
1

ReSeagent: A Refactoring Tool for Plan Level
Refactoring in MAS Development

Ali Murat Tiryaki and Oguz Dikenelli
Ege University, Department Of Computer Engineering

35100 Bornova, Izmir, Turkey
Email: {ali.murat.tiryaki,oguz.dikenelli}@ege.edu.tr

Abstract—The need for XP-like agile approaches that facilitate
flexible evolutionary development has been widely acknowledged
in the AOSE area. Such approaches improve acceptability of
agent-technology by the industry. Evolutionary development of
multi agent systems-MASs can only be applied successfully, if
designs of the MASs being developed are improved throughout
the development process.In our previous work, we have defined a
refactoring approach that makes evolutionary MAS development
possible. In this paper, we mainly aim to identify a development
approach for MAS refactoring tools. In order to discuss this
approach, we developed a refactoring tool called ReSeagent on
the Seagent framework. Although the ReSeagent tool supports
plan level refactoring patterns that are to be manually applied
by the developers, ideas used in the implementation of this tool
are generic ideas that provide a base for different refactoring
types and development artifacts.

I. INTRODUCTION

Based on the experiences on agent-based system devel-
opment, AOSE research community has realized that it is
almost impossible to develop complex systems like multi agent
systems - MAS in a sequential manner [33], [7]. The solution
is the iterative approach which has been accepted as one of
the best practices by software development community and
integrated to all recent software development methodologies
such as Rational Unified Process - RUP [26] and Extreme
Programming - XP [3].

Managing the continuous evolution of software architecture
and related design is one of the key issues in iterative devel-
opment. XP introduces two critical practices to manage the
evolution of software architectures: test driven development
[21] and refactoring [18].

Test driven development produces test code for each class
developed during iterations. This test code provides a pro-
tection shield against the flaws that can occur as a result
of changes made on the working code by guaranteeing the
functional accuracy of this code. The other best practice
refactoring defines a process for improving the structure of
the software system without altering the external behavior.

An iterative and incremental development life-cycle ap-
proach is quite appropriate for developing large scale dis-
tributed and complex systems such as MASs. XP-like agile
processes, that introduce light-weight practices for iterative
and incremental development in a controllable way, are needed
to improve acceptability of the agent-technology by the indus-
try [7], [33]. However, traditional testing and refactoring ap-
proaches and their supporting tools cannot be re-used directly

in MAS development, since MASs are built using different
abstractions and techniques. So we need to re-define these
practices for MAS development.

In [28], we have proposed a refactoring approach that makes
evolutionary MAS development possible. This refactoring ap-
proach follows the route of traditional refactoring and provides
some new refactoring patterns for MAS development. The
proposed approach introduces some common problems called
“bad smells” experienced during the development of MAS
systems (such as duplicated behaviour structure and big plan)
and maintenance strategies called “refactoring patterns” to
overcome these bad smells. Each of the refactoring patterns
defined in this proposed approach focuses on overcoming
one or more than one bad smell(s) encountered during MAS
development.

In this paper, we aim to introduce a basic development
approach to produce MAS refactoring tools Then, we imple-
ment a refactoring tool called as ReSeagent on Seagent MAS
development framework [14], [15] by using the proposed ap-
proach. This tool supports refactoring on agent plans supported
by almost all MAS development methodologies such as Passi
[10], Tropos[5] and MaSe [13]. The tool can be used manually
by developers during MAS development activities. ReSeagent
focuses on refactoring Seagent plans whose meta model is
defined clearly in Seagent. However, software architecture of
the tool is generic and it can be used for other planning
systems whose meta-models are explicitly defined or other
MAS design artifacts such as role, goal and protocols.

II. RELATED WORKS

In the literature, there are some pioneering works which try
to apply agile practices to MAS development.

Knublauch [20] used practices of extreme programming -
XP [3], which is the one of the most known agile development
processes used for MAS development. Although, this work
proves the effectiveness of XP practices in terms of MAS
development, refactoring is not explained in detail. Since the
agent development framework and process meta-model, which
are used during development, are very simple, refactoring
operations on agents seem as very simple processes and
refactoring practice is applied on agents. However, an agent
that is developed by using a realistic development framework
can play many roles in MAS and those roles have many goals,
responsibilities and abilities. So, we believe that agents are not

Ali
Typewritten Text

Ali
Typewritten Text

Ali
Typewritten Text

Ali
Typewritten Text

Ali
Typewritten Text

Ali
Typewritten Text

Ali
Typewritten Text

Ali
Typewritten Text

Ali
Typewritten Text

Ali
Typewritten Text

Ali
Typewritten Text
.

Ali
Typewritten Text
In our previous work,

Ali
Rectangle

Ali
Typewritten Text
In our previous work,

Ali
Typewritten Text

2

small; on the contrary they are too big entities for testing and
refactoring.

In another important work has been introduced by Chella
et. al. [8], well known Passi methodology is transformed to
Agile Passi. The testing framework developed by the Agile
Passi research team provides an automated testing approach
for testing multi-agent systems [6], [11]. Agile Passi approach
does not introduce an iterative or evolutionary style for MAS
development. Therefore, a refactoring approach that makes
agile MAS development possible is not introduced in this
work.

In [9], an agile methodology for MAS development is
introduced. This methodology is a generic methodology based
on the practices such as test driven development and refac-
toring that come from the agile approaches. The process of
SADAAM consists of four key phases: design, test driven im-
plementation, release & review and refactor & enhancement,
that are applied iteratively until a finished state is reached.
However, any detailed discussion on how the practices called
test driven development and refactoring are applied during
MAS development. Hence, the proposed methodology is a
generic methodology that does not add too many specific
ideas to the abstract development process proposed by agile
approaches. To concretize how the proposed methodology
is used for MAS development, the agile practices in the
methodology have to be discussed exhaustively.

Another working [30] focuses on to define which and
how traditional refactoring practice can be used for agent
based simulation systems on a multi agent simulation systems
modeling paradigm called MASim. At the end of the working,
a catalog that consists of the refactoring patterns used to
improve the system designs based MASim is introduced.
Moreover, some of the proposed refactoring patterns has been
implemented and integrated to an agent based simulation
platform called SeSam. This working does not introduce a
general refactoring approach and its main characteristics for
MAS development. The proposed refactoring patterns can be
used to only the agent systems that have a specific type. To
define the refactoring patterns that can be used during MAS
development, firstly a general refactoring approach based on
the characteristics of these systems has to be defined.

In [29], an iterative and incremental development approach
called agent oriented test driven development - AOTDD is
proposed to handle the complexity and continuously changing
nature of the requirements in MAS development. In AOTDD,
developers follow the development cycle with adding the new
functionalities to the system between iterations, just like all
other agile & iterative development approaches. Also, the life
cycle of proposed test driven approach and a testing tool that
supports the proposed test driven approach are introduced in
this work. Since this work is focused on the testing part of test
driven development, the refactoring step that is very critical
for iterative and incremental development is not discussed in
detail.

These works neither propose a systematic approach for
MAS refactoring nor introduce a refactoring tool support for
these approaches. In this paper, we focus on these two points.

III. A DEVELOPMENT APPROACH FOR MAS
REFACTORING TOLLS

Refactoring is directly dependent on the executable artifacts
of the developed system. In AOSE area, it is not possible to
define a set of executable artifacts that can be agreed on, since
there are several agent architectures such as BDI, re-active,
self-organized and several development approaches such as
Gaia [32], Tropos [5] and Adelfe [4] that aim to develop
agents based on these agent architectures. Naturely, different
executable artifacts may emerged based on the used agent
architecture and/or development frameworks that support these
architectures. As a conclusion, it is impossible to develop a
refactoring tool that is usable for all kinds of MAS develop-
ment artifacts. Instead of this, we need a generic approach to
develop MAS refactoring tools. This approach can be specified
for different MAS architectures and/or different artifacts to
produce a suitable refactoring tool.

The proposed development approach has three steps listed
as follows:

1) Define the meta-model of the target executable develop-
ment artifacts,

2) Define the bad smells encountered during the develop-
ment of the artifacts specified in the previous step,

3) Define the refactoring patterns that overcome the bad
smells defined for the target development artifact.

To illustrate how the proposed approach can be applied to
refactoring tool development, we chose the agent plans as
the target development artifact. Agent plan abstraction is
one of the most common artifacts in MAS development
methodologies. Almost all of the MAS methodologies use
plan abstraction (it is named with different terms in different
methodologies) to model agents’ internal behaviours. For
example, in the goal oriented development approach, each
agent goal is achieved by one or more agent plan(s). Several
approaches can be used to build plan structures such as HTN
[31], [23] based on the agent infrastructure. Developers have
to specify the planning approach before they apply first step of
the proposed refactoring tool development approach (defining
the meta-model of the target artifacts).

In our case, we aim to develop a refactoring tool for the
Seagent framework that was developed by our research group.
So, our refactoring tool called ReSeagent aims to refactor
agent plans that are directly dependent on the Seagent planning
infrastructure.

The rest of this section explains how the steps of the
proposed approach were applied for the plan artifact in the
Seagent framework.

A. Define the meta-model of the target executable development
artifacts

Performing a refactoring pattern requires a clear understand-
ing of the abstract syntax and semantics of both the source
and target models. Meta-modeling is a common technique for
defining the abstract syntax of models and the interrelation-
ships between model elements. To identify refactoring patterns
and bad smells for an executable design artifact, we have to

Ali
Rectangle

Ali
Typewritten Text
work

Ali
Rectangle

Ali
Typewritten Text
Naturally,

Ali
Rectangle

Ali
Typewritten Text
emerge

3

know the meta-model used to build structures of this type of
artifacts.

In Seagent framework, the hierarchical task network - HTN
formalism [23], [31] is used to build and store of agent
plans. Hence, the plan level refactoring patterns introduced in
this paper are dependent on the HTN formalism. ReSeagent
refactoring tool supports to apply the mechanics of these
HTN dependent refactoring patterns on HTN plans that are
developed through Seagent. The structure of the HTN meta
model used in the current Seagent version is shown in the
figure 1.

Figure 1. Seagent HTN Meta Model

In HTN formalism, there are two kinds of task; complex
task (we call behaviour) and primitive task (we call action).
Complex tasks hold the structure of its sub-tasks and links
between these tasks. Primitive tasks have directly executable
code. Information requirements of tasks are illustrated as pro-
visions. Outcomes are result states of tasks. Data is transferred
to other tasks through the several kinds of link. An inheritance
link is used to transfer a provision of a parent complex task to a
sub task. Disinheritance links are used to transfer outcomes of
sub-tasks to parent complex task. And finally, the information
flow between outcomes and provisions of the tasks in the same
level is provided by internal provision links. As an addition
of the links come from the HTN formalism, there is one more
type of link called order link in the Seagent behavioural PSM.
Order links do not pass any information between tasks. They
are used only to order the execution of tasks.

B. Define the bad smells encountered during the development
of the artifacts specified in the previous step,

To make decision about applying refactoring patterns on an
arfifact, we need to define the common design problems that
are encountered by developers during the system development
process frequently. Fowler named these common problems
as bed smells in [18] and introduced refactoring patterns to
overcome these bad smells in software design. Each of the
defined refactoring patterns is introduced to overcome one or
many bad smell(s).

Similarly, we have to define bad smells for MAS develop-
ment. Based on our experiences on the MAS development, we
have identified following bad smells for plan level refactoring:
Duplicated behaviour structure, execution decision in a plan,
big behaviour, incoherent behaviour, redundant task group.

Detailed definitions of all defined bad smells are accessible
through the Seagent web side1.

C. Define the refactoring patterns that overcome the defined
bad smells for the target development artifact.

To develop a refactoring tool that can be used during MAS
development, the refactoring patterns that define the order of
the mechanics for each refactoring pattern has to be defined by
a standard way. Each pattern includes pre-defined mechanics in
order to overcome one or more bad smell(s). These mechanics
has to be defined by using a machine understandable semantic.
The tool uses the pre-defined machine understandable pattern
definitions to overcome bad smells.

In ReSeagent, we have defined seven refactoring patterns
for HTN based plan refactoring. These plan level refactoring
patterns that were defined based on our experiences with its
initiator bad smell(s) are shown in table I.

Table I
REFACTORING PATTERNS AND THEIR INITIATOR BAD SMELLS IN THE

PLAN LEVEL

The detailed definitions of all refactoring patterns defined
are accessible on the refactoring patterns part of the Seagent
web side.

IV. A HYBRID APPROACH FOR DEFINITION OF
REFACTORING PATTRENS

To implement a refactoring tool, firstly the refactoring
techniques supported by the tool have to be defined in a
usable form for the tool. We used a hybrid approach based
on the mechanisms used for defining transformation rules in
the Model Driven Enginnering - MDE to define the refactoring
tecniques mentioned in the previous section for our refactoring
tool. MDE is a discipline in software engineering that relies on
models as first class entities and that aims to develop, maintain
and evolve software by performing model transformations
[22], [25]. This section introduces our hybrid approach that is
based on the model transformation techniques [19] and used
to define refactoring techniques in ReSeagent refactoring tool.

1http://etmen.ege.edu.tr/wiki/index.php/refactoring_agent_system

Ali
Typewritten Text

Ali
Typewritten Text

Ali
Oval

Ali
Typewritten Text
bad

Ali
Typewritten Text

Ali
Typewritten Text

Ali
Typewritten Text

Ali
Typewritten Text

Ali
Typewritten Text

Ali
Typewritten Text

Ali
Typewritten Text

Ali
Typewritten Text

Ali
Typewritten Text

Ali
Typewritten Text

Ali
Typewritten Text

Ali
Rectangle

Ali
Typewritten Text
is used to build and store

Ali
Rectangle

Ali
Typewritten Text
artifact,

Ali
Rectangle

Ali
Typewritten Text
site

4

From the MDE perspective, a refactoring operation is a
model transformation between the initial and the improved
models. Model is a structure of design artifacts in the refac-
toring context. Like each model transformation has some
teransformation rules, each refactoring has some mechanics
that achieve main goal of the refactoring by working together.
It is nature to think that the refactoring approaches and tools
can be based on the model transformation approaches and
techniques. To develop a refactoring tool by using the model
transformation techniques, mechanics of refactorings should
be defined as the transformation rules. In this manner, the
refactoring tool operates the refactoring mechanics that are
defined as transformation rules according to the refactoring
pattern in order. This is not a new idea and there are some
works about rule based refactoring in the literature such as [2],
[24]. All of these works aim to define refactoring operations
by rules for their own target development sytle.

Transformation rules are the focal point for model trans-
formation. The techniques and languages that are used to
identify these rules specify the maim characteristics of model
transformation. There are two main approaches to define
trasnformation rules; declerative and imperative approaches
[12]. Declarative approaches (e.g., [1]) are attractive because
particular services such as source model traversal, traceability
management and automatic bidirectionality can be offered by
an underlying reasoning engine. On the other hand, imperative
approaches (e.g., [27]) may be required to implement trans-
formations for which declarative approaches fail to guarantee
their services. Especially when the application order of a set of
transformations needs to be controlled explicitly, an imperative
approach is more appropriate thanks to its built-in notions of
sequence, selection and iteration.

In Seagent framework, plan models are stored in ontologies
that are built by using a description logic based language called
Web Ontology Language - OWL2. Refactoring operations on
these plan models can be considered as model transformations
between initial plan ontologies and improved plan ontologies.
So, a logic based declerative approach looks like appropriate
for building rules on the these models. A refactoring tool
that supports transformation between OWL ontologies using
logic based rules is useful for refactoring Seagent plan mod-
els. However, logic based rules are not enough for defining
refactoring mechanics because of the two handicaps of logic
based declarative approaches listed belove:

1- Almost all of the logic languages such as Prolog have
been developed to extend their target models. By using these
languages, new definitions can be made on the existent ele-
ments in the model. These languages do not support to remove
and change the existent elements in the model. Refactoring
techniques require removing and changing of the existent
elements in the model besides extending of the model.

2- Another handicap of the declerative approach for creating
transformation rules of refactorings is that the mechanics of
refactorings should be operate in sequence, As mentioned
above, such a sequence operation can be controlled explictly
by an imperative approach.

2http://www.w3.org/TR/owl-features/

Because of these handicaps, the declerative approach cannot
be used alone to define refactoring mechanics since their
handicap mentioned above. To define refactoring mechanics
as rules, imperative or hybrid approaches should be used.

ReSeagent uses a hybrid approach that combines the advan-
tages of declarative and imperative rule definition approaches.
The declarative side of this approach is achieved by using
Semantic Web Rule Language - SWRL3. SWRL is a logic
based rule language that supports defining rules on OWL
ontology models. Refactoring mechanics that extend the initial
models are defined as SWRL rules. Refactoring mechanics
defined using the HTN paradigm forms the imperative side of
our hybrid approach[31], [23].

In this hybrid approach, each refactoring pattern is defined
as an agent plan by using the HTN paradigm and each
refactoring mechanic is implemented as an executable action
in refactoring plans. Refactoring mechanics that extend the
initial models are implemented as rule actions. Rule actions
have the responsibility of operating a SWRL rule on the OWL
model of the related Seagent plan. Refactoring mechanics that
change and/or remove the existing element in the initial model
are implemented as normal actions. Normal actions implement
change and remocal activities by means of Java code that
handles the ontology explicitly. All of the actions that are
implemented to realize the mechanics of a refactoring pattern
compose a refactoring plan that achieves the main goal of the
refactoring pattern. Sequential execution of these actions is
controlled by the plan structure.

Many different methods such as finite state machine can
be chosen to implement the imperative side of our hybrid
rule definition approach. However, defining each refactoring
pattern as an agent plan by using the HTN paradigm in
ReSeagent has some advantages listed below:

• Simplicity: In Seagent, HTN paradigm is used for testing
and implementation of plans. Defining refactoring pat-
terns by using the same method simplifies the addition
of new refactoring patterns into the refactoring tool.

• Reusability: HTN paradigm makes it possible to re-
use other pre-defined plan structures in higher level plan
structures. Thanks to this, big refactorings can be simply
implemented by re-using the pre-defined refactoring plans
in a high level refactoring plan.

• Generality: Since the refactoring plans are agent plans
like domain dependent user plans, these refactoring plans
can also be refactored by applying refactoring plan(s) on
these plans.

The software architecture of ReSeagent that executes the refac-
toring patterns defined by our hybrid approach is explained in
the following section.

V. OVERAL SOFTWARE ARCHITECTURE OF RESEAGENT

ReSeagent refactoring tool was implemented as a plug-in on
the Seagent plan editor in the Seagent Development Environ-
ment - SDE like the refactoring support of Eclipse. ReSeagent
gives suport for refactoring the plan models developed using

3http://www.w3.org/Submission/SWRL/

Ali
Typewritten Text

Ali
Rectangle

Ali
Typewritten Text
removal

Ali
Typewritten Text

Ali
Typewritten Text

Ali
Typewritten Text

Ali
Typewritten Text

Ali
Typewritten Text

Ali
Rectangle

Ali
Typewritten Text
is natural to

Ali
Rectangle

Ali
Typewritten Text
.

Ali
Rectangle

Ali
Sticky Note
Accepted set by Ali

Ali
Sticky Note
MigrationPending set by Ali

Ali
Sticky Note
MigrationNone set by Ali

Ali
Sticky Note
Accepted set by Ali

Ali
Sticky Note
Rejected set by Ali

Ali
Sticky Note
None set by Ali

Ali
Typewritten Text
Because of these handicaps, the declerative approach cannotbe used alone to define refactoring mechanics. To define refactoring mechanics as rules, imperative or hybrid approaches should be used.

Ali
Typewritten Text

Ali
Rectangle

Ali
Typewritten Text
declarative

5

SDE. The tool applies pre-defined refactoring patterns on the
related plan models to fulfill the refactoring requests received
from Seagent plan editor.

ReSeagent focuses on the refactoring of Seagent plans
whose meta-model is clearly defined in Seagent. Additionally,
since the software architecture of the tool is generic and it
can be used for other planning systems whose meta-models
are different or for other MAS design artifacts such as role,
goal and protocols. To add support for the artifacts that have
different meta-models, you have to add new refactoring plans
that work on these meta-models into the refactorer role of
ReSeagent, and make some additions to the initiator module
for initiating these new refactoring plans.

Figure 2. Overal Software Architecture of ReSeagent

SDE has the responsibility of developing executable artifacts
such as plan models and goal models that can be executed by
Seagent. For this purpose, SDE includes a plan and a goal
editor for developing plan and goal models. It includes also a
testing tool called SeaUnit that verifies the functionalities of
these development artifacts [16]. The overall software archi-
tecture of ReSeagent and its dependencies on other modules
in SDE is shown in figure 2.

ReSeagent consist of two sub-packages: refactoring ini-
tiator and refactorer role. Refactoring initiator package was
developed as a plug-in on the Seagent Plan Editor like the
refactoring support of the well known Eclipse environment. It
has the responsibilities of capturing the refactoring requests in
the plan editor, and initiating a refactoring operation for each
of these refactoring requests. On the other hand, refactoring
role holds the refactoring plans that are defined to provide the
mechanics of the refactorings.

A. Refactoring Initiator

Refactoring initiator module of ReSeagent has a simple
structure. This module has the responsibilities of capturing
the refactoring requests from the plan editor and the user
preferences that are needed to fulfill these requests, and
initiating a refactoring operation that is suitable for each of
the captured refactoring requests.

When the developer wants to start a refactoring operation
on a pre-defined plan model by using the refactoring plug-
in of the Seagent plan editor, the initiator initiates an agent
that plays the refactorer role and then passes the refactoring
request with its inputs to this refactorer agent. This agent maps
the received refactoring request to a suitable refactoring plan
situated in the plan library of the refactorer role, passes the
input values to this plan and executes it. During the plan
execution, the input values of the refactoring requests are
passed to the sub-tasks of the plan via the links in the HTN
structure. Then, these subtasks are executed depending on their
order in the HTN structure. At the end of the plan, updated
plan models are returned to the initiator via the outcomes so
that the results can be shown to the plan editor user.

There can be many plans that realize the same refactoring
operation by means of different ways. In such a situation,
refactorer agent decides which refactoring plan has to be
executed, according to inputs of the refactoring request and its
internal state. This ability of the refactorer agent comes from
Goal Mapping Engine in Seagent framework [17]. Thanks to
this engine, Seagent agents can map a request to most suitable
of many plans that achieve same goal in different ways. When
this decision is made, some criteria such as inputs and outputs
of the goal are considered by the Goal Mapping Engine. To
add more than one refactoring plan that can realize the same
refactoring operation to Seagent, it is enough to add correct
mapping definitions to the knowledge base that are used for
goal mapping (called Goal Mapping Ontology in Seagent) by
the refactorer agent .

Another responsibility of the initiator is passing the updated
plan model(s) to the plan editor. Each refactoring plan has
some outcomes that return the plan models that have been
changed during the execution of the refactoring plan. There is
one outcome for each updated plan model. Initiator listens
to the planner of the refactorer agent after it initiates this
agent. When a PlanFinished event is thrown by the planner,
the initiator captures the updated plan models returned by the
outcomes and updates the model(s) in the plan editor. Hereby,
new structures of the refactored plans are shown to the user.

B. The Refactorer Role
Refactorer role is a special role that has refactoring goals

and refactoring plans that achieve these goals. This role can
access plan models and action definitions in the system. This
role has the responsibility of applying plan level refactorings
on plan models during MAS development.

The refactorer role has refactoring goals that aim to apply a
specific refactoring pattern on the Seagent plan models. Each
of these refactoring goals is achieved by one or more than
one refactoring plans. So, the plan library of this role has
to include at least one refactoring plan for each refactoring
pattern supported by ReSeagent tool.

The current version of ReSeagent refactoring tool supports
the following plan level refactoring patterns: Replace Tasks
with a Task, Extract Behaviour, Behaviour to Plan, Extract
Plan.

The detailed definitions of these refactoring plans can be
found on the ReSeagent plans page of the Seagent web site.

6

Also, the OWL ontologies of the plans and Java codes of the
actions in these plans are downloadable on this page.

To give an inside about the refactoring plans in ReSeagent,
one of the refactoring patterns and the refactoring plan devel-
oped to achieve this refactoring in ReSeagent are explained in
the following section.

Replace Tasks with a Task Refactoring and Its Implementation
in ReSeagent

Replace Tasks with a Task refactoring can be used in such a
case: a functionality achieved by more than one tasks in a plan
structure can be achieved by only one task. This refactoring
removes these tasks from the plan structure and adds the new
task to the plan structure instead of the removed tasks.

When the Redundant Task Group bad smell is realized in a
plan structure, the plan can be made more readable and simpler
by replacing the task group with a task that can achieve same
functionality.

To apply Replace Tasks with a Task refactoring, the new
task has to have all of the provisions and outcomes of the
tasks in the replaced task group that are linked to other tasks
in the plan structure.

Mechanics:
1) Remove the task group from the plan and add the new

task.
2) Find inheritance and provision-outcome links that are

attached to the provisions of the replaced tasks and
attach such links to the suitable provisions of the new
task.

3) Find disinheritance and provision-outcome links that are
attached to the outcomes of the replaced tasks and attach
such links to the suitable outcomes of the new task.

4) Scan the provision-outcome links whose source or target
task(s) is the reference to the replaced tasks. If there are
such links, remove these links from the plan structure.

Replace Tasks with a Task refactoring plan in ReSeagent
refactoring tool is developed to realize the goal of “replacing
a task group with a task that can fulfill same functionality”
which is the aim of Replace Tasks with a Task refactoring
pattern. HTN structure of this refactoring plan that implements
the mechanics of Replace Tasks with a Task refactoring pattern
is shown in figure 3.

Figure 3. HTN structure of the Replace Tasks with a Task refactoring plan
in ReSeagent

The plan takes the name of the plan whose structure is be
refactored, the list of the tasks that are to be removed from
the plan structure and the task that is to be added into the
plan structure as provisions, and transfers these provisions

to its sub-tasks. The plan has four actions. Each of these
actions achieves one of the mechanics of the Replace Tasks
with a Task refactoring pattern. These actions which are called
ProvideProvisions and LinkOutcomes extend the model of the
target plan structure by adding new links. Hence, each of these
actions operates a SWRL rule to fulfill its responsibility. At the
end of the plan execution, updated plan structure is returned
through an outcome.

VI. CASE STUDY

In this section, we introduce a case study that shows the
usage of our refactoring approach and ReSeagent refactoring
tool during the development of an actual MAS application
which is a conference management system that has been
developed by Seagent group.

At the beginning of the development, we did not intervene
the developers and let them to follow a sequential development
process that does not impose evolutionary development. The
developers developed some of the goals such as “building the
program committee”, “sending call for paper” and “initiating
a conference” by applying the activities of their development
process.

After developing a few of the system goals, some bad smells
emerged in the design of the MAS that was developed: some
plan structures were duplicated in many plans. Furthermore,
the developers were disappointed from the unmanageable
structures of the plans developed.

We can give an example for these bad smells on a simple
plan structure from the conference management MAS. This
plan structure achieves the “sending call for paper” goal of the
“organization” role in this system. The initial HTN structure
of this plan that was obtained at the end of the sequential
development process for “sending call for paper” goal is shown
in figure 4.

Figure 4. The initial plan structure of the Send_CFP plan

The simple plan in the figure 4 takes the conference topic as
a provision. This provision is passed to the “create suitable re-
searcher profile” action through an inheritance link. In this ac-
tion, a researcher profile object is created, the interested_topic

Ali
Rectangle

Ali
Typewritten Text
an insight

Ali
Typewritten Text

Ali
Typewritten Text

Ali
Typewritten Text

Ali
Rectangle

Ali
Typewritten Text
whose structure is

Ali
Typewritten Text

7

field of this profile is set with the topic that is received as a
provision and this researcher profile is returned through the
“OK” outcome. The other action called ”prepare and send
query message to DF” takes the researcher profile, creates a
query message by using this profile and sends this message to
directory facilitator - DF. The “evaluate incoming researchers”
action has an external provision called researcherList. This
provision includes agent descriptions of the researcher agents
that are sent by the DF. In this action, the description of the
researcher agents are filtered according to the preferences and
suitable researchers are selected. The final action called “send
CFP to selected researchers” has the responsibility of sending
call for paper of the conference to selected researchers using
the agent descriptions that are received as a provision.

Some tasks in the plan structure have a common goal
called “finding the suitable researcher agents” that should
be tested independently from the other goals. This goal can
also be part of the other plan structures such as “create
program committee” in the system. This was a bad smell called
Duplicated Behaviour Structure. So, we decided to collect
the actions called CreateResearcherProfile, SendResearcher-
QueryToDFand EvaluateResearcherAgentsinto a new plan
that achieves the common goal by applying Extract Be-
haviourrefactoring on these actions.

To initiate anExtract Behaviourrefactoring operation on
these three actions, we selected these actions and right clicked
the mouse. In the opened menu, we chose the Refactor —
> Extract Behaviour as shown in figure 4. Then, a window
releated with the Extract Behaviourrefactoring appeared on
the screen. This window had three spaces that had to be set
by the input values of the plan. These values were plan name,
tasks list and new task. When we set all of the spaces by values
and then clicked to the start button, the refactoring operation
was initiated. After, a short duration, the improved structure
of the plan appeared in the Seagent plan editor.

Figure 5. Final structure of the Send_CFP plan

At the end of the Extract Behaviour refactoring, we obtained
a new plan called FindResearcherAgents that can be re-used
in the other plan structures. This plan has the responsibility
of finding agent descriptions of the researchers that work on

the conference topic according to the topic provision. The
FindResearcherAgents plan was simply used in some other
plans in conference management system. The plan structure of
our “send CFP” plan after the Extract Behaviour refactoring
is shown in figure 5.

After the refactoring operations on the developed plan struc-
tures, we obtained more readable and manageable plans for
the conference management system. Reusable plan structures
such as FindResearcherAgents obtained during the refactoring
operations simplified to development of other system goals
that include the goals achieved by these plans.

VII. CONCLUSION

In this paper, we define a development approach for refac-
toring tools that can be used during the development of MASs.
To discuss this development approach on a refactoring tool
implementation, a refactoring tool called ReSeagent has been
implemented on the Seagent framework by following the
process proposed by this approach. This tool supports the
manual application of pre-defined refactoring patterns stored
as agent plans on Seagent plan models during the development
activities. So far, ReSeagent refactoring tool was used in the
development of the several MAS applications such as e-barter
and conference management systems developed by the Seagent
group. The experiences we obtained during the development of
these systems show that ReSeagent refactoring tool facilitates
evolutionary MAS development by simplifying the refactoring
process.

REFERENCES

[1] David H. Akehurst and Stuart J. H. Kent. A Relational Approach to
Defining Transformations in a Metamodel. In The Unified Modeling
Language: Model Engineeing, Concepts, and Tools, volume 2460 of
Lecture notes in computer science. Springer, 2002.

[2] Joachim Baumeister and Dietmar Seipel. Verification and refactoring
of ontologies with rules. In Steffen Staab and Vojtech Svatek, editors,
EKAW, volume 4248 of Lecture Notes in Computer Science, pages 82–
95. Springer, 2006.

[3] Kent Beck and Cynthia Andres. Extreme Programming Explained:
Embrace Change (2nd Edition). Addison-Wesley Professional, 2004.

[4] Carole Bernon, Valérie Camps, Marie P. Gleizes, and Gauthier Picard.
Engineering Adaptive Multi-Agent Systems: The ADELFE Methodol-
ogy . In Brian H. Sellers and Paolo Giorgini, editors, Agent-Oriented
Methodologies, pages 172–202. Idea Group Pub, NY, USA, juin.

[5] Paolo Bresciani, Anna Perini, Paolo Giorgini, Fausto Giunchiglia, and
John Mylopoulos. Tropos: An agent-oriented software development
methodology. Autonomous Agents and Multi-Agent Systems, 8(3):203–
236, 2004.

[6] G. Caire, M. Cossentino, A. Negri, A. Poggi, and P. Turci. Multi-agent
systems implementation and testing. In From Agent Theory to Agent
Implementation, Fourth International Symposium (AT2AI-4), 2004.

[7] L. Cernuzzi, M. Cossentino, and F. Zambonell. Process models for
agent-based development. Journal of Engineering Applications of
Artificial Intelligence, 18 (2), 2005.

[8] A. Chella, M. Cossentino, L. Sabatucci, and V. Seidita. From passi
to agile passi: Tailoring a design process to meet new needs. In
IEEE/WIC/ACM International Joint Conference on Intelligent Agent
Technology (IAT-04), 2004.

[9] Neil Clynch and Rem Collier. Sadaam: Software agent development
an agile methodology. In Proceedings of the Workshop of Languages,
methodologies, and Development tools for multi-agent systems, 2007.

[10] Massimo Cossentino, Luca Sabatucci, and Antonio Chella. Patterns
reuse in the passi methodology. In Proceedings of the Fourth Interna-
tional Workshop Engineering Societies in the Agents World (ESAW’03,
pages 29–31. Springer-Verlag, 2003.

8

[11] Massimo Cossentino and Valeria Seidita. Composition of a new process
to meet agile needs using method engineering. In SELMAS, pages 36–
51, 2004.

[12] Krzysztof Czarnecki and Simon Helsen. Classification of model transfor-
mation approaches. In OOPSLA-03 Workshop on Generative Techniques
in the Context of Model-Driven Architecture, 2003.

[13] DeLoach S. A. Multiagent Systems Engineering A Methodology and
Language for Designing Agent Systems. In Proc. of Agent Oriented
Information Systems, pages 45–57, 1999.

[14] Oguz Dikenelli, R. C. Erdur, O. Gumus, E. E. Ekinci, O. Gurcan,
G. Kardas, Inanc Seylan, and Ali Murat Tiryaki. Seagent: a platform for
developing semantic web based multi agent systems. In AAMAS ’05:
Proceedings of the fourth international joint conference on Autonomous
agents and multiagent systems, pages 1271–1272, New York, NY, USA,
2005. ACM Press.

[15] Oguz Dikenelli, Riza Cenk Erdur, Geylani Kardas, Ozgr Gumus, Inanc
Seylan, Onder Gurcan, Ali Murat Tiryaki, and Erdem Eser Ekinci.
Developing multi agent systems on semantic web environment using
seagent platform. In Engineering Societies in the Agents World VI,
volume 3963 of Lecture Notes in Computer Science, pages 1–13.
Springer, 2006.

[16] Erdem Eser Ekinci, Ali Murat Tiryaki, and Oguz Dikenelli. Goal
oriented agent testing revisited. In Agent Oriented Software Engineering
2008. Springer Verlag, 2008.

[17] Erdem Eser Ekinci, Ali Murat Tiryaki, Onder Gurcan, and Oguz
Dikenelli. A planner infrastructure for semantic web enabled agents. In
OTM Workshops, volume 4805 of Lecture Notes in Computer Science,
pages 95–104, Vilamoura, Algarve, Portugal, 2007. Springer.

[18] Martin Fowler. Refactoring: Improving the Design of Existing Code.
Addison-Wesley, Boston, MA, USA, 1999.

[19] Anneke Kleppe, Jos Warmer, and Wim Bast. MDA Explained: The
Model Driven Architecture–Practice and Promise. Addison-Wesley
Professional, April 2003.

[20] Holger Knublauch. Extreme programming of multi-agent systems. In
AAMAS ’02: Proceedings of the first international joint conference on
Autonomous agents and multiagent systems, pages 704–711, New York,
NY, USA, 2002. ACM Press.

[21] Johannes Link and Peter Frolich. Unit Testing in Java: How Tests Drive
the Code. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2003.

[22] Tom Mens and Pieter Van Gorp. A taxonomy of model transformation.
Electronic Notes in Theoretical Computer Science, 152:125–142, March
2006.

[23] Massimo Paolucci, Dirk Kalp, Anandeep S. Pannu, Onn Shehory, and
Katia Sycara. A planning component for retsina agents. In Lecture
Notes in Artificial Intelligence, Intelligent Agents VI, 1999.

[24] Ivan Porres. Rule-based update transformations and their application
to model refactorings. Software and System Modeling, 4(4):368–385,
2005.

[25] Shane Sendall and Wojtek Kozaczynski. Model transformation: The
heart and soul of model-driven software development. IEEE Software,
20:42–45, 2003.

[26] Rational Software. The rational unified process, 1998.
[27] Jonathan Sprinkle, Aditya Agrawal, Tihamer Levendovszky, Feng Shi,

and Gabor Karsai. Domain model translation using graph transforma-
tions. In ECBS, pages 159–167. IEEE Computer Society, 2003.

[28] Ali Murat Tiryaki, Erdem Eser Ekinci, and Oguz Dikenelli. Refactoring
in multi agent system development. Lecture Notes in Artificial Intelli-
gence, 5244:183–194, 2008.

[29] Ali Murat Tiryaki, Sibel Öztuna, Oguz Dikenelli, and Riza Cenk Erdur.
Sunit: A unit testing framework for test driven development of multi-
agent systems. In AOSE, volume 4405 of Lecture Notes in Computer
Science, pages 156–173. Springer, 2006.

[30] Cornelia Triebig and Franziska Klugl. Refactoring of agent-based
simulation models. In Multikonferenz Wirtschaftsinformatik, 2008.

[31] M. Williamson, K. Decker, and K. Sycara. Unified information and
control flow in hierarchical task networks. In Theories of Action,
Planning, and Robot Control: Bridging the Gap: Proceedings of the
1996 AAAI Workshop, pages 142–150, Menlo Park, California, 1996.
AAAI Press.

[32] Franco Zambonelli, Nicholas R. Jennings, and Michael Wooldridge.
Developing multiagent systems: The gaia methodology. ACM Trans.
Softw. Eng. Methodol., 12(3):317–370, 2003.

[33] Franco Zambonelli and Andrea Omicini. Challenges and research
directions in agent-oriented software engineering. Autonomous Agents
and Multi-Agent Systems, 9(3):253–283, 2004.

