
Context Graphs for Many-Valued Contexts

Jens Kötters

Monash University, Melbourne, Australia

Abstract. A context graph of a one-valued context is a graph which
has formal objects as its vertices, and whose edges connect the objects
in such a way that concept extents form connected subgraphs of this
graph. This allows to retrieve objects similar to a given object by a
recursive traversal of that objects neighborhood. The approach has been
introduced in [1] and is considered as a potential model for information
retrieval.

In this paper, context graphs for many-valued contexts are introduced.
The definition bases on descriptions, which were introduced in [2], and
basically allows to construct context graphs without transforming the
many-valued context into a one-valued context. It is examined how the
structure of the context graph, which is based on similarity of objects,
can be used to find objects in the graph based on a particular description.
Finally, scale graphs are proposed as a method to incorporate knowledge
about an attribute domain into the structure of the context graph.

Key words: Context Graphs, Formal Concept Analysis, Information
Retrieval, Conceptual Scaling

1 Introduction

The concept lattices of Formal Concept Analysis (FCA) [3] have been studied
and utilized as structural models for information retrieval (IR) by a number of
researchers. The advantage concept lattices have to offer is that they support
the combination of two principal ways of user interaction with an information
retrieval system: querying and browsing. The most basic idea of such an applica-
tion, described e.g. in [4], is that a subset of the attributes of a formal context is
understood as a query by the system. The corresponding result set is the concept
extent generated by the attributes in the query. This way, every query positions
the user in a concept node of the lattices Hasse diagram, and the system can
then present an option to the user to move to a lower or upper neighbor of the
current node. Such a step in the diagram corresponds to a minimal refinement
or extension of the result set, and this is how browsing is realized.

The complexity of the Hasse diagram sets a natural limit to the size of formal
contexts for which the Hasse diagram can be realistically computed. More re-
cent publications present ways how these limits can be advanced, in addition to
presenting more sophisticated user interfaces [5–7]. In [1] we have introduced a
graph representation of a formal context that we call a context graph, and have

motivated them as a potential alternative to the concept lattice in IR applica-
tions and beyond. The nodes of a context graph are objects of a formal context,
and these are connected by edges in such a way that every concept extent is a
connected subgraph within the context graph. We will generally assume that the
graph has no more edges than necessary for this property to hold. The rationale
of this approach is that, in an IR application, as soon as one object matching a
given query is found, all other matches can be retrieved by recursively traversing
that objects neighborhood. Moreover, the conceptual hierarchy of the lattice is
contained in the context graph as a system of subgraphs, which means that nav-
igating in the lattice (aka “browsing“) can be simulated in the graph (although
some search may be involved). An example context graph for the “Living Beings
and Water” context (Fig. 3) is shown on the left of Fig. 4.

So far context graphs and the algorithm for their construction in [1] have
only been defined for contexts with one-valued attributes. In a practical scenario
however, objects that one might want to find in an IR system are more likely
to be described by many-valued attributes (e.g. price or location). In FCA, the
classic approach of dealing with many-valued attributes is to translate a many-
valued context into a one-valued context by means of conceptual scaling [3],
but other ways of generating a lattice from a many-valued context have been
proposed (see e.g. [2, 8]). In this paper we will follow the approach of Gugisch
using descriptions [2]. In Sect. 3, the definition of context graphs and the pivotal
notion of a compliant path are reformulated in terms of descriptions and we
show that the resulting context graphs are equivalent to what we would obtain
by conceptual scales. Thus we provide a true generalization of context graphs
into the setting of many-valued attributes. An adaptation of the construction
algorithm from [1] is straightforward and will not be discussed here.

A context graph could be likened to a kind of semantic map, where objects
are distributed according to their similarity. This leads to believe that it may
be possible to find an object in the graph that matches a given description by
starting in some arbitrary vertex and following along a path of subsequently
better matches. This will be examined in Sect. 4, using the notions developed in
Sect. 3.

Finally, in Sect. 5 we briefly present the idea of scale graphs. Scale graphs
are context graphs of a scale and therefore express similarity between attribute
values. The proposed idea is that attribute domains can be intuitively modeled
by drawing a graph and then defining an appropriate scale which has this graph
as a context graph. The scale graph will then be reflected in the structure of any
context graph created with the corresponding scale.

2 Basic Notions

2.1 Formal Concept Analysis

A formal context is a triple (G,M, I) consisting of two sets G and M and a
relation I ⊆ G×M . The members of G and M are called objects and attributes,
respectively. We say that an object g ∈ G has an attribute m ∈M if (g,m) ∈ I.

Let K := (G,M, I) be a formal context. The set of attributes of an object
g ∈ G is

attK(g) := {m ∈M | gIm} . (1)

We extend the definition to sets of objects: The set of attributes shared by all
objects of a subset A ⊆ G is

attK(A) :=
⋂
g∈A

attK(g) . (2)

The set of objects which have all attributes of a subset B ⊆M is

objK(B) := {g ∈ G | B ⊆ attK(g)} . (3)

A pair (A,B) with A ⊆ G and B ⊆ M is called a formal concept of K if
A = objK(B) and B = attK(A). In this case A is called the extent and B the
intent of the formal concept (A,B). We write B(K) for the set of all formal
concepts of K.

The smallest concept extent which contains a set A ⊆ G of objects is given
by

A
K

:= objK(attK(A)) for A ⊆ G . (4)

We will also use the abbreviations gh
K

:= {g, h}
K

and gA
K

:= {g} ∪A
K

for
g, h ∈ G and A ⊆ G. The smallest concept intent which contains a set B ⊆ M
of attributes is given by

B
K

:= attK(objK(B)) for B ⊆M . (5)

We can characterize the set of all concepts in the following ways:

B(K) = {(AK
, attK(A)) | A ⊆ G} , (6)

B(K) = {(objK(B), B
K

) | B ⊆M} . (7)

The extents and intents of two concepts (A(1), B(1)) and (A(2), B(2)) of K are
related by

A(1) ⊆ A(2) ⇔ B(1) ⊇ B(2) . (8)

In the case that A(1) ⊆ A(2) holds, we call (A(1), B(1)) a subconcept of (A(2), B(2))
and write (A(1), B(1)) ≤ (A(2), B(2)). The partially ordered set (B(K),≤) is a
complete lattice, called the concept lattice of K.

2.2 Graph Theory

An undirected graph is a pair K = (VK , EK), where VK is a finite set and EK is
a subset of {{x, y} ⊆ VK | x 6= y}. The members of VK are called the vertices,
and the members of EK the edges of K. Given two vertices x, y ∈ VK , we say
that x and y are joined by an edge if {x, y} ∈ EK . In this case, we call x and y
neighbors and we may alternatively write x ∼ y.

A sequence (v(1), . . . , v(k)) of vertices is called a walk from v(1) to v(k) if
v(i) ∼ v(i+1) for i = 1, . . . , k − 1. If no two vertices on the walk are the same,
except possibly v(1) = v(k), the walk is called a path. A path with v(1) = v(k) is
called a circle. We say that K is connected if there is a path from x to y for all
x, y ∈ VK .

A graph (V,E) with V ⊆ VK and E ⊆ EK is called a subgraph of K. The
induced subgraph on a set V ⊆ VK of vertices is the subgraph K[V] := (V,EK ∩
P(V)), where P(V) denotes the power set of V .

2.3 Context Graphs

Definition 1 (Context Graph of a Formal Context). A context graph of
a formal context K = (G,M, I) is a triple (G,E, f) where

(CG1) K := (G,E) is an undirected graph on the set of objects,
(CG2) E is an arbitrary set of edges such that every induced subgraph

K[objK(B)], B ⊆M , is connected,
(CG3) f is a labeling function on the vertex set with f(g) = attK(g) for g ∈ G.

It has been shown in [1] how a context graph with a minimum number of edges
can be constructed.

Definition 2 (Compliant Path). A path (x(1), . . . , x(k)) in a context graph is

called compliant if x(i) ∈ x(1)x(k)
K

for all i = 1, . . . , k.

Condition (CG2) for context graphs is equivalent to the statement that there
exists a compliant path between every two vertices x, y ∈ G. This follows from
(6), (7) and, for all A ⊆ G,

A
K

=
⋃

x,y∈A
K

xyK . (9)

This has already been shown in [1], where we have used a slightly different, but
equivalent definition of compliant paths.

3 Context Graphs for Many-Valued Contexts

3.1 Conceptual Scaling

We use attributes like e.g. size, price, date or color to describe the objects that
surround us. It is usually the value of such an attribute that we are interested
in, not just the fact that the attribute applies to an object. We will call these
attributes many-valued attributes, in contrast to one-valued attributes which sim-
ply do or do not apply to an object.

If we want to use Formal Concept Analysis on objects with many-valued
attributes, we have to translate the many-valued attributes into one-valued at-
tributes. As an example, “is big”, “is cheap”, “before yesterday” and “is black”

may be some of the one-valued attributes which are used instead of size, price,
date and color. This process is called conceptual scaling, and we will cover in
this article the simplest variant, which is also described in [3].

The first step is to select a formal context called a scale for each attribute.
The objects of the scale are the possible values of the many-valued attribute.
We can consider the extents of the scale to be the meaningful subsets of val-
ues. For example, consider an attribute ”rating“ with possible values in {1 =
excellent, 2 = good, 3 = average, 4 = bad}. This could be something like the
user ratings for books and compact disks that you can find on Amazon.com, for
example. We reason that this attribute could be scaled by the ordinal scale in
Fig. 1:

≤
1

≤
2

≤
3

≥
2

≥
3

≥
4

1 × × ×
2 × × ×
3 × × ×
4 × × ×

≤
1

≤
2

≤
3

1 × × ×
2 × ×
3 ×
4

tr
u
e

fa
ls

e

true ×
false ×

Fig. 1. Interval Scale, Ordinal Scale and Dichotomic Scale

The extents of the ordinal scale are {1}, {1, 2}, {1, 2, 3} and {1, 2, 3, 4}. If
someone is interested in an item that is rated good, they would probably also
accept an excellent item, so the extents of the ordinary scale are possible de-
scriptions of what one might be looking for. The one-valued attributes of the
scale are used to identify these subsets of values. In our example, one attribute
is sufficient for each of the sets (e.g. ”≤ 3” for {1, 2, 3}).

There are situations where somebody may be interested in bad items exclu-
sively. The interval scale (see also Fig. 1) provides a more fine-grained description
of integer value sets: The extents are all intervals [a, b] with a, b ∈ {1, 2, 3, 4}, in-
cluding the interval [4, 4] that we just mentioned. To sum up, we can say that the
scale chosen for an attribute determines which subsets of values are considered
for the formation of concepts.

Figure 2 shows an example of how objects with many-valued attributes can
be represented in a formal context. In this example, we have only three objects
o1, o2 and o3 which are described by a 5-tuple of attribute values each. We have
scaled the first three attributes using the interval scale, dichotomic scale and
ordinal scale of Fig. 1, respectively. The fourth attribute has not been scaled at
all; this is possible as it only takes the values “true” or “false”. The last attribute
has been scaled by the color scale in Fig. 6.

The formal context obtained in this way is called the derived context w.r.t.
plain scaling. We will formalize the process of conceptual scaling in the next
section, taking a slightly different approach than that in [3].

Derived Context Example

≤
1

≤
2

≤
3

≥
2

≥
3

≥
4

tr
u
e

fa
ls

e
≤

1
≤

2
≤

3
tr

u
e

r-
o
-y

o
-y

-g

y
-g

-b
g
-b

-p
b
-p

-r
p
-r

-o

o1:(2,true,3,false,blue) × × × × × × × ×
o2:(1,true,4,true,red) × × × × × × × ×
o3:(4,false,1,false,yellow) × × × × × × × × × ×

Fig. 2. Derived Context Example

3.2 Precontexts

We start with the definition of a precontext, which is a formal representation of
the set of many-valued attributes that we initially have:

Definition 3 (Precontext). A precontext is a tuple (G,W1, . . . ,Wn) consist-
ing of n ≥ 1 nonempty sets W1, . . . ,Wn and a set G ⊆ W1 × · · · ×Wn. We call
a set Wi an attribute domain, and the members of Wi are called values. The
members of G are called objects, and we say that an object (x1, . . . , xn) ∈ G has
a value of w ∈Wi in an attribute i ∈ {1, . . . , n} if and only if w = xi.

Precontexts are less general than many-valued contexts (see [3]) in two re-
spects:

1. The condition G ⊆W1×· · ·×Wn means that objects are identified with the
tuple of their attribute values. That is, objects with identical values in each
attribute are considered the same.

2. The attributes are modeled by the projection functions πi, i = 1, . . . , n. That
is, the i-th attribute of an object x = (x1, . . . , xn) is given by πi(x) = xi.
In particular, the attributes are total functions, whereas the attributes of a
many-valued context may be partial functions.

The first of these points is not an actual restriction if we want to navigate in
context graphs, since objects with identical descriptions can be represented by
the same vertex. The second point is a restriction: The current paper does not
deal with the case where attribute values are unknown or undefined.

With this in mind, we can understand a precontext (G,W1, . . . ,Wn) as
an alternative representation for the many-valued context (G, {πi | 1 ≤ i ≤
n},

⋃n
i=1Wi, I) with I = {(x, πi, πi(x)) | x ∈ G, 1 ≤ i ≤ n}.

Definition 4 (Precontext with Scales). A precontext with scales is a tuple
(G,S1, . . . ,Sn) such that every Si is a formal context (Wi,Mi, Ii), and
(G,W1, . . . ,Wn) is a precontext. The contexts Si are called scales.

A precontext with scales (G,S1, . . . ,Sn), with Si = (Wi,Mi, Ii) for i =
1, . . . , n, and the corresponding derived context K = (G,M, I) are related by
the equations

M = M1

.
∪ . . .

.
∪Mn , (10)

∀x ∈ G : attK(x) ∩Mi = attSi(πi(x)) . (11)

3.3 Descriptions

Theorem 1. Let (G,~S) be a precontext with scales and K the derived context
w.r.t. plain scaling. Then

A
K

= G ∩
n×

i=1

πi(A)
Si

holds for all A ⊆ G.

Proof. We first note that

attK(A) ∩Mi =
(2)

⋂
x∈A

attK(x) ∩Mi =
(11)

⋂
x∈A

attSi
(πi(x))

=
(2)

attSi(
⋃

x∈A

πi(x)) = attSi(πi(A)) .
(12)

From this we conclude

attK(A) ⊆ attK(x)
⇔
(10)
∀1 ≤ i ≤ n : attK(A) ∩Mi ⊆ attK(x) ∩Mi

⇔
(12)(11)

∀1 ≤ i ≤ n : attSi(πi(A)) ⊆ attSi(xi)

⇔
(4)(3)

∀1 ≤ i ≤ n : xi ∈ πi(A)
Si
.

(13)

Finally we have

A
K

=
(4)(3)

{x ∈ G | attK(A) ⊆ attK(x)} =
(13)

G ∩
n×

i=1

πi(A)
Si
.

ut

The theorem provides a description of the extents of the derived context as
products of value sets. We formalize this notion of description in the following
definition (descriptions have been explored in [2] already, although the definition
given there is not exactly the same).

Definition 5 (Description). Let M be a precontext with scales
Si = (Wi,Mi, Ii), i = 1, . . . , n. A description in M is a set D = D1×· · ·×Dn ⊆
W1 × · · · ×Wn such that Di is an extent of Si for all i = 1, . . . , n. We write
D(M) for the set of all descriptions in M.

An object description is a description D ∈ D(M) with Di = hi
Si for some

h ∈W1 × · · · ×Wn, and we shall also write D = h for convenience.

In analogy to (2), (3), (4) and (5) we define

dscM(A) :=
n×

i=1

πi(A)
Si
, (14)

objM(D) := G ∩D , (15)

A
M

:= objM(dscM(A)) , (16)

D
M

:= dscM(objM(D)) . (17)

for A ⊆ G and D ∈ D(M). Now we can state Theorem 1 in the shorter form

A
K

= A
M
. (18)

We write B(M) for the set of all pairs (A,D) with A = objM(D) and D =
dscM(A) and state without proof that

B(M) = {(AM
,dscM(A)) | A ⊆ G} , (19)

B(M) = {(objM(D), D
M

) | D ∈ D(M)} . (20)

Note that A ⊆ AM
, but D ⊇ DM

. Moreover,

A(1) ⊆ A(2) ⇔ D(1) ⊆ D(2) (21)

for all (A(1), D(1)), (A(2), D(2)) ∈ B(M), which is different from what we have in
(8).

3.4 The Context Graph of a Precontext with Scales

In this section we define the context graph for a precontext with scales:

Definition 6 (Context Graph of a Precontext with Scales). Let M =
(G,~S) be a precontext with scales. An undirected graph K = (G,E) is called a
context graph of M, if K[objM(D)] is connected for all descriptions D in M.

The sets objM(D), D ∈ D(M), are precisely the extents A
M

((19) and (20)).
Because of (18) this means that we essentially get the same context graphs that
we would get by first creating the derived context K and then using Definition 1.
However, the attributes of an object do not have to be explicitly encoded by one-
valued attributes, which is an advantage of this definition.

As in Sect. 2.3 we call a path between x, y ∈ G compliant if it lies in xyM

and obtain the following characterization:

Lemma 1. Let M = (G,S1, . . . ,Sn) be a precontext with scales. An undirected
graph K = (G,E) is a context graph of M if and only if there is a compliant
path between all x, y ∈ G. A path (x, . . . , y) is compliant if and only if

∀i : zi ∈ xiyi
Si

holds for all z on the path.

4 Approximating Objects by Description

The following definition captures the idea of how close a vertex x matches a
given description D = D1 × · · · ×Dn:

~uD(x) = (x1D1
S1
, . . . , xnDn

Sn) . (22)

The vector contains, in every component, the smallest scale extent that contains
{xi}∪Di. This could be compared with a neighborhood of the set Di in topology.

We write ~uD(x) ≤ ~uD(y) if x matches D better than y does:

~uD(x) ≤ ~uD(y) :⇔ ∀i : xiDi
Si ⊆ yiDi

Si
. (23)

Definition 7 (Nonincreasing/Decreasing Paths). Let K be a context graph
of M and D ∈ D(M). A path (x(1), . . . , x(k)) is nonincreasing w.r.t. D if

~uD(x(1)) ≥ · · · ≥ ~uD(x(k)) .

The path is decreasing w.r.t. D if

~uD(x(1)) > · · · > ~uD(x(k)) .

For a given description D ∈ D(M) we are interested in the objects which best
match the description, i.e. the vertices y ∈ G for which ~uD(y) is minimal. We
will see that from every vertex x ∈ G there exists a nonincreasing path to some
minimum. We will also prove conditions under which there exist nonincreasing
paths to all minima beneath x, and conditions under which these nonincreasing
paths are actually decreasing. The conditions depend on the scales chosen for
the precontext.

Definition 8 (Scale Properties). The following are properties which may be
true or not for a given scale S = (W,M, I):

(P1) w ∈ uT S
, v ∈ uwS ⇒ w ∈ vT S

for all u, v, w ∈W and T ⊆W
(P2) v ∈ uwS, v 6= u, v 6= w ⇒ vwS ⊂ uwS for all u, v, w ∈W

The given properties express what one would probably expect if the scale extents
are seen as some kind of intervals, where uwS is the set of all values “between”
u and w. Property (P2) then says that the interval vw generated by the inner
point v and the end point w is strictly smaller. In the same fashion (P1) would
mean that whenever w is between u and T and v is between u and w, then w
must be between v and T .

The following lemma will give first results:

Lemma 2. Let (G,E) be a context graph of M, D ∈ D(M) and x, y ∈ G. Let
further (x, . . . , y) be a compliant path between x and y. The following holds for
all z on the path:

1. ~uD(x) ≥ ~uD(z),

2. If all scales of M satisfy (P1): ~uD(x) ≥ ~uD(z) ≥ ~uD(y).

Proof. Because z lies on a compliant path between x and y, we obtain

∀i : zi ∈ xiyi
Si (24)

from Lemma 1. From ~uD(x) > ~uD(y) we conclude (starting with (23))

yiDi
Si ⊆ xiDi

Si ⇒ yi ∈ xiDi
Si ⇒ xiyi

Si ⊆ xiDi
Si

⇒
(24)

zi ∈ xiDi
Si ⇒ ziDi

Si ⊆ xiDi
Si
.

The last inclusion shows that ~uD(x) ≥ ~uD(z). If all scales of M satisfy (P1),
we obtain ~uD(z) ≥ ~uD(y) by setting u := xi, w := yi, v := zi and T := Di in
Definition 8. ut

Now let us have a closer look at the Lemma. We interpret x as an arbitrary
vertex and y as a minimum beneath x. In a context graph there must be a
compliant path p from x to y, and we write p = (z(1), . . . , z(m)) where z(1) = x
and z(m) = y. We follow this path until we either reach y or until we arrive at
the first vertex z(i) with ~uD(z(i−1)) 6= ~uD(z(i)), i.e. with ~uD(z(i−1)) > ~uD(z(i)).
If (P2) holds for all scales, then the Lemma says that y is still beneath z(i), and
again there must be a complaint path from z(i) to y, which is not necessarily the
remainder of the first path. But we can repeat the procedure with z(i) as the
start vertex, approximating y step by step. That is, if (P2) holds for all scales,
every minimum beneath x can be reached via a nonincreasing path. If (P2) does
not hold, then y does not necessarily lie beneath z(i) anymore, but there will
obviously still be some other minimum beneath z(i). We illustrate the latter case
by an example:

The left side of Fig. 4 shows a context graph of the one-valued context
in Fig. 3. Every one-valued context can be represented as a precontext with
scales, using a scale Sid({0, 1}, {a}, {(1, a)}) for each attribute a. This is eas-
ily verified showing that the derived context, defined by (10) and (11), is the
original context again. The objects are then encoded by n-tuples of attributes
in the obvious way (consider the right graph in Fig. 4 for this). The corre-
sponding precontext with scales is therefore ({0, 1}n,Sid, . . . ,Sid). The extents
of Sid are {0, 1} and {1}. We now want to find a best match for the description
D = ({0, 1}, {0, 1}, {1}, {0, 1}, {1}, {0, 1}, {0, 1}, {1}, {1}), which happens to be
an object description (the corresponding object is (0, 0, 1, 0, 1, 0, 0, 1, 1), which
does not exist in the context). We start the search in the “Leech“ vertex, which
is represented by the tuple (1, 1, 0, 0, 0, 0, 1, 0, 0). We could now use the defini-
tion in (23) to describe how closely the current vertex matches the description,
but it is clear that we can equivalently use the set of shared attributes as a
measure instead (the unmodified definition of ~u is better reserved for theoretical
considerations). The attributes of the leech are given by {a, b, g}, and the ob-
ject description translates to the set {c, e, h, i}. There are two best matches in
the graph: the dog vertex and the bean vertex. Both lie below the leech vertex,

and both can be reached via exactly one compliant path. But in the frog vertex,
which lies two vertices down the path, the bean vertex does no longer lie beneath
the frog vertex. So only the dog vertex can be reached via a nonincreasing path.
In fact it can be seen that Sid does not satisfy (P1).

Living Beings and Water a b c d e f g h i

Leech × × ×
Bream × × × ×
Frog × × × × ×
Dog × × × × ×
Spike–weed × × × ×
Reed × × × × ×
Bean × × × ×
Maize × × × ×

Fig. 3. Formal Context: Living Beings and Water (taken from [3]). The attributes
are defined as follows: a=needs water, b=lives in water, c=lives on land, d=needs
chlorophyll, e=two seed leaves, f=one seed leaf, g=can move, h=has limbs, i=suckles
its offspring.

Fig. 4. Living Beings and Water: Context Graphs

The next lemma states that every nonincreasing path is in fact a decreasing
path if all scales satisfy (P2) and the description is an object description.

Lemma 3. Let (G,E) be a context graph of a precontext with scales M. If all
scales satisfy (P2), then

x 6= y ⇒ ~uh(x) 6= ~uh(y)

holds for all x, y ∈ G and all object descriptions h ∈ D(M).

Proof. Suppose that x 6= y and ~uh(x) = ~uh(y). Then for some i ∈ {1, . . . , n} we
have xi 6= yi, wlog xi 6= hi, and xihi

Si = yihi
Si . The latter implies xi ∈ yihi

Si ,
and from (P2) we obtain (setting v := xi, u := yi and w := hi) that xihi

Si ⊂
yihi

Si , contradiction! ut

The property (P2) is satisfied by the dichotomic scale and the interval scale.
The right of Fig. 4 shows a context graph for the ”Living Beings and Water“
context where the precontext with scales is as above, but the scales Sid have
been replaced by dichotomic scales. The corresponding derived context is shown
in Fig. 5. Consider as a second example that we want to search this graph for

Living Beings and Water a b c d e f g h i ¬a ¬b ¬c ¬d ¬e ¬f ¬g ¬h ¬i

Leech × × × × × × × × ×
Bream × × × × × × × × ×
Frog × × × × × × × × ×
Dog × × × × × × × × ×
Spike–weed × × × × × × × × ×
Reed × × × × × × × × ×
Bean × × × × × × × × ×
Maize × × × × × × × × ×

Fig. 5. Living Beings and Water Context with Dichotomic Attributes

the object d := (1, 0, 1, 0, 0, 0, 1, 1, 1), which happens to be the dog. The function
~ud can be replaced by the Hamming distance

hd(x) :=
∑

|xi|6=|di|

1

as we have ~ud(x) ≤ ~ud(y) ⇔ hd(x) ≤ hd(y). The context graph shows the
Hamming distance to the dog object next to each of the nodes. We can verify
that the dog vertex can be reached from every other vertex via a decreasing
path. As a concluding remark we want to note that the edge-minimal context
graph on the right side is unique. More generally, the following proposition can
be shown:

Proposition 1. Let M = (G,S1, . . . ,Sn) be a precontext with scales such that
all Si satisfy (P2). Then there is a unique edge-minimal context graph of M, and
the edges of this graph are given by

x ∼ y ⇔ ∀z ∈ G : ~ux(y) ≤ ~ux(z) .

5 Scale Graphs

In this section we briefly present an idea how knowledge about domain of at-
tribute values, or an individual perspective on such a domain, can be fed into
a context graph. The idea is to first draw a graph which represents similarity
among attribute values and then define a scale which has this graph as its con-
text graph. We have no general method for this and just provide two examples,
one defining a graph for an attribute ”color“ and one defining a graph for an
attribute ”location“. The graphs are shown in Figs. 6 and 7. The extents have
been chosen in a way that (P2) is satisfied, i.e. the extent generated by two ob-
jects is the set of all values ”between“ these objects. The extents can be read off
from the scales which are shown next to the graphs. It can also be checked that
the graphs are indeed context graphs of the given scales and that all edges are
necessary. This means that if these scales are used for a precontext with scales
M, the structure of the scale graphs is reflected in any context graph K of M.
This approach allows to model the neighborhoods of a vertex in K. It would
also be interesting to investigate the idea of embedding a context graph into a
product of scale graphs, comparable to the subdirect product of lattices.

Colors

r-
o
-y

o
-y

-g

y
-g

-b
g
-b

-p
b
-p

-r
p
-r

-o
red × × ×
orange × × ×
yellow × × ×
green × × ×
blue × × ×
purple × × ×

Fig. 6. Scale for a color wheel

Cities

P
A

M
P

A
S

P
B

A
M

A
S
B

M
S

M
S
B

Perth × × ×
Adelaide × × × ×
Melbourne × × × ×
Sydney × × × ×
Brisbane × × ×

Fig. 7. Cities in Australia

6 Conclusion

In this article, we have transferred the definition of context graphs into the more
general setting where objects are described by many-valued attributes, using
descriptions instead of attributes. Descriptions can be interpreted as queries of a
user, although the queries could actually be formulated in some other language
that the user is more comfortable with. In Sect. 4, we have investigated to
what degree the structure of a context graph supports finding objects by their
description. If the result set for a given query is nonempty, it may be preferrable
to look up matching objects in a database and to use the graph structure for
examining similar objects or result sets only. However, if the result set for a
query is empty, it has been shown that best matches can be found by navigating
through the graph. This may be an interesting starting point for interactive
querying. Some search in the graph is unavoidable unless a decreasing path leads
to a best match for a given query, which can only be guaranteed if a condition is
met which comes at the price of further edges in the graph. Generally, navigation
in the graph makes only sense if the number of edges is not too large. While a
context graph can always be constructed in polynomial time [1], the capacity of
the graph seems to be the limitation that applies to context graphs. We believe
that the results presented in this paper provide an interesting point of reference
but an evaluation of the theory within some real application scenario will be
necessary.

References

1. Kötters, J., Schmidt, H., Squire, D.: Context graphs - representing formal concepts
by connected subgraphs. In Ferré, S., Rudolph, S., eds.: Proceedings of ICFCA
2009. Volume 5548 of Lecture Notes in Artificial Intelligence., Berlin–Heidelberg,
Springer (2009) 178–193

2. Gugisch, R.: Many-valued context analysis using descriptions. In Delugach, H.S.,
Stumme, G., eds.: Proceedings of ICCS 2001. Volume 2120 of Lecture Notes in
Computer Science., Berlin–Heidelberg, Springer (2001) 157–168

3. Ganter, B., Wille, R.: Formal concept analysis: mathematical foundations. Springer-
Verlag, Berlin (1999)

4. Godin, R., Missaoui, R., April, A.: Experimental comparison of navigation in a Ga-
lois lattice with conventional information retrieval methods. International Journal
of Man-machine Studies 38 (1993) 747–767

5. Priss, U.: Lattice-based information retrieval. Knowledge Organization 27(3) (2000)
132–142

6. Ferré, S.: CAMELIS: Organizing and browsing a personal photo collection with a
logical information system. In Diatta, J., Eklund, P., Liquière, M., eds.: Proceedings
of CLA 2007. Volume 331 of CEUR Workshop Proceedings. (2007) 112–123

7. Ducrou, J., Eklund, P.W.: SearchSleuth: The conceptual neighborhood of an web
query. In Diatta, J., Eklund, P., Liquière, M., eds.: Proceedings of CLA 2007.
Volume 331 of CEUR Workshop Proceedings. (2007)

8. Prediger, S.: Logical scaling in formal concept analysis. In Lukose, D., Delugach, H.,
Keeler, M., Searle, L., Sowa, J.F., eds.: Proceedings of ICCS 1997. Volume 1257 of
Lecture Notes in Artificial Intelligence., Berlin–Heidelberg, Springer (1997) 332–341

