.

4 Test and Training Data Representation

This section depicts the whole procedure followed in order to provide a user and
a resource with a set of ranked tags. These recommendations are based on a
learning process that learns how the users have previously tagged the resources.
The core of the method is a supervised learning algorithm based on logistic
regression [5].

The traditional approach splits the data into training and test sets at the
beginning. Afterwards, a model is inferred using the training set and it is vali-
dated thanks to the test set [12]. In this paper, the methodology used is quite
different in the sense that the training and test sets are not fixed. The test set is
randomly selected and afterwards an ad hoc training set is provided for each test
post. This paper studies different training sets built according to the resource
and the user for whom the recommendations are provided.

4.1 Definition of the Test Set

According to the definition of a folksonomy in Section 3, it is composed by a set
of posts. Each post is formed by a user, a resource and a set of tags, i.e.,

pi = (ui, ri, {ti1 , . . . , tik})

Each post of a folksonomy is candidate to become a test post. Each test post
is then turned into as many examples as tags used to label the resource of this
post. Therefore, post pi is split into k test examples

e1 = (ui, ri, ti1)
...

ek = (ui, ri, tik)
(1)
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Example 1 Let the following folksonomy be

post date User Resource Tags
p1 d1 u1 r1 t1
p2 d2 u1 r2 t2
p3 d3 u2 r1 t1
p4 d4 u3 r1 t3
p5 d5 u2 r2 t4
p6 d6 u2 r1 t2, t3
p7 d7 u2 r2 t2, t5
p8 d8 u3 r2 t1

(2)

Let p7 = (u2, r2, {t2, t5}) be a randomly selected test post at instant d7.
Therefore the test set is formed by

example date User Resource Tags
e1 d7 u2 r2 t2
e2 d7 u2 r2 t5

(3)

4.2 Definition of the Initial Training Set

Whichever learning system strongly depends on the training set used to learn. In
fact, in order to guarantee a better learning, it would be ideal for the distribution
of the categories in both training and test sets to be as similar as possible.
Therefore, the selection of an adequate training set is not a trivial task that
must be carefully carried out.

Once the test set is randomly selected, an ad hoc training set is dynamically
chosen from the posts posted before the test post.

The point of departure for building the training set is the set of posts concern-
ing with the resource or the user for which the recommendations are demanded.
Once the posts are converted into examples, those examples whose tags have
been previously assigned to the resource by the user to whom the recommenda-
tions are provided are removed because it has no sense to recommend a user the
tags he/she had previously used to label the resource. This section deals with
the way of building the initial training set. Next section will explain in depth
the way of selecting promising posts through a collaborative approach, using
relevance measures for post selection and penalizing oldest posts.

Let pi = (ui, ri, {ti1 , . . . , tik}) be a test post.
Let Rri

be the subset of posts associated to a resource ri and

Rtri
= {pi/pi ∈ Rri

and it was posted before t}

Let Pui be the personomy (the subset of posts posted by a user constitutes
the so-called personomy) associated to a user ui and

Ptui
= {pi/pi ∈ Pui and it was posted before t}
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Therefore, the training set associated to pi is formed by

URdi
ui,ri

= {Pdui
∪Rdri

}\{pj/pj = (ui, ri, {ti1 , ..., tin})}

Example 2 Let us show an example of each training set for the test set of Example
1.

In this case the training set is computed as follows.

URd7u2,r2 =

{Pd7u2
∪Rd7r2}\{pj/pj = (ui, ri, {ti1 , ..., tin})} =

{{p3, p5, p6} ∪ {p2, p5}}\{p5} =

{p2, p3, p6}

Therefore the training set is defined as follows.

example date User Resource Tags
e2 d2 u1 r2 t2
e3 d3 u2 r1 t1
e61 d6 u2 r1 t2
e62 d6 u2 r1 t3

(4)

4.3 Example Representation

Now we will explain the way of transforming the post into a computable form
understandable for a machine learning system. Therefore, we have to define the
features which characterize the examples as well as the class of each example.

The features which characterize the examples are the tags previously used
to tag the resource in the folksonomy. Hence, each example will be represented
by a vector V of size M (the number of tags of the folksonomy) where vj ≥ 1
if and only if tj was used to tag the resource before and 0 otherwise, where
j ∈ 1, . . . ,M . The class of an example will be the tag the user has tagged the
resource with at this moment.

Let us represent the training set of Example 2.

Example 3 As an illustration of how to represent a example, let us represent
example e61 of Example 2. The class of e61 is t2, which is its corresponding tag.
The features are t1 and t3, since the resource r1 of e61 was also tagged before
by t1 in p1 and p3 and by t3 in p4. The representation of example e61 is then
{1, 0, 1, 0, 0}.
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4.4 Simple Feature Selection

An additional proposal to improve the representation is also adopted, since re-
moving redundant or non-useful features which add noise to the system is usually
helpful to increase both the effectiveness and efficiency of the classifiers. The ex-
ample representation based on tags as features makes possible a simple feature
selection in the training set. This selection consists of keeping just those tags
which represent the test set.

Obviously, this is possible just in case the information about the resource
of the test post is considered for building the training set, which is the case
here. This approach is based on the fact that in a linear system, as the one
adopted here, the weights of the features that neither represent the test post
nor contribute to obtain the ranking for this post. Therefore, they could be
considered as irrelevant features beforehand. This fact can be assumed only for
a particular test post. Thus, this is another advantage of building a training set
particularly for each test post.

Let us consider the test post of Example 1 and the training set of Example
2.

Example 4 The features for the test post are t2 and t4, hence, the training set of
Approach 3 in Example 2 will be reduced to be represented at most with these
two tags. Originally, that training set has the following representation:

example date resource features category
e2 d2 r2 ∅ t2
e3 d3 r1 t1 t1
e61 d6 r1 t1, t3 t2
e62 d6 r1 t1, t2, t3 t3

(5)

In the folksonomy represented in Example 1, resource r2 does not have any
tag assigned before instant d2, then its representation is an empty set of fea-
tures. Analogously, resource r1 has only been tagged before instant d3 with t1,
particularly in instant d1 by user u1, then it is represented only by feature t1.
The instant d6 in which the resource r1 was tagged deserves special attention.
Since this resource has been tagged before d6 with t1 and t3, then both tags are
included in its representation. Besides, in example e61 when the category is t2,
the tag t3 is also added because it is a tag assigned in the same instant. In the
same way, in example e62 when the category is t3, the tag t2 is included, since
it is a tag assigned in the same instant.

Reducing such representation to the tags of the test post, the results of this
new approach is

example date resource features category
e2 d2 r2 ∅ t2
e3 d3 r1 ∅ t1
e61 d6 r1 ∅ t2
e62 d6 r1 t2 t3

(6)
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5 Post Selection

This section copes with the way of selecting promising posts to be included
as examples for the machine learning system. The selection of such posts is
carefully carried out taking into account several issues. Let us expose the outline
of the process now that will be discussed in depth later. Firstly, only posts
that satisfy certain collaborative conditions will be the candidates to add to
the initial training set. Secondly, every candidate is scored according to certain
measure of relevance. Thirdly, such relevance is penalized depending on the time
that the post was posted with regard to the test post. Finally, once a ranking
of the candidates is established according to such scoring measure with the
correspondent penalization, the most relevance ones will be the posts that will
form the final training set. Therefore, the choice of the training set for a given
test post is reduced to define the criteria the posts must satisfy to be included
in the training set.

5.1 Collaborative conditions

Several approaches are proposed to introduce collaboration among users and
resources. The effect over the training set is the presence of additional posts
carefully selected according to the collaboration among users and/or resources.
The collaborative conditions can be the following:

– Collaboration using resources
• Take the tags in the posts (contained in the training set described in

Section 4.2) that were assigned to the resource ri of the test post pi.
Let be this set Tri

.
• Take the posts (contained in the training set described in Section 4.2)

that contain the tags of Tri
.

• Add such posts to the training set described in Section 4.2 (URdi
ui,ri

).
Hence, the training set is formed by the posts of URdi

ui,ri
∪ Tri

.
– Collaboration using users
• Take the tags in the posts (contained in the training set described in

Section 4.2) that were assigned by the user ui of the test post pi. Let
be this set Tui

.
• Take the posts (contained in the training set described in Section 4.2)

that contain the tags Tui
.

• Add such posts to the training set described in Section 4.2 (URdi
ui,ri

).
Hence, the training set is formed by the posts of URdi

ui,ri
∪ Tui

.
– Collaboration using both resources and users by union
• Take the tags in the posts (contained in the training set described in

Section 4.2) that were assigned to the resource ri of the test post pi,
that is the set Tri

, and that were assigned by the user ui of the test post
pi, that is the set Tui

.
• Take the posts (contained in the training set described in Section 4.2)

that contain the tags of Tri ∪ Tui
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• Add such posts to the training set described in Section 4.2 (URdi
ui,ri

).
Hence, the training set is formed by the posts of URdi

ui,ri
∪ Tri ∪ Tui .

– Collaboration using both resources and users by intersection
• Take the tags in the posts (contained in the training set described in

Section 4.2) that were assigned to the resource ri of the test post pi,
that is the set Tri , and that were assigned by the user ui of the test post
pi, that is the set Tui .

• Take the posts (contained in the training set described in Section 4.2)
that contain the tags of Tri ∩ Tui

• Add such posts to the training set described in Section 4.2 (URdi
ui,ri

).
Hence, the training set is formed by the posts of URdi

ui,ri
∪ (Tri ∩ Tui).

5.2 Relevance measures

Once the set of candidates is obtained, they will be scored according to sev-
eral measures in order to select the most relevant ones. The following scoring
measures have been applied before to perform feature selection. Here, they will
be adapted to select posts, that, in fact, they are examples instead of features.
All of them depend on two parameters, which will be defined before presenting
them. The parameter a will be the number of tags that certain post pj shares
with the post of test pi (in its representation through the resource of the post
as described in Section 4.3) and the parameter b will be the number of tags that
certain post pj has (again in its representation through the resource of the post
as described in Section 4.3), but the post of test pi does not.

– From Information Retrieval (IR), document frequency df [21] and F1 [22].
– A family of measures coming from Information Theory (IT). These measures

consider the distribution of the words over the categories. One of the most
widely adopted [18] is the information gain (IG), which takes into account
either the presence of the word in a category or its absence, whereas others
are the expected cross entropy for text (CET ) or χ2 [17]. They are all defined
in terms or probabilities which, in turn, are defined from the parameters
mentioned above.

– Those which quantify the importance of a feature f in a category c by means
of evaluating the quality of the rule f → c, assuming that it has been induced
by a Machine Learning (ML) algorithm [18] (in this paper changing feature
by example/post). Some of these measures are based on the percentage of
successes and failures of the applications of the rules as, for instance, the
Laplace measure (L) which slightly modifies the percentage of success and
the difference (D). Other measures that deal with the number of examples of
the category in which the feature occurs and the distribution of the examples
over the categories are, for example, the impurity level (IL) [20]. Some other
variants of the foresaid measures studying the absence of the feature in the
rest of the categories have also been adopted [18], leading respectively to the
Lir, Dir and ILir measures.
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5.3 Recent posts and most relevant posts

A TRS that provides the most on-fashion folksonomy tags would be desirable.
This suggest emphasizing the most recent posts more than the oldest ones. For
this purpose, a penalizing function is applied to the score granted by a measure.
However, some measures reaches negative values, then an increasing function
that guaranties a positive value should be applied before the penalizing function
in order to keep the ranking the measure gives. The option adopted will be to use
the arc tangent and to apply a translation of π

2 . Then, the penalizing functions
will be of the form 1

(1+ t
d )e , where t is the time the post was posted, d is the time

unit and e is a parameter that controls the penalizing degree. Therefore, if m is
the score granted by a measure, the final score granted to each post will be(

arctan(m) +
π

2

)
· 1

(1 + t
d )e

Once the ranking of the posts is established, it is necessary to define a cutoff
for selecting the most relevant ones. Some statistics in a folksonomy show that
for a given test post its training set might contain either too few posts or too
many ones. Both extreme situations are detrimental for the machine learning
systems. Applying a percentage of posts to select the most relevant ones avoids
neither having too few posts nor to many ones. The alternative used in this paper
consists of applying an heuristic able to considerably reduce the posts selected
when initially there are too many of them and also able to slightly reduce the
posts selected when initially there are too few of them. If n is the original number
of posts, such heuristic is defined as follows

floor(2 · n)0.75

6 Learning to Recommend

The key point of this paper is to provide a ranked set of tags adapted to a user
and a resource. Therefore, it could be beneficial to have a learning system able
to rank the tags and to indicate the user which tag is the best and which one is
the worst for the resource. Taking into account this fact, a preference learning
system can not be applied since that kind of methods yield a ranking of the
examples (posts) rather than a ranking of categories (tags)[11].

As the input data are multi-category, a system of this kind is expected to be
used. However, these systems do not provide a ranking. They can be adapted to
produce a partial ranking in the following way: It is possible to take the labels
they return and to place them first as a whole and to place the rest of the labels
also as a whole afterwards. Obviously, this approach does not establish an order
among the labels they recommend but it orders all those labels it returns as a
whole with regard to the labels it does not provide.

The system we need must provide a global ranking of labels. Therefore a
multi-label system could be used, but again they need an adaptation to deal
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with ranking problems. In fact, some multi-label classification systems perform
a ranking and then they obtain the multi-label classification [26]. Hence, it is
possible to obtain a ranking directly from them.

Elisseeff and Weston [6] propose a multi-label system based on Support Vec-
tor Machines (SVM), which generates a ranking of categories. The drawback
is that the complexity is cubic and although they perform an optimization to
reduce the order to be quadratic, they admit that such complexity is too high
to apply to real data sets.

Platt [19] uses SVM to obtain a probabilistic output, but just for a binary
classification and not for multi-category. A priori one might think about perform-
ing as many binary classification problems as the number of tags (categories)
that appear in the training set. The problem would turn them into decide if a
post is tagged with certain tag or not. But this becomes unfeasible since we are
talking of about hundreds of thousands of tags.

With regard to the problem of tag recommendation, Godbole and Sarawagi
in [8] present an evolution of SVM based on extending the original data set
with extra features containing the predictions of each binary classifier and on
modifying the margin of SVMs in multi-label classification problems. The main
drawback is that they perform a classification rather than a ranking.

In this framework, LIBLINEAR ([5] and [7]) is an open source library 3 which
is a recent alternative able to accomplish multi-category classification through
logistic regression, providing a probabilistic distribution before the classification.

This paper proposes to use this probability distribution to rank the tags,
taking as most suitable tag the one with the highest probability value. In the
same sense the most discordant tag will be the one with the lowest probability.

This work uses the default LIBLINEAR configuration after a slight modifi-
cation of the output. The evaluation in this case takes place when a resource is
presented to the user. Then, a ranking of tags (the tags of the ranking will be
all which appear in the categories of the training set) is provided by the learning
model.

If such resource has not been previously tagged, the ranking is generated
according to a priori probability distribution. It consists of ranking the tags of
the user according to the frequency this user has used them before. Therefore,
no learning process is performed in this particular case.

7 Performance Evaluation

So far, no consensus about an adequate metric to evaluate a recommender has
been reached [10]. Some works do not include quantitative evaluation [28] or they
include it partially [16]. However, the so called LeavePostOut or LeaveTagsOut
proposed in [15] and [10] sheds light on this issue. They pick up a random post
for each user and they provide a set of tags for this post based on the whole
folksonomy except such post. Then, they compute the precision and recall [12]

3 available at http://www.csie.ntu.edu.tw/∼cjlin/liblinear/

183



as follows

precision(T ) =
1
|D|

∑
(u,r)∈D

|T +(u, r) ∩ T (u, r)|
|T (u, r)| (7)

recall(T ) =
1
|D|

∑
(u,r)∈D

|T +(u, r) ∩ T (u, r)|
|T +(u, r)| (8)

where D is the test set, T +(u, r) are the set of tags user u has assigned to resource
r (positive tags) and T (u, r) are the set of tags the system has recommended to
user u to assign to resource r. The F1 measure could be computed from them as

F1 =
1
|D|

∑
(u,r)∈D

2|T +(u, r) ∩ T (u, r)|
|T (u, r)|+ |T +(u, r)| (9)

The evaluation adopted in this paper consists of computing the F1, but just
considering at most the first five tags of the ranking. Notice that such kind of
evaluation quantifies the quality of a classification rather than the quality of a
ranking.

8 Experiments

8.1 Data Sets

The experiments were carried out over the ECML PKDD Dicovery Challenge
2009 datasets 4. This work studies the Task 1: Content-Based Tag Recommen-
dations and Task 2: Graph-Based Recommendations of the 2009 Challenge.
The test dataset of the former contains posts, whose user, resource or tags are
not contained in the post-core at level 2 of the training data whereas the latter
assures that the user, resource, and tags of each post in the test data are all
contained in the training data’s post-core at level 2.

The post-core at level 2 is got through cleaning dump and removing all users,
tags, and resources which appear in only one post. This process is repeated until
convergence and got a core in which each user, tag, and resource occurs in at
least two posts.

The tags were cleaned by removing all characters which are neither numbers
nor letters from tags. Afterwards,those tags which were empty after cleaning or
matched one of the tags imported, public, systemimported, nn, systemunfiled
were removed.

The cleaned dump contains all public bookmarks and publication posts of
BibSonomy 5 until (but not including) 2009-01-01. Posts from the user dblp (a
mirror of the DBLP Computer Science Bibliography) as well as all posts from
users which have been flagged as spammers have been excluded.

4 http://www.kde.cs.uni-kassel.de/ws/dc09/dataset
5 http://www.bibsonomy.org
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To make the experiments, the datasets of the Tasks 1 and 2 were split into 2
different datasets. The former is made up by bookmark posts whereas the latter
by bibtex posts. These sets will be respectively called bm09 no core and bt09 no
core for Task 1 and bm09 core and bt09 core for Task 2.

8.2 Discussion of results

This section deals with the experiments carried out. A binary representation of
the examples was empirically chosen. Hence, the value of a feature will be 1 if
this feature appears in the example and 0 otherwise. For each one, several tag
sets are provided depending on the parameters described before:

– The four ways of collaboration: resource, user, union and intersection.
– The twelve measures for selecting relevant posts.
– The penalizing degree of the oldest posts. Several values were checked. Those

are 0, 0.0625, 0.25 and 1.

Data Kind of Collaboration Measure Penalizing degree F1

’bm09 no core’ Intersection ILir 0 28.54%
’bt09 no core’ Intersection ILir 0.0625 28.56%
’bm09 core’ Intersection IG 0 30.90%
’bt09 core’ Intersection IG 0.0625 37.07%

Table 1. The parameters and performance of the best settings in training data for all
post collections

Table 1 shows the best setting parameters together with their F1 computed
when at most 5 tags are returned, obtained using training sets. The parameters
of Table 1 were established to classify the test datasets, obtaining the results
shown in Table 2.

Data F1

’bm09 no core’ 7.28%
’bt09 no core’ 6.75%
’bm09 core’ 24.21%
’bt09 core’ 28.76%

Task 1 ’bm09 and bt09 no core’ 6.98%
Task 2 ’bm09 and bt09 core’ 26.25%

Table 2. The performance of test data for all post collections

The performance corresponding to Tasks 1 and 2 can be seen in the two last
rows of Table 2.
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Table 3 shows the effect of including collaboration, post selection and a pe-
nalization of the oldest posts.

Data F1 no Collaboration F1 no post selection F1 no penalization

’bm09 no core’ 28.02% 27.25% 28.54%
’bt09 no core’ 28.53% 27.30% 28.51%
’bm09 core’ 29.32% 26.32% 30.90%
’bt09 core’ 36.10% 34.74% 36.84%

Table 3. The effect of collaboration, post selection and a penalization of the oldest
posts

All the experiments carried out allow to conclude that the collaboration
slightly improves the performance of the recommender. Particularly, the collab-
oration using resources and using both resources and users by intersection offer
the best results with regard to the collaboration using users and using both re-
sources and users by union. Furthermore, collaboration by intersection grants the
best results. Including measures to select promising posts improves the recom-
mender. Although the behavior among them is quite similar, measures coming
from the Information Theory field together with those based on the impurity
level provide the best results. The former seem to be more adequate to the core
data whereas the latter improve the results of the no core data. The effect of time
differs from one collection to another. The best results are reached without tak-
ing into account the time (parameter e = 0) for the bookmark collections, either
core or no core versions. However, it seems that penalizing oldest posts improves
the performance for the bibtex collections, either core or no core versions.

9 Conclusions

This work proposes a TRS based on a novel approach which learns to rank tags
from previous posts in a folksonomy using a logistic regression based system. The
TRS includes several ways of collaboration among users and resources. It also
includes a selection of promising posts using scoring measures and penalizing
the oldest ones.

The collaboration using intersection of tags that both users assign and re-
sources have improves the performance of the recommender with regard to other
types of collaboration. Selecting posts using scoring measures makes the recom-
mender provide best tags, although in general the behavior of all of them is
quite similar. However, the Information Theory measures offers best results for
the core data and the impurity level measures do it for the no core data. Finally,
penalizing oldest posts improves the results for the bibtex collections, but it does
not obtain satisfactory results for bookmarks collections.
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Abstract. We describe two variants of our approach to tackle the task
1 & 2 of the ECML PKDD Discovery Challenge 2009 where each con-
tenter had to identify up to 5 tags for each resource of a given set of
either bibtex-like references to publications or bookmarks. The quality
of the results was measured against the tags that users of the data source
(www.bibsonomy.org) had originally assigned to the resources (F1 mea-
sure). In our approach, we either generate tags (from the content of the
given resource data or after crawling additional resources) or we request
tags from tagging services. We call each of this tag sources a tag recom-
mender. We then combine the results of the tag recommenders based on
weighting factors. The weighting factors are determined experimentally
by comparing generated and expected tags based on the available train-
ing data. This general idea is also used for the graph-based approach
required to solve task 2. Here again, the final tag recommendations are
computed from the individual results of the different tag-recommending
algorithms. In the preliminary result list, we ranked second for task 1
(Group 2) and nineth for task 2 (Group 1).

Key words: content-based graph-based tag recommendation bibsonomy

1 Preliminaries

Assigning tags to resources can be an effective instrument to organize an infor-
mation space. Users interacting with this information space may utilize the tags
to identify relevant resources or groups of resources. User-driven tag assignment
is a popular way to ensure at least some sort of tag quality1. Often, the users as-
signing tags are supported by algorithmic tag recommendation. This may be as
simple as offering auto-complete fields for entering tags that display tags already
assigned by users, or it may be based on a full-fledged analysis of the resource
1 in the sense that the tags indeed help users to find or organize resources, for recent

results on tag quality compare [2, 3].
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the user wants to tag. This analysis may present a set of automatically identified
tags to the user. Within the later context, compare [1], we describe two vari-
ants of our approach to content-based tag recommendation which we applied to
task 1 and 2 of the ECML PKDD Discovery Challenge 2009. We acted as two
teams (with completely independent implementations), each team deploying its
own variation of the overall approach – and each with different success. In the
following we first describe the solution and results of group 12 for tasks 1. This
will be followed by a brief presentation of the differences of the solution for task
1 of group 23 and their results. We conclude with details of the solution for task
2 of group 1.

2 Content-based Tag Recommendation

This attempt on content-based tag recommendation uses different sources to
generate tag candidates. These candidates are combined on the basis of appro-
priate weighting factors which have been assigned to the particular sources ex
ante. The first kind of source are web services, which offer information for known
resources. This information contains tags which already have been assigned to
those resources. In this case we query del.icio.us and citeulike.org. The second
kind of source are the resources themselves. In case of bookmarks the content
of the according websites is crawled and analyzed. For bibtex entries the infor-
mation contained in the bibtex table is taken into account. So tag candidates
are determined without using any external service. The last source is also a web
service called tagthe.net. It already has an engine, which recommends tags for a
given URL.

2.1 Harvesting Tag Candidates

The first step to a tag recommendation is the accumulation of candidates and
additional information from the several sources. For every URL in the bookmark
table, the del.icio.us service is queried. It can be accessed via a feed. The URL
md5 hash of the resource is inserted into a URL-pattern. When the resulting
URL is accessed, all available information is returned. It includes a count which
specifies how often the URL was posted, and a list of top tags assigned to it.
Each tag is supplemented with an information about the frequency with witch
it has been assigned to the given resource.
In some cases it is possible to find tag candidates for bibtex entries at citeu-
like.org. The description or misc field of the bibtex table often contain a citeulike-
id. With this id the according citeulike page can be called and crawled for the
assigned tags. These tags are already classified as ”tag”, ”publisher” and ”au-
thor”. Numerical information like a count cannot be obtained.
A similar kind of data is provided by the service tagthe.net. It generates classi-
fied tags for a submitted URL automatically and independent of the document
2 Group 1: Mrosek, Bussmann, Albers, Posdziech.
3 Group 2: Hengefeld, Opperman, Robert, Spira.
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format behind it. The available categories are ”tag”, ”author”, ”person” and ”lo-
cation”. Like citeulike.org, tagthe.net returns no numerical information. Anyway
this service can be seen as a backup system, because it can provide tag candi-
dates for every URL. Thus it is called for all URLs in the bookmark and the
bibtex table. Unfortunately there is no information about the algorithmics of
the service available.
In addition to the citeulike-ids the bibtex table contains further interesting in-
formation. The title, journal and description fields contain words that can be
potentially used as concise tags. Hence after comparison with a stop word list
all remaining words in these fields are interpreted as tag candidates.
The last source for tag candidates are the websites behind the URLs in the
bookmark table. After crawling and parsing the site’s source code the words are
counted and checked against a stop word list. Furthermore they are classified by
the location of their appearance like in ”meta keywords”, ”meta description”,
”title” and ”body”.

2.2 Selection Tags from the Candidates

The recommendation system has a hierarchical structure. This means there is
one meta recommender which relies on several separate source recommenders,
one for each source described in section 1.1. These recommenders provide up to
20 tag candidates for a queried content id. Every tag candidate is complemented
by a score the according recommender assigns to it. This score can vary between
0 and 1. How the recommender constitutes that score depends on the source
and is described in section 1.3. After the source recommenders have made their
suggestions, the meta recommender takes all of the intermediate results and
determines the actual tags. Therefor it combines a candidate’s frequency of ap-
pearance in all sources k with the score si (1 ≤ i ≤ k) provided by the source
recommenders. si is already influenced by a weighting factor for the individual
sources. How this factor is determined will be described in section 1.4. The final
score s for a tag candidate can be determined by the formula

s = k · (s1 + s2 + ... + sk). (1)

Note that s can be a value greater than 1. When the meta recommender has
calculated these aggregated scores for all candidates, they are ordered by this new
information. The five tags with the highest scores are selected as recommended
tags. In order to prohibit recommendation of tags with a very low score, an
optional filter can be set. This helps to enhance the precision.

2.3 Calculating the Individual Scores

As already stated the calculation of the single scores differs depending on the
source. The reason for this is the additional information, which is provided be-
sides the tags. Every source offers a different kind of information. To calculate
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a del.icio.us score sdelicious for a tag, the number of posts n which assigned
it to the resource is devided by the total number p of posts for the resource at
del.icio.us. After that the result is multiplied by the weight wdelicious constituted
for del.icio.us.

sdelicious = wdelicious · n

p
(2)

The scores for tagthe.net and citeulike candidates are determined as fol-
lows: For each of the provided categories a weighting factor ccategorie is defined:
ctag = 1.0, cauthor = 0.3, cpublisher=0.2, clocation = 0.2, cperson = 0.1. The score
stagthe/cite of each tag candidate is the result of the product of the source’s
weight wtagthe/cite and the categorie’s weight ccategorie. In one case there is an
exception from this practice. As can be detected in the training data the tag
”juergen” appears pretty often. So this special tag is always handled with a
score of 1.0. Otherwise all scores are determined by

stagthe/cite = wtagthe/cite · ccategorie. (3)

The tag candidates generated from the bibtex entries are treated in a similar
way. For some fields a weighting factor cfield is set: ctitle = 0.55, cjournal = 0.25,
cdescription = 0.2. Only tags from the title field are used as a suggestion for the
meta recommender. These candidates get a higher score if they also appear in
the journal or description field. The individual scores for these fields are added
to the initial title-score of 0.55.
The scoring process for the crawled content of a website is a little more complex.
It is based on the information about the location of appearance as described in
section 1.1. Three steps are passed until the final score is determined. In the
first step a tag’s frequency of appearance nlocation in the individual locations
is counted. This value is weighted by a factor clocation which is related to the
location’s importance. E.g. a word from the title or the keyword-list is rather a
good tag than one from the body. All counts are multiplied by their weighting
factors get summed up to a kind of weighted frequency nwfreq for the whole
resource

nwfreq = ntitle · ctitle + ndescription · cdescription +
nkeywords · ckeywords + nbody · cbody. (4)

If a tag appears at different locations, its score is raised in step two. This
takes into account the fact that such a tag is a good tag in most cases. To raise
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the score, nwfreq is multiplied by a factor fcat which is related to the number of
categories the tag appeared in.

fcat =


1, 1 categorie

1.5, 2 categories
3, 3 categories
5, 4 categories

(5)

The modified weighted frequency n∗
wfreq is determined by

n∗
wfreq = nwfreq · fcat. (6)

In the last step, n∗
wfreq is normalized to the common score interval [0, 1].

Therefor every nwfreq is divided by the highest nwfreq which is reached for the
crawled resource. The result is a score scc for a tag from the crawled content.
The number of tags which are returned to the meta recommender is limited.
Only the 20 tags with the highest scores are chosen.

2.4 Calculating the Source Weights

A key point in this two-stage recommendation approach is the calculation of
suitable weighting factors for the different sources. Their tag-quality varies in
a wide range. Thus handling the candidates of the individual recommenders
as if they were of similar quality leads to bad results. As a foundation for the
weighting factor calculation the postcore-2 of the training dataset was used. For
every source the set of tag assignments it can supply was determined and an
according tas file was generated. E.g. to calculate a factor for citeulike, a tas
file with all content ids, which are associated with bibtex entries containing a
citeulike-id, was generated. Corresponding to the tas files a result file was created
for every source. This result was independent of the meta recommender and all
the other sources. The result files were measured with f1-score against the tas
files created before. The first attempt was to use the f1 score a result file achieved
as the weighting factor for the according source recommender.
However when testing the complete recommendation process against postcore-2,
experiments with various weighting factors pointed out a better choice. Using
the precision value which has been computed for the various result files to get
the f1-score, provides better overall results. Thus all the weighting factors for
the particular sources assumed in the meta recommender match the precision
the respective source recommender reaches for the subset of tag assignments it
can supply.

2.5 Results

Table 1 displays the results each recommender achieved for his own subset of
the postcore-2 training data. The intermediate results in the first five rows show
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recall, precision and f1-score for every source recommender. The weighting factor
later used for the meta recommender is the particular precision as described in
section 1.4.
Row five and six present the results of the meta recommender for the training
data. The first is generated without a filter whereas the second one uses a filter
to avoid tag recommendations with very low scores as described in section 1.2.

Table 1. Comparison of the results for test and training data set

Dataset Recommender Supplied Recall Precision F1-Score

Posts

Training citeulike.org 5285 0.446 0.134 0.206
/ 6372

del.icio.us 38383 0.418 0.353 0.383
/ 40882

tagthe.net 40468 0.066 0.053 0.059
/ 51580

bibtex 22341 0.155 0.127 0.139
/ 22341

web content 33193 0.150 0.123 0.135
/ 40882

meta 63107 0.350 0.254 0.294
/ 64120

meta 62104 0.344 0.269 0.302
with filter / 64120

Test Meta/Overall 30844 0.132 0.103 0.116
with filter / 43002

The table shows that del.icio.us and citeulike produce good tag candidates.
Recommendations made by other sources have a much lower quality. The meta
recommenders result for the test dataset is far below the result of the training
data set.

2.6 Conclusion

The comparison of the meta recommender’s results for training and test data
leads to the conclusion that the choice of sources was suboptimal. As the training
results were computed on the postcore-2 the web services provided tags with a
high quality. Every resource was posted in bibsonomy at least two times. So the
probability that it is contained in the web services’ databases as well, was pretty
good. Thus the decrease in score might be explainable by the unpopularity of
the resources in the test dataset.
In conclusion the two stage approach is a good attempt for popular resources.
To raise the result quality for unpopular resources too, further sources with
previously assigned tags have to be added.
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2.7 Group 2: Variations for Task 1

Table 2. Comparison of the results for test and training data set

Dataset Recommender Recall Precision F1-Score

Training Bookmarks del.icio.us 0.391 0.280 0.326
WebCrawler 0.139 0.099 0.116
DataSet 0.113 0.092 0.102

Bibtex WebCrawler 0.250 0.128 0.169
GoogleScholar 0.087 0.073 0.079
DataSet 0.083 0.061 0.070

Meta 0.334 0.213 0.260

Test Meta/Overall 0.214 0.155 0.180
Meta w CiteULike 0.218 0.157 0.183

Harvesting Tags: In addition to citeulike and del.icio.us, group 2 implemented
a tag recommender using Google Scholar for bibtex entries. Using the title data
only, links to the resource itself or similar resources were harvested. From the
first ten entries three were selected by counting identic words in the titles of
the referenced documents (ignoring certain stop words). In the competition,
the Google scholar tag recommender harvested roughly 60.000 links for 24.000
bibtex data entries. Subsequently, the Web content crawler of group 2 was used
to obtain candidate tags from the three selected resources.

Furthermore, the web content crawler was able (to a certain extend) to parse
PDF documents in addition to HTML documents. Also the implementation of
the citeulike tag recommender differed: a recent database dump of the citeulike
data was used which made it possible to search for DOI-ids or URLs directly and
to determine the overall frequency of tags in the citeulike data set. TagTheNet
was not used. A straighforward tag recommender (called Data set recommender
below) that analysed the relevant fields of the data entries complemented the
set of recommenders.

Selecting Tags: No additional filtering for small scores was used. If less than 5
tags were harvested, the remaining slots for tags were filled by randomly drawing
tags from the 30 tags most often used in bibsonomy4. The weights for a recom-
mender could be different for bibtex and bookmark context. The weights for the
4 Not a very successful idea – first evaluations show that this was rather counterpro-

ductive.
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recommenders were chosen manually, based on experiences while experimenting
with the training data. Tags recommended by more than one recommender were
rated significantly higher by multiplying their score with a factor which depends
exponentially on the number of recommendations.5

Results: The results of group 2 for task 1 are presented in table 2. Additional
quantitative data are shown in table 3.

Please note that due to a persistent problem with the CiteULike tag recom-
mender, it is not listed in the training data and haven’t been used in the actual
competition. Therefore, the relevant F1-score for the ranking in the competition
is 0.180 (second place). Some more details on the impact of the different tag
recommenders will be presented at the workshop.

Table 3. Additional quantitative data

Competition Training

Tags harvested 1432413 8389379
Bookmarks tagged 16898 263004
Bibtex entries tagged 26104 158924

3 Graph-Based Tag Recommendation

The graph-based approach adapts the same hierarchical recommender structure
the content-based approach is based on6. This means that there is also one meta
recommender which combines the results of subordinated recommenders.
Instead of using external sources, these recommenders implement different al-
gorithms. Every algorithm processes bibsonomy’s graph structure and the con-
tained user information in a different way to generate a set of tag recommenda-
tions.
Like for the content-based approach every tag is valuated with a suitable weight-
ing factor. This weighting factor also depends on the quality of the subordinated
recommender. It is determined in the same way as for the source recommenders
in Task 1 (cmp. section 1.4). The used benchmark data set contains the whole
postcore-2. For processing the final test data set, three different algorithms were
used to supply the meta recommender. All of these algorithms have a different
focus on evaluating the graph-structure. The specific operation methods are pre-
sented in sections 2.1 to 2.3.

5 value = value * Math.pow((1.0 + 3*(count - 1)/10), count);
6 The following section documents the work of group 1 only
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3.1 Tag by Resource

The first algorithm selects tags based on the resource information. Therefor all
tags which have already been assigned to a queried resource are determined.
Additionally each tag’s frequency of appearance nlocal in combination with the
resource is counted. To calculate the score str, this value is taken and divided
by the number npost the resource was posted. The result is multiplied by the
weighting factor wtr for this recommender. Like in section 1, the recommenders
precision for postcore-2 is used for this purpose.

str = wtr · nlocal

npost
(7)

If two tags reach the same score, the one with the higher frequency of ap-
pearance in the entire postcore is preferred.

3.2 Tag by User

The second algorithm recommends and scores tags with a special relation to the
user. Algorithmically this approach is very similar to the one described in section
2.1. At first the set of tags is identified which the user who makes a post has
assigned to other posts previously. The frequency of usage for the tags nlocal is
also determined. From this set of tags the nlocal-value for the most used one is
taken as a reference value nmax. The score stu this recommender calculates for
a tag is as follows

stu = wtu · nlocal

nmax
(8)

The weighting factor wtu is determined as usual (cmp. Section 2.1).

3.3 Tag by User Similarity

The last algorithm determines tags, which have been used by similar users. The
similiarity between two users is defined over the number of equal resources posted
by them.
Therefor the first task is the determination of similarities between all users.
These are calculated by the Tanimoto-Score under consideration of the posted
resources. These resources are used as comparison criterion for different users.
In the recommending process the top five of the similar users are identified. The
tags they assigned to the posted resource are accumulated and sorted by their
frequency of appearance ncount in the posts of the top five users group. As a
reference value the maximum frequency of appearance nmax of a tag in the same
group is utilized. The final score sus for a tag generated by this recommender is
calculated with the following formula:
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sus = wus · ncount

nmax
(9)

3.4 Results

The results for Task two are arranged the same way as the results for the content-
based approach in task one. The recall, precision and f1-score values for the
training datatset are shown individually for every algorithm. Furthermore re-
sults are visualized for meta recommenders which use different combinations of
the subordinated recommenders. A filter like the one described in 1.2 is tested
too.
The recommendations for the test dataset have been made by a meta recom-
mender which uses all of the three subordinated recommenders and a filter. They
are a good deal worse than the results for the training dataset.

Table 4. Comparison of the results for test and training data set

Dataset Recommender Supplied Recall Precision F1-Score

Posts

Training 1. by Resource 64120 0.731 0.586 0.651
2. by User 64120 0.349 0.205 0.258
3. by User-Sim. 34738 0.265 0.271 0.268
1. + 2. + 3 64120 0.774 0.517 0.620
1. + 2. 64120 0.846 0.570 0.681
1. + 2. 64120 0.846 0.576 0.685
with filter

Test 1. + 2. + 3. 778 0.389 0.262 0.313
with filter / 778

3.5 Conclusion

Like for task 1 there is a dramatic decrease of the f1-score in the test. In this
case the explanation can be found in the composition of the training data files.
When evaluating the methods for task 2 with the training data, the post, a rec-
ommendation is made for, is not excluded from the dataset. Thus the tags of the
post are definitely in the training dataset. This increases the probability that
the expected tags are recommended. As a consequence, the scores are higher as
for the test data which are not included in post-core 2.
In conclusion, the evaluation of the training data is not valid, but the algorithm
works correct for the test data.
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4 Final remarks

The competition offered an excellent test bed for our approach to tag recom-
mendation. Though we are pretty happy with the results obtained, much work
remains to be done:

– setting the weights for the different recommenders could be improved (iter-
ative algorithmic optimisation; cleaning/choosing training data),

– relations to similar resources in the bibsonomy data set (identified for ex-
ample with the help of the recommended tags or based on Web crawling /
Google scholar results) could be explored: if, for a given resource x, a similar
resource y in the bibsonomy data sets is identified, tag candidates can be
drawn from resource y (either directly or via further graph-based or recursive
similarity-based analysis),

– fine-tuning of the individual tag recommenders, for example by coupling the
Web crawler to the tag database,

to name just a few open topics. We want to thank the organizers7 and to express
our hope that this stimulating and exciting competition will be continued in the
future and that some of our results and suggestions may help others to develop
further improved tag recommenders.
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Abstract. Textual contents associated to resources are considered as
sources of candidate tags to improve the performance of tag recom-
menders in social tagging systems. In this paper, we propose a two-
level learning hierarchy of a concept based keyword extraction method
to filter the candidate tags and rank them based on their occurrences
in concepts existing in the given resources. Incorporating user-created
tags to extract the hidden concept-document relationships distinguishes
the two-level from the one-level learning version, which extracts concepts
directly using terms existing in textual contents. Our experiment shows
that a multi-concept approach, which considers more than one concept
for each resource, improves the performance of a single-concept approach,
which takes into account just the most relevant concept. Moreover, the
experiments also prove that the proposed two-level learning hierarchy
gives better performances than one of the one-level version.

Key words: Recommender system, Social tagging, Machine learning, Keyword
extraction, Concept extraction

1 Introduction

Social tagging is intended to make resources increasingly easy to discover and
recover over time. Discovery enables users to find new content of their interest
shared by other users. This social indexing gives a promising index quality be-
cause it is done by human beings, who understand the content of the resource, as
opposed to software, which algorithmically attempts to determine its meaning.
Moreover, it is done collectively among users, that is, it uses a collective human
intelligence as an index extractor. Recovery enables a user to recall content that
was discovered before. It should be easier because the tags are both originated
by, and familiar to, its primary users. However, Golder et al. [9] identify three
major problems with the current social tagging systems: polysemy, synonymy,
and level variation. The first two inherit the problems of natural language, while
the third one refers to the phenomenon of users tagging content at different levels
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of abstraction. Other problems are dealing with word forms, nouns in singular,
nouns in plural, abbreviations, and misspelled words.

To direct users towards the consistency of the tags, the system usually has a
service that assists users in the tagging process, by automatically recommending
an appropriate set of tags. The service is a mediated suggestion system, that
is, the service does not apply the recommended tags automatically, rather it
suggests a set of appropriate tags and allows the user to select tags from the
set they find appropriate. Moreover, the tag recommendation can serve many
purposes such as consolidating the vocabulary across the users, giving a second
opinion what a resource is about and, the important thing, increasing the success
of searching because of the consistency [14].

In practice, the standard tag recommenders are services that recommend
the most popular tags used for either a particular resource or a whole system.
There are other methods proposed from a diversity of approaches to recommend
tags from user-created tags (folksonomy) such as information retrieval [23, 28],
graph-based approaches [11], collaborative filtering [14], machine learning [10,
15]. Recently, people consider textual contents associated to the resources as
sources of candidate tags to improve the performance of tag recommenders. For
example, Xu et al. [31] suggest content-based (and context-based) tags based
on analysis and classification of the tagged content and context. This not only
solves the cold start problem, but also increases the tag quality of those objects
that are less popular. Tatu et al. [29] use natural language processing tools to
extract important terms (nouns, adjectives and named entities) from the textual
contents. They conclude that the understanding of the contents improves the
quality of the tag recommendations.

In this paper, we also consider the textual contents associated to resources
as sources of candidate tags to improve the performance of the tag recommender
in the social tagging system. To achieve this goal, we propose a two-level learn-
ing hierarchy of concept based keyword extraction as a tag recommendation
method. Firstly, the method extracts concepts, which can be considered as a
set of related words, using nonnegative matrix factorization (NMF) from train-
ing document collections using a two-level learning hierarchy: at the lower level
the method extracts concepts and concept-document relationships using user-
created tags. Having these relationships, the method populates the concepts
with terms existing in textual contents of resources at the higher level. Next,
the tag recommender finds the relevant concepts to a given resource and then
scales terms of the resource based on their occurrences in the concepts. The
terms having the highest scores are set as keywords and recommended as tags.
Incorporating the user-created tags to extract the hidden concept-document re-
lationships distinguishes the two-level from the one-level learning version, which
extracts concepts directly from terms existing in textual contents. The main
advantage of this approach is that NMF algorithm decomposes more compact
document representations. Also, the concept extraction from textual contents
is handled by nonnegative least squares algorithm which is much more efficient
than NMF algorithm. Therefore, the two-level learning hierarchy approach is

202



not only more efficient but also more reliable because it uses tags created by
users who understand the content of documents. Moreover, the approach may
have richer vocabularies because it can combine vocabularies from tag space and
content space. Our experiment shows that a multi-concept approach, which con-
siders more than one concept for each resource, improves the f-measure values
of a single-concept approach, which takes into account just the most relevant
concept, about 10%. Moreover, the experiments also prove that the proposed
two-level learning hierarchy has f-measure values 13% better than one of the
one-level version.

The rest of the paper is organized as follows: Section 2 discusses a concept
extraction method using nonnegative matrix factorization and our proposed
two-level learning hierarcy method. Section 3 describes the existing keyword
extraction methods and the proposed concept based keyword extraction meth-
ods. In Section 4, we describe a tag recommendation algorithm which combines
keywords, which are extracted by the keyword extraction methods, with user-
created tags in training data. In Section 5, we show our experiments and results.
We conclude and give a summary in Section 6.

2 Concept Extraction

Many researchers are trying to address questions about concepts and, in this
section, we consider one of them that defines the concepts as a set of related
terms. These definitions are proposed and used by some researchers such as
[21] or [27]. They use clustering methods to extract the concepts from training
document collections. Formal concept analysis (FCA) [5,26] and Latent semantic
analysis (LSA) [3, 7] are other methods to perform this task .

2.1 A One-Level Learning Hierarchy for Concept Extraction

There are some disadvantages of singular value decomposition (SVD) to extract
concepts from a document collection as used by LSA. Its negative values make
a semantic interpretation difficult. What we would really like to say is that
a concept is mostly concerned with some subset of terms, but any semantic
interpretation is difficult because of these negative values. To circumvent this
problem, a new method which maintains the nonnegative structure of original
documents has been proposed. The method uses nonnegative matrix factorization
(NMF) [17] rather than SVD to extract the concepts from document collections.

Let V be a m × n term-by-document matrix whose columns are document
vectors and a positive integer k < min(m,n). In this paper, we use NMF to
extract concepts from the term-by-document matrix V . NMF problem is how
to find a nonnegative m × k matrix W and a nonnegative k × n matrix H to
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minimize the functional [2]:

min
W,H

f (W,H) =
1
2

m∑
i=1

n∑
j=1

(
Vij − (WH)ij

)2

subject to Wia ≥ 0, Haj ≥ 0,∀i, a, j . (1)

The constrained optimization problem above is convex on either W or H, but not
on both, hence realistic possible solutions usually correspond to local minima.
The product WH is called a nonnegative matrix factorization of V , although
V is not necessarily equal to the product WH. Clearly the product WH is an
rank-k approximation to V . An appropriate decision on the value of k is critical
in practice, but the choice of k is very often problem dependent. In most cases,
however, k is usually chosen such that k << min(m,n).

The most popular approach for the NMF problem is the multiplicative up-
date algorithm proposed by Lee and Seung [18]. To either overcome shortcomings
related to convergence properties or to speed up this algorithm, researchers have
proposed modifications of the algorithm or even created new ones [2]. In general,
the algorithms can be divided into three general classes: multiplicative update al-
gorithms [18,19], gradient descent algorithm [6,12], and alternating least squares
algorithms [20,24].

Because all elements of the matrixW andH are nonnegative, we can interpret
them immediately as following: Each column of W corresponds to a set of related
terms called concepts and each element wia of matrix W represents the degree
to which term i belongs to concept a. Each element haj of matrix H represents
the degree to which document j is associated to concept a. Next, we call this
type of concept extraction as an one-level learning hierarcy method.

2.2 A Two-Level Learning Hierarchy for Concept Extraction

In case where the training documents are accompanied by user-created keywords,
it is a good idea to incorporate the valuable information in learning process. For
this reason, we propose a new learning scheme that uses the keywords for ex-
tracting concepts from a document collection. The learning scheme consists of
two-level learning hierarchy. At the lower level, concepts and concept-document
relationships are discovered using the user-created keywords. Having these re-
lationships, the concepts are populated by terms existing in textual contents of
documents at higher level. We expect this method to be successful because the
hidden document structures are discovered using keywords collectively created
by users. Another advantage of this approach is that NMF algorithm uses more
compact document representations. On the other hand, the concept extraction
from textual contents is handled by nonnegative least squares algorithm which
is much more efficient than NMF algorithm. Therefore, this two-level learning
hierarchy approach is not only more efficient but also more reliable because it
uses tags created by users who understand the content of documents. Moreover,
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the approach may have richer vocabularies because it can combine vocabular-
ies from tag space and content space. The detail algorithm of this method is
described in Algorithm 1.

Algorithm 1 A two level learning hierarchy for concept extraction
1: Let V be the tag by document matrix, and X be the term by document matrix
2: Find the tag by concept matrix W and the concept by document matrix H from
V = WH using nonnegative matrix factorization (see Section 2.1) to minimize the
functional:

f (W,H) =
1

2
‖V −WH‖2

3: Find the term by concept matrix T from X = TH using nonnegative least squares
algorithm, e.g. [2]:

– Solve for T in matrix equation HHTTT = HXT

– Set all negative elements in T to 0

3 Concept Based Keyword Extraction

Keyword extraction is the task of automatically selecting a small set of impor-
tant, topical terms within the textual content of a document. The fact that the
keywords are extracted means that the selected terms are present in the doc-
ument [16]. In general, the task of automatically extracting keywords can be
divided into two stages:

1. Selecting candidate terms in the document
2. Filtering out the most significant ones to serve as keywords and rejecting

those that are inappropriate

There are various methods proposed for selecting candidate terms. The first one
is n-gram extraction, that is, extracting uni-, bi-, or tri-grams, removing those
that begin or end with a stop word [8]. Another one is more linguistically ori-
ented using natural language processing (NLP) method such as NP-chunker or
part-of-speech (PoS) [13]. Filtering uses either simple statistics, where a weight-
ing schema is applied to rank words accoding to their score [1, 25], or machine
learning, where the ranking function is defined by a statistical model derived
from training set with manually assigned keywords [13,22,30].

In this section, we propose a machine learning based filtering method, that
is, a method that uses concepts extracted from textual contents of documents.
The method finds the relevant concepts to a given document and then scales
terms of the document based on their occurrences in the concepts. The terms
having the highest scores are set as keywords. The method can be considered
as unsupervised learning when we use the one-level learning hierarchy. It means
that the method does not need labeled data for the training process. Moreover,
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the method becomes a supervised method when the user-created tags are used
in learning process for the two-level learning hierarchy approach. Two variants
of the concept based keyword extraction method are described in detail in the
following sections.

3.1 Single-Concept Based Keyword Extraction

The two-level learning hierarchy extracts concepts from a training document
collection. Having these concepts, the single-concept based keyword extraction
method finds the most relevant concept to a given document and then scales
the candidate terms existing in the document based on their occurrence in the
concept. The relevance of a concept c with a document d is calculated using the
following cosine distance measure:

rel(d, c) =
dTVc

‖d‖ ‖Vc‖ (2)

The detail algorithm of this approach is described in Algorithm 2.

Algorithm 2 The single-concept based keyword extraction
1: Let column c of W (Wc) be concept c and d be a document

2: Let rel(d, c) = dT Wc
‖d‖‖Wc‖

3: Find the most relevant concept to the document d, i.e., concept c′ where c′ =
argmaxc(rel(d, c))

4: Scale terms existed in the document based on the most relevant concept, i.e.,

d1i = wic′di

d2j = tjc′dj

5: Combine the normalized terms:

d̃ = (1− α) (d1/ ‖d1‖) + α(d2/ ‖d2‖)
6: Select first n non zero terms of the ranked d̃ as keywords

3.2 Multi-Concept Based Keyword Extraction

The multi-concept based keyword extraction assumes that a document may con-
tain more than one relevant concept. The detail algorithm of the multi-concept
based keyword extraction method is described in Algorithm 3.

4 A Hybrid Tag Recommender

In our experiment, we use a hybrid recommender as described in detail in Algo-
rithm 4. The recommender checks if a given resource exists in the training data.
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Algorithm 3 The multi-concept based keyword extraction
1: Let column c of W (Wc) be concept c and d be a document

2: Let rel(d, c) = dT Wc
‖d‖‖Wc‖

3: Scale terms existed in the document using the concepts, i.e.,

d1i =
X

c

rel(d, c)wicdi

d2j =
X

c

rel(d, c)tjcdj

4: Combine the normalized terms:

d̃ = (1− α) (d1/ ‖d1‖) + α(d2/ ‖d2‖)
5: Select first n non zero terms of the ranked d̃ as keywords

If this is the case then the tag space based recommenders are suggested. The
collaborative recommender is used if a given user has profiles in system. Oth-
erwise, the most popular tag by resource method is used as tag recommender.
If the resource appears for the first time then the recommender examines the
content of the resource using the concept based keyword extraction algorithm.
Boosting the extracted tags if they have been used by the user before. If nei-
ther any tags nor any keywords are suggested then the most popular tags in the
training data are recommended. Using the user-created tags aims to direct the
standardization and consistency of supplied tags, while using the tags extracted
from textual contents intend especially to overcome the cold start problem.

Algorithm 4 A hybrid tag recommendation algorithm
1: input : a post P < user, resource >
2: if P.resource exists in system then
3: if P.user exists in system then
4: P.tags⇐ collaborative tags by P.user
5: else
6: P.tags⇐ most popular tags by P.resource
7: end if
8: else
9: P.tags⇐ the keywords by P.resource

10: Boosting tags of P.tags that exist in tag space of P.user
11: end if
12: if P.tags = φ then
13: P.tags⇐ most popular tags
14: end if
15: Select top n of the ranked P.tags as recommended tags
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5 Experiment

We apply our proposed recommender methods (Algorithm 4) for ECML PKDD
Discovery Challenge 20091. The task of the competition requires the development
of a content-based tag recommendation method for BibSonomy2, a web based
social bookmarking system that enables users to tag both web pages (bookmark)
and scientific publications (bibtex). The organizers of the competition made
available a training set of examples consisting of the resources accompanied
with their user-created tags. A testing data will be provided in order to evaluate
proposed recommenders. Each bookmark is described by its URL, a description
of the URL that usually is the title of the web page and an extended description
of the bookmark supplied by the user. Each bibtex is associated with values
of bibtex fields such as title, author, booktitle, journal, series, volume, number,
etc. BibtexKey, bibtexAbstract, URL, and description of the publication can be
specified. Some statistics of the data are shown in Table 1.

Table 1. Statistics of Experiment data

Bookmark Bibtex

Training 181,491 72,124
Testing 16,898 26,104

In our experiment, we use textual contents associated to each resource as
content of the resources. For the bookmark, the contents are the description of
the URL and the extended description. Title and abstract are textual contents
associated to the bibtex. A bookmark is identified by its URL address (url hash)
attribute and a bibtex by its title (simhash1 ) attribute. Therefore, a document,
bookmark or bibtex, is represented by the description given to the document by
all users that bookmarked the document.

Let D be a testing data set, consisting of |D| examples (ri, Ti), i = 1...|D|.
Let Ti be the set of tags created by users for a resource ri and Pi be the set
of tags predicted by a recommender for a resource ri. The precision, recall, and
F-measure for recommender f on testing data set D is calculated as follows:

Precision =
1
|D|

|D|∑
i=1

|Ti ∩ Pi|
|Pi|

Recall =
1
|D|

|D|∑
i=1

|Ti ∩ Pi|
|Ti|

F−Measure =
1
|D|

|D|∑
i=1

2 |Ti ∩ Pi|
|Pi|+ |Ti|

1 http://www.kde.cs.uni-kassel.de/ws/dc09
2 http://www.bibsonomy.org
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We perform our experiment in java platform and use Lucene3 for creating the
tag-by-resource matrix and the term-by-resource matrix. The other processes are
conducted on the Weka4 framework, an open source machine learning software.

5.1 Experiment Settings

For each of the method of our experiment the settings we used to run them are
described as following:

Concept-based keyword extraction . For creating the term-by-resource matrix,
resources are parsed and a dictionary of terms is created using a standard word
tokenization method. The terms are words, special characters are removed, and
Snowball Porter stemming and standard stop words of English and German are
applied. Finally, the term-by-resource matrix is created using a term frequency
weighting scheme.

Extracting concepts from the term-by-resource matrix is an important step to
find keywords from new resources. The optimal number of concepts (k), which
captures most concepts in the training document collection, remains difficult
to find. The method that is usually used for a practical purpose is a heuris-
tic approach. However, because of the memory usage, simulations are usually
conducted on the maximum number of concepts that can be extracted. In our
experiment, we extract 200 concepts for the training document collection. For
this task, we use the nonnegative double SVD initialization method [4] that con-
ducts no randomization and the projected gradient method [20] that converges
to a local minimum. We expect these combining methods leads to converge to a
unique solution with a minimum error.

There is another parameter α that should be optimized in the two-level learn-
ing hierarchy approach. The parameter reflects the portion of the tag space and
the content space as sources of tags for the recommender. In our experiment,
we set the parameter α = 0.25 for the single-concept method and α = 0.05 for
the multi-concept method, which are the optimal values we get using a heuristic
method.

Collaborative recommendation [14] . For a given tag-by-user matrix X, a given
user u, a given resource r, and integer k and n, the set T (u, r) of n recommended
tags is calculated by:

T (u, r) = argmaxn
t∈T

∑
v∈Nk

u

sim(Xu, Xv)δ(v, t, r) (3)

where Nk
u is k nearest neighbors of u in X, δ(v, t, r) = 1 if (v, t, r) ∈ folksonomy

and 0 else. Therefore, the only parameter to be tuned is the number of neighbors
k. For that, multiple runs where performed where k incremented until a point
where no more improvement in the results were observed.
3 http://lucene.apache.org/
4 http://www.cs.waikato.ac.nz/ml/weka/
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Most popular tags by resource . For a given resource we count how many posts
a tag occur together with that resource. We use tags that occur most often
together with that resource as recommendation.

Most popular tags . For each tags we count in how many posts it occurs. We
then use tags that occur most often as recommendation.

5.2 Single- vs. Multi-Concept Method

Fig. 1 shows the performances of the single- and multi-concept based keyword
extraction on testing data. From Fig. 1, we can calculate that recall, precision,
and f-measure of the multi-concept approach are, on average, 10%, 15% and
12%. The recall is likely to increase when the number of recommended tags gets
bigger, while the precision is reduced for the bigger numbers of tags. Fig. 1 also
shows the performance of the single-concept approach in the similar pattern
and its f-measure is, on average, 11%. From both curves, we conclude that the
multi-concept approach, which assumes that a resource may contain more than
one concept, improves f-measure of the single-concept method, on average, 10%.
The improvement occurs in all numbers of recommended tags. These results
verify that associating of resources with more than one concept gives better
performance than just considering the main concept of resources. In other words,
some minor concepts of a resource should also be examined for getting the better
performance of the keyword extraction.
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Fig. 1. Performance comparison of single- and multi-concept approach
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5.3 One- vs. Two-Level Learning Hierarchy

In this section, we examine the performance of our proposed two-level learn-
ing hierarchy approach compared to the one-level version. Fig. 2 shows the
performance of the one-level learning hierarchy multi-concept based keyword
extraction and the two-level learning hierarchy multi-concept based keyword ex-
traction. From the figure, we see that the two-level learning method has better
recall, precision and f-measure. Its f-measure values, on average, are 13% better
than one of the one-level learning approach. The detailed recall, precision, and
f-measure values of the optimal performance of the two-level learning hierarchy
are given in Table 2.
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Fig. 2. Performance comparison of one- and two-level learning hierarchy approach

Table 2. Performance of two-level learning hierarchy of multi-concept based keyword
extraction method for each number of recommended tags using the optimal parameter
α = 0.05

Num. of Tags Recall Precision F-Measure

1 0.0538 0.1832 0.0832
2 0.0908 0.1621 0.1164
3 0.1187 0.1498 0.1324
4 0.1386 0.1406 0.1396
5 0.1533 0.1345 0.1433
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6 Summary

In this paper, we propose a two-level learning hierarchy concept based keyword
extraction method for task1 of ECML PKDD Discovery Challenge 2009, that
is, a content-based tag recommendation. The tag recommendation method ex-
plores tags from textual contents of resources using concepts existing in the
textual contents of the resources. A multi-concept approach, which considers
more than one concept for each resource, improves the performance of a single-
concept approach, which only considers the most relevant concept. Moreover, our
experiment demonstrates that the proposed two-level learning hierarchy method
outperforms the common one-level learning approach for all performance mea-
sures, e.g. recall, precision, and f-measure.
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Abstract. The continuous growth of collaborative platforms we are re-
cently witnessing made possible the passage from an ‘elitary’ Web, writ-
ten by few and read by many, towards the so-called Web 2.0, a more
‘user-centric’ vision, where users become active contributors in Web dy-
namics. In this context, collaborative tagging systems are rapidly emerg-
ing: in these platforms users can annotate resources they like with freely
chosen keyword (called tags) in order to make retrieval of information
and serendipitous browsing more and more easier. However, as tags are
handled in a simply syntactical way, collaborative tagging systems suffer
of typical Information Retrieval (IR) problems like polysemy and syn-
onymy: so, in order to reduce the impact of these drawbacks and to aid
at the same time the so-called tag convergence, systems that assist the
user in the task of tagging are required. The goal of these systems (called
tag recommenders) is to suggest a set of relevant keywords for the re-
sources to be annotated by exploiting different approaches. In this paper
we present a tag recommender developed for the ECML-PKDD 2009
Discovery Challenge. Our approach is based on two assumptions: firstly,
if two or more resources share some common patterns (e.g. the same fea-
tures in the textual description), we can exploit this information suppos-
ing that they could be annotated with similar tags. Furthermore, since
each user has a typical manner to label resources, a tag recommender
might exploit this information to weigh more the tags she already used
to annotate similar resources.

Key words: Recommender Systems, Web 2.0, Collaborative Tagging
Systems, Folksonomies

1 Introduction

The coming of Web 2.0 has changed the role of Internet users and the shape of
services offered by the World Wide Web. Since web sites tend to be more interac-
tive and user-centric than in the past, users are shifting from passive consumers
of information to active producers. By using Web 2.0 applications, users are able
to easily publish content such as photos, videos, political opinions, reviews, so
they are identified as Web prosumers: producers + consumers of knowledge.
One of the forms of user-generated content (UGC) that has drawn more at-
tention from the research community is tagging, which is the act of annotating
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resources of interests with free keywords, called tags, in order to help users in
organizing, browsing and searching resources through the building of a socially-
constructed classification schema, called folksonomy [18]. In contrast to systems
where information about resources is only provided by a small set of experts,
collaborative tagging systems take into account the way individuals conceive the
information contained in a resource [19]. Well-known example of platforms that
embed tagging activity are Flickr1 to share photos, YouTube2 to share videos,
Del.icio.us3 to share bookmarks, Last.fm4 to share music listening habits and
Bibsonomy5 to share bookmarks and lists of literature. Although these systems
provide heterogeneous contents, they have a common core: once a user is logged
in, she can post a new resource and choose some significant keywords to identify
it. Besides, users can label resources previously posted from other users. This
phenomenon represents a very important opportunity to categorize the resources
on the web, otherwise hardly feasible. The act of tagging resources from different
users is the social aspect of this activity; in this way tags create a connection
among users and items. Users that label the same resource by using the same
tags could have similar tastes and items labeled with the same tags could have
common characteristics.

Many would argue that the power of tagging lies in the ability for people to
freely determine the appropriate tags for a resource without having to rely on a
predefined lexicon or hierarchy [11]. Indeed, folksonomies are fully free and reflect
the user mind, but they suffer of the same problems of unchecked vocabulary.
Golder et. al. [5] identified three major problems with current tagging systems:
polysemy, synonymy, and level variation. Polysemy refers to situations where
tags can have multiple meanings: for example a resource tagged with the term
turkey could indicate a news taken from an online newspaper about politics or
a recipe for Thanksgiving’ Day. When multiple tags share a single meaning we
refer to it as synonymy. In collaborative tagging systems we can have simple
morphological variations (for example we can find ‘blog’, ‘blogs’, ‘web log’, to
identify a common blog) but also semantic similarity (like resources tagged with
‘arts’ versus ‘cultural heritage’). The third problem, called level variations, refers
to the phenomenon of tagging at different level of abstraction. Some people can
annotate a web page containing a recipe for roast turkey with the tag ‘roast-
turkey’ but also with a simple ‘recipe’.

In order to avoid these problems, in the last years many tools have been
developed to facilitate the user in the task of tagging and to aid the tag con-
vergence [4]: these systems are know as tag recommenders. When a user posts
a resource in a Web 2.0 platform, a tag recommender suggests some significant
keywords to label the item following some criteria to filter out the noise from
the complete tag space.

1 http://www.flickr.com
2 http://www.youtube.com
3 http://delicious.com/
4 http://www.last.fm/
5 http://www.bibsonomy.org/
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This paper presents STaR (Social Tag Recommender system), a tag recom-
mender system developed for the ECML-PKDD 2009 Discovery Challenge. The
idea behind our work is that folksonomies create connections among users and
items, so we tried to point out two concepts:

– Resources with similar content could be annotated with similar tags;
– A tag recommender needs to take into account the previous tagging activity

of users, by weighting more tags already used to annotate similar resources.

In this work we identify two main aspects in the tag recommendation task:
firstly, each user has a typical manner to label resources (for example using
personal tags such as ‘beautiful’, ‘ugly’, ‘pleasant’, etc. which are not connected
to the content of the item, or simply tagging using general tags like ‘politics’,
‘sport’, etc.); next, similar resources usually share common tags: when a user
posts a resource r on the platform, our system takes into account how she (if
she is already stored in the system) and the entire community previously tagged
resources similar to r in order to suggest relevant tags. Next, we develop this
model and we tested it on a dataset extracted from BibSonomy.

The paper is organized as follows. Section 2 analyzes related work. The gen-
eral problem of tag recommendation is introduced in Section 3. Section 4 explains
the architecture of the system and how the recommendation approach is imple-
mented. The experimental section carried out is described in Section 5.1, while
conclusions and future works are drawn in last section.

2 Related Work

Previous work in the tag recommendation area can be broadly divided into three
classes: content-based, collaborative and graph-based approaches.

In the content-based approach, a system exploits some textual source with
Information Retrieval-related techniques [1] in order to extract relevant unigrams
or bigrams from the text. Brooks et. al [3], for example, develop a tag recom-
mender system that automatically suggests tags for a blog post extracting the
top three terms exploiting TF/IDF scoring [14]. The system presented by Lee
and Chun [8] recommends tags retrieved from the content of a blog using artificial
neural networks. The network is trained based on statistical information about
word frequencies and lexical information about word semantics extracted from
WordNet. The collaborative approach for tag recommendation, instead, presents
some analogies with collaborative filtering methods [2]. In the model proposed
by Mishne and implemented in AutoTag [12], the system suggests tags based on
the other tags associated with similar posts in a given collection. The recommen-
dation process is performed in three steps: first, the tool finds similar posts and
extracts their tags. All the tags are then merged, building a general folksonomy
that is filtered and reranked. The top-ranked tags are suggested to the user, who
selects the most appropriate ones to attach to the post. TagAssist [16] improves
the AutoTags’ approach performing a lossless compression over existing tag data.
It finds similar blog posts and suggests a subset of the associated tag through a
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Tag Suggestion Engine (TSE) which leverages previously tagged posts providing
appropriate suggestions for new content. In [10] the tag recommendations task
is performed through a user-based collaborative filtering approach. The method
seems to produce good results when applied on the user-tag matrix, so they show
that users with a similar tag vocabulary tend to tag alike. The problem of tag
recommendation through graph-based approaches has been firstly addressed by
Jäschke et al. in [7]. They compared some recommendation techniques including
collaborative filtering, PageRank and FolkRank. The key idea behind FolkRank
algorithm is that a resource which is tagged by important tags from impor-
tant users becomes important itself. The same concept holds for tags and users,
thus the approach uses a graph whose vertices mutually reinforce themselves
by spreading their weights. The evaluation showed that FolkRank outperforms
other approaches. Schmitz et al. [15] proposed association rule mining as a tech-
nique that might be useful in the tag recommendation process. In literature we
can find also some hybrid methods integrating two or more approaches (mainly,
content and collaborative ones) in order to reduce their typical drawbacks and
point out their qualities. Heymann et. al [6] present a tag recommender that ex-
ploits at the same time social knowledge and textual sources. They suggest tags
based on page text, anchor text, surrounding hosts, adding tags used by others
users to label the URL. The effectiveness of this approach is also confirmed by
the use of a large dataset crawled from del.icio.us for the experimental evalua-
tion. A hybrid approach is also proposed by Lipczak in [9]. Firstly, the system
extracts tags from the title of the resource. Afterwards, based on an analysis
of co-occurrences, the set of candidate tags is expanded adding also tags that
usually co-occur with terms in the title. Finally, tags are filtered and reranked
exploiting the information stored in a so-called ”personomy”, the set of the tags
previously used by the user.

Finally, in [17] the authors proposed a model based on both textual content
and tags associated with the resource. They introduce the concept of conflated
tags to indicate a set of related tag (like blog, blogs, ecc.) used to annotate a
resource. Modeling in this way the existing tag space they are able to suggest
various tags for a given bookmark exploiting both user and document models.
They win the previous edition of the Tag Recommendation Challenge.

3 Description of the Task

STaR has been designed to participate at the ECML-PKDD 2009 Discovery
Challenge6. In this section we will firstly introduce a formal model for recom-
mendation in folksonomies, then we will analyze the specific requirements of the
task proposed for the Challenge.

6 http://www.kde.cs.uni-kassel.de/ws/dc09
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3.1 Recommendation in Folksonomies

A collaborative tagging system is a platform composed of users, resources and
tags that allows users to freely assign tags to resources. Following the definition
introduced in [7], a folksonomy can be described as a triple (U,R, T ) where:

– U is a set of users;
– R is a set of resources;
– T is a set of tags.

We can also define a tag assignment function tas: U × R → T . The tag
recommendation task for a given user u ∈ U and a resource r ∈ R can be finally
described as the generation of a set of tags tas(u, r) ⊆ T according to some
relevance model. In our approach these tags are generated from a ranked set of
candidate tags from which the top n elements are suggested to the user.

3.2 Description of the ECML-PKDD 2009 Discovery Challenge

The 2009 edition of the Discovery Challenge consists of three recommendation
tasks in the area of social bookmarking. We compete for the first task, content-
based tag recommendation, whose goal is to exploit content-based recommenda-
tion approaches in order to provide a relevant set of tags to the user when she
submits a new item (Bookmark or BibTeX entry) into Bibsonomy.

The organizers make available a training set with some examples of tag as-
signment: the dataset contains 263,004 bookmark posts and 158,924 BibTeX en-
tries submitted by 3,617 different users. For each of the 235,328 different URLs
and the 143,050 different BibTeX entries were also provided some textual meta-
data (such as the title of the resource, the description, the abstract and so on).

Each candidate recommender is evaluated by comparing the real tags (namely,
the tags a user adopts to annotate an unseen resource) with the suggested ones.
The accuracy is finally computed using classical IR metrics, such as Precision,
Recall and F1-Measure (Section 5.1).

By analyzing the aforementioned requirements, we designed STaR thinking at
a prediction task rather than a recommendation one. Consequently, we will try to
emphasize the previous tagging activity of the user, also looking for connections
and patterns among resources. All these decisions will be thoroughly analyzed
in the next section describing the architecture of STaR.

4 STaR: a Social Tag Recommender System

STaR (Social Tag Recommender) is a content-based tag recommender system,
developed at the University of Bari. The inceptive idea behind STaR is to im-
prove the model implemented in systems like TagAssist [16] or AutoTag [12].
Although we agree with the idea that resources with similar content could be
annotated with similar tags, in our opinion Mishne’s approach presents two im-
portant drawbacks:
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Fig. 1. Architecture of STaR

1. The tag reranking formula simply performs a sum of the occurrences of each
tag among all the folksonomies, without considering the similarity with the
resource to be tagged. In this way tags often used to annotate resources with
a low similarity level could be ranked first.

2. The proposed model does not take into account the previous tagging activ-
ity performed by users. If two users bookmarked the same resource, they
will receive the same suggestions since the folksonomies built from similar
resources are the same.

We will try to overcome these drawbacks, by proposing an approach based on
the analysis of similar resources capable also of weighting more the tags already
selected by the user during her previous tagging activity. Figure 1 shows the
general architecture of STaR. The recommendation process is performed in four
steps, each of which is handled by a separate component.

4.1 Indexing of Resources

Given a collection of resources (corpus), a preprocessing step is performed by the
Indexer module, which exploits Apache Lucene7 to perform the indexing step.
As regards bookmarks we indexed the title of the web page and the extended
description provided by users. For the BibteX entries we indexed the title of
the publication and the abstract. Let U be the set of users and N the cardi-
nality of this set, the indexing procedure is repeated N + 1 times: we build an
index for each user (Personal Index ) storing the information on her previously
tagged resources and an index for the whole community (Social Index ) storing
the information about all the resources previously tagged by the community.
7 http://lucene.apache.org
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Following the definitions presented in Section 3.1, given a user u ∈ U we
define PersonalIndex(u) as:

PersonalIndex(u) = {r ∈ R|∃t ∈ T : tas(u, r) = t} (1)

where tas is the tag assignment function tas: U × R → T which assigns tags
to a resource annotated by a given user. SocialIndex represents the union of all
the user personal indexes:

SocialIndex =
N⋃

i=1

PersonalIndex(ui) (2)

4.2 Retrieving of Similar Resources

At the end of the preprocessing step STaR is able to take into account users
requests. Every user interacts with STaR by providing information about a re-
source to be tagged. In the Query Processing step the system acquires data about
the user (her language, the tags she uses more, the number of tags she usually
uses to annotate resources, etc.) before processing (through the elimination of
not useful characters and punctuation) and submitting the query against the
SocialIndex stored in Lucene. If the user is recognized by the system since it has
previously tagged some other resources, the same query is submitted against
her own PersonalIndex, as well. We used as query the title of the web page
(for bookmarks) or the title of the publication (for BibTeX entries). In order
to improve the performances of the Lucene Querying Engine we replaced the
original Lucene Scoring function with an Okapi BM25 implementation8. BM25
is nowadays considered as one of the state-of-the art retrieval models by the IR
community [13].

Let D be a corpus of documents, d ∈ D, BM25 returns the top-k resources
with the highest similarity value given a resource r (tokenized as a set of terms
t1 . . . tm), and is defined as follows:

sim(r, d) =
m∑

i=1

nr
ti

k1((1− b) + b ∗ lengthr

avgLengthr
) + nr

ti

∗ idf(ti) (3)

where nr
ti

represents the occurrences of the term ti in the document d, lengthr

is the length of the resource r and avgLengthr is the average length of resources
in the corpus. Finally, k1 and b are two parameters typically set to 2.0 and 0.75
respectively, and idf(ti) represents the inverse document frequency of the term
ti defined as follows:

idf(ti) = log
N + df(ti) + 0.5
df(ti) + 0.5

(4)

8 http://nlp.uned.es/ jperezi/Lucene-BM25/
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Fig. 2. Retrieving of Similar Resources

where N is the number of resources in the collection and df(ti) is the number of
resources in which the term ti occurs.

Given user u ∈ U and a resource r, Lucene returns the resources whose
similarity with r is greater or equal than a threshold β. To perform this task
Lucene uses both the PersonalIndex of the user u and the SocialIndex. More
formally:

PersonalRes(u, q) = {r ∈ PersonalIndex(u)|sim(q, r) ≥ β} (5)

SocialRes(q) = {r ∈ SocialIndex|sim(q, r) ≥ β} (6)

Figure 2 depicts an example of the retrieving step. In this case the target
resource is represented by Gazzetta.it, one of the most famous Italian sport
newspaper. Lucene queries the SocialIndex and returns as the most similar re-
sources an online newspaper (Corrieredellosport.it) and the official web site of
an Italian Football Club (Inter.it). The PersonalIndex, instead, returns another
online newspaper (Tuttosport.com). The similarity score returned by Lucene has
been normalized.

4.3 Extraction of Candidate Tags

In the next step the Tag Extractor gets the most similar resources returned by
the Apache Lucene engine and produces the set of candidate tags to be sug-
gested, by computing for each tag a score obtained by weighting the similarity
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score returned by Lucene with the normalized occurrence of the tag. If the Tag
Extractor also gets the list of the most similar resources from the user Person-
alIndex, it will produce two partial folksonomies that are merged, assigning a
weight to each folksonomy in order to boost users’ previously used tags.

Formally, for each query q (namely, the resource to be tagged), we can define
a set of tags to recommend by building two sets: candTagsp and candTagss.
These sets are defined as follows:

candTagsp(u, q) = {t ∈ T |t = TAS(u, r) ∧ r ∈ PersonalRes(u, q)} (7)

candTagss(q) = {t ∈ T |t = TAS(u, r) ∧ r ∈ SocialRes(q) ∧ u ∈ U} (8)

In the same way we can compute the relevance of each tag with respect to
the query q as:

relp(t, u, q) =

∑
r∈PersonalRes(u,q) n

t
r ∗ sim(r, q)

nt
(9)

rels(t, q) =

∑
r∈SocialRes(q) n

t
r ∗ sim(r, q)

nt
(10)

where nt
r is the number of occurrences of the tag t in the annotation for resource

r and nt is the sum of the occurrences of tag t among all similar resources.
Finally, the set of Candidate Tags can be defined as:

candTags(u, q) = candTagsp(u, q) ∪ candTagss(q) (11)

where for each tag t the global relevance can be defined as:

rel(t, q) = α ∗ relp(t, q) + (1− α) ∗ rels(t, q) (12)

where α (PersonalTagWeight) and (1−α) (SocialTagWeight) are the weights of
the personal and social tags respectively.

Figure 3 depicts the procedure performed by the Tag Extractor : in this case
we have a set of 4 Social Tags (Newspaper, Online, Football and Inter) and 3
Personal Tags (Sport, Newspaper and Tuttosport). These sets are then merged,
building the set of Candidate Tags. This set contains 6 tags since the tag news-
paper appears both in social and personal tags. The system associates a score
to each tag that indicates its effectiveness for the target resource. Besides, the
scores for the Candidate Tags are weighted again according to SocialTagWeight
(α) and PersonalTagWeight (1− α) values (in the example, 0.3 and 0.7 respec-
tively), in order to boost the tags already used by the user in the final tag rank.
Indeed, we can point out that the social tag ‘football’ gets the same score of the
personal tag ‘tuttosport’, although its original weight was twice.
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Fig. 3. Description of the process performed by the Tag Extractor

4.4 Tag Recommendation

The Tag Extractor produces the set of the Candidate Tags, a ranked set of
tags with their relevance scores. This set is exploited by the Filter, a component
which performs the last step of the recommendation task, that is removing those
tags not matching specific conditions: we fix a threshold for the relevance score
between 0.20 to 0.25 and we return at most 5 tags. These parameters are strictly
dependent from the training data.

Formally, given a user u ∈ U , a query q and a threshold value γ, the goal of
the filtering component is to build recommendation(u, q) defined as follows:

recommendation(u, q) = {t ∈ candTags(u, q)|rel(t, q) > γ} (13)

In the example in Figure 3, setting a threshold γ = 0.20, the system would
suggest the tags sport and newspaper.

5 Experimental Evaluations

5.1 Experimental Session

In this experiment we measure the performance of STaR in the Task 1 of the
ECML-PKDD 2009 Discovery Challenge. This experimental evaluation was car-
ried out according to the instructions provided from the organizers of the Chal-
lenge 2009. The test set was released 48 hours before the end of the competition.
Every participant uploaded a file containing the tag predictions, and for each
post only five tags were considered. F1-Measure was used to evaluate the accu-
racy of recommendations, thus for each post Precision and Recall were computed
by comparing the recommended tags with the true tags assigned by the users.
The case of tags was ignored and all characters which are neither numbers nor
letters were removed. Results are presented in Table 1.
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Table 1. Results of the ECML-PKDD 2009 Discovery Challenge

#Tag Precision Recall F1

1 19.51 6.89 10.19
2 16.34 10.10 12.53
3 14.55 12.16 13.25
4 13.56 13.53 13.55
5 13.56 13.53 13.55

STaR finished the ECML-PKDD Discovery Challenge 2009 with an overall
F-measure of 13.55. As showed in the table above, exploiting only the first rec-
ommended tag the system reaches almost 20% in precision. The value of the
recall increases with the number of recommended tags reaching the 13.5% in
the fourth and fifth tag. In the future we will perform a more in-depth study in
order to compare the predictive accuracy of STaR with different configurations
of parameters.

6 Conclusions and Future Work

In this paper we presented STaR, a tag recommender designed and implemented
to participate to the ECML-PKDD 2009 Discovery Challenge. The idea behind
our work was to discover similarity among resources in order to exploit com-
munities and user tagging behavior. In this way our recommender system was
able to suggest tags for users and items still not stored in the training set. The
experimental sessions showed that users tend to reuse their own tags to annotate
similar resources, so this kind of recommendation model could benefit from the
use of the user personal tags before extracting the social tags of the community
(we called this approach user-based).

In the future we will implement a methodology to suggest tags when the
set of similar items returned by Lucene is empty. The system should be able to
extract significant keywords from the textual content associated to a resource
(title, description, etc.) that has not similar items, maybe exploiting structured
data or domain ontologies. Another issue to investigate is the application of our
methodology in different domains such as multimedia environment. In this field
discovering similarity among items just on the ground of textual content could
be not sufficient. Finally, textual content suffers from syntactic problems like
polysemy (a keyword with two or more meanings) and synonymy (two or more
keywords with the same meaning). These problems hurt the performance of the
recommender. We will try to establish if a semantic document indexing could
improve the performance of the recommender.
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Abstract. This paper describes our attempt at Task 2 of ECML PKDD
Discovery Challenge 2009. The task was to predict which tags a given
user would use on a given resource using methods that only utilize the
graph structure of the training dataset, which was a snapshot of Bib-
Sonomy. The approach combines simple recommendation methods by
weighting recommendations based on the tagging history of the user.

1 Introduction

Collaborative tagging systems or folksonomies have steadily gained popularity
in the recent years. Users are free to choose the tags they want to use, and while
this may be a main reason behind the popularity of these systems, it is also one
of the biggest problems these systems face. As users come up with new tags they
forget the tags they used to use, making it difficult to find the previously tagged
content. Tag recommendation can help both in search and in keeping the users’
tagging practices consistent. Tag recommendation can be defined as the problem
of finding suitable tags or labels to a given resource for a given user.

Tag recommendation can be an important element in a folksonomy as it can
help users employ the tags consistently as well as help users to use same tags for
similar resources. This can improve searching within the users’ own resources as
well as the folksonomy.

We present a method for tag recommendation that combines several baseline
methods and collaborative filtering. Combining the results makes use of the past
performance of the recommenders.

2 Tag Recommendation

2.1 Collaborative Filtering for Folksonomies

Collaborative filtering (CF), a popular method used in recommender systems
can be adapted for tag recommendation. The description here is based on [1].

Folksonomy can be understood as a tuple F = (U,R, T, Y ), where U is the
set of users, T is the set of tags and R is the set of resources (bookmarks and
BibTeX entries in the case of BibSonomy [2]) and Y ⊆ U × R × T is the tag
assignment relation.
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Projections πURY ∈ 0, 1|U |×|R|, (πURY )u,r := 1 iff ∃t ∈ T s.t. (u, r, t) ∈ Y
and πUTY ∈ 0, 1|U |×|T |, (πUTY )u,t := 1 iff ∃r ∈ R s.t. (u, r, t) ∈ Y let us define
the “tag neighbourhood” and “resource neighbourhood” of the users. The set of
k nearest neighbours for a user u using the neighbourhood matrix X is

Nk
u := argmaxk

u∈U
sim(xu, xv) (1)

where sim is the cosine similarity

sim(x, y) :=
x · y

||x| | ||y| | (2)

The set of recommendations for a given user-resource pair (u, r) is

T ′(u, r) := argmaxn

t∈T

∑
v∈Nk

u

sim(xu, xv)δ(v, r, t) (3)

where δ(v, r, t) := iff(v, r, t) ∈ Y .

2.2 Baseline Methods

The following are a collection of simple recommendation methods, which do not
produce very good recommendations and have few redeeming qualities except
that they are computationally inexpensive.

Popular tags for a resource. If the users of the folksonomy are homogenous,
this method can be expected to perform almost as well as CF methods. However,
if the users have very different tagging habits or if people use different tags from
different languages, performance for the minorities can be expected to suffer.

Popular tags for a user. Some users use relatively few but obscure tags,
which means that the popular tags for resource -recommender will not work.
Collaborative recommendations also will not work well, as the user will probably
have very few applicable “tag neighbours” and the “resource neighbours” will
most likely not use the same tags. For example, user 483 used the tag “allgemein”
a total of 2237 times in the 9003 posts. In other words, given a post by this user
at random, there is almost a 25% chance it is tagged “allgemein”.

Globally popular tags. Recommending the most used tags is perhaps the sim-
plest possible method.

We used several variants of the aforementioned recommenders. These and
the method used to combine the recommendations are described in chapter 4.1.

3 Data Description and Preprocessing

The provided training data contains three files: bibtex, bookmark and tas. The
bibtex and bookmark files describe the content of the links and BibTeX entries,
respectively. The tas file contains the tag assignments. Also provided was the
post-core at level 2 [3], which contained a reduced set, which contained only
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those users, resources and tags that appear at least in two posts. The test set
for this task was known to have the users, resources and tags from this set.

We processed bookmarks and BibTeX entries identically. The only informa-
tion extracted from the “bookmark” and “bibtex” tables were the hash values
which identified the resources. We used the url hash and simhash1 columns
and did not attempt to combine duplicate resources. The url hash considers
two resources different if there are any differences in the url, such as a trailing
slash.

To retain a slightly better neighbourhoods for the collaborative filtering ap-
proach we used full training set to calculate the neighbourhoods, but removed
the tags that could not appear in the results. The difference between this and
the post-core at level 2 was that this left several partial posts to the training
data.

No effort was made to separate functional tags (such as “myown” and “toread”)
from descriptive tags, which are considerably more interesting in tag recommen-
dation.

Some of the most used tags in BibSonomy are used by a small minority,
such as “juergen” (3101 posts, 2 users). In total, in the subset of tags that are
contained in the post-core 2 there are 273 tags that have been used at least 100
times by at most 5 people. A measure for the popularity of the tag, which takes
into account the number of users of a tag can be defined as

popularity(t) = log(Nt) ∗ log(N∗t ), (4)

where Nt is the number of times the tag t has been used and N∗t is number of
users for the tag t.

This measure can be used to improve tag recommendation methods which
would not otherwise give weights to different tags.

Table 1. Tags ordered by number of uses and “popularity”

Number of uses Popularity

bookmarks software
zzztosort web

video web20
software video

programming blog
web20 bookmarks
books programming
media internet
tools tools
web social

As can be seen from Table 1, sorting the tags by their “popularity” removes
the unlikely tag “zzztosort” while preserving a sensible selection of popular tags.

231



4 Results

4.1 Combining Recommendations

The baseline methods can yield good results on certain users, but they are gen-
erally worse than the alternatives. However, combining the baseline results with
results from collaborative filtering or other methods can be used to improve the
general results. The problem of combining results is in evaluating the trustwor-
thiness of the recommender results.

In tag recommendation, there are multiple “items” that are recommended,
and besides the similarity between the user and the neighbours of the user there
are few evident factors that could be used to weight the tags when combining
different methods. In our method, we used the training data to predict the recent
posts of the users (1-100 posts, but at most 20% of the user’s all posts)

In our approach, we took the arbitrary set of methods shown in Table 2
and assigned weights to different tags by calculating the weighted sum over all
recommenders using the per-user per-post weighted sum

wt :=
∑

p

[t ∈ T ′] ∗ 0.9kfp (5)

where fp is the F-measure of the method p ∈ 1, .., 7 on the validation set, and k
is the position of the tag in the recommendation. This reduces the weight of the
tag slightly so that the methods with smaller F-measure have a better possibility
of getting a likely tag in the final results. The final recommendation are the five
t ∈ T with the highest wt.

Table 2. Recommendation methods

Method

Collaborative filtering (UR neighbourhood)
Collaborative filtering (UT neighbourhood)
Most frequent tags by resource
Most frequent tags by resource (popularity > 3)
Most frequent user tags
Most frequent user tags (popularity > 3)
Most popular global tags

Prior to the competition, we performed a test with the training data. The
posts were divided into three sets based on the post date. The first 80% was
selected to work as a training set, the following 10% as the validation set and
the last 10% were used for testing. The method weights were computed from
the validation set. The resulting weights were tested on the test set, showing a
modest 5% improvement in the F-measure over the best baseline method in the
test.
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4.2 Experiment on the Competition Set

The weights for the methods were assigned to the users in the competition set
by generating recommendations for recent posts with all the methods listed in
the previous section. The amount of posts was chosen was up to 100 posts, but
at most 20% of the user’s all posts. After this, the F-measure for each method
was used to generate a mixing profile for each user. Then the recommendations
were made for the competition set and these were combined using the equation
5. The results are summarized in Table 3.

Table 3. Results on the competition set

Method F-measure with 5 tags

CF-UR 0.2084
CF-UT 0.2317
resource tags 0.3067
resource tags (popularity > 3) 0.2940
user tags 0.0935
user tags (popularity > 3) 0.0050
popular tags 0.0354

combined 0.2952

One of the baselines (resource tags) outperforms the combined result slightly
on the competition set. Some of the recommendations, such as “resource tags”,
can contain very unlikely tags when the resource itself is tagged only a few times
and contains unpopular tags; this was not taken into account when combining
the recommendations. A possible solution for this problem is to not recommend
unlikely (unpopular) tags if the user hasn’t used them in the past.

5 Conclusion

In these experiments, the weights of the recommenders are based on their past
performance, but it is likely that there are several features that can be used to
estimate these weights from statistical features of the user, such as the average
“popularity” of the user’s tags and the number of distinct tags. We would like
to study these numbers for correlations. Recommendations by other methods,
such as FolkRank [1] could be added to improve the performance on the dense
parts of the data.

The obtained results were less than stellar; in retrospect, more attention
should have been paid to the combining of the results and especially the fact that
the results of the recommendations were far from independent. Some method for
filtering the results should have been applied, perhaps by modifying the weights
for the individual tags by using the information whether the target user has used
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a certain tag before and how popular the tag is. Simple methods should not be
completely neglected, as they can provide useful results for users who do not
conform to the tagging practices of the mainline users of the folksonomy.

6 Discussion

F-measure works as a performance measure for tag recommendation to a certain
extent, but the utility of tag recommendation methods for usability and search
within a folksonomy should be confirmed with user tests. Combining different
tag recommendation results with different weights at different times may cause
the recommendation to feel inconsistent.

Searching within a folksonomy is sometimes unnecessarily difficult. A part of
the problem is that users tend to use only a few tags per post. One improvement
for these tagging systems would be to ask for applicability of a set of tags that are
similar to the ones user has already chosen. It might make sense to distinguish
between the problems of tag prediction, that is, predicting the tags user will
choose, and tag recommendation, the problem of finding descriptive tags for a
resource.
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Abstract. This paper describes our approach to the ECML/PKDD Dis-
covery Challenge 2009. Our approach is a pure statistical model taking
no content information into account. It tries to find latent interactions
between users, items and tags by factorizing the observed tagging data.
The factorization model is learned by the Bayesian Personal Ranking
method (BPR) which is inspired by a Bayesian analysis of personalized
ranking with missing data. To prevent overfitting, we ensemble the mod-
els over several iterations and hyperparameters. Finally, we enhance the
top-n lists by estimating how many tags to recommend.

1 Introduction

In this paper, we describe our approach to task 2 of the ECML/PKDD Discovery
Challenge 2009. The setting of the challenge is personalized tag recommendation
[1]. An example is a social bookmark site where a user wants to tag one of his
bookmark and the tag recommender suggest the user a personalized list of tags
he might want to use for this item.

Our approach to this problem is a pure statistical model using no content
information. It relies on a factor model related to [2] where the model parameters
are optimized for the maximum likelihood estimator for personalized pairwise
ranking [3]. Furthermore, we use a smoothing method for reducing the variance
in the factor models. Finally, we provide a method for estimating how many tags
should be recommended for a given post. This method is model independent and
can be applied to any tag recommender.

2 Terminology and Formalization

We follow the terminology of [2]: U is the set of all users, I the set of all items/
resources and T the set of all tags. The tagging information of the past is repre-
sented as the ternary relation S ⊆ U ×I×T . A tagging triple (u, i, t) ∈ S means
that user u has tagged an item i with the tag t. The posts PS denotes the set of
all distinct user/ item combinations in S:

PS := {(u, i)|∃t ∈ T : (u, i, t) ∈ S}
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Our models calculate an estimator Ŷ for S. Given such a predictor Ŷ the list
Top of the N highest scoring items for a given user u and an item i can be
calculated by:

Top(u, i,N) :=
N

argmax
t∈T

ŷu,i,t (1)

where the superscript N denotes the number of tags to return. Besides ŷu,i,t we
also use the notation of a rank r̂u,i,t which is the position of t in a post (u, i)
after sorting all tags by ŷu,i,t:

r̂u,i,t := |{t′ : ŷu,i,t′ > ŷu,i,t}|

3 Factor Model

Our factorization model (FM) captures the interactions between users and tags
as well as between items and tags. The model equation is given by:

ŷu,i,t =
∑

f

ûu,f · t̂Ut,f +
∑

f

îi,f · t̂It,f (2)

Where Û , Î, T̂U and T̂ I are feature matrices capturing the latent interactions.
They have the following types:

Û ∈ R|U |×k, Î ∈ R|I|×k,

T̂U ∈ R|T |×k, T̂ I ∈ R|T |×k

Note that this model differs from the factorization model in [2] where the model
equation is the Tucker Decomposition.

3.1 Optimization Criterion

Our optimization criterion is an adaption of the BPR criterion (Bayesian Person-
alized Ranking) [3]. The criterion presented in [3] is derived for the task of item
recommendation. Adapted to tag recommendation, the optimization function for
our factor model is:

BPR-Opt :=
∑

(u,i)∈PS

∑
t+∈T+

u,i

∑
t−∈T−u,i

lnσ(ŷu,i,t+ − ŷu,i,t−)

− λ(||Û ||2 + ||Î||2 + ||T̂U ||2 + ||T̂ I ||2) (3)

That means BPR-Opt tries to optimize the pairwise classification accuracy
within observed posts. Note that it differs from [2] by optimizing for pairwise
classification (log-sigmoid) instead of AUC (sigmoid).
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3.2 Learning

The model is learned by the LearnBPR algorithm [3] which is a stochastic gra-
dient descent algorithm where cases are sampled by bootstrapping. In the fol-
lowing, we show how we apply this generic algorithm to the task of optimzing
our model paramaters for the task of tag recommendation. The gradients of our
model equation (2) with respect to the model parameters Θ = {Û , Î, T̂U , T̂ I}
are:

∂BPR-Opt

∂Θ

=
∑

(u,i)∈PS

∑
t+∈T+

u,i

∑
t−∈T−u,i

∂

∂Θ
lnσ(ŷu,i,t+ − ŷu,i,t−)− λ ∂

∂Θ
||Θ||2

∝
∑

(u,i)∈PS

∑
t+∈T+

u,i

∑
t−∈T−u,i

−e−(ŷu,i,t+−ŷu,i,t− )

1 + e−(ŷu,i,t+−ŷu,i,t− )
· ∂
∂Θ

(ŷu,i,t+ − ŷu,i,t−)− λΘ

That means, we only have to compute the derivations of our model equation
ŷu,i,t with respect to each model parameter from Θ = {Û , Î, T̂U , T̂ I}:

∂

∂ûu,f
ŷu,i,t = t̂Ut,f

∂

∂îu,f

ŷu,i,t = t̂It,f

∂

∂t̂Ut,f
ŷu,i,t = ûu,f

∂

∂t̂It,f
ŷu,i,t = îi,f

These derivations are used in the stochastic gradient descent algorithm shown
in figure 1.

The method presented so far has the following hyperparameters:

– α ∈ R+ learning rate
– λ ∈ R+

0 regularization parameter
– µ ∈ R mean value for initialization of model parameters
– σ2 ∈ R+

0 standard deviation for initialization of model parameters
– k ∈ N+ feature dimensionality of factorization

Reasonable values for all parameters can be searched on a holdout set. The
learning rate and the initialization parameters are only important for the learning
algorithm but are not part of the optimization criterion or model equation.
Usually, the values found for α, µ, σ2 on the holdout generalize well.

In contrast to this, the regularization and dimensionality are more important
for the prediction quality. In general, when the regularization is chosen properly,
the higher the dimensionality the better. In our submitted result, we use an
ensemble of models with different regularization and dimensionality.
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1: procedure LearnBPR(PS , Û , Î, T̂
U , T̂ I)

2: draw Û , Î, T̂U , T̂ I from N(µ, σ2)
3: repeat
4: draw (u, i, t+, t−) uniformly from PS × T+

u,i × T−u,i

5: d← ŷu,i,t+ − ŷu,i,t−
6: for f ∈ 1, . . . , k do

7: ûu,f ← ûu,f + α
“

e−d

1+e−d · (t̂Ut+,f − t̂Ut−,f ) + λ · ûu,f

”
8: îi,f ← îi,f + α

“
e−d

1+e−d · (t̂It+,f − t̂It−,f ) + λ · îi,f
”

9: t̂Ut+,f ← t̂Ut+,f + α
“

e−d

1+e−d · ûu,f + λ · t̂Ut+,f

”
10: t̂Ut−,f ← t̂Ut−,f + α

“
e−d

1+e−d · −ûu,f + λ · t̂Ut−,f

”
11: t̂It+,f ← t̂It+,f + α

“
e−d

1+e−d · îi,f + λ · t̂It+,f

”
12: t̂It−,f ← t̂It−,f + α

“
e−d

1+e−d · −îi,f + λ · t̂It−,f

”
13: end for
14: until convergence
15: return Û , Î, T̂U , T̂ I

16: end procedure

Fig. 1. Optimizing our factor model for equation (3) with bootstrapping based stochas-
tic gradient descent. With learning rate α and regularization λ.

3.3 Ensembling Factor Models

Ensembling factor models with different regularization and dimensionality is
supposed to remove variance from the ranking estimates. There are basically
two simple approaches of ensembling predictions ŷl

u,i,t of l models:

1. Ensemble of the value estimates ŷl
u,i,t:

ŷev
u,i,t :=

∑
l

wl · ŷl
u,i,t (4)

2. Ensemble of the rank estimates r̂l
u,i,t:

ŷer
u,i,t :=

∑
l

wl · (|T | − r̂l
u,i,t) (5)

That means tags with a high rank (low r̂) will get a high score ŷ.

Where wl is the weighting parameter for each model.
Whereas ensembling value estimates is effective for models with predictions

on the same scale, rank estimates are favorable in cases where the ŷ values of
the different models have no direct relationship.

Ensembling Different Factor Models For our factor models the scales of ŷ
depend both on the dimensionality and the regularization parameter. Thus we
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use the rank estimates for ensembling factor models with different dimensionality
and regularization. In our approach we use a dimensionality of k ∈ {64, 128, 256}
and regularization of λ ∈ {10−4, 5 · 10−5}. As the prediction quality of all of our
factor models are comparable, we have chosen identical weights wl = 1.

Ensembling Iterations Within each factor model we use a second ensembling
strategy to remove variance. Besides the hyperparameters, another problem is
the stopping criterion of the learning algorithm (see figure 1). We stop after
a predefined number of iterations (2000) – we have chosen an iteration size of
10 · |S| single draws. In our experiments the models usually converged already
after about 500 iterations but in the following iterations the ranking alternates
still a little bit. To remove the variance, we create many value estimates from
different iterations and ensemble them. I.e. after the first 500 iterations we create
each 50 iterations a value estimate for each tag in all test posts and ensemble
these estimates with (4). Again there is no reason to favor an iteration over
another, so we use identical weights wl = 1. This gives the final estimates for
each model. The models with different dimensionality and regularization are
ensembled as described above.

4 Baseline Models

Besides our factorization model we also consider several baseline models and
ensembles of these models. The models we pick as baselines are most-popular by
item (mpi), most-popular by user (mpu), item-based knn (knni) and user-based
knn (knnu).

The most-popular models are defined as follows:

ŷmpi
u,i,t = |{u′ ∈ U : (u′, i, t)}|
ŷmpu

u,i,t = |{i′ ∈ I : (u, i′, t)}|

The k-nearest-neighbour models (knn) are defined as follows:

ŷknni
u,i,t =

∑
(u,i′,t)∈S

simi,i′

ŷknnu
u,i,t =

∑
(u′,i,t)∈S

simu,u′

To measure simi,i′ and simu,u′ respectively, we first fold/ project the observed
data tensor in a two dimensional matrix FU and F I :

f I
i,t = |{u : (u, i, t) ∈ S}|
fU

u,t = |{i : (u, i, t) ∈ S}|
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After the folding we apply cosine similarity to compare two tag vectors:

simi,i′ =

∑
t f

I
i,t · f I

i′,t√∑
t(f

I
i,t)2 ·

√∑
t(f

I
i,t)2

simu,u′ =

∑
t f

U
u,t · fU

u′,t√∑
t(f

U
u,t)2 ·

√∑
t(f

U
u,t)2

We tried different weighted ensembles of the baseline models using the value
estimate ensembling method. Even though these ensembles produce quite good
results, in our experiments they did not outperform the factor models and fur-
thermore adding baselines to the factor models did not result in a significant
improvement of the factor models. Thus our final submission only consists of
the factor models.

5 Adaptive List Length

In contrast to the usual evaluation scheme of tag recommendation, in this chal-
lenge the recommender was free to choose the length of the list of the recom-
mendations in a range from a length of 0 to 5. The evaluation functions are:

Prec(Stest) := avg
(u,i)∈PStest

|Top(u, i,min(5,#u,i)) ∩ {t|(u, i, t) ∈ Stest}|
min(5,#u,i)

Recall(Stest) := avg
(u,i)∈PStest

|Top(u, i,min(5,#u,i)) ∩ {t|(u, i, t) ∈ Stest}|
|{t|(u, i, t) ∈ Stest}|

F1(Stest) :=
2 · Prec(Stest) · Recall(Stest)
Prec(Stest) + Recall(Stest)

Where #u,i is the number of tags the recommender estimates for a post.
There are three simple ways to estimate #u,i:

– Global estimate:

#G
u,i :=

|S|
|PS |

– User estimate:

#U
u,i :=

|{(i′, t) : (u, i′, t) ∈ S}|
|{i′ : (u, i′, t) ∈ S}|

– Item estimate:

#I
u,i :=

|{(u′, t) : (u′, i, t) ∈ S}|
|{u′ : (u′, i, t) ∈ S}|
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Based on these simple estimators, a combined post size can be produced by a
linear combination:

#E
u,i := β0 + βG#G

u,i + βU#U
u,i + βI#I

u,i

In our approach we use #E
u,i and optimize β on the holdout set for maximal F1.

We found that choosing an adaptive length of the recommender list significantly
improved the results over a fixed number.

6 Experimental Results

6.1 Sampling of Holdout Set

As the test of the challenge was released two days before the submission dead-
line, we tried to generate representative holdout-sets. We created two test sets,
one following the leave-one-post-per-user-out protocol [1] and a second one by
uniformly sampling posts with the constraint that the dataset should remain a
2-core after moving a post into the test set. These two sets were used as holdout
sets for algorithm evaluation and hyperparameter selection. In the following, we
report results for the second holdout set, because its characteristics (in terms of
number of users, items and posts) are closer to the real test set.

6.2 Results

The results of the method presented so far can be found in table 2 and 3. As
you can see, the single baseline models result in low quality but ensembles can
achieve a good quality. In contrast to this, our proposed factor models generate
better recommendations. The best possible ensemble (optimized on test!) of
the baselines achieves a score of 0.330 on the challenge set whereas our factor
ensemble (not optimized on test) results in 0.345.

mpu mpi mp-ens knni knnu knn-ens knn+mp-ens

holdout 0.249 0.351 -/0.423 0.401 0.371 -/0.445 -/0.473

challenge 0.098 0.288 0.290/0.317 0.209 0.295 0.293/0.320 0.299/0.330

Fig. 2. F-Measure quality for the baselines methods. For the ensembles, we report two
results: one for an ensemble with identical weights and one with optimal weights that
have been optimized on the test! set. For sure this is an optimistic value that might
not be found using the holdout split.

An interesting finding is that the results on the challenge test set largely dif-
fers from both of our holdout sets. But as all methods suffer, we assume that the
tagging behavior in the challenge test set is indeed different from the one in the
training set. Especially, the baseline most-popular-by-user dropped largely from
24.9% to 9.8% – this might indicate that personalization is difficult to achieve on
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single FM FM-ens FM-ens adaptive list length

holdout 0.495± 0.002 0.498 0.522

challenge - 0.345 0.356

Fig. 3. F-Measure quality for the factorization methods. Single FM reports the average
quality of each factorization model. FM-ens is the unweighted ensemble and finally we
report the ensemble with the adaptive list length, i.e. predicting sometimes less than
5 tags.

the challenge test set using the provided training set. Non-personalized meth-
ods or content-based methods could benefit from the difference in both sets.
Also methods that can handle temporal changes in the tagging behaviour might
improve the scores.

7 Conclusion

In this paper, we have presented a factor model for the task of tag recommen-
dation. The model tries to describe the individual tagging behavior by four
low-dimensional matrices. The model parameters are optimized for the person-
alized ranking criterion BPR-Opt [3]. The length of the recommended lists is
adapted both to the user and item. Our evaluation indicates that our approach
outperforms ensembles of baseline models which are known to give high quality
recommendations [1].
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Abstract. Social tagging is a popular and convenient way to organize
information. Automatic tag suggestion can ease the user’s tagging activ-
ity. In this paper, we exam both content-based and graph-based meth-
ods for tag suggestion using the BibSonomy dataset, and describe our
methods for ECML/PKDD Discovery Challenge 2009 submissions . In
content-based tag suggestion, we propose a fast yet accurate method
named Feature-Driven Tagging. In graph-based tag suggestion, we apply
DiffusionRank to solve the problem, and get a better result than current
state-of-the-art methods in cross-validation.

1 Introduction

Social tagging, aka, folksonomy, is a popular way to organize resources like doc-
uments, bookmarks and photos. Resource, tag and user are three essential parts
in a social tagging system, a user uses tags to describe resources. Tag suggestion
system eases the process of social tagging. It can suggest tags to new resources
based on previous tagged resources.

To promote related research, ECML/PKDD organizes a open contest of tag
suggestion systems, named Discovery Challenge 2009 (DC09 in short). In this
contest a snapshot of users, documents and tags in the online bookmarking
system BibSonomy is provided. Each team trains their suggestion system on the
snapshot, and test the performance on the same test dataset. There are 3 tasks
in the contest. Task 1 focuses on suggesting tags by the content of the resources,
i.e, content-based tag suggestion. Task 2 focuses on suggesting tags by the tri-
partite links between resources, tags and users, i.e., graph-based tag suggestion.
Task 3 puts the suggestion system into real-life situation by integrating it with
BibSonomy website, and see which system predicts the user’s intention best.

In this paper, we describe our methods for the three tasks. For Task 1 and 3,
we propose a fast tag suggestion method called Feature-Driven Tagging (FDT).
FDT indexes tags by features, where feature can be word, resource ID, user ID
or others. For each feature, FDT keeps a list of weighted tags, the higher the
weight, the more likely the tag is suggested by the feature. For a new resource,
each feature in it suggests a list of weighted tags, the suggestions are combined
according to the importance of features to get the final suggestion. Compared to
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other methods, FDT provides suggestions faster, and the speed is only related
with the number of features in the resource(number of words in the content).

For Task 2, we apply two existing methods, most popular tags and FolkRank,
for graph-based suggestion. Furthermore, we propose to use a new graph-based
ranking model, DiffusionRank, for tag suggestion. The method of “most popular
tags” is the simplest collaborative-filtering based methods. It recommends the
most popular tags of the resources used by other users. FolkRank is based on
PageRank [1] on user-resource-tag tripartite graph, which was first proposed
as a tag suggestion method in [2]. DiffusionRank was originally proposed for
combating web spam [3], which has also been successfully used in social network
analysis [4] and search query suggestion [5]. DiffusionRank is motivated by the
heat diffusion process, which can be used for ranking because the activities flow
on the graph can be imagined as heat flow, the edge from a vertex to another
can be treated as the pipe of an air-conditioner for heat flow. Compared to
PageRank, DiffusionRank provides more flexible mechanism to make the ranking
scores related to initial values of the vertices, which is important for graph-based
tag suggestion.

The paper is organized as follows. Section 2 formulates the problem of tag
suggestion. Section 3 introduces our method for content-based tag suggestion.
Section 4 introduces our method for graph-based tag suggestion. Section 5 de-
scribes the dataset, experiment settings and the result. Section 6 introduces
related work on tag suggestion. Section 7 concludes the paper.

2 Problem Formulation

We adopt the model of social tagging proposed by Jaschke et al [2]. A social
tagging data set is defined as a tuple F := (U, T, R, Y ), where U is the set of
users, T is the set of tags and R is the set of resources. Y is a ternary relation
between U, T and R, Y ⊆ U × T × R. (u, r, t) ∈ Y is called a tag assignment,
which means user u assigned the tag t to resource r. A resource r ∈ R can be
described with a piece of text, like titles of a paper or user-edited description of
a website. We denote the words in the text as {wi}.

Resources, users and tags form a graph G = (V, E), where V = U
⋃

R
⋃

T ,
and E = {{u, t}, {u, r}, {r, t}|(u, t, r) ∈ Y }. The goal of tag suggestion is to
predict the set of tags {t} for a given pair of user and resource (u, r).

In related literature, social tags are also called folksonomy, the pair of a
resource and a user is also called a post.

3 Content-based Tag Suggestion

In this section, we propose a content-based tag suggestion method named Feature-
Driven Tagging(FDT). Briefly speaking, FDT is a voting model, where each fea-
ture in the resource votes for their favorite tags, and the final scores of tags
are averaged by the importance of the features. Figure 1 illustrates the tagging
procedure of FDT, it consists of 3 steps: feature extraction, feature weighting
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and tag voting. For a resource with content, FDT first extracts features from
the content. Features include but are not limited to words, resource ID and user
ID. Then, FDT weights each feature by their importance in the resource, we ex-
plain different ways to compute the importance of features later in this section.
In the voting step, each feature contributes a weighted list of tags, the higher
the weight, the more likely we should suggest the tag. Weight of a tag from
different features are combined by the importance of each feature, thus creates
the final weighted list of tags. In the tagging process, all parameters are indexed
by feature, we do not need to iterate over all tags (as in text categorization
approaches) or resources (as in neighborhood-based approaches), so it is called
Feature-Driven Tagging.

UID-264
RID-43EFAD583EF

power
management

portable
devices

p2p
bit torrent

tr ibbler
pouwelse

0.532 : UID-264
0.496 : tr ibler
0.427 : bi t torrent
0.412 : pouwelse
0.270 : p2p
0.163 : devices
0.109 : power
0.086 :  management

. . .

0.532 :  UID-264 => p2p(1.0)
0.496 :  t r ib ler  => p2p(1.0)
0.427 :  b i t torrent  => p2p(1.0)
0.412 :  pouwelse => p2p(1.0)
0.270 :  p2p => p2p(1.0) peertopeer(0.8)
0.163 : devices => mobile(1.0) device(0.6) l i t review(0.36)
0.109 :  power => power(1.0) powermanagement(0.6)
0.086 :  management  => management(1.0)
     knowledgemanagement(0.7)
     powermanagement(0.68)

. . .

2.137 : p2p
0.216 : peertopeer
0.124 :  powermanagement
0.163 : mobile
0.098 : device
0.109 : power

. . . .

UserID: 264

ResourceID: 43EFAD583EF

Power management for portable
devices, P2P Bittorrent Tribler,
 J.A. Pouwelse.

Feature
Extraction

Feature
Weighting

Voting

Get Result

Fig. 1. The procedure of Feature-Driven Tagging.

3.1 Feature Extraction

We extract features from different sources. Word features are extracted from tex-
tual content of resources, we use them to capture the relationship between words
and tags. For bibtex, the textual content is title + bibtexAbstract + journal +
booktitle + annote + note + description; For bookmark, it is description +
extended. We also include simhash1 and the user ID of a resource as a fea-
ture. The same publication or website share the same simhash1, we use it to
capture the tags assigned by other users. We use user ID as a feature so as to
model a user’s preferences of tagging.
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3.2 Compute the Importance of Features

We use two methods to assess the importance of features in a resource. The first
and most intuitive one is TF × IDF . TF × IDF is widely used in information
retrieval, text categorization and keyword extraction [6]. We use log-version of
TF × IDF , which computes as

TF × IDF (f) = log(
n(f)
N

+ 1) ∗ log(
|R|

df(f)
+ 1) (1)

where n(f) is the number of occurrences of f in this resource, and N is the
total number of features occurred in this resource. |R| is the total number of
resources, df(f) is the number of resources f has occurred in. The +1 is to avoid
zero or negative weights.

The other method we used is TF × ITF , ITF stands for Inverse Tag Fre-
quency, it computes as follows,

TF × ITF (f) = log(
n(f)
N

+ 1) ∗ log(
|T |

ntag(f)
+ 1) (2)

where |T | is the total number of tags, and ntag(f) is the number of tags f
has co-occurred with. ITF implies that the more tags a feature co-occurs with,
the less specific and important the feature is.

3.3 Feature-Tag Correlation

In FDT, each feature is associated with a weighted list of tags. We denote this
as a matrix Θ, where θi,j is the weight of tag tj to feature fi, the size of Θ is
|F | × |T |, F is the set of all features. Although Θ is large, it is extremely sparse,
so each feature only associates with a small number of tags.

We use three different methods to compute Θ offline, they are co-occurrence
count(CC), Mutual Information (MI) and χ2 statistics (χ2). Co-occurrence count
is computed by

CC(f, t) = n(f, t)/n(t) (3)

where n(f, t) is the number of co-occurrences of feature f and tag t, and n(t)
is the total number of occurrences of tag t. CC is a naive way to find the most
important tags for a feature.

In MI, we model each feature or tag as a binary-valued probabilistic vari-
able, the value of which means occur in a document(1) or not(0). Then, we can
compute the Mutual Information between a feature and a tag by

MI(f, t) =
∑

f ′∈f,f̄

∑
t′∈t,t̄

p(f ′, t′)log(
p(f ′, t′)

p(f ′)p(t′)
) (4)

where f ′ = f means feature f occurs in the resource, and f ′ = f̄ means it
doesn’t occur, the same is for t′. MI computes the shared information between
f and t, the higher it is, the more correlated f and t are.
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χ2 has been used for feature selection in text categorization [7], it also find
the correlation between a feature and a category, here we use the tag as category.
χ2 is computed as follows,

χ2(f, t) =
N(AD −BC)2

(A + C)(B + D)(A + B)(C + D)
(5)

where A = n(f, t), B = n(f, t̄), C = n(f̄ , t, D = n(f̄ , t̄).
After we get Θ by one of the above methods, we make Θ sparse by picking

the largest K values in Θ and set other values to 0. We test K = 30000, 50000
and 100000, as K increases, the F1 measure increases. When K > 50000, the
F1-measure doesn’t change a lot, so we use K = 50000 in all experiments. For
each row in Θ, we first find the largest value θi,max, then set all values in this
row to θi,j = θi,j/θi,max. We compare the performance of these 3 methods in
the experiment section.

FDT has low computation complexity when tagging. For a resource with
n features, the complexity of tagging is O(nm), where m is the average tags
for each feature in Θ. m is usually a small number, in our model it is 4.63 for
bibtex and 5.81 for bookmark. Note that the complexity of FDT is not related to
the total number of training documents, tags or users. Nearest neighbor methods
have to search in the entire training data set, so the complexity is at least O(|R|).
Multi-label classifier methods have to train a classifier for each one of tags, so
the complexity is at least O(|T |). Furthermore, the model of FDT is related with
K, which is around 105, it is small enough to load in the main memory.

4 Graph-based Tag Suggestion

4.1 Method Preliminaries

The basic idea of graph-based tag suggestion is to construct a graph with users,
resources and tags as vertices and build edges according to user tagging behav-
iors. After building the graph, we can adopt some graph-based ranking algo-
rithms to rank tags for a specific user and resource. Then the top-ranked tags
are recommended to users.

To describe the graph-based methods more clearly, we first give some math-
ematical notations. For the folksonomy F := (U, T, R, Y ), we firstly convert it
into an undirected tripartite graph GF = (V, E). In GF, the vertices consists
of users, resources and tags, i.e., V = U

⋃
R

⋃
T . For each tagging behavior of

user u assigning tag t to resource r, we will add edges between u , r and t, i.e.,
E = {{u, r}, {u, t}, {r, t}|(u, t, r) ∈ Y }.

In GF, we have the set of vertices V = {v1, v2, · · · , vN} and the set of edges
E = {(vi, vj) | There is an edge between vi and vj}. For a given vertex vi, let
N(vi) be the set of vertices that are neighbors of vi. We have w(vi, vj) as the
weight of the edge (vi, vj). For an undirected graph, w(vi, vj) = w(vj , vi). Let
w(vi) be the degree of vi, and we have

w(vi) =
∑

vj∈N(vi)

w(vj , vi) =
∑

vj∈N(vi)

w(vi, vj) (6)
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Based on the graph, we can employ various graph-based ranking methods to
recommend tags. In this paper, we first introduce two existing methods, including
“most popular tags” and “FolkRank”. Furthermore, we propose to use a new
ranking model, DiffusionRank, for graph-based tag suggestion.

4.2 Most Popular Tags

We first introduce a simple but effective method for tag suggestion. Some nota-
tions are given as below, which is identical with [2]. For a user u ∈ U , we denote
all his/her tag assignments as Yu := Y

⋂
({u}×T ×R). Accordingly, we have Yr

and Yt. Based on the same principle, we can define Yu,t := Y
⋂

({u} × {t} ×R)
for u ∈ U and t ∈ T . We also have Yt,r accordingly. Furthermore, we denote all
tags that user u ∈ U have assigned as Tu := {t ∈ T |∃r ∈ R : (u, t, r) ∈ Y }.

There are variants of “most popular tags” as shown in [8], which are usu-
ally restricted in different statistical range. For example, most popular tags of
folksonomy recommends the most popular tags of the whole set of folksonomy.
Therefore, it recommends the same set of tags for any user and resource, which
suffers from cold-start problems and has no consideration on personalization.

A reasonable variant of “most popular tags” is recommending the tags that
globally are most specific to the resource. The method is named as most popular
tags by resource:

T (u, r) =
n

argmax
t∈T

(|Yt,r|) (7)

Since users might have specific preferences for some tags, which should have
been used by him/her, thus we can use the most popular tags by user. As shown
in [8], the performance is poor if we use most popular tags by user in isolation.
If we mix the most popular tags of user and resource, the performance will be
much better than each of them. The simplest way to mix the effect of users and
resources on tags is to add the counts and then sort:

T (u, r) =
n

argmax
t∈T

(|Yt,r| × |Yu,t|) (8)

4.3 FolkRank

FolkRank is originally proposed in [2] which is based on user-resource-tag tripar-
tite graph. In FolkRank, two random surfer model is employed on the tripartite
graph. The ranking values of vertices are computed using the following formula:

PR(vi) = λ
∑

vj∈N(vi)

w(vj , vi)
w(vj)

PR(vj) + (1 − λ)p(vi) (9)

where PR(vi) is the PageRank value and pvi is the preference to vi. Suppose we
have an adjacent matrix A to represent the graph GF:

A(i, j) =

{
0 if (vi, vj) /∈ E

w(vi,vj)
w(vj)

if (vi, vj) ∈ E
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With the matrix, we can rewrite the Equation 9 as:

s = λAs + (1− λ)p (10)

where s is the vector of PageRank scores of vertices, and p is the vector of
preferences of vertices.

A straightforward idea of graph-based tag suggestion is to set preference to
the user and resource to be suggested for, and then compute ranking values using
PageRank in Eq. (10). However, as pointed out in [8], this will make it is difficult
for other vertices than those with high edge degrees to become highly ranked,
no matter what the preference values are.

Based on above analysis, we described FolkRank as follows. To generate tags
for user u and resource r, we have to:

1. Let s(0) be the stable results of Eq. (10) with p = 1, i.e., the vector composed
by 1’s.

2. Let s(1) be the stable results of Eq. (10) with p = 0, but p(u) = 1 and p(r)
= 1.

3. Compute s := s(1) − s(0).

Therefore, we can rank tags according to their final values in s, where the top-
ranked tags are suggested to user u for resource r.

4.4 DiffusionRank

DiffusionRank was originally proposed for combating web spam [3], which has
also been successfully used in social network analysis [4] and search query sug-
gestion [5]. DiffusionRank is motivated by the heat diffusion process, which can
be used for ranking because the activities flow on the graph can be imagined as
heat flow, the edge from a vertex to another can be treated as the pipe of an
air-conditioner for heat flow.

For a graph G = {V, E}, denote fi(t) is the heat on vertex vi at time t, we
construct DiffusionRank as follows. Suppose at time t, each vertex vi receives
an amount of heat, M(vi, vj , t, ∆t), from its neighbor vj during a period ∆t.
The received heat is proportional to the time period ∆t and the heat difference
between vi and vj , namely fj(t)−fi(t). Based on this, we denote M(vi, vj , t, ∆t)
as

M(vi, vj , t, ∆t) = γ(fj(t)− fi(t))∆t

where γ is heat diffusion factor, i.e. the thermal conductivity. Therefore, the heat
difference at node vi between time t + ∆t and time t is equal to the sum of the
heat that it receives from all its neighbors. This is formulated as:

fi(t + ∆t)− fi(t) =
∑

vj∈N(vi)

γ(fj(t)− fi(t))∆t (11)

The process can also be expressed in a matrix form:

f(t + ∆t)− f(t)
∆t

= γHf(t) (12)
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where f is a vector of heat at vertices at time t, and H is

H(i, j) =


−1 if i = j
0 if (vi, vj) /∈ E

w(vi,vj)
w(vj)

if (vi, vj) ∈ E
(13)

If the limit ∆t → 0, the process will become into

d

dt
f(t) = γHf(t) (14)

Solving this differential equation, we have f(t) = eγtHf(0). Here we could extend
the eγtH as

eγtH = I + γtH +
γ2t2

2!
H2 +

γ3t3

3!
H3 + · · · (15)

The matrix eγtH is named as the diffusion kernel in the sense that the heat
diffusion process continues infinitely from the initial heat diffusion.

γ is an important factor in the diffusion process. If γ is large, the heat will
diffuse quickly. If γ is small, the heat will diffuse slowly. When γ → +∞, heat
will diffuse immediately, and DiffusionRank becomes into PageRank.

As in PageRank, there are random relations among vertices. To capture these
relations, we use a uniform random relation among different vertices as in PageR-
ank. Let 1 − λ denote the probability that random surfer happens and λ is the
probability of following the edges. Based on the above discussion, we can modify
DiffusionRank into

f(t) = eγtRf(0), R = λH + (1− λ)
1
N

1 (16)

In application, a computation of eγtR is time consuming. We usually to approx-
imate it to a discrete form

f(t) = (I +
γ

M
R)Mtf(0) (17)

Without loss of generality, we use one unit time for heat diffusion between ver-
tices and their neighbors, we have

f(1) = (I +
γ

M
R)M f(0) (18)

We could iteratively calculate (I+ γ
M R)M f(0) by applying the operator (I+ γ

M R)
to f(0). Therefore, for each iteration, we could diffuse the heat values at each
vertices using the following formulation:

s = (1 − γ

M
)s +

γ

M
(λAs + (1− λ)

1
N

1) (19)

where M is the number of iterations. As analyzed in [3], for a given threshold ǫ,
we can compute to get M such that ‖((I + γ

M R)M − eγR)f(0)‖ < ǫ for any f(0)
whose sum is one. Similar to [3], in this paper we set M = 100 for DiffusionRank.
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Different from FolkRank, in DiffusionRank we set the initial values f(0) for
vertices to indicate the preferences. To suggest tags to user u for resource r,
we set f(0) = 0, but for fu(0) = 1 and fr(0) = 1. After running DiffusionRank
on the tripartite graph, we rank tags according to their ranking scores and the
top-ranked tags are suggested to user u for resource r.

5 Experiments

5.1 Data Set

We use the given BibSonomy data set to validate our methods, it is a snapshot
of the BibSonomy system until Jan 1, 2009. The data set contains two parts,
bibtex and bookmark. In bibtex, the resources are citation of research papers or
books, with title, author and other information. In bookmark, the resources are
website URLs with a user-provided short description. Additionally, the contest
organizer provide two postcore-2 data sets. In the postcore-2 data sets, the orga-
nizer removed all users, tags, and resources which appear in only one post. The
process was iterated until convergence and got a core in which each user, tag,
and resource occurs in at least two posts. Batagelj et al [9] provided a detailed
explanation of postcore building . The basic statistics of these data sets are lists
in Table 1

Table 1. Basic statistics of the full bibtex and bookmark data sets. Mean Len. is the
mean number of words in the corresponding text content.

Name #posts #tags #users #words Mean Length Mean #tags/user

bibtex 158,912 50,855 1,790 278,106 47.67 60.75
bookmark 263,004 56,424 2,679 293,026 11.83 57.78
bibtex(pcore2) 22,852 5,816 788 48,401 59.21 31.75
bookmark(pcore2) 41,268 10,702 861 47,689 12.23 60.26

To validate and tune our methods, we split each of the four dataset into 5
equal-sized subset randomly, and perform 5-fold cross validation on them.

5.2 Evaluation Metrics

We use precision, recall and F1 measure as the evaluation metrics. Precision is
the number of correct suggested tags multiplied by the total number of tags
suggested. Recall is the number of correct suggested tags multiplied by the total
number of tags of original post. F1 measure is a geometry mean of precision and
recall, F1 = 2Precsion× Recall/(Precision + Recall). For each post, we only
consider the first 5 tags suggested.
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5.3 Content-based Tag Suggestion

To test the performance of our content-based method, we run 5-fold cross vali-
dation using the given training data. Additionally, for each fold, we remove all
posts in the postcore set from the test data, since posts in postcore will not
appear in the final test data. We remove stopwords, punctuation marks and all
words shorter than 2 letters from the data set, and convert all text to lowercase.
We remove words, resource IDs and user IDs appear in less than 5 post. We
treat bibtex and bookmark separately.

We use search-based kNN as our baseline method, this is proposed by Mishne [10]
for suggesting tags to blog posts. In our experiment, we index the training data
by Lucene1 indexing package. For a test post, we use TF × IDF to select 10 top
words. Then, we use these words to construct a weighted query, and search the
training data with it. We take all tags from Lucene returned top-k documents,
weight each tag using the corresponding document’s relevance score, and sum
the weights of duplicated tags. We take the first 5 tags as the suggested tags. In
search-based kNN, k is a parameter to tune. After using k = 1, 2, 3, 4, 5, we use
k = 1 as the final k, since it has the best F1 measure.

We list the mean precision, recall and F1 value for bibtex and bookmark data
in Table 2 and 3 respectively. We experimented with the different combination
of methods for weighting features and estimating Θ matrix.

In the bibtex dataset, FDT(TFITF+MI) has the similar performance as the
search-based kNN methods. In the bookmark dataset, FDT(TFITF+MI) has
the best performance, which is 3 percentage better than search-based kNN.

Table 2. P, R and F1 of search-based kNN and different learning methods for FDT
on the bibtex dataset. All averaged over 5 folds.

Method Precision Recall F1

search-based kNN 0.2792 0.2324 0.2537
FDT(TFIDF+CC) 0.2517 0.2152 0.2320
FDT(TFIDF+MI) 0.1822 0.1652 0.1733
FDT(TFIDF+χ2) 0.2261 0.2235 0.2248

FDT(TFITF+CC) 0.2513 0.2173 0.2330
FDT(TFITF+MI) 0.2432 0.2526 0.2478
FDT(TFITF+χ2) 0.2216 0.2246 0.2231

In the training data, the number of post from each user roughly follows the
power law distribution, where most users have less than 100 posts, and the top
4 users have 50% of all posts. If we treat all posts as equal, then the model may
bias to the preference of several super users. To know the performance of the
methods on super users and common users, we run other two experiments. In
the first experiment, we train the model using posts from all users, then check
its performance on each of the top n users and all the rest users separately. In
1 http://lucene.apache.org
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Table 3. P, R and F1 of search-based kNN and different learning methods for FDT
on the bookmark dataset. All averaged over 5 folds.

Method Precision Recall F1

kNN 0.2935 0.2409 0.2646
FDT(TFIDF+CC) 0.4036 0.2411 0.3018
FDT(TFIDF+MI) 0.3580 0.1892 0.2475
FDT(TFIDF+χ2) 0.2675 0.2486 0.2577

FDT(TFITF+CC) 0.3633 0.2404 0.2893
FDT(TFITF+MI) 0.3143 0.2610 0.2852
FDT(TFITF+χ2) 0.2284 0.1831 0.2033

the second experiment, we train and test models using only posts from each of
the top n users and all the rest users separately. For bibtex dataset, we choose
n = 4, for bookmark dataset, we choose n = 5. The results for bibtex and
bookmark are listed in Table 4 and Table 5 respectively. In these experiments,
we use FDT(TF*ITF+MI) for bibtex data and FDT(TF*IDF+CC) for book-
mark data. In the result table, the column Trained(ALL) means all methods are
trained on full training data. The column Trained(USER) means each method
is trained using only posts from corresponding group of users. In the method
name, kNN(2463) means the method used is search-based kNN, and test data
set are all post of user 2463, rest means all other users. The same naming rule
applies to FDT(xxxx).

For each group of test data, we have 4 different models, they are kNN trained
by all users, kNN trained by this group, FDT trained by all users and FDT
trained by this user. As the result shows, for groups of super users, kNN-based
models have best performance. For common users (the rest group), FDT-based
models performs better. This result follows our intuition. In this data set, super
users have different tag preference than common users. kNN suggest tags using
most similar resources, it is less affected by the overall distribution of resources,
so it fits to the . FDT relies on the global statistics of feature-tag relationship, it
is less effective to fit a special user’s preference. In practical situation, we can get
the best performance by choosing different model for different group of users.

One interesting observation is about the user #2732. When trained with all
posts, FDT performs much better(0.6308 vs 0.2300) on #2732 than trained with
#2732’s own posts. We examined the posts of #2732, found that many posts
contains only three tags: genetic, programming and algorithm, and the number
of posts by #2732 is large. When we use all posts to train FDT(TFITF+MI),
these three tags have a large Mutual Information value with many features,
especially the user id feature “UID-2732”, so FDT can predict tags for posts of
#2732 with high accuracy. When trained only with #2732’s posts, the Mutual
Information between features and these three tags is much smaller, since these
three tags appears everywhere and can be seen as stopwords in tags. Small
Mutual Information of these three tags means FDT will make wrong prediction
about most posts of #2732, which leads to a decreasing in F1-measure.
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Table 4. P, R and F1 of search-based kNN and FDT on different set of users on the
bibtex dataset. Trained(ALL) means that we train the model using posts from all users,
and test the performance on given set of users. Train(USER) means that both training
and testing use posts from the given set of users. The % column indicates the size of
corresponding user group, as the percentage in all posts. All averaged over 5 folds.

Trained(ALL) P R F1 Trained(USER) P R F1 %

kNN(2463) 0.1323 0.1352 0.1337 kNN(2463) 0.1376 0.1377 0.1376 24.27
kNN(2651) 0.1561 0.1573 0.1567 kNN(2651) 0.1953 0.1910 0.1932 12.40
kNN(3180) 0.4278 0.2771 0.3364 kNN(3180) 0.4440 0.2807 0.3440 9.20
kNN(2732) 0.6267 0.3915 0.4819 kNN(2732) 0.6517 0.4422 0.5269 3.78
kNN(rest) 0.3207 0.2530 0.2829 kNN(rest) 0.3202 0.2579 0.2857 50.35

FDT(2463) 0.1066 0.1869 0.1358 FDT(2463) 0.1100 0.2055 0.1429 24.27
FDT(2651) 0.1022 0.1285 0.1138 FDT(2651) 0.1126 0.1818 0.1391 12.40
FDT(3180) 0.3656 0.3334 0.3488 FDT(3180) 0.3688 0.3274 0.3469 9.20
FDT(2732) 0.8763 0.4927 0.6308 FDT(2732) 0.3142 0.1814 0.2300 3.78
FDT(rest) 0.3101 0.2516 0.2778 FDT(rest) 0.3260 0.2559 0.2867 50.35

Table 5. P, R and F1 of search-based kNN and FDT on different set of users on the
bookmark dataset. Trained(ALL) means that we train the model using posts from all
users, and test the performance on given set of users. Train(USER) means that both
training and testing use posts from the given set of users. The % column indicates the
size of corresponding user group, as the percentage in all posts. All averaged over 5
folds.

Trained(ALL) P R F1 Trained(USER) P R F1 %

kNN(1747) 0.5523 0.4877 0.5180 kNN(1747) 0.6513 0.5566 0.6003 19.90
kNN(2977) 0.4554 0.4072 0.4299 kNN(2977) 0.5567 0.5154 0.5353 9.48
kNN(483) 0.1002 0.1365 0.1156 kNN(483) 0.2375 0.2227 0.2299 3.56
kNN(275) 0.2102 0.1947 0.2022 kNN(275) 0.3413 0.3059 0.3226 3.40
kNN(421) 0.2749 0.0867 0.1318 kNN(421) 0.2787 0.1080 0.1557 2.26
kNN(rest) 0.1921 0.1627 0.1762 kNN(rest) 0.2007 0.1643 0.1807 61.41

FDT(1747) 0.5306 0.4169 0.4670 FDT(1747) 0.3592 0.2325 0.2823 19.90
FDT(2977) 0.4437 0.3622 0.3988 FDT(2977) 0.4162 0.3367 0.3722 9.48
FDT(483) 0.1684 0.2653 0.2060 FDT(483) 0.1642 0.2637 0.2024 3.56
FDT(275) 0.1887 0.1610 0.1738 FDT(275) 0.2531 0.1760 0.2076 3.40
FDT(421) 0.4044 0.1258 0.1920 FDT(421) 0.4328 0.1339 0.2045 2.26
FDT(rest) 0.2462 0.2133 0.2286 FDT(rest) 0.2502 0.2204 0.2344 61.41
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For final test, we use FDT(ITF+MI) for bibtex and FDT(IDF+CC) for book-
mark. The test data of DC09 has a different distribution with the training data.
Most top ranked users don’t appear in the test data. So we removed the top
ranked users from the training data, use the rest group of users to train the model
for final suggestion. The p/r/f1 on final test data are 0.1388/0.1049/0.1189 re-
spectively. Compared to the cross validation results, the performance dropped a
lot on final test data. One reason is that FDT does not suggest tags that are not
in the training data. There are 93756 tags in the training data and 34051 tags in
the test data, the overlapped tags are only 15194. To achieve better performance,
suggesting new tags should be considered in the future.

5.4 Graph-based Tag Suggestion

In experiments, we compare the results of three graph-based methods, most
popular tags, FolkRank and DiffusionRank.

Here we first demonstrate the results using 5-fold cross validation on training
dataset. In Table 6, we show the best performance of various methods on bibtex
dataset. In this table, we also demonstrate the performance of the content-based
method kNN , which achieves the best result when k = 2. For the method of most
popular tags, we use “mpt+resource” to indicate most popular tags by resource,
and “mpt+mix” to indicate most popular tags by mixing resource and user. For
FolkRank, the best result is achieved when damping factor λ = 0.01 with 100
iterations. DiffusionRank obtains the best result when damping factor λ = 0.85,
maximum number of iterations maxit = 10 and diffusion factor γ = 0.1. From
the table, we can see that most popular tags by mix achieves the best F1-
measure, which has the largest precision. While for DiffusionRank, it achieves
the best recall.

Table 6. Best performance of various methods on bibtex training dataset. All values
are averaged over 5 folds.

Method Precision Recall F1-measure

kNN 0.3664 0.4307 0.3959
mpt+resource 0.3949 0.3765 0.3855

mpt+mix 0.4211 0.4014 0.4110
FolkRank 0.3222 0.4459 0.3741

DiffusionRank 0.3347 0.4630 0.3885

In Table 7, we show the best performance of various methods on bookmark
dataset. kNN achieves the best performance when k = 2. For FolkRank, the
best result is achieved when damping factor λ = 0.0001 with 10 iterations.
DiffusionRank obtains the best result when damping factor λ = 0.85, maximum
number of iterations maxit = 10 and diffusion factor γ = 0.01. Furthermore,
we also restrict the scores of suggested tags should be no less than 1/5 of score
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of first-ranked tags. From the table, we can see that DiffusionRank achieves the
best F1-measure, which has the largest precision.

Table 7. Best performance of various methods on bookmark training dataset. All
values are averaged over 5 folds.

Method Precision Recall F1-measure

kNN 0.2855 0.2892 0.2873
mpt+resource 0.3345 0.2798 0.3047

mpt+mix 0.3606 0.3017 0.3285
FolkRank 0.3288 0.3309 0.3298

DiffusionRank 0.3772 0.3266 0.3501

From the above two tables, we find that on the bibtex dataset the method of
most popular tags by mix is the best, and on bookmark dataset DiffusionRank
achieves the best result. Therefore, for task 2 of rsdc’09, we use the two methods
to train ranking models separately on bibtex and bookmark. Using the original
result and evaluation program provided by the challenge organizer, we obtain
the evaluation results on test dataset, as shown in Table 8. From the table, we
find that the absolute values are much smaller than what are shown in Table 6
and 7.

Table 8. Evaluation result on test dataset of rsdc’09.

Tag Number Precision Recall F1-measure

1 0.1483 0.4229 0.2196
2 0.2301 0.3477 0.2769
3 0.2960 0.3113 0.3034
4 0.3418 0.2840 0.3102
5 0.3760 0.2601 0.3075

Besides the above analysis, we want to investigate the performance of FolkRank
and DiffusionRank as their parameters change.

In Table 9 and 10, we demonstrate the performance of FolkRank on bibtex
training dataset and bookmark training dataset as its parameters, the damping
factor λ and maximum number of iterations (denoted as “max-it” in tables)
change. From the both tables, we find the performance of FolkRank improves
as damping factor shrinks, which indicates the effect of preference values are
growing larger. That is to say the generalization of FolkRank by passing values
iteratively on graphs may harm the performance. Moreover, it seems that the
maximum number of iterations of FolkRank does not effect the results signifi-
cantly.

In Table 11 and 12, we demonstrate the performance of DiffusionRank on
bibtex training dataset and bookmark training dataset as its parameters, the
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Table 9. Performance of FolkRank on bibtex training dataset. All values are averaged
over 5 folds.

λ max-it Precision Recall F1-measure

0.85 10 0.2943 0.4072 0.3417
0.5 10 0.3053 0.4225 0.3545
0.1 10 0.3198 0.4425 0.3713
0.01 10 0.3222 0.4459 0.3741
0.01 100 0.3222 0.4459 0.3741
0.001 10 0.3219 0.4455 0.3738
0.0001 10 0.3219 0.4455 0.3738

Table 10. Performance of FolkRank on bookmark training dataset. All values are
averaged over 5 folds.

λ max-it Precision Recall F1-measure

0.85 10 0.2989 0.3008 0.2998
0.5 10 0.3038 0.3058 0.3048
0.1 10 0.3198 0.3218 0.3208
0.01 10 0.3275 0.3297 0.3286
0.01 100 0.3275 0.3297 0.3286
0.001 10 0.3288 0.3309 0.3298
0.0001 10 0.3288 0.3309 0.3298

diffusion factor γ and maximum number of iterations (denoted as “max-it” in
tables) change. Here the damping factor λ is set to 0.85. We also find that the per-
formance of DiffusionRank improves as diffusion factor shrinks, which indicates
the effect of initial values is growing larger. Similar to FolkRank, the general-
ization of DiffusionRank by passing values iteratively on graphs may also harm
the performance. It is also the same as FolkRank that the maximum number of
iterations of DiffusionRank does not effect the results significantly.

From the experiments on both bibtex and bookmark training datasets, we
can see that DiffusionRank always outperforms FolkRank with some specific
parameters, which is more significant on bookmark dataset. Although in this
dataset, FolkRank does not outperform the method of most popular tags, in [8]
we know that in some datasets, FolkRank outperforms most simple methods in-
cluding the method of most popular tags. Therefore, more experiments still need
to be done to investigate the efficiency of DiffusionRank compared to FolkRank
and other graph-based methods for tag suggestion.

Furthermore, the number of suggested tags should be specified in advance in
FolkRank and DiffusionRank. However in some conditions, we do not have to
recommend as many tags as specified. For DiffusionRank, we set the maximum
number of suggested tags is 5. If we further require the suggested tags should
have the ranking values no less than 1/5 of the ranking value of the first-ranked
tag, the performance of precision, recall and F1-measure will be improved to
0.3772, 0.3266 and 0.3501 on bookmark training dataset. Therefore, we use the
altered DiffusionRank for the bookmark test set of task 2 in rsdc’09.
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Table 11. Performance of DiffusionRank on bibtex training dataset. In all experiments,
damping factor λ is set to λ = 0.85. All values are averaged over 5 folds.

γ max-it Precision Recall F1-measure

2.0 10 0.3279 0.4537 0.3807
1.0 10 0.3331 0.4609 0.3867
0.1 10 0.3347 0.4630 0.3885
0.1 100 0.3347 0.4630 0.3885
0.01 10 0.3347 0.4630 0.3885

Table 12. Performance of DiffusionRank on bookmark training dataset. In all exper-
iments, damping factor λ is set to λ = 0.85. All values are averaged over 5 folds.

γ max-it Precision Recall F1-measure

2.0 10 0.3336 0.3357 0.3346
1.0 10 0.3370 0.3392 0.3381
0.1 10 0.3403 0.3425 0.3414
0.1 100 0.3403 0.3425 0.3414
0.01 10 0.3406 0.3428 0.3417

6 Related Work

Ohkura et al [11] proposed a Support Vector Machine-based tag suggestion sys-
tem. They train a binary classifier for each tag to decide if this tag should be
suggested. Katakis et al [12] use a hierarchical multi-label text classifier to find
the proper tags for a document. They cluster all tags using modified k-means,
use one classifier to decide which clusters a document belongs to, then use an-
other cluster-specific classifier to decide which tags in the cluster belongs to the
document. Mishne [10] use a search-based nearest neighbor method to suggest
tags, where the tags of a new document is collected from the most relevant doc-
uments in the training set. Lipczak et al [13] extract keywords from the title of
a document, then filter them with a user’s used tags to get the final suggestion.
These methods all use the content of a document, we call them content-based
methods. Tatu et al [14] combine tags from similar documents and extracted
keywords to provide tag suggestions. They have the best performance in the
first ECML/PKDD Discovery Challenge task.

Another class of tag suggestion system is based on the links between users,
tags and resources, which does not take the content of resources into consid-
eration. Since the method of “most popular tags” also does not consider the
content of resources, in this paper we regard it as a member of graph-based tag
suggestion approach. Xu et al [15] use collaborative filtering to suggest tags for
URL bookmarks. Jaschke et al [2] proposed FolkRank, a PageRank-like iterative
algorithm to find the most related tags for a resource in its neighbor users and
tags. PageRank is originally used for ranking web pages only according to the
topology of web graph. However, in PageRank we can set preference values to
a subset of pages to make the PageRank values biased to these pages and their
neighbors. In fact, FolkRank is used to compute the relatedness between tags
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and the specific user and resource by setting the given user and resource to high
preference values in PageRank.

Recently, a new graph-based ranking method, DiffusionRank [3], is proposed
for anti-spam of web pages. DiffusionRank is motivated by the heat diffusion
process, which can be used for ranking because the activities flow on the graph
can be imagined as heat flow, the edge from a vertex to another can be treated as
the pipe of an air-conditioner for heat flow. Based on the property of heat always
flow from high to low, the ranking values of DiffusionRank are related to initial
values of vertices. Therefore, DiffusionRank provides a more flexible method to
rank tags by setting high initial values to the given user and resource. In this
paper, we for the first time propose to use DiffusionRank for graph-based tag
suggestions.

7 Conclusion

In this paper, we study the problem of tag suggestion and describe our methods
for content-based and graph-based suggestion. For content-based tag sugges-
tion, we propose a new method named Feature-Driven Tagging for fast content-
based tag suggestion. Cross validation on the training data shows that FDT
outperforms wildly-used search-based kNN, especially when suggesting tags for
long-tail users. For graph-based tag suggestion, we study most popular tags,
FolkRank, and propose a DiffusionRank-based method. Experiments show that
on bibtex dataset the method of most popular tags by mixing of user and re-
source performs best, and on bookmark dataset, DiffusionRank outperforms
other methods.

Work remains to be done. First, currently we use empirical methods to es-
timate the parameters for FDT, like CC, MI and ITF. We will consider learn a
Θ matrix directly by optimizing a tag-related loss function. Second, evaluation
using final test data of DC09 shows that the F1 value drops a lot than cross
validation on the training data, especially for content-based methods. This sug-
gests we should pay attention to out-of-vocabulary tags. Third, more information
should be considered, such like time-stamp, to suggest better tags in real-world
situation.
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Abstract. While a webpage usually contains hundreds of words, there
are only two to three tags that would typically be assigned to this page.
Most tags could be found in related aspects of the page, such as the
page own content, the anchor texts around the page, and the user’s
own opinion about the page. Thus it is not an easy job to extract the
most appropriate two to three tags to recommend for a target user.
In addition, the recommendations should be unique for every user, since
everyone’s perspective for the page is different. In this paper, we treat the
task of recommending tags as to find the most likely tags that would be
chosen by the user. We first applied the TF-IDF algorithm on the limited
description of the page content, in order to extract the keywords for the
page. Based on these top keywords, association rules from history records
are utilized to find the most probable tags to recommend. In addition,
if the page has been tagged before by other users or the user has tagged
other resources before, that history information is also exploited to find
the most appropriate recommendations.

1 Introduction

Social bookmarking services allow users to share and store references to various
types of World Wide Web (WWW) resources. Users can assign tags to these
resources, several words best describing the resource content and his or her
opinion. To assist the process of assigning tags, some services would provide
recommendations to users as references. In Tatu et al. [5] work, they mentioned
that the average number of tags in RSDC’08 bookmarking data is two to three.
Thus, it is not an easy task to provide reasonable tag recommendations for the
resource with only two to three related tags on average. Tag recommendation is
a challenge task in ECML PKDD 2009 where participants should provide either
content-based or graph-based methods to help users to assign tags. This work
shows some results that aim to this challenge.

The challenge provides description of the resources and posts of the tag.
Description contains some basic information about the resources and post is the
tuple of user, tag and resource. In the challenge, there are two types of resources,
normal web pages, named as bookmark, and research publications, named as
bibtex, with different schemas of descriptions. A post records the resource and the

261



tags assigned to it by a particular user. The task is to provide new tags to new
resources with high F-Measure performance on the top five recommendations.
The difficulties of this challenge fall in:

– How to take advantage of the record content itself, while the description is
very limited? For example, bookmark is only described with the title of the
web page and a short summary while bibtex is usually described with title,
publication name, and authors of the paper.

– How to utilize history information to recommend tags which do not appear
in the page content? Though we can use keywords to help find possible tags,
tags are not just keywords. Tags could be user’s opinion about the page, the
category of the page, so on and so forth. This kind of tag might be tracked
by using history information.

– How to choose the most appropriate two to three tags among the potential
pool? By analyzing the page content and history information, we might have
a pool which contains the reasonable tag recommendations. Yet we cannot
recommend all those to the user. Instead of that, only two to three tags need
to be extracted from that pool.

In order to solve the above problems, we propose tag recommendation using
both keywords in the content and association rules from history records. After
we end with a pool which contains potential appropriate tags, we introduce a
method, named common and combine, to extract the most probable ones to
recommend. Our evaluation showed that integrating association rules can give
better F-Measure performance than simply using keywords.

Besides using association rules, some history information will be used more
directly, if the resource has been tagged before or the target user tagged other
documents before. These history records would greatly improve recommendation
performance.

In this paper, we tuned some parameters in our recommendation system to
generate the best F-Measure performance while recommending at most five tags.

2 Related Work

Lipczak [3] proposed a recommendation system mainly based on individual posts
and the title of the resource. The key conclusion of their experiments is that,
they should not only rely on tags previously attached when making recommen-
dations. Sparsity of data and individuality of users greatly reduce the usefulness
of previous tuple data. Looking for potential tags they should focus on the di-
rect surrounding of the post, suggesting a graph-based method. Tatu et al. [5]
proposed a recommendation system that takes advantage of textual content and
semantic features to generate tag recommendations. Their system outperformed
other systems in last year’s challenge. Katakis et al. [2] proposed a multilabel
text classification recommendation system that used titles, abstracts and exist-
ing users to train a tag classifier.
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In addition, Heymann et al. [1] demonstrated that “Page text was strictly
more informative than anchor text which was strictly more informative than sur-
rounding hosts”, which suggests that we do not have to crawl other information
besides page content. They also showed that the use of association rules can help
to find recommendations with high precision.

3 Dataset Analysis and Processing

3.1 Dataset from the Contest

Three table files were provided by the contest, including bookmark, bibtex and tas.
The bookmark file contains information for bookmark data such as contentID,
url, url-hash, description and creation date. The bibtex file contains information
for bibtex data such as contentID, and all other related publication information.
The tas file contains information for (user, tag, resource) tuple, as well as the
creation date. The detailed characteristics for these files could be found in Table
1. In this work, all contents were transformed into lower case since the evaluation
process of this contest ignores case. In the mean time, we filtered the latex format
when we exported bibtex data from the database.

Table 1. Detail information about training dataset, provided by the contest

file # of lines information

bookmark 263,004 content id (matches tas.content id),
url hash (the URL as md5 hash),
url, description, extended description, date

bibtex 158,924 content id (matches tas.content id), journal, volume
chapter, edition, month, day, booktitle, editor, year
howPublished, institution, organization, publisher
address, school, series, bibtexKey, url, type, description
annote, note, pages, bKey, number, crossref, bibtexAbstract
simhash0, simhash1, simhash2, entrytype, title, author, misc

tas 1,401,104 userID, tag,
content id
(matches bookmark.content id or bibtex.content id)
content type (1 = bookmark, 2 = bibtex), date

3.2 Building Experiment Collection

We considered and tried merging duplicate records together in training process
yet found it did not help much. Thus we kept the duplicate records when building
our experiment collections. Since our proposed tag recommendation approach
does not involve a training process, we did not separate the dataset into training
one and testing one at first. We evaluated our recommendation system on all
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documents in the given dataset. Based on the type of documents, there are three
different collections in our dataset:

bookmark collection from dataset provided We created a collection book-
mark more to contain all bookmark information which were provided by the con-
test training dataset. Every document in the collection corresponds to a unique
contentID in bookmark file. It contains all information for that record, includ-
ing description and extended description. There are 263,004 documents in this
collection.

During the experiment, we crawled the external webpage for every contentID.
Yet the performance showed that the external webpage are not as useful as
the simple description provided by the contest. Regardless of performance, it
also cost too much time, which is not realistic for online tag recommending. In
addition, an external webpage usually contains too many terms, which makes it
even harder to extract two to three appropriate terms to recommend as tags.

bibtex collection from dataset provided We created a collection bib-
tex original to contain all bibtex information which were provided by the original
dataset. Every document in the collection corresponds to a unique contentID in
bibtex file. It contains all information for that record, including all attributes in
Table 1 except simhash0, simhash1 and simhash2. There are 158,924 documents
docs in this collection.

bibtex collection from external resources If the url of a bibtex record
points to some external websites such as portal.acm.org and citeseer, we crawled
that webpage and extracted useful information for this record. All these docu-
ments are stored in another collection. Similarly, every document in the collection
corresponds to a unique contentID in bibtex file. There are 3,011 documents in
this collection bibtex parsed.

4 Keyword-AssocRule Recommendation

We consider the tag recommendation problem as to find the most probable terms
that would be chosen by users. In this paper, P (X) indicates the probability of
term X to be assigned to the document as tag. For every document, the term
with high P (X) has the priority to be recommended.

4.1 Keyword Extraction

In this step, our assumption is that the more important this term in the docu-
ment, the more probable for this term to be chosen as tag.

We used two term weighting functions, TF-IDF and Okapi BM25 [4] to ex-
tract “keywords” from resources. In a single collection, we calculated TF-IDF
and BM25 value for every term in every document.
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For TF-IDF, the weighting function is defined as follows:

TF − IDF = TFt,d × IDFt (1)

where TFt,d is the term frequency that equal to the number of occurrences of
term t in document d. IDFt is inverse document frequency that is defined as:

IDFt = log
N

dft
(2)

where dft is the number of documents in the collection that contain a term t and
N is the total number of documents in the corpus.

For Okapi BM25, the weighting function is defined as follows:

BM25 =
n∑

i=1

IDF (qi)
TFt,d(1 + k1)

TFt,d + k1(1− b + b× Ld

Lave
)

(3)

where TFt,d is the frequency of term t in document d and Ld and Lave are the
length of document d and the average document length for the whole collection.
IDF (qi) here is defined as

IDF (qi) = log
N − n(qi) + 0.5

n(qi) + 0.5
(4)

The terms in the single document are ranked according to its TF-IDF or
BM25 value in decreasing order. A term with high value or high rank is consid-
ered to be more important in the document. Thus Pk(X) can be calculated by
Algorithm 1.

Algorithm 1 To calculate Pk(X), by using results from keyword extraction
method

for all documents in the collection do
rank all terms according to TF-IDF or BM25 value in decreasing order
for all term X in the document do

Pk(X) = 100− rank(X);
{//rank(X) = 1 indicated the top position, 2 indicated the second position,
etc. }

end for
end for

As shown in Table 2, TF-IDF performed better than BM25 in tag recommen-
dation process. The following processes in this work were all performed based
on results of TF-IDF method.

4.2 Using Association Rules

Recent work by Heymann et al. [1] showed that using association rules could
help to find tag recommendation with high precision. They expanded their rec-
ommendation pool in decreasing order of confidence. In this paper, we used
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Table 2. Performance of key word extraction method in every collection, while recom-
mending at most 5 tags.

collection BM25 TF-IDF
recall precision f-measure recall precision f-measure

bibtex original 0.0951 0.0561 0.0706 0.0989 0.0592 0.0741

bibtex parsed 0.1663 0.1059 0.1294 0.1800 0.1158 0.1409

bookmark more 0.1186 0.0940 0.1049 0.1189 0.0943 0.1052

alternative approaches to deeply analyze association rules, which are found in
history information. It does help to extract tags which are more likely to be used
by users.

Finding association rules in history records We used three key factors in
association rules, including support, confidence and interest. Every unique record
is treated as the basket and the tags (X, Y , etc.) associated with every record are
treated as the items in the basket. For every rule X → Y , support is the number
of records that contain both X and Y . Confidence indicates the probability of
Y in this record if X already associates with the record, i.e., P (Y |X). Interest
is P (Y |X)− P (Y ), showing how much more possible that X and Y associating
with the record together.

Table 3. Sample Association rules found in training dataset

bookmark bibtex
X → Y confidence support interest X → Y confidence support interest

blog → software 0.0541 291 0.0454 systems → algorithms 0.2886 295 0.2757
blogs → blogging 0.1345 291 0.1333 algorithms → systems 0.0492 295 0.0470
blogging → blogs 0.2910 291 0.2885 systems → genetic 0.2847 291 0.2721

artery → cardiology 0.9510 291 0.9506 genetic → systems 0.0497 291 0.0475
photos → photography 0.3149 290 0.3138 tagging → folksonomy 0.5097 288 0.5085
photography → photos 0.3142 290 0.3131 folksonomy → tagging 0.5115 288 0.5103

learning → foodcooking 0.1004 290 0.1000 genetic → and 0.0466 273 0.0441

The rules X → Y we constructed all have support > 10, thus at least 10
resources in our training dataset contain both X and Y as tags. As we mentioned
before, we did not separate the dataset into training and testing sets. During
evaluation, some records might benefit from the rule it contributed at first, yet
at least 9 more resources also contributed to the rule. The support limit here
is chosen arbitrarily. Two sets of rules are constructed independently, one for
bookmark dataset and another one for bibtex dataset. Some sample rules are
showed in Table 3.

Choosing appropriate recommendations by using association rules
Here the problem becomes to be:

If X → Y exists in the association rules, how possible that term Y should
be recommended when X is likely to be recommended?
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Given P (X) and the confidence value P (Y |X), P (Y ) could be calculated
according to law of total probability, which is sometimes called as law of
alternatives:

P (Y ) =
∑

n

P (Y ∩Xn) (5)

or
P (Y ) =

∑
n

P (Y | Xn)P (Xn) (6)

since P (Y ∩ Xn) = P (Y | Xn)P (Xn). According to the above equations, the
algorithm to calculate Pa(Y ), which is called Assoc(Y ) in this paper, is shown
in Algorithm 2.

Algorithm 2 To calculate Pa(X), by using association rules
for all documents in the collection do

for all term X in the document do
for all association rule X → Y do

Pa(Y )+ = (confidence of X → Y ) ∗ Pk(X);
{//Pk(X) is calculated by Algorithm 1}

end for
end for

end for

4.3 Combining Keyword Extraction with Association Rules Results

After Pk(X) and Pa(X) are calculated for every term in the document, one
method, in Algorithm 3, is to linearly combine the two values to calculate the
final probability Pc(X) for recommending a term X.

Similarly, term with higher Pc(X), i.e., higher rank in Combined results has
the priority to be recommended.

The experiments showed that weight could affect the F-Measure performance
and the optimal weight to combine is different for every collection. Figure 1
shows the effect of weight in bibtex parsed collection, where F-Measure reaches
the peak during increase of weight from 0.1 to 0.9. This trend is similar in other
two collections. Our experiments indicated that the optimal weight to achieve
best F-Measure for bibtex parsed, bibtex original, bookmark more is 0.7, 0.5 and
0.5, respectively. The evaluation results with optimal weight for every collection,
in this step, is shown in the second column of Table 4. Compared to the TF-IDF
results in the first column, it is obvious that the association rules can greatly
help to improve the F-Measure performance.

Another method we found that worked well is common and combine. In
common step, if the term in top rank of keyword extraction results do have
Assoc(X) > 0, then recommend this term. In combine step, extract terms with
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Algorithm 3 To calculate Pc(X), by linearly combining results from TF-IDF
& association rules

for all documents in the collection do
TF − IDFmax = maximum TF − IDF (X) for all terms in this document
Assocmax = maximum Assoc(X) for all terms in this document
for all term X in the document do

TF − IDF (X) = TF − IDF (X)/TF − IDFmax;
{// normalize TF − IDF (X) value}
Assoc(X) = Assoc(X)/Assocmax;
{// normalize Assoc(X) value, Assoc(X) = Pa(X) in Algorithm 2.}
Combined(X) = TF − IDF (X) ∗ weight + Assoc(X) ∗ (1− weight);
{//linearly combine the two values}
rank terms according to decreasing order of Combined(X);
Pc(X) = 100− rank of Combined(X);
{//rank = 1 indicated the top position, 2 indicated the second position, etc.}

end for
end for
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Fig. 1. Performance for different weight in bibtex parsed. For every weight, no. of tags
changes from 1 to 5.
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Table 4. Performance for only using TF-IDF results, linearly combining results of
TF-IDF & association rules, and common & combine the two results, for the top N tag
recommendations

TF-IDF linearly combining results common & combine
bibtex original

Top N recall precision f-measure Top N recall precision f-measure Top N recall precision f-measure
1 0.0199 0.0636 0.0304 1 0.0339 0.1105 0.0519 1 0.0344 0.1123 0.0527
2 0.0378 0.0610 0.0467 2 0.0593 0.0979 0.0739 2 0.0619 0.1018 0.0770
3 0.0579 0.0603 0.0591 3 0.0824 0.0900 0.0860 3 0.0848 0.0927 0.0886
4 0.0787 0.0598 0.0680 4 0.1046 0.0849 0.0937 4 0.1065 0.0867 0.0956
5 0.0989 0.0592 0.0741 5 0.1244 0.0802 0.0975 5 0.1264 0.0816 0.0992

bibtex parsed
Top N recall precision f-measure Top N recall precision f-measure Top N recall precision f-measure

1 0.0708 0.2033 0.1050 1 0.0728 0.2106 0.1081 1 0.0723 0.2155 0.1083
2 0.1138 0.1710 0.1367 2 0.1171 0.1802 0.1419 2 0.1212 0.1871 0.1471
3 0.1438 0.1487 0.1462 3 0.1527 0.1605 0.1565 3 0.1549 0.1635 0.1591
4 0.1665 0.1316 0.1470 4 0.1771 0.1425 0.1580 4 0.1778 0.1432 0.1586
5 0.1800 0.1158 0.1409 5 0.1959 0.1281 0.1549 5 0.1968 0.1291 0.1559

bookmark more
Top N recall precision f-measure Top N recall precision f-measure Top N recall precision f-measure

1 0.0388 0.1285 0.0596 1 0.0449 0.1547 0.0696 1 0.0460 0.1599 0.0715
2 0.0693 0.1172 0.0871 2 0.0846 0.1400 0.1055 2 0.0872 0.1487 0.1099
3 0.0919 0.1080 0.0993 3 0.1133 0.1286 0.1205 3 0.1165 0.1358 0.1254
4 0.1077 0.1001 0.1038 4 0.1375 0.1202 0.1283 4 0.1415 0.1255 0.1330
5 0.1189 0.0943 0.1052 5 0.1581 0.1132 0.1319 5 0.1623 0.1172 0.1361

high Pc(X) for recommendation. The total number of tags to recommend is
controlled by k, the number of tags to check in the common step is common-no,
and the number of tags to extract in the combine step is combine-no. Detailed
steps are shown in Algorithm 4.

Since the evaluation of this contest only cares for the first 5 tags to recom-
mend, we set k = 5. If common-no = 10 and combine-no = 5, the results for all
three collections are shown in third column of Table 4.

Generally speaking, F-Measure increases with the increase of common-no and
reaches the peak near common-no = 20. At the same time, it reaches its highest
point as combine-no increases, and remains the same level with the further in-
crease of combine-no. Since the total number of tags to recommend is fixed to
be 5, the combine step will stop before it reaches the limit of how many tags to
check, i.e., combine-no. Thus if combine-no is greater than a certain number, it
won’t affect the f-measure performance anymore.

Since the recommendations would be further modified by history results, we
set k = 80, common-no=10, and combine-no=80 here.

If only recommending at most 5 tags, the F-Measure performance of all
above methods, including only using TF-IDF, linearly combining results of TF-
IDF & association rules, and common & combine the two, are shown in Figure
2. It is obvious that using association rules can greatly enhance the TF-IDF
performance, either by linear combination or common & combine. Common &
combine method is slightly better than linearly combining the two.

4.4 Checking Resource or User Match with History Records

In this section, historical information is used more directly. We performed 10-fold
cross validation to report the performance in this section.
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Algorithm 4 Common and Combine, to integrate results from TF-IDF & as-
sociation rules

for all documents in the collection do
count = 0;
{// common step}
for i = 1 to common-no do
{// common-no is the parameter to tune. It controls how many terms to check
in TF-IDF results.}
extract term X with TF-IDF rank = i;
if Assoc(X) > 0 then

recommend this term X;
count + +;
{//count is the number of tags that have been recommended in common
step.}

end if
i + +;

end for
{// combine step}
rank all terms by Pc(X) in decreasing order.
{// Pc(X) is the combination value of keyword extraction and association rules
results, calculated by Algorithm 3.}
for j = 1 to (k − count) do
{// k is the total number of tags to recommend, k− count is the number of tags
to recommend in combine step}
extract the term Y with (rank in Pc(X) results) = j;
if Y is not in the recommendation list then

recommend this term Y ;
end if
j + +;
if j > combine-no then
{// combine-no is the parameter to tune. It controls how many terms to check
in combined results of TF-IDF & association rules.}
exit the combine step;

end if
end for

end for
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Fig. 2. F-Measure performance for different methods in all collections. For every
method, at most 5 tags are recommended. The three methods to compare are only
using TF-IDF, linearly combining results of TF-IDF & association rules, and common
& combine

Resource match If the bookmark or bibtex in the testing dataset already ap-
peared before in training dataset, regardless of which user assigned the tags, the
tags that were assigned before would be directly inserted into our recommenda-
tion list for this document. These tags from historical information have higher
priority than the tags that were recommended in previous steps.

User match Suppose the tags that are assigned by users previously in the
training dataset, regardless of to which documents, make up the user’s tagging
vocabulary. Our assumption here is that every user prefers to use tags in his/her
own tagging vocabulary, as long as the tags are relevant to the document. Thus
the tags in the user’s tagging vocabulary would be given higher priority. The
common and combine algorithm is again applied here. In common step, if the
terms with high rank in previous steps do appear in user’s tagging vocabulary,
then recommend this term. In combine step, extract terms with high ranks in
previous steps to recommend. The number of tags to check in the common step is
common-no, and the number of tags to extract in the combine step is combine-no.

The two parameters, common-no and combine-no, are tuned to achieve the
best F-Measure performance when recommending at most 5 tags. common-no is
fixed to be 53 in Figure 3, while combine-no increases from 1 to 5. In that figure,
it shows that F-Measure increases and reaches the peak point at combine-no =
1. In Figure 4, combine-no is fixed to be 1 and common-no increases from 1 to
80. F-Measure increases with the initial increase of common-no and reaches the
peak point in the middle. In this work, we set common-no = 53, and combine-no
= 1.
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Exact match with same user and same resource In this step, if user has
tagged the same document in the training dataset, then the tags he used before
for this document would be directly recommended again.

4.5 Combining Results in all Collections

According to the performance of each collection, our priority to combine the
results is shown in Table 5.

Table 5. Priority to combine results

Priority Method

Higher to lower

Tags from records that has exact match with same user and same bookmark/bibtex
Tags from records that has match with same user

Tags from records that has match with same resource (bookmark url or bibtex publication)
common & combine results of bibtex parsed
common & combine results of bibtex original
common & combine results of bookmark more

For example, if a record both exists in bibtex parsed and bibtex original, the
results for this record are chosen from bibtex parsed instead of bibtex original,
since the former one has higher priority.

If we only consider to combine the common & combine results for all three
collections, the best performance is shown in column without checking the history
records of Table 6.

Table 6. Performance for without checking history records, resource match with higher
priority and user match with higher priority, for the top N tag recommendations

without checking history records resource match higher user match higher

Top N recall precision f-measure Top N recall precision f-measure Top N recall precision f-measure
1 0.0415 0.1395 0.0639 1 0.0835 0.2312 0.1226 1 0.0867 0.2396 0.1273
2 0.0783 0.1305 0.0979 2 0.1344 0.2143 0.1652 2 0.1374 0.2220 0.1698
3 0.1059 0.1204 0.1126 3 0.1667 0.1980 0.1810 3 0.1684 0.2064 0.1855
4 0.1292 0.1115 0.1197 4 0.1915 0.1866 0.1890 4 0.1916 0.1954 0.1935
5 0.1510 0.1046 0.1235 5 0.2118 0.1778 0.1933 5 0.2104 0.1871 0.1981

If step Tags from records that match with same user has lower priority than
tags from records that match with same resource, the best result is shown in
column resource match higher of Table 6. Otherwise, the best result is shown in
column user match higher of Table 6. The results indicate that even for those
bookmarks that were tagged by other users before, it is still beneficial to consider
the target user’s own tagging vocabulary.

To sum up, the best performance on training dataset is shown in Table 7,
including the detailed results only for bookmark and bibtex.

5 Conclusions and Future Work

In this paper, we proposed a tag recommendation system using keywords in the
page content and association rules from history records. If the record resource
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Table 7. Best performance on training dataset, only for bookmarks and only for pub-
lications, for the top N tag recommendations

all resources only for bookmark only for bibtex

Top N recall precision f-measure Top N recall precision f-measure Top N recall precision f-measure
1 0.0867 0.2396 0.1273 1 0.0771 0.2364 0.1163 1 0.1025 0.2448 0.1445
2 0.1374 0.2220 0.1698 2 0.1296 0.2215 0.1635 2 0.1504 0.2228 0.1796
3 0.1684 0.2064 0.1855 3 0.1613 0.2056 0.1808 3 0.1803 0.2076 0.1930
4 0.1916 0.1954 0.1935 4 0.1843 0.1932 0.1887 4 0.2038 0.1990 0.2014
5 0.2104 0.1871 0.1981 5 0.2035 0.1841 0.1933 5 0.2218 0.1921 0.2059

or target user appeared before, the history tags would be used as references to
recommend, in a more direct way. Our experiments showed that association rules
could greatly improve the performance with only keyword extraction method,
while history information could further enhance the F-Measure performance of
our recommendation system.

In the future, other keyword extraction method can be implemented to com-
pare with TF-IDF performance. In addition, graph-based methods could be com-
bined with our recommendation approach to generate more appropriate tag rec-
ommendations.
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Abstract. This paper describes our approach to the challenge of graph-
based tag recommendation in social bookmarking services. Along the
ECML PKDD 2009 Discovery Challenge, we design a tag recommender
that accurately predicts the tagging behavior of users within the Bibson-
omy bookmarking service. We find that the tagging vocabularies among
folksonomy users differ radically due to multilingual aspects as well as
heterogeneous tagging habits. Our model overcomes the prediction prob-
lem resulting from these heterogeneities by translating user vocabular-
ies, so called personomies, to the global folksonomy vocabulary and vice
versa. Furthermore we combine our user-centric translation approach
with item-centric methods to achieve more accurate solutions. Since our
method is purely graph-based, it can also readily be applied to other
folksonomies.

1 Introduction

Over the last years, social bookmarking services, such as Delicious3, Bibsonomy4

and CiteULike5, have grown rapidly in terms of usage and perceived value. One
distinguishing feature provided by these services is the concept of tagging - the
labeling of content with freely chosen keywords (tags). Tagging enables users to
describe and categorize resources in order to organize their bookmark collections
and ease later retrieval. Social bookmarking services are therefore the classic ex-
ample of collaborative tagging communities, so called folksonomies [1][2]. The
consumer-centric (collaborative) tagging aspect differentiates social bookmark-
ing from other content sharing community services, such as Flickr6 or YouTube7,
where tags are generally assigned by the content creator [3].

Most folksonomy solutions assist users during the bookmarking process by
recommending tags. Thus, a user can select recommended tags from various
sets in addition to entering tags manually. Despite their positive effect on us-
ability, these recommenders are effective tools to limit tag divergence within

3 http://delicious.com
4 http://bibsonomy.org
5 http://citeulike.org
6 http://flickr.com
7 http://www.youtube.com
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folksonomies as they are generally considered to lower the ratio of misspellings
and to increase the likelihood of tag reassignments. The design of a folksonomy
tag recommender was one of the tasks of the ECML PKDD 2009 Discovery
Challenge8. In the following sections, we describe our solution to this task as
submitted.

Our approach is based on the observation that the tag vocabularies of users,
their personomies, differ within a folksonomy. This heterogeneity is mainly caused
by differences in the tags users constantly assign to categorize content and the
multilingualism of the user base, as apparent for Bibsonomy. To overcome the
problems caused by this heterogeneity, we propose a tagging model that trans-
lates the personomy of each user to the folksonomy vocabulary and vice versa.
We find that our model is highly accurate as it characterizes an item by its
tag spectrum before translating this spectrum to a user’s personomy. We then
combine the translational model with item-centric tag models to improve per-
formance.

This paper is structured as follows: The introductory section presents a graph
model for the underlying data structure and explains the actual goals of the chal-
lenge. This is followed by an analysis of different properties of the Bibsonomy
dataset with respect to their impact on tag recommendation. Section 3 intro-
duces and discusses the tag vocabularies found within folksonomies, before we
present our recommendation algorithm and evaluation results.

1.1 Modeling folksonomies

According to [2], a folksonomy can be described as a tuple F := (I, T, U, Y ),
where I = {i1, . . . , ik}, T = {t1, . . . , tl} and U = {u1, . . . , um} are finite sets
of items, tags and users, and Y is a ternary relation whose elements are called
tag assignments. A tag assignment (TAS) is defined by the authors as relation
Y ⊆ U × T × I, so that the tripartite folksonomy hypergraph is given by G =
(V,E), where V = I ∪ T ∪ U and E = {(i, t, u)|(i, t, u) ∈ Y }. The set of all
bookmarks is then given as BM = {(i, u)|∃t : (i, t, u) ∈ Y }. This graph structure
is characteristic for all folksonomies.

1.2 The challenge: Graph-based tag recommendations (Task 2)

The ECML PKDD 2009 Discovery Challenge consists of different tasks related
to the problem of tag recommendation. Testbeds for all tasks are different snap-
shots of the Bibsonomy bookmarking service. Our solution contributes to the
task of ”Graph-Based Recommendations (Task 2)“ as it does not consider the
content of the given resources. The recommendation task in this setting resem-
bles the problem of link prediction within G given a user and an item node.
The recommender thus needs to estimate P (t|i, u), the probability of observing
a given tag when a combination of user and item has been observed.

8 http://www.kde.cs.uni-kassel.de/ws/dc09
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1.3 Related work

One of the first works on tag recommendation in folksonomies is [4], where the
authors compare the performance of co-occurrence based tag recommenders and
more complex recommenders based on the FolkRank algorithm [2]. Furthermore
they report only minor improvements of the FolkRank method over the co-
occurrence approaches. Parts of their analysis is performed on a snapshot of the
Bibsonomy dataset.

Further related work was presented by the participants of last years challenge
on tag recommendation. The authors of [5] enrich tag vocabularies by terms
extracted from all bookmarks’ meta data, such as user given descriptions or the
abstract, author, year etc. information in case of publications. More similar to
our work is the approach in [6]. The team combines the keywords found within
a resource’s title and the actual tags previously assigned to a resource with
the tags from a user’s personomy. Each vocabulary is mapped to the global tag
vocabulary using co-occurrence tables. This mapping is similar to our translation
process. However, the fusion of different sources differs from our method and no
user-centric optimization of parameters was reported.

2 The dataset

The Bibsonomy bookmarking service allows its users to bookmark URLs and
publications in parallel. This hybrid approach makes Bibsonomy different from
other bookmarking communities such as Delicious or CiteULike. For each web
bookmark, participants are given the URL, the title and an optional descrip-
tion of the resource as provided by the user during the bookmarking process.
Bookmarked publications generally come with information about the title, the
authors, the abstract or other common bibliographic attributes. The complete-
ness of this information is not guaranteed, and many attribute fields are left
empty. Table 1 gives an overview of the node statistics found within the dataset
for p-core levels one and two9.

Table 1. Different node set sizes of the Bibsonomy dataset for p-core levels 1 and 2.

p-core |E| |BM | |BMBIB | |BMURL| |I| |T | |U |
1 1,401,104 421,928 263,004 158,924 378,378 93,756 3,617

2 253,615 64,120 41,268 22,852 22,389 13,276 1,185

For the construction of our recommender we ignore the meta-data attached
to the bookmarked content and only consider the graph G. Furthermore, we do
not distinguish between URLs and publications, but merge both node sets to
the item set I. Both decisions result in a loss of information which potentially
9 The p-core of a folksonomy graph has the characteristic that all contained nodes

appear in at least p bookmarks. See [4] for details.
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Fig. 1. Node degree distributions within the full Bibsonomy dataset (a) and the dataset
at p-core level 2. Node degree distributions found within folksonomies generally exhibit
power law characteristics with few highly connected nodes and many nodes with low
occurrence. This characteristic is obtained when cutting the graph to its level 2-core.

reduces the overall accuracy of our recommender. However, we believe this loss
to be compensated by the general applicability of our approach and the improved
validity of the presented results.

Figure 1 shows the node degree distributions of the full dataset and its 2-
core. As previously reported for other folksonomies (e.g. [2][7]), we find the node
degree distributions of Bibsonomy to exhibit power law characteristics, with very
few and very frequent nodes on one end and many infrequent nodes on the other.
This characteristic is basically obtained when reducing G to its 2-core. However,
we find that this reduction drastically reduces the impact of some previously very
influential users. These users tend to have a rather ”organizational“ background
and bookmark large collections of similar resources which are of no interest to
other users. Most of these resources therefore fall victim to the p-core reduction,
which also explains the drastic cut on items in Table 1.

3 Tag vocabularies

As users bookmark items only once10, we cannot estimate P (t|i, u) directly from
previous observations. Instead, we base our estimates on other distributions.
The most basic sources are the overall tag distribution and the tags previously
assigned by the user, or to the item.

Global tag distributions. This is the distribution of all observed tag assign-
ments within the training data. By definition, each tag of the test data has

10 Note that a small percentage of user item combinations found in the given dataset
occur in more than one bookmark.

278



to occur within this distribution. A recommender that only considers the
global tag distribution would assume P (t|u, i) ≈ P (t). We will refer to such
a recommender as MostPopular recommender.

Item tag distributions. This is the distribution of previously assigned tags
for a given item. It was shown that the tag distributions of items converge
to a characteristic tag spectrum over time. Furthermore, as reported by [8]
and [9], the resulting tag distributions often follow a power law with few
tags being assigned very frequently and most tags occurring in the long tail.
If we neglect the personalization aspect of tagging, we can recommend tags
by assuming P (t|i, u) ≈ P (t|i). However, our observation of P (t|i) within
the training data may be limited, i.e. information about most tags will be
missing.

User tag distributions (Personomies). Each user develops his own vocabu-
lary of tags over time called his personomy. Users will generally be interested
in reassigning previously used tags as this will simplify content search later
on. The interest in tag convergence often results in the frequent assignment
of a limited number of category tags, and it was shown that user vocabu-
laries develop power law characteristics over time [10]. A personomy based
recommender would assume P (t|i, u) ≈ P (t|u). Once again, the distribution
P (t|u) estimated over the training data is likely to miss a variety of tags
especially for users with few bookmarks.

The authors of [4] report that a tag model which combines user and item
tag distributions into a unified distribution achieves sufficient recommendation
accuracy. We will consider a hybrid recommder with P (t|i, u) ≈ αP (t|i) + (1 −
α)P (t|u) as an additional baseline approach during our evaluations (MostPopu-
lar2d).

4 Our approach

The design of our tag recommender is based on two intuitive assumptions:

1. Tags are personalized. Different users will assign different tags to the
same item. This effect cannot only be explained by statistical variance. In-
stead, we find users developing their own category tags over time. One of the
implications for the tag recommendation task is the problem of recommend-
ing the right version of a tag, especially in cases where synonymous tags
exist. This includes different spellings, such as ”web20“ versus ”web2.0“.
Even though semantically equal, these will be different for a user who as-
signs tags for content categorization. Furthermore, especially in multilingual
folksonomies, we find that users often assign keywords from their mother
tongue. This is of particular importance for Bibsonomy, where many users
seem to come from Germany, with the effect that the tag distribution is a
mixture of German and English words. Whereas some users tagged a site
as ”searchengine“ related we also find the German translation (”suchmas-
chine“) among the frequent tags.
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2. Tags describe items. The authors of [11] report that the vast majority of
assigned tags on Delicious identify the topic, the type or the owner of a URL.
We can therefore assume that users will assign personomy tags depending
on the item. This assumption is a simplification as it excludes tags, such as
”toread“ or ”self“, which actually refer to the user item relationship instead
of the item itself. However, we believe that these tags cannot be easily pre-
dicted based on the given training data but require deeper knowledge about
the user. Luckily, as reported by [12] for Delicious, usage context and self
reference tags are relatively scarce compared to descriptive tags.

These assumptions directly influenced the basic design decisions for our rec-
ommender which suggests tags from a user’s personomy with respect to the
community opinion about the underlying item.

4.1 Translating personomies

We assume that each user has a distinctive vocabulary of tags. These tags can be
translated to the community tag vocabulary by looking at co-occurrences within
the shared item space. We are thus interested in the probability P (tu|t, u) that
a user will assign a tag tu from his personomy as next tag given that the item
was tagged as t by another user. Based on previous knowledge about the users
tagging behavior we can estimate P (tu|t, u) as

P (tu|t, u) =
∑
i∈Iu

P (tu|i, u)P (i|t), (1)

where Iu is the set of items previously bookmarked by the user. Based on
P (tu|t, u) we can now translate the global folksonomy language to the personomy
of a user.

For the recommendation task we are interested in the probability P (tu|i, u)
for previously unseen user item combinations. For a new item with an observed
tag vocabulary of P (t|i), the probability that a user will assign one of his tags
next is given as

P (tu|i, u) =
∑
t∈Ti

P (tu|t, u)P (t|i). (2)

Note that
∑

tu∈Tu
P (tu|i, u) = 1 is only true if all tags in Ti have a mapping

in Tu which is rather unlikely. Instead we expect
∑

tu∈Tu
P (tu|i, u) to decrease

the more the given item deviates from the items previously bookmarked by the
user.

4.2 The tag recommender

The tag recommender we propose, selects tags coming from three sources: the
personomy of a user where tags are weighted by P (tu|i, u), the item vocabu-
lary (P (t|i)) and the global vocabulary (P (t)). Including the item vocabulary is
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important, as many tags may be item specific and are thus unlikely contained
within the personomy. We also include the global tag distribution P (t) for cases
where little is known about user and item alike. We assume a weighted linear
combination of sources and estimate P (t|i, u) as

P (t|i, u) ≈ αuP (tu|i, u) + αiP (t|i) + (1− αu − αi)P (t), (3)

with 0 ≤ αu, αi, αu + αi ≤ 1. We then recommend the N tags with highest
probability P (t|i, u), where N is a parameter that needs to be optimized together
with αu and αi. Optimization can take place on a global or a user-centric scale.

Global optimization. For the globally optimized model, we assume equal
parameter settings for all users. As the Bibsonomy dataset is rather small, we
can use a brute-force approach to find the combination of N , αu and αi that
maximizes the F-measure. We do so by performing a 10-fold cross-validation
on the training data. We call this user-centric tag recommender with global
optimization UCG.

User-centric optimization. As users are heterogeneous, it is not intuitive
to assume shared parameter preferences. Instead, it seems straightforward to
optimize parameters for each user separately. Once again, we do so by performing
a cross-validation on the training data. We then use a brute-force approach to
find the combination of N , αu and αi that maximizes the F-measure of each
user averaged over all folds. We will refer to the user-centric tag recommender
with local optimization as UCL.

5 Evaluation

We trained the models of all recommender types on the 2-core version of the
dataset. The parameters of the MostPopular2d, UCG and the UCL models were
fine-tuned in a 10-fold cross-validation as described above. For the MostPopu-
lar2d recommender we found an α value of 0.5 to perform best. For the user-
centric tag recommender with global optimization the maximal F1 measure was
achieved when setting αu = 0.6 and αi = 0.4. The weight of the global tag dis-
tribution thus resulted 0 which means that including the global vocabulary did
not yield performance gains. For the MostPopular2d as well as the UCG recom-
mender the best number of tags to recommend was 5. Evaluating the accuracy
of all recommender types during the cross validation, we found the user-centric
tag recommender with local optimization (UCL) to constantly outperform all
other versions. We therefore submitted the predicted tags of the UCL approach
as our solution to the challenge.

The released test dataset consists of 778 bookmarks from 136 users linking to
667 items. Table 2 presents the achieved F1 measures on the first five ranks for
the various recommender types. The UCL recommender we submitted achieved a
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Table 2. Performance of various recommender types on the test data. Underlined
values represent the configuration that performed best during training. The submitted
recommender (UCL) achieved an F1 measure of 0.314. The best F1 measure could have
been achieved with a UCG recommender always suggesting 3 tags (bold).

Recommender F1@1 F1@2 F1@3 F1@4 F1@5

MostPopular 0.021 0.038 0.051 0.051 0.059

MostPopular2dα=0.5 0.229 0.286 0.306 0.313 0.310

UCG,αu=0.6,αi=0.4 0.246 0.326 0.335 0.334 0.330

UCL 0.230 0.294 0.306 0.311 0.314

performance of 0.314. This result is somewhat disappointing as it is only slightly
above the result of the simpler MostPopular2d recommender. However, we find
that the approach of vocabulary translation is generally superior as the results of
the UCG recommender are significantly better. We observe similar performance
patterns when looking at the precision/recall curves plotted in Figure 2.

Investigating the reasons for the weak performance of the UCL recommender,
we find that the user distribution of the test set deviates from the trained one
as shown in Figure 3. This deviation is likely to have a negative impact on
the prediction quality as parameters have been tuned in expectation of a user
distribution similar to the one of the training set. However, this problem is not
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Fig. 2. Precision/Recall curves for various recommenders on the provided test data.
The curve of the UCL recommender appears ”shorter“ as this recommender suggests
a variable number of tags.
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Fig. 3. Relative number of bookmarks per user in test and training data. The correla-
tion between the user participation in the test set and the trained distribution is rather
low (ρ = 0.24).

unique to the UCL recommender but is expected to have a negative impact on
the performance of all recommender types. Instead, we believe that the weak
performance of the UCL recommender is caused by an inadequate parameter
tuning for users less present in the training data but frequent in the test set.
Tuning αu, αi and N for these users often results in bad estimates due to missing
data. Whereas the implications of these shortcomings are rather minor when
users are distributed as in the training data, they seem to become major for the
test distribution.

The fact that the test set is dominated by users with rather small training
vocabularies is also reflected by the performance of the MostPopular2d rec-
ommenders with α set to 0 and 1 as shown in Figure 2. Here, we find that a
recommender which only suggest tags from a user’s personomy (α = 1) performs
very bad, whereas an item based recommender (α = 0) achieves nearly as good
results as the mixture model α = 0.5. This implies, that most tags of the test
data are not present within a user’s personomy at training time or, less likely,
that the tagging behavior of users drastically changed in the test phase.

The inadequate modeling of infrequent users (and items) is an expected
shortcoming of a purely graph-based recommendation approach. This is espe-
cially true for our personomy translation approach which requires the tags of
the given item to have a mapping within the conditional distribution P (tu|t, u)
(see equation 2). Incorporating the provided item meta-data may be a promising
alternative to improve accuracy in scenarios where little is known about users
and items from a graph perspective.
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6 Conclusions

In this paper, we presented a novel approach to the challenge of graph-based tag
recommendation in folksonomies. Building on the assumption that all users of
a folksonomy have their own tag vocabulary, our approach translates the per-
sonomies of users to the global folksonomy vocabulary. Evaluation results show
that this translation helps to significantly improve tag prediction performance.
Furthermore, we fine-tuned our model by estimating parameters on a per user
basis. Even though this user-centric approach performed rather disappointing
during the challenge, we believe that user-level optimization will be essential for
the success of future (tag) recommenders.
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Abstract. Social bookmarking tools become more and more popular nowadays 

and tagging is used to organize information and allow users to recall or search 

the resources. Users need to type the tags whenever they post a resource, so that 

a good tag recommendation system can ease the process of finding some useful 

and relevant keywords for users. Researchers have made lots of relevant work 

for recommendation system, but those traditional collaborative systems do not 

fit to our tag recommendation. In this paper, we present two different methods: 

a simple language model and an adaption of topic model. We evaluate and 

compare these two approaches and show that a combination of these two 

methods will perform better results for the task one of PKDD Challenge 2009. 

1 Introduction 

With the event of social resource sharing tools, such as BibSonomy 1 , Flickr 2 , 

del.icio.us3, tagging has become a popular way to organize the information and help 

users to find other users with similar interests and useful information within a given 

category. Tags posted by a user are not only relevant to the content of the bookmark 

but also to the certain user. According to [3], the collection of a user’s tag 

assignments is his/her personomy, and folksonomy consists of collections of 

personomies. From the available training data, we can find that some tags might just 

be words extracted from the title,  some tags might be the concept or main topic of the 

resource, and other might be very specific to a user.(see Table 1). The last three lines 

of the table show that the user 293 post tags like swss0603, swss0609, swss0602, 

which are very specific to the user. Since the test data for task one contains posts 

whose user, resource or tags are not in the training data, some traditional collaborative 

recommendation systems might not perform well. It is because most of the 

collaborative recommendation systems cannot recommend tags which are not in the 

tag set of the training data. This paper presents our tag recommendation system, 

                                                           
1 http://www.bibsonomy.org 
2 http://www.flick.com 
3 http://del.icio.us 
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which is a combination of two methods: simple Language model and an adaption of 

topic model according to [7]. 

 

USER TITLE TAGS SOURCE 

OF TAGS 

37 SVG: Adobe adobe, svg title 

787 SourceForge.net: delicious-

java 

api java, delicious title 

173 Reassessing Working 

Memory: Comment on Just 

and Carpenter (1992) and 

Waters and Caplan (1996) 

psycholinguistics, 

review, 

workingmemory 

concept or 

topic 

293 A Semantic Web Primer swss0603, 

ontolex2006, 

semwebss06, swss0602 

specific to 

the user 

293 The ABCDE Format Enabling 

Semantic Conference 

Proceedings 

semwiki2006,swikig,w

iki, eswc2006,  

semantic 

specific to 

the user 

293 Learning of Ontologies for the 

Web: the Analysis of Existent 

Approaches 

ontologylearning, 

semanticweb,semwebs

s06, sw0809, 

sw080912, swss0609 

specific to 

the user 

Table 1: Examples of tag sources 

 

The first method can extract some keywords from the description and other 

information of the post and they constitute a candidate set. Then we use the relevance 

of a word and a document to score the words in the candidate set and recommend the 

words with highest scores. The second method uses an ACT model [7], and it can get 

some conceptual or topic knowledge of the post. Given a test post, the model can 

score all the tags which have been posted previously and recommend the tags with 

highest scores.  

These two methods focus on two different aspects. The first method will probably 

recommend some keywords extracted from the title while the second method uses a 

probabilistic latent semantic method to recommend tags which are similar to the post 

in terms of conceptual knowledge.  Comparing these two methods, we can find that 

the tags recommended are always different. Consequently, the combination is a 

intuitive better way. 

This paper is organized as follows: Section 2 reviews recent development in the 

area of social bookmark tag recommendation systems. Section 3 describes our 

proposed system and the combination method in details. In section 4, we present and 

evaluate our experimental results on the test data of ECML PKDD challenge and  

conclude the results in section 5. 
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2 Related work 

The recent rise of Web 2.0 technologies has aroused the interest of many researchers 

to the tag recommendation system. Some approaches are based on collaborative 

information. For example, AutoTag[9] and TagAssist[8] use some information 

retrieval skills to recommend tags for weblog posts. They recommend tags based on 

the tags posted to the similar weblogs and they cannot recommend new tags which are 

not in the training file. FolkRank[4,5], which is an adaption of the famous PageRank 

algorithm, is a graph-based recommendation system. Also, it cannot recommend new 

tags not in the training file. The experimental results of FolkRank in [5] reveal that 

the FolkRank can outperform other collaborative methods. But to some extents 

FolkRank relies on a dense core of training file and  it might not be fit to our task. 

All the methods mentioned above are based on collaborative information and 

similarity between users and resources. However, in the cases when there are many 

new users and resources in the test data (our task one), those methods cannot perform 

well. In the RSDC ’08 challenge, the participants[1,2] who use methods based on 

words extracted from the title or semantic knowledge and user’s personomy can 

outperform other methods. Consequently, we propose our tag recommendation system 

mainly based on the contents.  

3 Our Tag Recommendation System 

3.1 Notations 

First, we define notations used in this paper.  We group the data in bookmark by its 

url_hash and data in bibtex by its simhash1. If some posts in bookmark or bibtex file 

have the same url_hash or simhash1, they are mapped to one resource r. In bookmark, 

we extract description, extended description while in bibtex, we extract journal, 

booktitle, description, bibtexAbstract, title and author. We define these information as 

the description of resource r. For each resource r and each user u who has posted tags 

to resource r, assuming that its description contains a vector 𝐰d  of Nd  words; a vector  

𝐭 d  of Td  tags posted to this resource r by the user ud .Then the training dataset can be 

represented as  

1 1 1{( , , ),..., ( , , )}D D DD w t u w t u  

Table 2 summarizes the notations. 

3.2 Language Model 

Language model is widely used in natural language processing applications such as 

speech recognition, machine translation and information retrieval. In our model, first 

we pick some words to form a candidate set of recommended tags and then score all 

the words in the candidate set and recommend words with highest scores for our tag  
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Table 2: Notations. 

recommendation system. The candidate set C is composed with two subset, C1 and C2, 

i.e. C = C1 ∪ C2.  

 We extract useful words from the description of the active resource r∗ in the test 

data. Then we remove all the characters which are neither numbers nor letters and get 

rid of the stop words in the English dictionary. The rest words form the part of the 

candidate set C1. For each t1 ∈ C1, we have the following generative probability: 

 

 (1) 

where Nd  is the number of word tokens in the description d of r
*
, tf(t1,d) is the word 

frequency(i.e., occurring number) of word t1 in the description of d of r∗, ND ′  is the 

number of word tokens in the entire test dataset, and tf(t1,D’) is the word frequency of 

word t1 in the collection D’. λ is the Dirichlet smoothing factor and is commonly set 

according to the average document length, i.e. ND ′ /|D′| in our cases. 

As for C2, in order to get more information about the new resource, we take the 

similarity between resources into consideration and add tags previously posted to the 

similar resource into C2. The similarity of resource is determined by the url of the 

resource. Each url can be split into several sections, for example, 

‘http://www.kde.cs.uni-kassel.de/ws/dc09’ will be split into three sections: 

‘www.kde.cs.uni-kassel.de’, ‘ws’ and ‘dc09’. The similarity between r1 and r2 is 

defined as follows, sim(r1,r2) = 2^(number of the identical sections of url1 and url2 – 

maximum number of sections of url1 and url2). For each resource r, we will choose 

three most similar urls to the url of r and their corresponding resources form the 

Symbol Description 

T the collection of tags posted in the training data 

R the collection of resources posted in the training data 

(grouped by the url_hash or simhash1 ) 

U the collection of users who posted tags in the training data 

D training data set containing tagged resources. 

D={(wi, ti ,ui,)}, which represents a set of pairs of 

resources and users, with the assigned tags by the 

corresponding users. 

D’ The test data set containing resources and users.  

D’={(rj, ui)}{i,j}. Note that: 1) either the user ui or the 

resource rj may not appear in the training data set. 

Nd  number of word tokens in the d ∈ D 

Td  number of tags posted by user u to resource r in d ∈ D 

𝐰d  vector form of word tokens in d ∈ D 

𝐭d  vector form of tags in d ∈ D 

ud  the user in d ∈ D 

T (u,r) the set of tags that will be recommended for a given user 

u and a given resource r 

z hidden topic layer in ACT model 

* 1 1
1 1

'

( , ) ( , ')
( | ) (1 )d d

d d d D

N Ntf t d tf t D
P t r

N N N N 
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neighbor of the resource r, noted as neigh(r). C2 is compose of the tags previous 

posted to the neigh(r
*
). For each t2 ∈ C2 , we have the following generative 

probability: 

                        (2) 

 

where n(t2,r) is the number of times that tag t2 has been posted to the resource r and 

n(t2,R) is the number of times that tag t2 has been posted in the training data. Tr  is the 

number of tags posted to the resource r and λ is the Dirichlet smoothing factor and is 

commonly set according to the average document length, i.e.  T /|R| 
Now, we have the definition of the candidate set C = C1 ∪ C2 and for an active 

resource r
*
, we have P1(t1|r

*
) for t1∈ C1  and P2(t2|r

*
) for t2∈ C2 . Then the set of 

recommended tags will be: T  u, r ≔ argmaxt∈C
n (P1(t|r

*
)+ P2(t|r

*
)) where n is the 

number of recommended tags. 

3.3 ACT model 

The model we use is called Author-Conference-Topic (ACT) model[7], which is an 

adaptation of topic model. The initial model was used to simultaneously modeling 

papers, authors, and publication venues within a unified probabilistic topic model. 

The model utilizes the topic distribution to represent the inter-dependencies among 

authors, papers and publication venues. In our task, for each  𝐰d , 𝐭d , ud ∈ D, we map 

the 𝐰d  to conference information,  map 𝐭d  to author of the paper, map ud  to the 

publication venue. Consequently, after modeling, we can get probabilistic relations 

among description, tags and user given a post. In details, we can get these inter-

dependencies: P(z|t), P(w|z) and P(u|z), where z is a hidden topic layer in the topic 

model. From this model, we can utilize the hidden topic layer to learn some 

conceptual knowledge of the post. The number of topic z can be set manually. 

After obtaining the probability of P(z|t), P(w|z) and P(u|z) from the model, we can 

derive that for each word w ∈ 𝐰d , each tag t ∈ 𝐭d , we have: 

( | ) ( | ) ( | )
z

P w t P w z P z t  

( | ) ( | ) ( | )
z

P u t P u z P z t  

To recommend tags for a given user u’ and a given resource r’, we will score all 

the tags t ∈ T using probabilistic methods as follows: 

         (3) 

There are two things that needed to be mentioned here. First, if the given user 

u′ ∉ U, which means the given user is a new user. Then we cannot obtain P(u’|t) in 

the equation (3), in that case we will set the value to 1 and the equation (3) will 

become:  

                          
'

( ) ( | ) ( ) ( ' | ) ( | ')
w r

P t P w t P t P r t P t r


                    (4) 

'
( | ', ') ( , ' ') ( ) ( ' | ) ( ' | ) ( ) ( ' | ) ( | )

w r
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Because the user is a new one, so that we have nothing about his/her history of 

posting tags in our training data, in that case equation (4) is reasonable. Secondly, not 

all the words in the given resource are in our training data, so when calculating 

equation (3), we will ignore the word which has not appeared in the training data.    

The set of recommended tags for a given user u’ and a given resource r’ will be: 

T  u′, r′ ≔ argmaxt∈T
n P(t|u′, r′) where n is the number of recommended tags, T is 

the collection of tags posted in the training file.  

3.4 Combination 

We have proposed two different methods to recommend tags, model one focuses on 

the useful words extracted from the description or title of the resource while the 

second model focuses on the conceptual knowledge and probabilistic relations among 

tags, resource and users. We are interested in the following problem: Can we 

combine these two models to perform a better result for tag recommendation? 

Algorithm 1: The combined tag recommendation system 

 

We have tried some different approaches to combine these two models. A simple 

method is to combine the scores of these two models and recommend tags with 

highest scores after combination (Algorithm 1). We can make use of the two scores 

calculated in the two approaches and there are two things worthy to be noted here: 1) 

model one only calculates the scores of tags in the candidate set but model two 

𝐰𝟏 ← words in the candidate set C 

      max_score1 ← maxw∈w1
score1[w] 

score2 t =  P t P(u|t) P(w|t)
w∈r

 

T  u, r ≔ argmaxt∈T
n score[t] 

Input: a given resource r and a given user u and the result of ATC model P(t),P(w|t) 

and P(u|t) for all tags, users, words in the training file. 

Output: T (u, r)the set of recommended tags 

begin 

//Model one 

foreach w ∈ 𝐰1  do 

    𝑠𝑐𝑜𝑟𝑒1 𝑤 = P1 w r + P2 w r   

end 

//Model two 

foreach t ∈ T do 

end 

max_score2 ← maxt∈Tscore2[t] 

//Combination 

foreach t ∈ 𝐰𝟏 ∪ T do 

score[t] = score1[t]+score2[t]*max_score1/max_score2 

end 

end 
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calculates all the tags t ∈ T.  2) due to the different distribution of scores, we need to 

normalize the two scores before combination.  In order to solve the first problem, we 

consider all the tags t ∈ C ∪ T where C is the candidate used in the model one. In 

terms of normalization, we make the  score1 ∞ =   score2 ∞  and then add these 

two score, if a tag t is in the candidate set C but not in the T, the score2[t] = 0 and if a 

tag  t is in T but not in C, then the score1[t] =0. 

4 Experimental Results 

4.1 Dataset 

We evaluate our experimental results using the evaluation methods provided by the 

organizers of ECML PKDD discovery challenge 2009. The training set and the test 

set are strictly divided and we use the cleaned dump as our training set for our tag 

recommendation system.  

Here are some statistical information about training data and test data: There are 

1,401,104 tag assignments. 263,004 bookmarks are posted and among which there are 

235,328 different url resources while 158,924 bibtex are posted and among which 

there are 143,050 different publications. From this, we can see that many resources 

appear just once in the training file. There are 3,617 users and 93,756 tags in all in the 

training file. The average number of tags posted to bookmark is 3.48 and the average 

number of tags posted to bibtex is 3.05. 

 In the test data, there are 43,002 tag assignments, 16,898 posted bookmarks and 

26,104 posted bibtex. Among all the posts, there are only 1,693 bookmark resources 

and 2,239 bibtex resources which are in the training file. The average number of tags 

posted to bookmark is 3.81 and the average number of tags posted to bibtex is 3.82.  

4.2 Data Preprocessing 

The training data is provided by the organizers of the ECML PKDD, we establish 

three tables, bookmark, bibtex and tas in our MySQL database.  In order to get the 

similarity between resources, we need to preprocess the url field. For each url in the 

bookmark, we eliminate the prefix such as ‘http://’, ‘https://’ and ‘ftp://’. Then we 

split the url by the character ‘/’. For example, a url ‘http://www.kde.cs.uni-

kassel.de/ws/dc09’ will be split into ‘www.kde.cs.uni-kassel.de’, ‘ws’ and ‘dc09’. As 

we mentioned above, we define some information extracted from the table as the 

description of a resource r. We eliminate the stop words in the English dictionary and 

stem the words, for example, ‘knowledge’ will be stemmed to ‘knowledg’ and both 

‘biology’ and ‘biologist’ will be stemmed to ‘biologi’.  
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4.3 Results and analysis 

As performance measures we use precision, recall and f-measure. For a given user u 

and a given resource r, the true tags are defined as TAG(u,r), then the precision, recall 

and f-measure of the recommended tags T (u, r) are defined as follows: 

recall T  u, r  =  
1

|U|
 

|TAG(u, r) ∩ T (u, r)|

|TAG(u, r)|u∈U
 

 

precision T  u, r  =  
1

|U|
 

|TAG(u, r) ∩ T (u, r)|

|T (u, r)|u∈U
 

    

f − measure  T  u, r  =  
2 × recall × precision

recall + precision
 

4.3.1 Performance of Language model 

In table 3, we show the performance of Language model on the test data provided by 

the organizers of ECML PKDD challenge 2009. We show the performance of 

bookmark, bibtex and the whole data respectively.  From the table, we can find that 

the result of bookmark is better than that of bibtex and we can have a highest f-

measure of 13.949% when the number of recommended tags is 10. 

 

 

 bookmark(%) bibtex(%) overall(%) 

1 5.256/18.287/8.165 3.535/13.714/5.620 4.207/15.509/6.619 

2 9.298/17.417/12.124 6.399/12.571/8.481 7.534/14.474/9.910 

3 12.467/16.789/14.308 9.030/11.941/10.284 10.377/13.845/11.862 

4 14.755/16.114/15.405 11.242/11.399/11.320 12.619/13.251/12.927 

5 16.314/15.634/15.967 12.889/10.879/11.799 14.231/12.747/13.448 

6 17.288/15.195/16.174 14.361/10.460/12.104 15.507/12.320/13.731 

7 17.964/14.874/16.273 15.564/10.103/12.253 16.503/11.977/13.880 

8 18.459/14.610/16.311 16.531/9.779/12.289 17.285/11.677/13.938 

9 18.827/14.430/16.338 17.280/9.496/12.256 17.884/11.434/13.949 

10 19.127/14.270/16.346 17.894/9.243/12.190 18.374/11.218/13.931 

Table 3: performance of language model on the test data, the numbers are shown in 

the following format: recall/precision/f-measure 

4.3.2 Performance of ACT model 

In table 4, we show the performance of Language model on the test data provided by 

the organizers of ECML PKDD challenge 2009. We show the performance of 

bookmark, bibtex and the whole data respectively.  From the table, we can see that the 

performance of ACT model is worse than the language model. We have the highest f-

measure of 3.077% when the number of recommended tags is set to five. Also, the 
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performance of bookmark is a little bit better than the bibtex and the reason might be 

that description in bibtex has some information which is irrelevant to the main topic 

of the publication.  

 

 bookmark(%) bibtex(%) overall(%) 

1 2.142/6.800/3.258 0.944/2.758/1.406 1.415/4.346/2.135 

2 3.523/5.628/4.333 1.431/2.320/1.770 2.253/3.620/2.778 

3 4.519/4.825/4.667 1.885/2.076/1.976 2.920/3.156/3.034 

4 5.179/4.196/4.636 2.167/1.868/2.007 3.351/2.783/3.041 

5 5.829/3.815/4.612 2.466/1.721/2.027 3.788/2.544/3.044 

6 6.418/3.536/4.560 2.724/1.582/2.002 4.175/2.350/3.077 

7 6.870/3.257/4.419 2.977/1.483/1.980 4.507/2.180/2.939 

8 7.377/3.059/4.324 3.205/1.393/1.942 4.844/2.048/2.878 

9 7.849/2.891/4.225 3.557/1.346/1.953 5.244/1.953/2.846 

10 8.289/2.746/4.126 3.721/1.276/1.900 5.516/1.854/2.775 

Table 4: performance of ACT model on the test data, the numbers are shown in the 

following format: recall/precision/f-measure 

4.3.3 Performance after combination 

In table 5, we show the performance after the combination of these two models. From 

the table, we can see that after combination, our recommendation system works a 

little better than the Language model and has a highest f-measure of 14.398% when 

recommending five tags. 

 final result(%) 

1 4.624/15.271/7.099 

2 7.753/14.550/10.116 

3 10.626/14.900/12.405 

4 12.738/14.944/13.753 

5 13.916/14.915/14.398 

Table 4: performance of ACT model on the test data, the numbers are shown in the 

following format: recall/precision/f-measure 

 

The result after combination is shown in Fig. 1, together with the results of the 

previous two methods. 

5 Conclusions 

In this paper, we describe our tag recommendation system for the first task in the 

ECML PKDD Challenge 2009. We exploit two different models to recommend tags. 

The experimental results show that the Language model works much better than the 

ACT model and the combination of these two methods can improve the results.  
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Fig.1 Recall and precision of tag recommendation system 

 

However, we have an unexpected result of the poor ACT model, from the previous 

test using the separated test data from the training file, the ACT model can have a f-

measure over 20%.  

We need to further analyze the results to see why ACT has a poor result for the test 

data.  Also, we can try to change the scoring scheme or expand the candidate set in 

the language model. Future work also includes some new methods of combination. 
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Abstract. With the rapid development of web2.0 technologies, tagging become 

much more important today to organize information and help users search the 

information they need with social bookmarking tools. In order to finish the 

second task of ECML PKDD challenge 2009, we propose a graph-based 

collaborative filtering tag recommendation system. We also refer to an 

algorithm called FolkRank, which is an adaptation of the famous Page Rank. 

We evaluate and compare these two approaches and show that a combination of 

these two methods will perform better results for our task. 

 

1 Introduction 

Tagging is very useful for users to figure out other users with similar interests within 

a given category. Users with similar interests might post similar tags and similar 

resources might have similar tags posted to them. Collaborative filtering is widely 

used in automatic prediction system. The idea behind it is very simple: those who 

agreed in the past tend to agree again in the future. Traditional collaborative filtering 

systems have two steps. The first step is to look for users who share the same rating 

patterns with the active user whom the prediction is for. Then, the systems will use 

the ratings from those like-minded users found in the first step to calculate a 

prediction for the active user. Since all the tags, users and resources in the test data 

are also in the training file, we can make use of the history of users’ tag, also called 

personomy[3] and tags previously posted to the resource to recommend tags for a 

active post. This paper presents our proposed tag recommendation system, which is a 

combination of two methods: one is an adaption of  item-based collaborative filtering, 

the other is FolkRank according to [4,5]. 

As we mentioned above, collaborative filtering performs well for automatic 

prediction. However, current widely used collaborative filtering systems are for 

predicting the ratings of some products or recommend some products to users. For 

example, the famous websites, Amazon.com1, Last.fm2, eBay3 apply this method to 

                                                           
1 http://www.amazon.com 
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their recommendation systems. Our first method considers the tags previously posted 

to the resource and users’ similarities to recommend tags. The second method is an 

application of the FolkRank algorithm in [4, 5].  

These two methods have some common features. They both use the history of the 

user and tags previously posted to resource for recommendation. They are both 

suitable to the case that test data are in the training data.  Both of them do not need to 

establish models in advance. But they are different to some extents. The first method 

just considers tags in the candidate set while the FolkRank will consider all the tags in 

the training data. Moreover, the first method focuses more on collaborative 

information while the second focuses on the graph information. 

This paper is organized as follows: Section 2 introduces recent trends in the area of 

social bookmark tag recommendation systems. Section 3 describes our proposed 

system and the combination method in details. In Section 4, we present and evaluate 

our experimental results on the test data of ECML PKDD challenge 2009 and make 

some conclusions in Section 5. 

2 Related work 

Some researchers have already used some approaches based on collaborative 

information for tag recommendation systems. For example, AutoTag[7] and 

TagAssist[6] make use of information retrieval skills to recommend tags for weblog 

posts. They recommend tags based on the tags posted to the similar weblogs. Our first 

method is similar to these two approaches.  

FolkRank in[4, 5] is a topic-specific ranking in folksonomies. The key idea of 

FolkRank algorithm is that a resource which is tagged with important tags by 

important users becomes important itself. In [5], the author compared the performance 

of some baseline methods and his FolkRank algorithm, and found that FolkRank 

outperformed other methods. His experimental results relied on a dense core of the 

training file and considering that our training data is a post-core two dataset, we 

decide to refer to this algorithm in our proposed tag recommendation system. 

In the RSDC ’08 challenge, the participants [1, 2] who make use of resource’s 

similarities and users’ personomy outperformed other approaches. Consequently, we 

consider using the collaborative information of resource’s similarities and users’ 

personomy in our tag recommendation system. 

                                                                                                                                           
2 http://www.last.fm 
3 http://www.eBay.com 
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3 Our Tag Recommendation 

3.1 Notations 

First, we define notations used in this paper. We group the data in bookmark by its 

url_hash and data in bibtex by its simhash1. If some posts in bookmark of bibtex file 

have the same url_hash or simhash1, they are mapped to one resource r. For each 

resource rd , assuming a vector 𝐭d  of Td  tags posted to this resource rd  by the user ud . 

Then the training dataset can be represented as 

1 1 1{( , , ),..., ( , , )}D D DD r t u r t u  

Table1 summarizes the notation. 

Symbol Description 

T the collection of tags posted in the training data 

R the collection of resources posted in the training data 

(grouped by the url_hash or simhash1 ) 

U the collection of users who posted tags in the training data 

D training data set containing tagged resources. 

D={(rj, ti, ui)}, which represents a set of pairs of resources 

and users, with the assigned tags by the corresponding 

users. 

D’ The test data set containing resources and users.  

D’={(rj, ui)}. Note that: the user ui, the resource rj  and the 

original tags posted by ui  to ri  appear in the training 

dataset. 

Nd  number of word tokens in the d ∈ D 

Tr  number of tags posted to resource r  

𝐭d  vector form of tags in d ∈ D 

ud  the user in d ∈ D 

C(u, r) the candidate set of tags to be recommended for a given 

user u and a given resource r  

T (u,r) the set of tags that will be recommended for a given user 

u and a given resource r 

n(t, r) the number of times that the tag t has been posted to the 

resource r in the training dataset 

Table1: Notations 

3.2 Collaborative Filtering method 

Our proposed collaborative filtering method for tag recommendation has two steps. 

First of all, for a given resource r and a given user u in the test dataset, we make use 

of the tags previously posted to the resource r in the training dataset and define them 

as the candidate set: 

299



 

( , ) { | ( , , ') , ' }i iC u r t r t u D u U    

The second step is to score all the tags in the candidate set and recommend the tags 

with the highest scores. In our proposed tag recommendation system, we score the 

tags in the candidate set using the following equation for all tags t∈ C(u, r): 

             (1) 

 

where n(t,r) is the number of times that tag t has been posted to the resource r and 

n(t,R) is the number of times that tag t has been posted in the training data. Tr  is the 

number of tags posted to the resource r and λ is the Dirichlet smoothing factor and is 

commonly set according to the average document length, i.e.  T /|R| 
In order to take the users’ similarities into consideration, we change the equation 

(1) to the following equation: 

 

 

  (2) 

          

where U′ = {u|(r, 𝐭, u) ∈ D} for a given resource r, m(t,u,r) is the number of times tag 

t has been posted to the resource r by the user u. The similarity of users sim(u,u’) is 

define as follows, 

 (3) 

     

For a given user u and a given resource r, the set of recommended tags will be: 

T  u, r : =  argt∈C u,r 
n P(t|r, u)    where n is the number of recommended tags. 

3.3 FolkRank algorithm 

FolkRank is a graph-based algorithm whose basic idea is to rank all the tags and pick 

out tags which are relatively important given a user u and a resource r. This algorithm 

is derived from the PageRank algorithm, which is used by the Google Internet search 

engine that assigns a numerical weighting to each element of a hyperlinked set of 

documents. The purpose of PageRank is to measure the hyperlink’s relative 

importance within the set. However, due to the structural differences between 

hyperlinks and our tag recommendation system, we cannot apply the PageRank to our 

tag recommendation system and a new FolkRank algorithm was introduced in [4, 5]. 

In order to apply a weight-spreading ranking scheme to recommend tags, we need 

to change the directed graph in PageRank to an undirected graph and change the 

corresponding ranking approach.  

First, we convert the training dataset D into an undirected graph G = (V, E). V is 

the set of the nodes in the graph, which is composed of all the tags, resources and 

users in the training file, i.e. V = T ∪ R ∪ U. E is the set of the edges in the graph, 

which is defined as the co-occurrences of tags and users, users and resources, tags and 
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resources. E =   u. t ,  t, r ,  u, r    {r, t, u} ∈ D} and each edge {u, t} ∈ E has a weight 

|  r ∈ R  r, t, u ∈ D  |, each edge  t, r ∈ E has a weight |  u ∈ U|{r, t, u} ∈ D | and 

each edge  u, r ∈ E  has a weight |  t ∈ T|{r, t, u} ∈ D | . After having the graph 

format of the posts, we can spread the weight like PageRank as follows: 

                                               (1 )w dAw d p  
  

                                             (3) 

where A is the adjacency matrix of G, p   is the random surfer component, and 

d ∈ [0,1] is a constant which controls the influence of the random surfer.  

Usually, p   is set to the vector where all values equal to 1. But in order to 

recommend tags relevant to certain user and certain resource, we can change the p   to 

express user preferences. In our tag recommendation system, each user, tag, and 

resource get a preference weight of 1 but the active user and resource for 

recommendation get a preference of 1+|U| and 1+|R| respectively.  

The FolkRank algorithm has a differential approach to see the ranking around the 

topics defined in the preference vector. This approach is to compare the rankings with 

and without the preference vector p  . Assuming that 𝐰0 is the ranking after iteration 

with d = 1 while 𝐰1 is the ranking after iteration with d =0.625, then the final weight 

will be 𝐰 = 𝐰𝟏 −𝐰0. Details can be found in Algorithm 1. 

Algorithm 1: The FolkRank algorithm used in our tag recommendation system 

Input: the graph information of the training file, i.e. G = (V, E) where V =T ∪ R ∪ U and 

E =   u. t ,  t, r ,  u, r    {r, t, u} ∈ D}, the adjacency matrix A, the given resource r and the 

given user u. 

Output: the ranking w of all tags ∈ T 

begin 

 //Initialize 

 foreach t ∈ T, r ∈ R and u ∈ U do 

  w0[t] = w1[t]=1,w0[r]= w1[r]=2 and w0[u] = w1[u] =2  

end 

foreach t ∈ T, r ∈ R and u ∈ U do 

  p[t]=p[r]=p[u]=1 

end 

p[r] = 1+|R| 

p[u]= 1+|U| 

d = 0.625 

 //iteration for 𝑤1 

    repeat 

  w    1  =  dAw    1 + (1 − d)p   

    until convergence 

//iteration for 𝑤0 

repeat 

  w    0  =  Aw    0 

    until convergence 

 w = w    1 − w    0 

end 
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3.4 Combination 

We have proposed two different but similar methods for our tag recommendation 

system. Both are suitable to our case that the test data have already appeared in the 

training file, both make use of the similarity of users and resources, but the first 

method focuses more on the collaborative information while the second one focus 

more on the graph nodes and can spread the weight according to the co-occurrences. 

We hope to combine these two methods and get a better result. 

We have tried some different approaches to combine these two methods. A simple 

method of combination is to multiply the scores of these two models and recommend 

tags with highest scores after combination. Details can be found in Algorithm 2.  

Algorithm 2: the combination method used in our tag recommendation system 

4 Experimental Results 

4.1 Dataset 

We evaluate our experimental results using the evaluation methods provided by the 

organizers of ECML PKDD discovery challenge 2009. The training set and the test 

set are strictly divided and we use the post-core level 2 training file as our training 

dataset for our tag recommendation system. 

The general statistical information of training data and test data can be found in the 

table 2 and table 3. 

 

Input: a given resource r and a given user u and the result of the two methods 

Output: the set of recommended tags T (u, r) 

begin 

//collaborative method 

the candidate set C u, r ← {t|(r, t, u′) ∈ D, u′ ∈ U} 

foreach t ∈ C do 

  score1[t] = P(t|r,u) in equation(2) 

end 

//FolkRank algorithm 

foreach t ∈ T do 

  score2[t] = w, the output of the algorithm 1 

end 

//combination 

foreach t∈ T do 

      score[t] = score1[t]×score2[t] 

end 

     T  u, r ≔ argmaxt∈T
n score[t] 

end 
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tag 

assignments 
|D| |R| |U| |T| 

average no. 

of tags 

bookmark 916,469 263,004 235,328 2679 50,855 3.48 

bibtex 484,635 158,924 143,050 1790 56,424 3.05 

total 1,401,104 421,928 378,378 3617 93,756 3.32 

Table2: the general statistical information about the training dataset 

 

 
tag 

assignments 
|D| |R| |U| |T| 

average no. 

of tags 

bookmark 1,465 431 387 91 587 3.40 

bibtex 1,139 347 280 81 397 3.28 

total 2,604 778 667 136 862 3.35 

Table 3: the general statistical information about the test dataset 

4.2 Experimental Result  

As performance measures we use precision, recall and f-measure. For a given user u 

and a given resource r, the true tags are defined as TAG(u,r), then the precision, recall 

and f-measure of the recommended tags T (u, r) are defined as follows: 

recall T  u, r  =  
1

|U|
 

|TAG(u, r) ∩ T (u, r)|

|TAG(u, r)|u∈U
 

 

precision T  u, r  =  
1

|U|
 

|TAG(u, r) ∩ T (u, r)|

|T (u, r)|u∈U
 

    

f − measure  T  u, r  =  
2 × recall × precision

recall + precision
 

 

4.2.1 Performance of Collaborative Filtering method 

In table 4, we show the performance of collaborative filtering method on the test data 

provided by the organizers of ECML PKDD challenge 2009. From the table, we can 

see that this method has a highest f-measure of 30.002% when the number of 

recommended tags is 5. 

 

4.2.2 Performance of FolkRank method 

In table 4, we show the performance of FolkRank algorithm on the test data. From the 

table, we can find that the first method performs a little bit better than FolkRank and 

FolkRank has a highest f-measure of 28.837% when the number of recommended tags 

is 4. 
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collaborative 

method 
FolkRank algorithm Combined result 

1 13.000/37.147/19.262 14.132/40.231/20.917 14.400/41.512/21.381 

2 20.220/31.362/24.588 22.827/33.419/27.126 21.309/38.368/27.400 

3 26.760/28.813/27.749 28.326/29.092/28.704 25.117/37.125/29.962 

4 32.571/27.035/29.546 32.783/25.739/28.837 27.744/36.739/31.614 

5 36.569/25.435/30.002 36.229/23.342/28.392 28.670/36.225/32.008 

6 39.079/23.811/29.592 38.826/21.208/27.423 29.409/35.981/32.364 

7 41.205/22.670/29.248 40.733/19.262/26.155 29.763/35.935/32.560 

8 42.860/21.896/28.985 42.096/17.625/24.847 29.901/35.880/32.619 

9 43.863/21.089/28.483 43.227/16.195/23/570 29.933/35.803/32.606 

10 45.367/20.591/28.325 44.620/15.077/22.539 29.984/35.769/32.622 

Table 4: performance of two methods and combination on the test data, the numbers 

are shown in the following format: recall/precision/f-measure 

4.2.3 Performance of combination 

In table 4, we show the performance after the combination of the previous two 

methods. We are glad to see that the results after combination outperform these two 

methods. We have a 2% increase compared to the first method and a 4% increase 

compared to the second method. We have a highest f-measure of 32.622% when 

recommending 10 tags. The precision-recall plot  in Fig.1 reveals the quality of our 

recommendation system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1 Recall and precision of tag recommendation system  
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5 Conclusions 

In this paper, we describe our tag recommendation system for the second task in the 

ECML PKDD Challenge 2009. We exploit two different methods to recommend tags 

when tags, resources, users in the test data are also in the training file. The 

experimental results show that the combination of these two methods will gain a 

better result.  

We need to further analyze the results to see which kind of information in the 

graph contributes more to the final ranking.  Also, we can try to change the scoring 

scheme or expand the candidate set in our collaborative filtering method. Future work 

also includes some adaptations of PageRank for the tag recommendation system. 
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