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Abstract—In this paper, we develop a unified semantic model
for social commitments and associated operations. We propose a
logical model based on CTL∗ with modalities of commitments
and associated operations that represent the dynamic behavior
of agents. Our semantics differs from the previous proposals
in which the operations used to manipulate commitments (e.g.
creation, fulfillment, violation, withdrawn, etc.) have always been
defined as axioms or constrains on top of the commitment
semantics. The advantage of this logical model is to gather the
direct semantics of these operations and the semantics of social
commitments (propositional and conditional) within the same
framework. Furthermore, this paper proposes a new definition
of assignment and delegation operations by looking at the content
of the assigned and delegated commitment that could be different
from the content of the original commitment in terms of deadline.
Finally, to stress the soundness of the model, we prove that the
proposed semantics satisfies some properties that are desirable
when modeling commitment-based multiagent systems.

I. INTRODUCTION

The importance of defining suitable and formal semantics
of social commitments has been broadly recognized for multi-
agent systems. Particulary, social commitments have been used
for agent communication, coordination and artificial institu-
tions [22]. In communication protocols, commitments can
capture a high level meaning of interaction as opposed to low-
level operational representation [24], [14], [9]. However, the
meanings of messages exchanged between interacting agents
can also be interpreted directly into social commitments in an
operational semantics style [11], [6].

Some interesting semantic frameworks for social commit-
ments have already been proposed using different approaches
such as branching time logics (CTL∗ and CTL±) [2], [3],
[13], [19], [25]. Recently, a model-theoretic semantics of
social and dialogical commitments based on linear-time logic
(LTL) has been introduced in [20] and the proposed postulates
are reproduced in [7] to define semantics of commitment
operations in distributed systems.

In general, two categories of semantic frameworks for social
commitments can be distinguished. In the former category,
commitment operations are formalized based on Singh’s pre-
sentation [18] as axioms or constraints on top of commitment
semantics [6], [9], [13], [14], [24]. These axioms are repre-
sented either as reasoning rules, updating rules or enforcing
rules to evolve the truth of commitments’ states. However, the

real meanings of commitment operations themselves (e.g. Cre-
ate, Fulfill, etc.) are not captured. In the later category, social
commitments are formalized using object-oriented paradigm to
advance the idea of commitments as data structure [11]. Thus,
the main objective of defining clear, practical, and verifiable
semantics of commitments and associated operations in the
same framework is yet to be reached.

The objective of this paper aims to propose a new semantics
not only for social commitments, but also for all the opera-
tions used to manipulate commitments. For verification issues
and development methodologies of agent-oriented software
engineering, the semantics of these operations should not be
only captured by some enforced rules like in [13], but also
integrated in the same framework [15]. In essence, this work
is a continuation of our two previous publications [3], [15]. In
the former one [3], we have developed a framework unifying
commitments, actions on commitments and arguments that
agents use to support their actions. In the second one [15],
we have proposed a new logical semantics of social commit-
ments and associated two-party operations based on Branching
Space-Time (BST) logic. BST-logic provides this semantics
with agent life cycle, space-like dimension and causal relation
between interacting agents in the same (physical or virtual)
space. Specifically, here we refine the semantics of some
operations (e.g., Create, Withdraw, Fulfill) to overcome the
state explosion problem that arises in [3], complete the life
cycle of commitment operations introduced in [15], and define
a new semantics of multi-party operations, such as Delegate
and Assign using an extension of CTL∗.

The primary contribution of this paper is the unified log-
ical model for commitments and associated operations. In
fact, the paper introduces a new semantics of withdrawal,
fulfilment, violation and release operations using the notions
of accessible and non-accessible paths. New definitions of
assignment and delegation operations are also proposed by
taking into account the fact that the assigned and delegated
commitment’s deadline could be different form the deadline
of the original commitment. Some desirable properties such as
“the same social commitment (with the same identifier) cannot
be created twice” or “if it is fulfilled, the commitment cannot
be fulfilled again or withdrawn in the future” are captured,
which makes the model sound. The proposed logical model
uses a Kripke-like computational structure where accessibil-



ity relations for commitment modalities are defined using
a computational interpretation, which makes our semantics
computationally grounded [23] (this idea will be detailed
later). This compotional interpretation is suitable for formal
verification using model checking to verify interacting agent-
based systems against given properties [4], but model checking
algorithm is out of scope of this paper. Furthermore, the
logical model presented here is expressive because the content
of commitments are CTL*-like path formulae [10] and not
state formulae and their semantics is expressed in terms of
accessible paths and not in terms of deadlines.

The remainder of this paper is organized as follows. Section
II describes the notion of social commitment and its formal
notation extended from [15]. Given this context, Section III
presents the syntax and semantics of the main elements of our
logical model. Subsequently, Section IV proves some logical
properties based on the defined semantics. Finally, the paper
ends in Section V with a discussion of related work.

II. SOCIAL COMMITMENTS

A. Formal Notation

A commitment is an engagement made by one agent, the
debtor, and directed towards another agent, the creditor, so
that some fact is true. The debtor must respect and behave
in accordance with his commitments. These commitments
are contextual, manipulable and possibly conditional [18].
Furthermore, commitments are social and observable by all
the participants. Consequently, social commitments (SC) are
different from the agent’s private mental states like beliefs,
desires and intentions. Several approaches assume that agents
will respect their commitments. However, this assumption is
not always guaranteed in real-life scenarios (e.g in e-business)
since violation can occur if agents are malicious, deceptive,
malfunctioning or not reliable. Thus, it is natural to introduce
violation operation of social commitments along with their
satisfaction. We can also use a legal context of commitments
to define rules that impose penalties on the debtors that violate
their commitments. Below, we distinguish between two types
of social commitments: propositional and conditional.

Definition 1: Propositional social commitments are related
to the state of the world and denoted by SCp(id, Ag1, Ag2, φ)
where id is the commitment’s identifier, Ag1 is the debtor,
Ag2 is the creditor and φ is a well-formed formula (expressed
in some logics) representing the commitment content.

The basic idea is that Ag1 is committed towards Ag2 that
the propositional formula φ is true. We suppose that the
identifier id is unique so that there is at most one commitment
with a particular identifier. In several situations, agents can
only commit when some conditions are satisfied. Conditional
commitments are introduced to capture this issue.

Definition 2: Conditional social commitments are denoted
by SCc(id, Ag1, Ag2, τ, φ) where id, Ag1, Ag2, and φ have

the same meanings as in Def.1 and τ is a well-formed formula
representing the condition.

B. Social Commitment Life Cycle

Having explained the formal definitions of commitments, in
this section we present their life cycle to specify the relation-
ship between commitments’ states. Figure 1 describes this life
cycle using UML state diagram. The life cycle proceeds as
follows:

• The commitment could be conditional or unconditional
(i.e. propositional). This is represented by the selection
operator. The first operation an agent can perform on
a commitment is creation. When created, a conditional
commitment can move to the state of created uncondi-
tional commitment if the condition is true. Otherwise, the
conditional commitment moves to the final state.

• When the unconditional commitment is created, then
it may move to one of the following states: fulfilled,
violated, withdrawn, released, delegated or assigned.

• The commitment can be withdrawn if the debtor decides
to cancel it. Only the debtor is able to perform this action
without any intervention from the creditor.

• The commitment is fulfilled if its content is satisfied by
the debtor.

• The social commitment is violated if its content is vio-
lated by the debtor.

• The social commitment can be released by the creditor
so that the debtor is no longer obliged to carry out his
commitment.

 

Selection

[has_been _Released]

Fulfilled Violated Withdrawn

[has_been_ Violated]

[has_been_ Fulfilled] [has_been_ Withdrawn]

DelegatedReleased Assigned

[has_been _
Assigned]

[ has_been _Delegated]

[Delegate_ new _ debtor]

[Assign_new_creditor]

Created
Conditional commitment

Created
Uncoditional commitment

Condition

[condition_ not_ met]

[condition_ met]

Creditor's action

Debtor's action

Legend

Fig. 1. Life cycle of social commitments

• The social commitment can be assigned by the creditor,
which results in releasing this creditor from the commit-
ment and having a new unconditional commitment with
a new creditor.



• The social commitment can be delegated by the debtor,
which results in withdrawing this debtor from the com-
mitment and delegating his role to another debtor within
a new commitment.

III. LOGICAL MODEL OF SOCIAL COMMITMENTS

This section introduces the syntax and semantics of the dif-
ferent elements of our formal language L. This propositional
language uses extended Computation Tree Logic (CTL*)[10]
with past operators and two additional modalities SCp for
propositional and SCc for conditional commitments, and Act
for actions applied to commitments. We refer to the resulted
branching time logic as CTL∗sc. The time in our model
is discrete and branching in future to represent all choices
that agents have when they participate in conversations and
linear in the past. On the other hand, the dynamic behavior of
agents is captured by actions these agents perform on different
commitments during conversations.

A. Syntax

Let Φp be a set of atomic propositions and ID be a set of
identifiers. AGT is a set of agent names and ACT is a set of
actions used to manipulate commitments (e.g. Create, Fulfill,
etc.). L and Act are nonterminals corresponding to L and
ACT , respectively. Furthermore, we use the following con-
ventions: id, id0, id1, etc. are unique commitment identifiers
in ID, Ag1, Ag2, Ag3, etc. are agent names in AGT , p, q, etc.
are atomic propositions in Φp and φ, ψ, etc. are formulae in L.
Table I gives the formal syntax of L expressed in Backus-Naur
Form (BNF) grammar where “→” and “|” are meta-symbols
of this grammar.

L1. L → C | Act | p | ¬L | L ∨ L | X+L | X−L | L U+L |
L U−L | AL | EL

L2. C → SCp(id, Ag1, Ag2, L) | SCc(id, Ag1, Ag2, L, L)

L3. Act → Create(Ag, C) | Fulfill(Ag, C) | V iolate(Ag, C)

| Withdraw(Ag, C) | Release(Ag, C)

| Assign(Ag1, Ag2, C) | Delegate(Ag1, Ag2, C)

TABLE I
THE SYNTAX OF CTL∗sc LOGIC

The intuitive meanings of the most constructs are straight-
forward (from CTL* with next (X+), previous (X−), until
(U+), and since (U−) operators). A and E are the univer-
sal and existential path-quantifiers over the set of all paths
starting from the current moment. Aφ (resp. Eφ) means
that φ holds along all (some) paths starting at the current
moment. Furthermore, there are some useful abbreviations
based on temporal operators (X+, X−, U+, U−): (sometimes
in the future) F+φ , true U+φ; (sometimes in the past)
F−φ , true U−φ; (globally in the future) G+φ , ¬F+¬φ
and (globally in the past) G−φ , ¬F−¬φ. We also introduce
L− ⊂ L as the subset of all formulae without temporal
operators.

B. Semantics of CTL∗sc

1) The formal model:
Our model M for L is based on a Kripke-like structure with
seven-tuple, M = 〈S, T, R,V,Rscp,Rscc,F〉, where:
• S = {s0, s1, s2, . . .} is a set of states.
• T : S → T P is a function assigning to any state the

corresponding time stamp where T P is a set of time
points.

• R ⊆ S × S is a total transition relation, that is, ∀si ∈
S, ∃ sj ∈ S : (si, sj) ∈ R, indicating branching time.
If there exists a transition (si, sj) ∈ R, then we have
T (si) < T (sj). A path P is an infinite sequence of states
P = 〈s0, s1, s2, . . .〉 where ∀ i ∈ N, (si, si+1) ∈ R. We
denote the set of all paths by σ and the set of all paths
starting at si by σsi .

• V : Φp → 2S is a valuation function that assigns to each
atomic proposition a set of states where the proposition
is true.

• Rscp : S × AGT × AGT → 2σ is a function producing
an accessibility modal relation for propositional commit-
ments.

• Rscc : S×AGT ×AGT → 2σ is a function producing an
accessibility modal relation for conditional commitments.

• F : L → L− is a function associating to each formula in
L a corresponding formula in L−.

The function Rscp associates to a state si the set of paths
starting at si along which an agent commits towards another
agent. These paths are conceived as merely “possible”, and
as paths where the commitments’ contents made in si are
true. The computational interpretation of this accessibility
relation is as follows: the paths over the model M are seen
as computations, and the accessible paths from a state si

are the computations satisfying (i.e. computing) the formulae
representing the contents of the commitments made at that
state by a given agent towards another given agent. For
example, if we have: P ′ ∈ Rscp(si, Ag1, Ag2), then the
commitments that are made in the state si by Ag1 towards
Ag2 are satisfied along the path P ′ ∈ σsi .
Rscc is similar to Rscp and it gives us the paths along which

the resulting unconditional commitment is satisfied if the
underlying condition is true. Because it is possible to decide
if a path satisfies a formula (see the semantics in this section),
the model presented here is computationally grounded
[23]. In fact, the accessible relations map commitment
content formulae into a set of paths that simulate the
behavior of interacting agents. The logic of propositional
and conditional commitments is KD4 modal logic and the
accessibility modal relations Rscp and Rscc are serials [3].
The function F is used to remove the temporal operators
from a formula in L. For example: F(X+X+p) = p and
F(SCp(id, Ag1, Ag2, X

+q)) = SCp(id, Ag1, Ag2, q).

2) Semantics of social commitments:
Having explained our formal model, in this section we define



the semantics of the elements of L relative to a model
M , state si, and path P . The notation 〈si, P 〉 refers to
the path P starting at si meaning that P ∈ σsi where
P = 〈si, si+1, si+2, . . .〉. If P is a path starting at a given state
si, then prefix of P starting at a state sj (T (sj) < T (si)) is
a path denoted by P ↓ sj and suffix of P starting at a state
sk (T (si) < T (sk)) is a path denoted by P ↑ sk. Because
the past is linear, sj is simply a state in the unique past of si

such that P is a part of P ↓ sj . sk is in the future of si over
the path P such that P ↑ sk is part of P . If si is a state, then
we assume that si−1 is the previous state in the linear past
((si−1, si) ∈ R) and si+1 is the next state on a given path
((si, si+1) ∈ R).

In the metalanguage, we use the following symbols: &
means “and”, ⇔ means “is equivalent to” and ⇒ means
“implies that”. The logical equivalence is denoted ≡. As
in CTL∗, we have two types of formulae: state formulae
evaluated over states and path formulae evaluated over paths
[10]. M, 〈si〉 |= φ means “the model M satisfies the state
formula φ at si”. M, 〈si, P 〉 |= φ means “the model M
satisfies the path formula φ along the path P starting at si”. A
state formula φ is satisfiable iff there are some M and si such
that M, 〈si〉 |= φ. A path formula φ is satisfiable iff there are
some M , P , and si such that M, 〈si, P 〉 |= φ. A state formula
is valid when it is satisfied in all models M , in all states si in
M . A path formula is valid when it is satisfied in all models
M , in all paths P in M , in all states si. The formal semantics
of CTL∗ and SCp, SCc modalities of our model is illustrated
in Table II.

M1. M, 〈si〉 |= p iff si ∈ V(p) where p ∈ Φp

M2. M, 〈si〉 |= ¬ φ iff M, 〈si〉 2 φ

M3. M, 〈si〉 |= φ ∨ ψ iff M, 〈si〉 |= φ or M, 〈si〉 |= ψ

M4. M, 〈si〉 |= Aφ iff ∀ P ∈ σsi : M, 〈si, P 〉 |= φ

M5. M, 〈si〉 |= Eφ iff ∃ P ∈ σsi : M, 〈si, P 〉 |= φ

M6. M, 〈si〉 |= SCp(id, Ag1, Ag2, φ) iff
∀ P ∈ Rscp(si, Ag1, Ag2) M, 〈si, P 〉 |= φ

M7. M, 〈si〉 |= SCc(id, Ag1, Ag2, τ, φ) iff
∀ P ∈ Rscc(si, Ag1, Ag2) M, 〈si, P 〉 |= τ
⇒ M, 〈si, P 〉 |= SCp(id, Ag1, Ag2, φ)

M8. M, 〈si, P 〉 |= φ iff M, 〈si〉 |= φ

M9. M, 〈si, P 〉 |= ¬ φ iff M, 〈si, P 〉 2 φ

M10. M, 〈si, P 〉 |= φ ∨ ψ iff M, 〈si, P 〉 |= φ or M, 〈si, P 〉 |= ψ

M11. M, 〈si, P 〉 |= X+φ iff M, 〈si+1, P ↑ si+1〉 |= φ

M12. M, 〈si, P 〉 |= φ U+ ψ iff ∃ j ≥ i : M, 〈sj , P ↑ sj〉 |= ψ &
∀ i ≤ k < j M, 〈sk, P ↑ sk〉 |= φ

M13. M, 〈si, P 〉 |= X−φ iff M, 〈si−1, P ↓ si−1〉 |= φ

M14. M, 〈si, P 〉 |= φ U− ψ iff ∃ j ≤ i : M, 〈sj , P ↓ sj〉 |= ψ &
∀ j < k ≤ i M, 〈sk, P ↓ sk〉 |= φ

TABLE II
SEMANTICS OF CTL∗ AND SCp , SCc MODALITIES

The semantics of state formulae is given from M1 to M7
and that of path formulae is given from M8 to M14. For
space limit reasons, we only explain the semantics of formulae
that are not in CTL*. M6 gives the semantics of propositional
commitment operator, where the state formula is satisfied in

the model M at si iff the content φ is true in all accessible
paths P starting at si. Similarly, M7 gives the semantics of
conditional commitment operator, where the state formula is
satisfied in the model M at si iff in all accessible paths P
if the condition τ is true, then the underlying unconditional
commitment is also true. The semantics of past operators X−

and U− is given by considering the linear past of the current
state si as prefix of the path P .

3) Semantics of actions on social commitments:
Having defined the semantics of commitments, below we
define the semantics of operations used to manipulate those
commitments and support flexibility. These operations are
of two categorizes: two-party operations: Create, Withdraw,
Fulfill, Violate and Release, and three-party operations:
Assign and Delegate because Assign and Delegate need
a third agent to which the new commitment is assigned
or delegated. The context and detailed exposition of these
operations are given in [13], [14], [18]. To simplify the
notations used in the semantics, we suppose that these actions
are momentary and do not need time to be performed.
Technically, this can be represented by allowing actions to be
performed on states or by supposing that transitions labeled
by these actions are connecting two states si and sj having
the same time stamp (T (sj) = T (si)). The first possibility
is adopted in this paper. Although actions are momentary,
action formulae are evaluated over paths. This is compatible
with the philosophical interpretation of actions, according to
which, by performing an action the agent selects a path or
history among the available paths or histories at the moment
of performing the action.

Creation action: the semantics of creation action of a propo-
sitional commitment (see Table III) is satisfied in the model M
at state si along path P iff (i) the commitment is established in
si (as a result of performing the momentary creation action);
and (ii) the created commitment was not established in the
past.

M15. M, 〈si, P 〉 |= Create(Ag1, SCp(id, Ag1, Ag2, φ)) iff
(i) M, 〈si, P 〉 |= SCp(id, Ag1, Ag2, φ) &

(ii) ∀ j < i, M, 〈sj〉 |= ¬SCp(id, Ag1, Ag2, φ)

TABLE III
SEMANTICS OF CREATION ACTION RELATIVE TO SCp

The semantics of creation action of a conditional commit-
ment (see Table IV) is defined in the same way.

M16. M, 〈si, P 〉 |= Create(Ag1, SCc(id, Ag1, Ag2, τ, φ)) iff
(i) M, 〈si, P 〉 |= SCc(id, Ag1, Ag2, τ, φ) &

(ii) ∀ j < i, M, 〈sj〉 |= ¬SCc(id, Ag1, Ag2, τ, φ)

TABLE IV
SEMANTICS OF CREATION ACTION RELATIVE TO SCc

Example 1: Let us consider a simple and modified case of
NetBill protocol to illustrate the semantics of different action



formulae. A customer (Cus) requests a quote for some goods
(rfq), followed by the merchant (Mer) sending the quote as
an offer. If the customer pays for goods, then the merchant
will deliver the goods, withdraw (within a specified time), or
not deliver. The customer can also release after receiving the
quote (see Fig.2).
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Fig. 2. Representation of NetBill

The offer message at state s2 means that Mer creates a
conditional commitment Create(Mer, SCc(id,Mer,Cus,
pay, delivergoods)) meaning that if the payment is
received, then Mer commits to deliver the goods to Cus.
〈s2, s3, s4, . . . 〉, 〈s2, s3, s5, s6, . . . 〉 and 〈s2, s3, s5, s8, . . . 〉
are not accessible paths for this commitment (i.e. are not
in Rscc(s2,Mer, Cus). However, 〈s2, s3, s5, s7, . . . 〉 is
an accessible path (i.e. is in Rscc(s2,Mer,Cus). As the
condition is true through 〈s2, s3, s5, s7, . . . 〉 (the customer
pays), the conditional commitment becomes unconditional:
SCp(id,Mer,Cus, delivergoods) along the same accessible
path. Before creating this unconditional commitment, Mer
checks that it has not been created before, as there is no
reason to create the same commitment twice.

Withdrawal action: the semantics of withdrawal action of
a propositional commitment (see Table V) is satisfied in the
model M at si along path P iff (i) the commitment was
created in the past at sj through the prefix P ↓ sj ; (ii)
this prefix is not one of the accessible paths via Rscp; and
(iii) at the current state si, there is still a possibility of
satisfying the commitment since there is a path P ′ whose
the prefix P ′ ↓ sj is still accessible using Rscp. Note that
the first argument of Rscp is sj where the commitment has
been created. This is because the accessible paths start from
the state where the commitment is created. Intuitively, when a
commitment is withdrawn along a path, the prefix of this path
from the creation state does not correspond to an accessible
path (condition ii).

M17. M, 〈si, P 〉 |= Withdraw(Ag1, SCp(id1, Ag1, Ag2, φ)) iff
(i) ∃j < i : M, 〈sj , P ↓ sj〉 |= Create(Ag1, SCp(id1, Ag1, Ag2, φ))&

(ii) P ↓ sj /∈ Rscp(sj , Ag1, Ag2) &

(iii) ∃ P ′ ∈ σsi : P ′ ↓ sj ∈ Rscp(sj , Ag1, Ag2)

TABLE V
SEMANTICS OF WITHDRAWAL ACTION

Furthermore, a commitment can be withdrawn when its
satisfaction is still possible (condition iii), which is captured

by the existence, starting at the current moment, of an
accessible path the agent can choose (see Fig.3). In other
words, the agent Ag1 has another choice at the current
state, which is continuing in the direction of satisfying its
commitment. We also note that withdrawing a commitment
does not mean its content is false. For instance it can be
accidentally true even if the current path is not amongst the
accessible ones. 
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Fig. 3. Withdraw and Release actions at the state si along the path P

Example 2: The merchant Mer, before delivering the
goods to Cus, can withdraw the offer. Thus, there is no
accessible path for the commitment between Mer and
Cus at s6. At the same time, Mer still has a possibility
to satisfy its offer at state s5 through the accessible paths
〈s2, s3, s5, s7, . . . 〉.

Fulfillment action: the semantics of fulfillment action (see
Table VI) is defined in the same way as withdrawal. In (ii),
the prefix P ↓ sj of the current path P (along which the
commitment has been created) is accessible using Rscp; and
in (iii), at the current state si, there is still a possible choice
of not satisfying the commitment since a non-accessible path
P ′ ↓ sj exists. We notice that being accessible means that the
content φ is true along P ↓ sj . As for withdrawal, fulfillment
action makes sense only when a non-fulfilment action is still
possible.

M18. M, 〈si, P 〉 |= Fulfill(Ag1, SCp(id, Ag1, Ag2, φ)) iff
(i) ∃ j < i : M, 〈sj , P ↓ sj〉 |= Create(Ag1, SCp(id, Ag1, Ag2, φ)) &

(ii) P ↓ sj ∈ Rscp(sj , Ag1, Ag2) &

(iii) ∃ P ′ ∈ σsi : P ′ ↓ sj /∈ Rscp(sj , Ag1, Ag2)

TABLE VI
SEMANTICS OF FULFILLMENT ACTION

Example 3: When the customer Cus pays for the goods
and the merchant Mer delivers the goods (within a specified
time), the merchant satisfies his commitment through
the accessible path 〈s2, s3, s5, s7, . . . 〉. At the moment
of satisfying the commitment, the merchant has still a
possibility of not satisfying it through the non-accessible path
〈s2, s3, s5, s6, . . . 〉.

Violation action: the semantics of violation action (see Table
VII) is almost similar to the semantics of withdrawal. The
main difference is related to the truth of the commitment’s



content, which is false in the case of violation (condition ii).
The fact that φ is false implies that P ↓ sj is not accessible,
but the reverse is not always true as explained above. Here
again, violation makes sense when a choice of satisfying the
commitment is still possible at the current state (condition iii).

M19. M, 〈si, P 〉 |= V iolate(Ag1, SCp(id, Ag1, Ag2, φ)) iff
(i) ∃ j < i : M, 〈sj , P ↓ sj〉 |= Create(Ag1, SCp(id, Ag1, Ag2, φ)) &

(ii) M, 〈sj , P ↓ sj〉 |= ¬φ &

(iii) ∃ P ′ ∈ σsi : P ′ ↓ sj ∈ Rscp(sj , Ag1, Ag2)

TABLE VII
SEMANTICS OF VIOLATION ACTION

Example 4: When Cus pays for the goods, but Mer does
not deliver them within a specified time, then Mer violates
his commitment. Through the path 〈s2, s3, s5, s8, . . . 〉 the
content delivergoods is false.

Release action: the semantics of release action (see Table
VIII) is similar to the semantics of withdrawal. The only
difference is that the release action is performed by the
creditor while withdrawal is performed by the debtor (see
Fig. 3).

M20. M, 〈si, P 〉 |= Release(Ag2, SCp(id1, Ag1, Ag2, φ)) iff
(i) ∃j < i : M, 〈sj , P ↓ sj〉 |= Create(Ag1, SCp(id1, Ag1, Ag2, φ))&

(ii) P ↓ sj /∈ Rscp(sj , Ag1, Ag2) &

(iii) ∃ P ′ ∈ σsi : P ′ ↓ sj ∈ Rscp(sj , Ag1, Ag2)

TABLE VIII
SEMANTICS OF RELEASE ACTION

Example 5: The customer Cus, before paying for the
goods, can release the offer. Thus, no accessible path exists
between Cus and Mer from s4. However, an accessible path
still exists from s3.

Assignment action: the semantics of assignment action of a
propositional commitment (see Table IX) is satisfied in the
model M at si along path P iff (i) the creditor Ag2 releases
the current commitment at si through P ; and (ii) a new
commitment with the same debtor and a new creditor appears
at si, so that the formula SCp(id1, Ag1, Ag3, φ

′) is true at
M, 〈si〉.

M21. M, 〈si, P 〉 |= Assign(Ag2, Ag3, SCp(id0, Ag1, Ag2, φ)) iff
(i) M, 〈si, P 〉 |= Release(Ag2, SCp(id0, Ag1, Ag2, φ)) &
(ii) ∃ j <i :M, 〈sj〉 |= SCp(id0, Ag1, Ag2, φ) &

M, 〈si〉 |= SCp(id1, Ag1, Ag3, φ′) such that:
(1) ∀ P ′ ∈ σsi , M, 〈sj , P ′ ↓ sj〉 |=φ ⇔ M, 〈si, P

′〉 |=φ′ &

(2) F(φ) ≡ F(φ′)
TABLE IX

SEMANTICS OF ASSIGNMENT ACTION

The most important issue in this semantics is that the content
φ′ of the new commitment is not necessarily the same as for
the assigned one (φ), but there is a logical relationship between
them. This is because the second commitment appears after

the previous one. Thus, we need to consider the temporal
component specifying the deadline of the first commitment.
The logical relationship between φ and φ′ is as follows: (1)
φ′ is true at the current state si through a given path P ′

iff φ is true at sj where the original commitment has been
created through the prefix P ′ ↓ sj ; and (2) the two contents are
logically equivalent when the temporal operators are removed.
We consider the current state si in (1) because the new content
φ′ should be true starting from the moment where the new
commitment is established (see Fig.4).

 

� ���������	
� ������� �	
� �	�� ��� ����	���	�� �	�� ������� �	
� �	�� �������� ��� � �������� �	
� �	�� �� �������
� �	
� �	�� ������ ����������  ��! "��������� �	
� �	�� ������������  ��! "��������� �	
� �	�� �� ����������  ��! "����� ��
� �	
� �	�� ���
Fig. 4. Assign action at the state si along the path P

To clarify this issue, let us suppose that the content of the
assigned commitment is φ = X+X+p where p is an atomic
proposition and the assignment action takes place at the next
moment after the creation action. The content of the resulting
commitment should be then φ′ = X+p, which is the content
we obtain by satisfying the conditions (1) and (2). By (1) we
have X+p is true at a state si through a path P ′ iff X+X+p
is true at the state sj (sj = si−1) through P ′ ↓ sj ; and by (2)
we have F(X+X+p) ≡ F(X+p). The second condition is
added to guarantee that the relationship between the contents
is not arbitrary.

Example 6: Suppose Cus commits to pay $200 to Mer in
two days. After one day, Mer, for some reasons, assigns this
commitment to Mer1 (we suppose that there is an agreement
between Cus and Mer1 about this commitment). Thus, Mer
releases the commitment with Cus and a new commitment
between Cus and Mer1 is established to pay the $200 after
only one day.

In the semantics proposed in previous frameworks (for
example in [13], [14] and [20]), the two commitments have
the same content, which implicitly suppose that the creation
of the commitment and its assignment take place at the same
moment. The previous example cannot be managed using this
assumption.

Delegation action: the semantics of delegation action (see
Table X) is similar to the semantics of assignment. The only
difference is that delegation is performed by the debtor while
assignment is performed by the creditor. Therefore, instead
of release, the semantics is defined in terms of withdraw.

Example 7: Suppose Cus commits to pay $200 to Mer



in two days. After one day, Cus, for some reasons, delegates
this commitment to a financial company (Bank) to pay
the $200 to Mer on his behalf. Thus, Cus withdraws his
commitment and a new commitment between Bank and
Mer is established to pay the $200 after only one day.

M22. M, 〈si, P 〉 |= Delegate(Ag1, Ag3, SCp(id0, Ag1, Ag2, φ)) iff
(i) M, 〈si, P 〉 |= Withdraw(Ag1, SCp(id0, Ag1, Ag2, φ)) &

(ii) ∃ j <i :M, 〈sj〉 |= SCp(id0, Ag1, Ag2, φ) &

M, 〈si〉 |= SCp(id1, Ag3, Ag2, φ′) such that:
(1) ∀ P ′ ∈ σsi , M, 〈sj , P ′↓sj〉 |=φ ⇔ M, 〈si, P

′〉 |=φ′ &

(2) F(φ) ≡ F(φ′)
TABLE X

SEMANTICS OF DELEGATION ACTION

IV. COMMITMENTS’ PROPERTIES

The aim of this section is to prove that the model
aforementioned in the previous section presents a satisfactory
“logic of commitment”. We show some of desirable properties
related to the semantics of actions on social commitments
that are fundamental for soundness considerations where
alignment [7] among interacting agents in distributed systems
is satisfied. In the rest of this paper, the set of all models is
denoted M.

Proposition 1: If a commitment is created, then it has been
never created before.
AG+

[
Create(Ag1, SCp(id, Ag1, Ag2, φ)) ⇒

X−G−¬Create(Ag1, SCp(id, Ag1, Ag2, φ))
]

Proof: Let M be a model in M, si be a state in S, and
P be a path in σ. Also, suppose that:
M, 〈si, P 〉 |= Create(Ag1, SCp(id, Ag1, Ag2, φ))
(Semantics of creation action)
⇒ ∀j < i M, 〈sj , P 〉 |= ¬SCp(id, Ag1, Ag2, φ)
(Semantic calculus)
⇒ M, 〈si, P 〉 |= X−G−¬SCp(id, Ag1, Ag2, φ) (1)
Let us now suppose that:
M, 〈si, P 〉 |= X−F− Create(Ag1, SCp(id, Ag1, Ag2, φ))
(Semantics of creation action)
⇒ M, 〈si, P 〉 |= X−F− SCp(id, Ag1, Ag2, φ)
There is then contradiction with (1). Consequently:
M, 〈si, P 〉 |= X−G−¬Create(Ag1, SCp(id, Ag1, Ag2, φ))

As a direct consequence of this proposition, we have the
following lemma:

Lemma 1: Once created, a commitment cannot be created
again in the future.
AG+

[
Create(Ag1, SCp(id, Ag1, Ag2, φ)) ⇒

X+AG+¬Create(Ag1, SCp(id, Ag1, Ag2, φ))
]

Proof: Let us suppose that the negation is true. Therefore:
EF+

[
Create(Ag1, SCp(id, Ag1, Ag2, φ)) ∧

¬(X+AG+¬Create(Ag1, SCp(id, Ag1, Ag2, φ)))
]

(Semantic calculus)

⇒ EF+
[
Create(Ag1, SCp(id, Ag1, Ag2, φ)) ∧

X+EF+Create(Ag1, SCp(id, Ag1, Ag2, φ))
]

Consequently, there is a contradiction with Proposition 1 as
the second creation cannot take place since there is a creation
in its past. Thus, we are done.

Proposition 2: Once withdrawn, a commitment cannot be
withdrawn again in the future.
AG+

[
Withdraw(Ag1, SCp(id, Ag1, Ag2, φ)) ⇒

X+AG+¬Withdraw(Ag1, SCp(id, Ag1, Ag2, φ))
]

Proof: Let M be a model in M, si be a state in S, and
P be a path in σ. Also, suppose that:
M, 〈si, P 〉 |= Withdraw(Ag1, SCp(id, Ag1, Ag2, φ))
(Semantics of withdrawal and creation actions)
⇒ ∃j < i : M, 〈sj , P ↓ sj〉 |= SCp(id, Ag1, Ag2, φ) &

P ↓ sj /∈ Rscp(sj , Ag1, Ag2) (2)
Let us now suppose that:
M, 〈si, P 〉 |= X+EF+ Withdraw(Ag1, SCp(id, Ag1, Ag2, φ))

(Semantics of withdrawal action, X+ and EF+)
⇒∃k > i & ∃P ′ ∈ σsk:P ′↓sj ∈ Rscp(sj , Ag1, Ag2)
There is then contradiction with (2) because P ′ is a suffix of
P . Consequently:
M, 〈si, P 〉 |= ¬X+EF+Withdraw(Ag1, SCp(id, Ag1, Ag2, φ))

⇒ M, 〈si, P 〉 |= X+AG+¬Withdraw(Ag1, SCp(id, Ag1,Ag2,φ))

In the same way, we can prove the following three proposi-
tions (3,4 and 5) using the semantics of withdraw, fulfillment,
violation and release actions, X+ and EF+.

Proposition 3: Once withdrawn, a commitment cannot be
fulfilled in the future.
AG+

[
Withdraw(Ag1, SCp(id, Ag1, Ag2, φ)) ⇒

X+AG+¬Fulfill(Ag1, SCp(id, Ag1, Ag2, φ))
]

Proposition 4: Once withdrawn, a commitment cannot be
violated in the future.
AG+

[
Withdraw(Ag1, SCp(id, Ag1, Ag2, φ)) ⇒

X+AG+¬V iolate(Ag1, SCp(id, Ag1, Ag2, φ))
]

Proposition 5: Once withdrawn, a commitment cannot be
released in the future.
AG+

[
Withdraw(Ag1, SCp(id, Ag1, Ag2, φ)) ⇒

X+AG+¬Release(Ag2, SCp(id, Ag1, Ag2, φ))
]

Proposition 6: Once withdrawn, a commitment cannot be
assigned in the future.
AG+

[
Withdraw(Ag1, SCp(id, Ag1, Ag2, φ))⇒∀Ag∈AGT

X+AG+¬Assign(Ag1, Ag, SCp(id, Ag1, Ag2, φ))
]

Proof: Let M be a model in M, si be a state in S, and
P be a path in σ. Also, suppose that:
M, 〈si, P 〉 |= Withdraw(Ag1, SCp(id, Ag1, Ag2, φ))
(Proposition 5)
⇒M,〈si, P 〉 |=X+AG+¬Release(Ag2, SCp(id, Ag1, Ag2, φ))
(Semantics of assignment action)



⇒ ∀Ag ∈ AGT
M,〈si, P 〉 |=X+AG+¬Assign(Ag2, Ag, SCp(id, Ag1, Ag2, φ))

Using Proposition 2 and the semantics of delegation action,
we can prove the following proposition:

Proposition 7: Once withdrawn, a commitment cannot be
delegated in the future.
AG+

[
Withdraw(Ag1, SCp(id, Ag1, Ag2, φ))⇒∀Ag∈AGT

X+AG+¬Delegate(Ag1, Ag, SCp(id, Ag1, Ag2, φ))
]

As for previous propositions for withdrawal action, we can
also prove the following proposition for fulfillment action:

Proposition 8: Once fulfilled, a commitment cannot be
fulfilled again, withdrawn, violated, released, assigned or
delegated in the future.

AG+
[
Fulfill(Ag1, SCp(id, Ag1, Ag2, φ))⇒∀Ag∈AGT

X+AG+¬[
Fulfill(Ag1, SCp(id, Ag1, Ag2, φ))
∨Withdraw(Ag1, SCp(id, Ag1, Ag2, φ))
∨ V iolate(Ag1, SCp(id, Ag1, Ag2, φ))
∨Release(Ag2, SCp(id, Ag1, Ag2, φ))
∨Assign(Ag2, Ag, SCp(id, Ag1, Ag2, φ))
∨Delegate(Ag1, Ag, SCp(id, Ag1, Ag2, φ))

]]

V. DISCUSSION AND RELATED WORK

A. Discussion

Our logical model is useful when developing agent com-
munication languages (ACL) thanks to its foundation based
on social semantics. Unlike mentalistic semantics that specifies
the semantics of communicative acts in terms of pre- and post-
conditions contingent on so-called agent’s mental states (e.g.
beliefs, desires and intentions), this social semantics can be
verified [4], [21], [22]. This is because our semantics allows
for tracing the status of existing commitments at any point
in time given observed actions. In commitment protocols,
social commitments capture a high meaning of interactions
and provide a useful level of abstraction. In this sense, Yolum
and Singh [24] have used commitment operations to show
how to build and execute commitment protocols and how to
reason about them using event calculus. In the same way,
Mallya and Singh [14] have showed how to reason about
subsumption among commitment protocols and how to refine
and aggregate protocols based on commitment semantics and
operations. Also, Desai and Singh [9] have studied a com-
position of commitment protocols and concurrent operations.
Our proposal belongs to the same line of research and can be
used to specify commitment protocols in terms of creation and
manipulation commitments using accessibility relation and the
principle properties of commitment.

In fact, our framework provides a unified semantics of
social commitments and associated operations that can be
used to enhance, e.g., Tropos methodology [16], where Tropos
is an agent-oriented software methodology, via capturing the
meaning of interactions in terms of task dependencies among

communicating agents. Also, in [20] Singh has delineated
the model-theoretic semantics of commitments by postulating
some rules as ways of using and reasoning with commitments.
This model combines two commitments (practical and dia-
logical), in the sense that when a commitment arises within
an argument and the content is satisfied with the same argu-
ment, then practical commitment would be satisfied. However,
this model does not include the semantics of commitment
operations. Chopra and Singh [7] have used the theoretical
model proposed in [20] to study the semantics of commitment
operations with message patterns that implement commitment
operations with some constraints on agents’ behaviors to
tackle the problem of autonomy in distributed systems. This
semantics is expressed in terms of the set of propositions that
can be inferred from the observation sequence that agents sent
or received. Moreover, this semantics must correspond to the
postulates introduced in [20]. However, the formal language
of those postulates is based on enhancing LTL (linear-time
logic) with two commitment modalities. Thus, this language
is less expressive than the formal language introduced here,
which is more compatible with agent choices. Furthermore,
our semantics is based on Kripke structure with accessibility
relations, which enables us to prove that the proposed model
is computationally grounded [23] and to verify this seman-
tics. Finally, in [5], the propositional commitment is fulfilled
when the creditor does not believe that the commitment’s
content is false and he cannot challenge it anymore. However,
this semantics uses mental states which cannot be verified.
The semantics defined here for conditional commitments is
different from the semantics defined in [17] and [20]. In
[17], conditional commitments are considered as intentions,
while commitments as social notion are different from private
intentions. In [20], Singh models conditional commitments as
fundamental and unconditional commitments as special cases
where the antecedent is true. In our semantics, the conditional
commitments are transformed into propositional commitments
in all accessible paths where the underlying condition is true.

B. Related Work

Let us now focus on comparing the proposed semantics for
commitment operations with the related ones. The semantics
proposed here is close to the semantics introduced in [3],
but does not suffer from the “recursion” problem, which is
the main problem in [3]. Recursion means the semantics of
one operation depends on the semantics of one or more other
operations. For example, in [3], a propositional commitment
is satisfied along a path P at a state si iff it is active
in this state along this path, and it was already created
at a state sj , and along this path from the state sj the
commitment content is true. Also, a commitment is active iff
this commitment was already created and until the current
moment the commitment was not withdrawn. Consequently,
the model checking technique for this logic is very complex
and probably suffers from the state explosion problem in the
early phases. On the contrary, the semantics we presented
here is independent, for each operation, of the semantics of



other operations. Furthermore, our semantics of commitment
operations is different from the ones given in [6], [8], [13] and
[14]. Particularly (as discussed in Section III-B3), assignment
and delegation operations should consider that the content of
the new resulting commitment could be different from, and
has a logical relationship with the content of the assigned and
delegated commitment. This issue is not captured in previous
frameworks. In addition, unlike our semantics, the violation
operation has been disregarded.

C. Directions: Theoretical and Practical

Here, we outline two promising directions of future work.
Theoretically. We plan to improve our proposed semantics

by removing the simplification based on the supposition that
actions are only momentary and considering time frames be-
tween the execution of actions. We also plan to study the com-
mitment operations needed to handle meta-commitments, that
is commitments about commitments, that often arise in real-
life scenarios. The proposed semantics would be augmented
with argumentation to enhance the Tropos methodology, which
we plan to apply for modeling and establishing communities
of web services introduced in [12].

Practically. We intend to integrate our logical model with
the logic of agent programs developed in [1] for the implemen-
tation of agents. Furthermore, a rigorous semantics opens up
the way for improving the verification of logic-based protocols
that govern a set of autonomous interacting agents against
given properties. The mainstream step in this regard would
be to map the commitment semantics introduced here to con-
ventional verification technologies. Our semantics is based on
Kripke structures (like interpreted systems). Currently model
checking techniques work best for logics whose semantics is
given via accessibility relations with the extension of CTL∗

as proposed in [4]. Two complementary software tools are
suggested to implement model checking algorithms to verify
whether or not the model M satisfies the proposed commit-
ments’ properties (i.e., M |= φ). Model checking algorithm
for our logic can be implemented via NuSMV tool, which
is the best-known for CTL∗. On the other hand, the proposed
logic and associated properties, which need to be checked,
can be specified as tableau-based rules. Such rules provide a
simple decision procedure for the logic and overcome model
checking algorithm from state explosion problem. As proposed
in [4], the verification method could be based on the translation
of formulae into a variant of alternating tree automata called
Büchi tableau automata (ABTA).
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