From Domain Ontologies to Object-Oriented
Frameworks

Giancarlo Guizzardil‘z, Ricardo de Almeida Falbol, José Gongalves Pereira Filho!

Computer Science Department’
Federal University of Espirito Santo
Fernando Ferrari Avenue,

CEP 29060-900 - Vitéria - ES - Brazil
e_mail: {falbo, zegonc} @inf.ufes.br

Centre for Telematics and Information Technology?,
University of Twente
P.O. Box 217, 7500 AE, Enschede,
The Netherlands
guizzard@cs.utwente.nl

Abstract: Ontologies are becoming an important mechanism to build information
systems. Nevertheless, there is still no systematic approach to support the design
of such systems using tools that are common to information systems developers.
In this paper, we propose an approach for deriving object frameworks from
domain ontologies and then we show the application of this approach in the
software process domain.

Keywords: Ontologies, frameworks, methodologies for using ontologies.

1. Introduction

An Information system cannot be written without a commitment to a model of the
relevant world —commitments to entities, properties, and relations in that world. Data
structures and procedures implicitly or explicitly make commitments to a domain
ontology [1].

Several projects in Al have focused on using ontologies to promote knowledge
sharing, and to substitute the usual database or object-oriented schema with an
ontology, which offers a semantically richer model of the domain [2]. This trend has
also acquired followers in the Software Engineering community. However, one of the
major drawbacks to a wider use of ontologies in this area is the lack of approaches to
insert ontologies in a more conventional software development process.

Since the current leading paradigm in Software Engineering is the object
technology, we claim that we need a systematic approach to derive object models from
ontologies in order to put ontologies in practice. In this paper we propose a systematic
approach to derive reusable object artifacts from domain ontologies. In section 2, we
briefly discuss some aspects of ontology building, including a method and a graphical
language, and a past experience using them. In section 3, we present a set-based

formalism for ontology representation. In section 4, we describe our approach to derive
object models and frameworks from domain ontologies, showing how it was applied in
the software process domain. In section 5, related works are discussed. Finally, in
section 6, we report our conclusions.

2.0ntologies

It is impossible to represent the real world, or even a part of it, with all its details.
To represent a phenomenon or part of the world, which we call domain, it is necessary
to focus on a limited number of concepts that are sufficient and relevant to create an
abstraction of the phenomenon at hand. Thus, a central aspect of any modeling activity
consists of developing a conceptualization: a set of informal rules that constrain the
structure of a piece of reality, which an agent uses to isolate and organize relevant
objects and relations [3].

According to Guarino [3], “an ontology is a logical theory accounting for the
intended meaning of a formal vocabulary, i.e. its ontological commitment to a
particular conceptualization of the world”. Based on such definition, an ontology
consists of concepts and relations, and their definitions, properties and constrains
expressed as axioms. An ontology should not be only a hierarchy of terms, but a fully
axiomatized theory about the domain [4].

In [4], we proposed a Graphical Language for Expressing Ontologies (LINGO) and
a systematic approach for engineering ontologies. In the knowledge acquisition
process, the use of a graphical representation is essential in order to facilitate the
communication between requirement engineers and experts. In ontology building, such
representation is basically a language representing a meta-ontology. Hence, this
language has basic primitives to represent a domain conceptualization. In its simplest
form, its notations represent only concepts and relations. Nevertheless, some types of
relations have a strong semantics and, indeed, hide a generic ontology, e.g. the subtype-
of relation and the several types of mereological relations. In such cases, specialized
notations have been proposed. In fact, this is the striking feature of LINGO and what
makes it different from other graphical representations: any notation beyond the basic
notations for concepts and relations aims to incorporate a theory. This way, axioms can
be automatically generated. These axioms concern simply the structure of the concepts
and are said epistemological axioms.

Concerning the approach for building ontologies, the proposed method basically
wraps the following activities: purpose identification and requirement specification,
ontology capture and formalization, integrating existing ontologies, and ontology
evaluation and documentation [4].

Both language and method have been used in the development of complex
information systems in areas such as Software Process, Port Management, Steel
Metallurgy, Medicine and Media on Demand Management. Although they have proven
to be useful, we identify a great concern from the developers: how to put those
ontologies in practice, viz., how ontologies can support actual software development?

In [5], we developed a software process ontology and used it to promote
knowledge integration in a Software Engineering Environments (SEE). Since the SEE

was implemented using objects, we have to derive an object model from the domain
ontology. This represented a design problem that was informally solved. More recently,
other developers have experienced the same problem. Based on these facts, the
methodology presented in this paper has been proposed

3. A formalism for Ontology Representation

In session 2, we mentioned our previous experience developing a software process
ontology. In this experience, we used first-order logic as the language to specify the
axioms of the formal theory. First-order logic is widely known for its expressive power
and its ontological neutrality, therefore adding minimal ontological commitments.
However, due to the goals of this work, it is very convenient to adopt a formalism that
lies in an intermediate abstraction level, between first-order logic and object-
orientation. For this purpose, we used a hybrid approach based on pure first-order
logic, relational theory, and, predominantly, set theory.

The choice to create a language mainly based on set theory was highly motivated by
an important issue: set theory is a complementary extensional perspective to the
intentional nature of first-order logic and, at the same time, a natural option as a
conceptual model for reasoning about objects. To clarify this point, the following
example is used: let the intention of the concept mortal be "A mortal is an entity whose
life ceases in a point of time". The logic predicate mortal(x) states that X is a mortal
and, therefore, the characteristics defined by the intention of this concept applies to X. It
also (implicitly) states that x O Mortal, i.e. to the set of all the elements of the
considered world to which the intention of the concept applies. In an object-oriented
perspective, if X is an instance of mortal, it means that X belongs to the mortal class,
i.e. to the set of all instances of the considered world that share the same properties and
the same definition.

Because of these characteristics of set theory, to build a model using the proposed
set-based language is a very important step in a systematic translation between the
logic and the object worlds. Moreover, the language preserves the expressive power of
the first-order logic without adding significant ontological commitments, therefore,
being suitable to play the same role in the axiomatization process. Although formal, the
language is kept as simple as possible, defining only what is absolutely necessary to
accomplish its goals.

Finally, it is essential to explain our decision for defining a new set-based formalism
instead of using an existent one, for instance Z [17]? The reasons motivating this
choice are both philosophical and practical. From a practical point of view, Z has a
complicated mathematical notation that contains some language constructs that are
unnecessary for ontology specification, e.g. the primitives for method specification. As
a consequence of this, practitioners normally find these notations hard to use, mainly if
their rather complex textual syntax is the only vehicle to produce specifications. From a
philosophical point of view, the language primitives do not offer all the necessary
means to express important ontological distinctions. An example of the latter is the fact
that the language considers concept relations and properties as equivalent constructs.
This consideration holds true from a mathematical perspective but not from an

ontological one. In other words, we claim that Z’s set of primitives is neither sufficient
nor necessary for ontological formal representation. For a deep discussion about the
ontological distinctions between concept relations, roles and properties please refer to
[16].

In the next sub-session, the theoretical foundation for our formalism is briefly
presented. It is also discussed how the primitives of this formalism are related to the
LINGO building blocks.

3.1 - A theoretical foundation for a Set-based language

Sets are collections of zero or more elements whose members are unique and their
order is immaterial. Sets can be finite or infinite. Finite sets with a small number of
elements are usually represented by the enumeration of their members. Otherwise, they
are represented by formation rules or by the definition of the characteristics and
properties that all their members must have in common (intention). In our approach,
concepts are defined as sets and, as mentioned before, the statement x O Mortal
commits X to the concept Mortal, both intentionally and extensionally.

Another fundamental building block in the LINGO meta-ontology is the primitive
relation. This primitive represents a semantic link that exists among a set of (one or
more) concepts. In our approach, relations are mapped to the synonymous primitive in
set theory. In set theory, a n-ary relation can be defined by the n-tuple R = (C,C,...C,,
p(X1.X2..Xn)), Where each C; represents a different set involved in the relation and p(x;) is
a functional predicate open in n variables that maps each element from the cross-
product C; x C, % ... C, in a true or false value. In this case, the set R’ (solution set) is
the subset of C; x C; x ... C, whose members € all satisfy the predicate p(g).

Figure 1 shows an example of a binary relation that links the concepts Person and
Organization. The equivalent description in set theory is contract = ((Organization,
Person, contract(x,y)). From now on, the propositional function p(x,y) will be used as
synonym of the n-tuple that defines the relation, assuming that the function is defined
in some cross-product C; x Cp X ... Cp,.

age: ¥
b —
1.n
Petson employee contract —_— | Organization
11] emplayer

Fig.1 - Example of a binary relation

Figurel also depicts two important modeling primitives: properties and roles. In
the ontological level [16] there is a clear distinction between properties, roles and
concepts. These distinctions are considered in our approach in a set of mapping
directives discussed in section 4. However, at the structural level, the property age (of
Person, fig. 1) represents an ordinary relation age(p,x) between instances of Person
and instances of Natural numbers. Actually, this relation happens between the sets

Person and X, where X is a subset of IN, such that all its members represent the years
of existence of another element involved in the age relation (X O IN) O (O x:X, Oy
age(x,y))). In our formalism, the variable that represents an instance of a property is
underlined, e.g. 0O p:Pessoa, Oa:X age(a,p). Finally, in addition to represent
characteristics of concepts, properties can characterize relations as well. This feature is
discussed in [19].

In set theory, some essential operations are defined to express the relations between
sets (0 - proper-subset or O - subset; [0 - Union; N - Intersection; \ - set difference; O -
power set), properties of sets (# - cardinality), restriction on relations (~ - inverse
relation, ; - relation composition) and relations between sets and their members (O -
Membership) [18]. In addition to this, we use the basic logic operators (O -
conjunction; O - disjuntion; O - exclusive disjunction; = - negation; — - conditional;
« - biconditional) and quantifiers (0 - universal; [0 - existential; [T - exists one and
only one) to form the core of the formalism employed in this work.

In order to extend this core formalism some additional functions are defined. The
most important among them is the function called Image (Im). This function plays a
fundamental role in the specification of derivation axioms and solution sets to
competency questions [6]. The definition of Im is given as follows:

Im(_,):O0X)x(X « Y) - 0O()
Im(S,R) = {x:X,y:Y | (x OS) O((x,y) OR*) ey }

The following axiom also holds for this function:
Oa,b,R b OIm({a},R) -~ a OIm({b},R)

Using the relation of figure 2 as an example, a possible valid image set could be:
Im({Org1}, contract) = {John, Paul, Mary} and, consequently, Im({John},contract~) =
{Org1}. It is important to notice that Im is a distributive function, i.e.
Im({John,Mary},contract) = Im({John}, contract) O Im({Mary}, contract).

In figure 2, cardinality constraints are used to specify the number of concept
instances that can be involved in a relation. The cardinality (0,n) does not impose any
restriction and, for that reason, its not graphically represented. Other cardinality
possibilities include (0,1), (1,1) and (1,n). Whenever used, these cardinalities
incorporate new axioms to the model. In figure 2, the cardinality (1,1) implies that O
p:Pessoa #Im({p},contract) = 1 and cardinality (1,n) implies that O o:Organization
#lm({o},contract) = 1. Although the examples presented above represent only binary
relations, the formalism used in this work is expressive enough to model relations of
any arity. Likewise, reflective relations (relations between instances of the same
concept) and conditional relations (AND and XOR tight relations) can also be
represented [4].

4. From Conceptual Models to Computational Infrastructures — The
Impedance Mismatch Problem

The problem of consistently generating computational infrastructures from
conceptual models has been known for a long time by the software engineering
community as the, so-called, Impedance Mismatch Problem (IM) [15]. In the scope of
this work, the conceptual models are domain ontologies and the computational
infrastructures are object-oriented frameworks. The use of domain ontologies to realize
the domain analysis activity in a software engineering process contributes with
innumerous advantages [19]. However, the impedance mismatch problem is amplified:
instead of performing just one step to translate between two levels of abstraction
(conceptual models to computational infrastructures), two steps are necessary. The first
step is to translate from an ontological level model (domain axiomatized theory) to an
epistemological conceptual model (conceptual view of class diagrams) without loosing
the explicit representation of knowledge. The second step is the translation between the
domain model to its computational concretization - an activity that, in domain
engineering terms, is called domain design.

Our systematic approach to address this two-level IM problem is composed of a
set of directives, design patterns and transformation rules. The directives are used to
guide the mapping from the epistemological structures of the domain ontology
(concepts, relations, properties and roles) to their counterparts in the object-oriented
paradigm. Concepts and relations are naturally mapped to classes and associations in an
object model, respectively. Properties of a concept shall be mapped to attributes of the
class that is mapping the concept. Although this approach works well in most cases, it
is worthwhile to point exceptions that we have found:

e some concepts can be better mapped to attributes of a class in an object
model because they do not have a meaningful state in the sense of an object
mode!;

* some concepts should not be mapped to an object model because they were
defined only to clarify some aspect of the ontology, but they do not enact a
relevant role in an object model;

* relations involving a concept that is mapped to an attribute (or that is not
considered in the mapping) should not be mapped to the object model.

Furthermore, the directives consider non-trivial mappings, e.g. n-ary relations,
relation properties and conditional relations. At last, they advise the choice between
primitives to model a domain entity (Guarino discussion about sortals, temporal
neutrality and ontological rigidity is a very good example of this [16]).

Besides the epistemological constructs, ontologies explicitly represent knowledge
in a signification level through the use of formal axioms. These axioms can be of two
types: consolidation axioms and derivation axioms [4]. The former aims to impose
constraints that must be satisfied for a relation to be consistently established. The latter
intends to represent declarative knowledge that is able to derive knowledge from the
factual knowledge represented in the ontology. To guarantee the fulfillment of the
constraints specified by consolidation axioms, we developed a general precondition
pattern. Afterwards, this pattern is used to compose another pattern called whole-part

pattern [19,20]. This was necessary because ontological whole-part relations are not
well mapped to aggregations in an object model, i.e. UML notation for aggregation
does not guarantee the constraints imposed by the theory (mereology) underlying the
proposed notation [4].

For the sake of necessary brevity, the mapping directives and the consolidation
axioms will no longer be discussed in this paper. In a future article, we will describe
how the Set framework presented in the subsection 4.1 can help to solve most of the
issues related to the IM problem. The bottom-up construction of our mereological
pattern will be presented in yet another article. The emphasis of this paper is on how
this framework and a collection of transformation rules can be applied together to
generate consonant JAVA implementations for the derivation axioms.

4.1 - The Set Framework

The figure 2 shows a support framework that plays a fundamental role in our
ontol ogy-to-objects mapping. This framework implements the mathematical properties
described by the theoretical foundation presented in section 3. The methods of the Set
class are summarized in table 1.

The Set class is a generic container that is able to hold extension sets for
all kinds of concept instances. To be accessible, each member of a set must have a
unique identifier. The Set El enent interface deals with these requirements,
providing an identification mechanism through the get Key method. For an instance of
any class to be held in a Set, it must implement the Set El enent interface.
Consequently, the Set class is actually a set of Set El ement instances. The primary
key for these elements is typed as Object, which is the top-most class in JAVA
hierarchy. This is done in order to give the application classes total freedom regarding
implementation decisions.

The framework also defines two other classes: Persi stent Set and
Menber Set , both sub-types of Set. The former is a set that is able to handle its
permanent storage in total transparency from the perspective of the class users. When
the store() method is invoked in a Persi stent Set, the class performs the
serialization of all its members. The original state of the objects (as well as their
relations) can be afterwards restored by the invocation of the r et r i eve() method.

Finally, persistent sets can be used as an interesting alternative to implement
databases [19]. Using this paradigm, a database can be seen as a family O (set of sets),
which contains all the sets existing in the application. Since, in this case, each set will
be a member of another set, they must also be univocally identifiable. The
Menber Set is, thus, provided to enable this situation.

Setl)

Set(SetElement[] e}
in(%etElement =) :hoolean
contains (Set =) :hoolean

equals (3et s) :boolean <>—
union(Set 9):Set
intersection(3et s):8et

cardinality() :int
difference (3et s):3et
extension|) :Iterator

SubZet (String subset) :3et
getInstance (Chiect key) :SetElement
add (3etElement =} <<SetElement>>
remove [SetElement =)

select (String prop, String operator,chiject wvalue) :Set
Set.Im(Chject o,8tring relation):Zet

Set.Im(3et s,3tring relation):Set getKey(| :0hject
equals (SecElement s):boolean
45 E
MemberSet

MenberSet (String id)
Merberdet (String id, SetElement[] e}

PersistentSet

PersistentSet (String a_source

Persistent3et (String a source,3etElement[] e
storel):ivoid

retrieve(}:void

Fig.2 - Framework that implements the mathematical type Set

4.2 —Deriving object frameworks from domain ontologies

Figure 3 shows part of the LINGO model for a resource-to-activity allocation
theory ontology [5]. The intention is to use it as an example over which we can explain
our methodology. Therefore, not only the set of concepts and relations is incomplete
and their intentions are not presented, but the fully ontology axiomatization will not be
provided as well.

A software engineering process is a composition of a set of inter-related
activities. Activities can be either of type construction, management or quality
assurance. To make the realization of this process possible, a set of resources is
allocated to be used in the activities inside the process. Resources could be of type
software, hardware or human resources. Human resources can be managers, developers
or project leaders, each one of them with specific skills. Each type of activity requires a
special body of knowledge to be performed by a human resource. Thus, for instance, a
management activity can only be performed by a Manager. Likewise, a construction
activity can only be performed by a Developer. On the other hand, a Project Leader is
an experienced human resource that is able to perform any kind of activity.

One central competency question in our example domain is: for a given human
resource allocated to the development of a process, what are the activities he/she can

perform?
1,n
Resource '7| usage ‘4‘%@

composition

1
— allocation

=

‘ Software ‘ ‘ Hardware ‘ ‘ Management‘ ‘Construction ‘
Resource Resource
Human name:String Quality assurance
Resource
‘ Manager ‘ ‘ Developer ‘

Project Leader

Fig.3 - Simplified ontology for a resource-activity allocation theory

The next subsections present the (partial) axiomatization of this ontology. The
following notational convention is used: (C) - concept definition axioms, (R) - Relation
definition axioms, (S) - specialization axioms, (CA) - cardinality axioms, (P) - axioms
referring to properties and, finally, (O) ontological derivation axioms.

a) Definition Axioms

(C1) P = Process (C2) R = Resource (C3) A = Activity

(C4) H = Human Resources (C5) M = Management (C6) C = Construction
(C7) Q = Quality Assurance (C8) D = Developer

(C9) L = Project Leader (C10) G = Manager

(R1) allocation = (Resource, Process, allocation(r,p))

(CA1) Da:A #Im({a}, composition~) = 1

(R2) composition = (Process, Activity, composition(p,a))

(CA2) Op:P #Im({p}, posse) = 1 (R3) usage = (Resource, Activity, usage(r,a))
(P1) Oh:H On:String nome(n,h) SHMOA (S2)COA (S3)HQUA

(S4YHOR (S5)TOH (S6)DOH (S7)GOH

As mentioned before, classes define a formation rule for its instance and,
therefore, can be seen and manipulated as sets in a meta-level architecture.
Consequently, the classification relations in the formalism do not require any specific
implementations, i.e. relations such as a //A, are totally resolved by the programming
language typing mechanism through the creation of an object a of type A.

Like the classification relation, the sub-type-of relation does not require any
additional implementation, i.e. sub-type-of relations among concepts can be directly
mapped to generalization/specialization relations among classes.

For the relation mapping there are some issues that still must be discussed. In
figure 2, a relation contract between the concepts Person and Organization is shown. In
our approach, after this relation is translated to an object model, both correspondent

classes have a method contract, named after the relation. In this case, the invocation of
method cont ract () in an object 0; of type Or gani zat i on, it is possible to have
access to all its hired employees (instances of Per son). This resulting set is formally
specified by the formula Im({o,},contract)). Likewise, the method invocation in a
person instance p; returns its contractor, or, Im({p.},contract). The returned type of
the relation methods depends straightly on the cardinality axioms associated to the
relation. For instance, since in the scope of the contract relation a Organization may
have several employees, contract is mapped to a Set variable in the Or gani zat i on
class and, hence, that is the type returned by the invocation of the synonymous method
on this class. When a relation has a cardinality axiom imposing an inferior limit equals
to 1, this constraint is reflected in the class constructors ensuring the establishment of
the relation. As mentioned before, properties can be seen as a special kind of relation
between sets and, ergo, the same rules are applied to them.

b) Ontological derivation axioms

(O1) OIL, a:A usage(l,a) - a OIm(Im({l},allocation),composition)
(02) Og:G, a:A usage(g,a) -~ a O (Im(Im({g},allocation),composition) n M)
(O3) 0d:D, a:A usage(d,a) -~ a O (Im(Im({d}, allocation),composition) n C)

The derivation axioms are formalized to answer to the competency questions of the
ontology. The axioms above, for instance, answer to the following question: for a given
human resource hy, what are the activities he/she could be allocated to? The solution
set for this question must be returned by the invocation of the method usage() in an
object hl of the HumanResour ce class. However, for this type of methods to be
derived from derivation axioms, a set of transformation rules must be defined. The set
of rules presented as follows is a subset of our complete set of transformation rules. For
a complete set of transformation rules, please refer to [19,20].

TO: Ox:X, Oy:Yri(xy) - yOC=
Im({x}, r1):Type = C, such that if # Im({x}, r1) = 1 then Type =Y else Type = Set

This rule states: if for each instance X of type X, X is engaged with all instances y
from set C (and only instances of this set) in a relation r;, the set returned by the
function Im(x, ry) will be exactly C. The type returned by the method that implements
the function in the derived class depends on the cardinality of the relation. Hence, if X
is related to only one instance of Y, the returned value shall be of type Y, otherwise, it
shall be of type Set .

T2: Im({x}, 1) = x.ry)
As mentioned before, a relation (role or property) r; between two concepts X and Y
is mapped in the classes that represent these concepts to methods named after the

relation. For instance, given an instance X, the invocation X.ri() returns the set of
objects from Y associated to x in the relation r;.

T6: Im(A, r1) = SetIm(A,"r1")

The rules T6 promotes the replacement of the mathematical function Image by the
corresponding syntaxes through which they are implemented in the Set class.

T7: x.r():Y =C = public class X
{ publicYry()
{

return C;

}
}

Finally, rule T7 directly translates the axiom written in its left side to the
implementation correspondent syntax in the chosen programming language. All the
references to the instance X existent in the scope of set C (to which x belongs) are
replaced by the JAVA reserved word t hi s, so that, references to methods of the same
class will be made.

The code fragment below shows the derivation process for the axiom O1, and
also its implementation in the ProjectLeader class.

(O1) O IL, a:A usage(l,a) -~ a O Im(Im({l},allocation),composition)

1. Im(l,usage):Set = Im(Im({l}, allocation),composition) 01, TO
2. l.usage():Set = Im({l}.allocation()),composition) 1,T2
3. l.usage():Set = Set.Im({l}.allocation(),"composition™) 2, T6
4. public class ProjectLeader 3, T7

public Set usage()
{

}
}

public class ProjectlLeader extends HumanResource

{

ProjectLeader (String name) { super(nane); }
public Set usage()

return Set.Im(this.allocation(),"composition");

{
return Set.Im(this.allocation(),"conposition");
}
}
5. Related Work

The Peirce project is an international collaborative effort to build a conceptual
graph workbench [7][8]. To accomplish interoperation among the different tools
produced in the context of the project, a mathematical ontology was proposed and a
software library was derived. The ontology contains taxonomic hierarchies for
mathematical objects such as: sets, groups, categories, relations, functions, preorders,
partial orders and lattices. In [7] a specification for a Set class is formalized in several
languages (Z, KIF, Conceptual Graphs) and a set of C++ contracts is derived, showing
pre/posconditions for the operations of the type. In [7], it is also presented a way to

implement conceptual graphs primitives (such as concepts and relations) in C++
templates. However, due to the focus of these projects the emphasis is on the object-
oriented implementation of a CG processor and not in how to create object-oriented
artifacts from a conceptual model. Recent research in this field include the Notio Java
API [9], always focusing on the object-oriented implementation of the meta-models
(CG in this case) and not on the models themselves.

Another very interesting approach to address the impedance mismatch
between the ontology and object-oriented abstraction levels is through the use of design
patterns. In [12] a set of design patterns for constraint representation in JavaBeans
components is presented and computation reflection mechanisms is used to evaluate
these constraints at run-rime. Likewise, in [13], three design patterns are used promote
JAVA implementation for ontologies - represented in the OKBC knowledge model
[14]. In this case, ontology concepts are either represented by reflection-backed
JavaBeans classes, by an Active Object-Model (AOM), or by a mixed approach based
on extending the classes from the AOM.

Constraints are equivalent to, what we call, consolidation axioms. These
axioms represent only a subset of the knowledge that must be made explicit in the
ontological level. Constraints basically define preconditions that must be satisfied for a
relation to be consistently established. As mentioned before, our approach to
implement these axioms is also based on ontological design patterns. This approach
will be discussed in a future article. In this paper, because of the limited amount of
space, we chose to focus on another set of ontological axioms: derivation axioms.

Finally, in [10] and [11], it is presented an approach to create object models
such as CORBA IDLs and Java classes and interfaces from Geographic Information
Systems (GIS) Ontologies. The papers suggest the automatic generation of interfaces
and IDLs from Ontolingua models. These interfaces constitute ontology skeletons that
are, afterwards, complemented by implementation code written in Java. Ontology
editors, such as Ontolingua, have the ability to create CORBA IDL headers
automatically, however in this case, the behavior implementation for the interface
methods would still rely on an ad-hoc translation process. Moreover, interfaces alone
are not expressive enough to incorporate the knowledge related to all kinds of
consolidation axioms, let alone, ontological derivation axioms.

6. Conclusions

Since Aristotle's theory of substance (objects, things and persons) and
accidents (qualities, events and process) ontologies have been used in philosophy as a
foundation for representing theories and models of reality. Their main purpose is to
formally make explicit the semantic distinctions existent in portion of the world,
accounted as a domain. Hayes [21] introduced the use of ontologies in Computer
Science (more specifically in Artificial Intelligence). Since then, they have been
employed in areas such as computational linguistics, knowledge engineering,
information integration and multi-agent systems. In addition to that, they have been
used in application areas such as enterprise modeling [6] and GIS [11], among several
other examples.

In the software engineering realm, domain ontologies have been used to model
the foundation over which meta-enviroments can be constructed [5]. Moreover, they
can add important contributions to the domain engineering phase, promoting a reuse-
based practice in the requirements engineering level [19].

Nevertheless, few of the ontology construction methodologies lead to
executable code and, there was still no systematic approach to fully promote their
integration to the object-oriented software development practice. For this reason, most
of the object-oriented implementations of domain ontologies rely on informal
derivation processes.

In this paper a contribution to address this problem is presented: a
methodology through which object-oriented frameworks can be systematically derived
from domain ontologies. To accomplish this goal, we also proposed a construction
method and a formal representation language. The mathematical foundation of the
language (set-theory) highly contributed to the feasibility of our approach. This is
mainly due to its suitability to bridge the conceptual and implementation abstraction
levels, respectively represented by first-order logic axioms and object models.

The derivation methodology proposed comprises a spectrum of techniques,
namely, directives, ontological design patterns and transformation rules. This paper
focused on the latter, showing how these rules together with the supporting Set
framework can establish a sound path between our formally axiomatized theories and a
related consonant implementation in JAVA classes. The other two techniques will be
addressed in future articles.

We use the resource-to-activity allocation problem in software processes as an
example, over which the methodology is presented. The ontology presented was over-
simplified due to the lack of space. In despite of that, the methodology has been tested
in several case studies, ranging from software process to video on demand management
theories. In all these experiences, it was found very effective, mainly because of: (i) its
ability to capture the domain knowledge without imposing additional ontological
commitments; (ii) its ability to successfully derive object frameworks capable of
answering the relevant competency questions.

As it can be seen, our methodology is highly focused on the structural part of
domain ontologies, consequently, a natural extension of this work, is to study how a
similar approach can be developed to address the dynamics aspects of domains, i.e.
behavior ontologies.

References

[1] Chandrasekaran, B., et al., “What are Ontologies, and Why Do We Need
Them?”, IEEE Intelligent Systems, pp. 20-26, January/February 1999.

[2] Valente, A., et al., “Building and (Re)Using an Ontology of Air Campaign
Planning” , IEEE Intelligent Systems, pp. 27-36, January/February 1999.

[3] Guarino, N., “Understanding, building and using ontologies”, Int. Journal
Human-Computer Studies, 46(2/3), February / March 1997.

[4] Falbo, R.A., et al.; “A Systematic Approach for Building Ontologies”.
Proceedings of the IBERAMIA’98, Lisbon, Portugal, 1998.

(9]

(€]

(8l

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
(18]

[19]

[20]

[21]

Falbo, R.A., et al.; “Using Ontologies to Improve Knowledge Integration in
Software Engineering Environments”, Proceedings of SCI'98/ISAS’9S,
Orlando, USA, July, 1998.

Gruninger, M., and Fox, M.S., "The Role of Competency Questions in
Enterprise Engineering”, Proceedings of the IFIP WGS5.7 Workshop on
Benchmarking - Theory and Practice, Trondheim, Norway, 1994.

Ellis G; Callaghan S; "A specification of a Set Class in Peirce”, online:
http://citeseer.nj.nec.com/29926.html, Oct, 1995.

Munday C.; Lukose D; "Object-Oriented Design of Conceptual Graph
Processor"”, Proceedings of the Fourth International Workshop on Peirce: A
Conceptual Graph Workbench University of Maryland, Maryland, USA, 1994.
Southey, F. and Linders, J. G., "Notio - A Java API for Conceptual Graphs",
in Proc. of the 7th International Conference on Conceptual Structures
(ICCS'99), Springer-Verlag, 1999

Fonseca, F. Egenhofer M. "Knowledge Sharing in Geographic Information
System”, In: P. Scheuerman, (Ed.) The Third IEEE International Knowledge
and Data Engineering Exchange Workshop, Chicago, 1999.

Fonseca F. T. et al. "Ontologies and Knowledge Sharing in Urban GIS",
CEUS- Computer,Environment and Urban Systems, 2000.

Knublauch H.; Sedlmayr M.; Rose T., "Design Patterns for the
Implementation of Constraints on JavaBeans", NetObjectDays2000,Erfurt,
Germany, 2000.

Knublauch H., "Three Patterns for the Implementation of Ontologies in Java
", OOPSLA'99 Metadata and Active Object-Model Pattern Mining Workshop,
Denver, CO, USA, 1999.

Grosso W. et al. "Knowledge Modeling at the Milennium (The Design and
Evolution of Protégé-2000)", Knowledge Aquisition Workshop, Banff,
Canada, 1999,

Woodfield S.N. "The impedance Mismatch between Conceptual Models and
Implementation Environments", International Conference on Conceptual
Modeling (ER'97), Workshop on Behavioral Models and Design
Transformations, UCLA, Los Angeles, California, Nov, 1997.

Guarino N. "The Ontological Level”. In R. Casati, B. Smith and G. White
(eds.), Philosophy and the Cognitive Sciences, Vienna, Holder-Pichler-
Tempsky 1994.

Spivey, J. M. "Understanding Z: A specification language and its formal
semantics’, Cambridge University Press, 1988.

Roitman J. "Introduction to modern set theory”, Wiley-Interscience, New
York, 1990.

Guizzardi, G. "A methodological approach for reuse-oriented software
development, based on formal domain ontologies” (in portuguese), Federal
University of Espirito Santo, Master Thesis, 2000.

Guizzardi, G.; Falbo, R.; Gongalves J. "Using Framewors and Patterns to
Implement Domain Ontologies", Proceedings of the XVI Brazilian
Symposium on Software Engineering, Rio de Janeiro, Brazil, Oct, 2001.
Hayes P. "The Naive Physics Manifesto"”, Expert Systems in Microeletronics
age", D. Ritchie Ed., Edinburgh University Press, 1978, pp 242-270.

