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Abstract. In this paper, we propose a service for contracting axioms
from ontologies based on the description logic EL. In particular, we devise
algorithms that implement the contraction operation of the AGM theory
on belief change. We first generalise the AGM contraction postulates to
description logics, in which a variant of the recovery postulate is defined
by using the notion of logical difference. Plausibility of the contraction
operation is demonstrated by showing that it satisfies all the generalised
postulates.

1 Introduction

The area of belief change in knowledge representation is concerned with how an
agent ought to alter its corpus of beliefs in the face of new information. The
best known approach in this area is the so-called AGM [1] framework which
focuses on two types of belief change:1 revision, in which an agent keeps its
beliefs consistent while incorporating new information into it, and contraction,
in which an agent gives up some of its beliefs in order to avoid drawing unwanted
consequences. This paper addresses the contraction operation in the lightweight
description logic (DL) EL which has polynomial time reasoning procedures [2].

The motivation for focusing on this topic is due to its application in repair-
ing DL based ontologies such as the bio-medical ontology SNOMED [3]. The
management of DL based ontologies is a complicated process. It is very likely
that counterintuitive axioms are accidentally introduced into the ontology. An
example of this in SNOMED [3] that has often been pointed out occurs with the
concept AmputationOfFinger which is classified as being subsumed by the con-
cept AmputationOfArm. Repairing the above problem can be seen as performing
contraction by the subsumption AmputationOfFingervAmputationOfArm.

Several attempts [4–8] have been made at developing accounts of belief change
for DLs. However, belief change in DLs has proved to be more complicated than
the classical case [4], particularly for accounts attempting to adhere to the pop-
ular AGM framework [1]. The problem lies in the limited expressiveness of DLs
compared to propositional logic. As shown in Flouris et al. [4], for some impor-
tant DLs such as SHIN , it is not possible to define contraction operators which
1 The AGM also introduces the expansion operation but it can be considered a special

case of revision.
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satisfy the recovery postulate of the AGM framework. As this postulate specifies
the minimal change property of the contraction operation, these operators can
not be justified against this property. In this work we address the problem by
generalising the AGM contraction postulates so that their satisfaction no longer
relies on the expressiveness of the underlying logic. The main idea is to refine
the recovery postulate by using the notion of logical difference.

Intuitively, candidate outputs of a contraction operator should at least be
logically weaker than the original terminology and not imply the axiom be-
ing contracted. These intuitions are captured by the so-called inclusion (K .−2)
and success (K .−4) postulates in the AGM framework. Furthermore, among the
candidates for retention, the most desirable ones should have the least logical
difference from the original terminology compared to the others. In Section 4,
we show that for classical logic, contraction satisfies the recovery postulate if
and only if it has the above property.

2 The Description Logic EL

Let NC and NR be disjoint sets of concept names and role names, respectively.
In the description logic EL, concepts C are built according to the rule

C ::= >|A|C uD|∃R.C

where A ranges over NC, R ranges over NR, and C,D range over concepts. The
semantics of EL is the standard set theoretic Tarskian semantics. An interpreta-
tions is a structure I = (∆I , ·I), where ∆I is a non-empty set called the domain,
and ·I is an interpretation function mapping concept names A to a subset AI

of ∆I and role name R to binary relations RI over ∆I ×∆I . The function ·I is
extended to arbitrary concepts as follows:

>I := ∆I

(C uD)I := CI ∩DI

(∃R.C)I := {x ∈ ∆I |∃y ∈ ∆I : (x, y) ∈ RI ∧ y ∈ CI}

Given EL concepts C,D, then C v D is a general concept inclusion axiom (GCI
for short); C ≡ D is an abbreviation for C v D and D v C. An EL terminology
(or TBox for short) is a finite set of GCIs. An interpretation I satisfies an axiom
C v D (I |= C v D) iff CI ⊆ DI ; I |= C ≡ D iff CI = DI . I is a model of a
TBox T (I |= T ) if it satisfies every axiom in T . An axiom C v D is a consequence
of a TBox T (T |= C v D) iff every model of T satisfies C v D. Given a Tarskian
consequence operator Cn, and a TBox T , Cn(T ) = {C v D | T |= C v D}.

In this paper we assume that a TBox contains only axioms of the form A ≡ C
and A v C, where A is a concept name and no concept name occurs more than
once on the left-hand side of an axiom. A concept name is primitive if it does not
occur on the left-hand side of an axiom and is pseudo-primitive if it is primitive
or occurs on the left-hand side of an axiom of the form A v C. Under these
assumptions a useful property regarding EL TBoxes (Lemma 1) is derived in [9].
In the rest of the paper, unless explicitly stated, all TBoxes are based on EL.
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Lemma 1. [9] Let T be a TBox and C = F u
d

(R.D)∈Q ∃R.D, where F is a
conjunction of concept names and Q is a set of pairs (R,D) in which R is a role
and D a concept.

1. If T |= C v A for an A which is pseudo-primitive in T , then T |= B v A,
for some conjunct B of F .

2. If T |= C v ∃S.C0, then either
– T |= B v ∃S.C0, for some conjunct B of F , or
– there exist (R,D) ∈ Q such that R = S and T |= D v C0.

Lemma 1 provides a description of the syntactic form of concepts C such that
T |= C v A, where A is pseudo-primitive or of the form ∃R.B, from which
we can obtain justifications of T entailing C v A. Suppose T |= C v A for A
pseudo-primitive, according to Part 1 of the lemma, if C is of the form Bu∃R.C
then it must be the case T |= B v A (which implies B u ∃R.C v A in T ).
Similarly if T |= ∃S.B u ∃R.D v ∃R.C then according to Part 2 of the lemma,
it must be the case T |= D v C (which implies ∃S.B u ∃R.D v ∃R.C in T ).

3 Logical Difference Between Terminologies

The notion of logical difference between DL terminologies was proposed by
Konev et al. [9]. Intuitively, TBox T is logically different from T

′
if there are

axioms that T entails but T
′

does not. In [9] logical difference is defined accord-
ing to a signature Σ which is a subset of NC ∪NR. Only axioms formed by using
concepts and roles in Σ are considered when computing the logical difference.
However, we are only interested in the logical difference between a terminology
and the one resulting from contraction. Since the two are supposed to have the
same signature, we use the following definition without referring to signatures.

Definition 1. Let T and T
′

be TBoxes, Diff(T, T
′
) their logical difference, then

C v D ∈ Diff(T, T
′
) iff

1. T |= C v D
2. T

′ 6|= C v D
3. if T

′ |= A v B and there is no A
′ v B′

s.t. T
′ |= A

′ v B′
and {A′ v B′} |=

A v B then {C v D} 6|= A v B
For A,A

′
, B,B

′
, C and D concepts.

Our definition of logical difference differs from Konev’s (which does not enforce
condition 3) in the sense that ours is more strict. It turns out that our definition
is more appropriate for the purpose of formalising properties of rational belief
change. For example, let T = {A v B u C} and T

′
= {A v C} be TBoxes,

under Konev’s definition Diff(T, T
′
) = {A v B uC,A v B} whereas under ours

Diff(T, T
′
) = {A v B}. We will use the notion of logical difference to specify

how minimal are the changes that have been made to a TBox to accomplish a
contraction. In other words, we want to identify the TBoxes that differ the least
from the original one. Let T, T

′
and T

′′
be TBoxes, it is natural to conclude
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that T
′

differs less from T than T
′′

does if Diff(T, T
′
) is logically weaker than

Diff(T, T
′′
), that is Diff(T, T

′′
) |= Diff(T, T

′
). Continuing with the above exam-

ple, let T
′′

be empty, intuitively T
′

differs less from T then T
′′

does. However,
under Konev’s definition Diff(T, T

′
) ≡ Diff(T, T

′′
)

Lemma 2. [9] Let T and T
′

be TBoxes. If C v D ∈ Diff(T, T
′
), then there exist

subconcepts C
′

and D
′

of C and D, respectively, such that C
′ v D′ ∈ Diff(T, T

′
)

and C
′ v D′

is of the form A v ∃R.B or B v A, where A is a concept name.

Lemma 2 states that if T
′
does not entail C v D then it does not entailA v ∃R.B

or B v A. From the proof of Lemma 2 in [9], we can conclude that either
{A v ∃R.B} |= C v D or {B v A} |= C v D. Therefore contraction of C v D
from T is achieved by first removing C v D from T (if it is present in T ) followed
by contraction of either A v ∃R.B or B v A. Although the lemma is obtained
under Konev’s definition of logical difference, our definition is more strict which
means the result can be carried over.

4 Generalising AGM Belief Contraction

A common approach in addressing belief change is to provide a set of rationality
postulates for belief change operations. The AGM approach provides the best
known set of postulates. The aim is to describe belief change at the knowledge
level without referring to any representational formalism. In the AGM approach
belief states are modelled by belief sets closed under the Tarskian consequence
operator(Cn) for a logic including propositional logic in a language L. The ex-
pansion of a belief set K by ϕ, K + ϕ, is defined as Cn(K ∪ {ϕ}). Contraction
represents situations in which an agent has to give up some information from
its current beliefs. Formally, a contraction operation is a function from 2L × L
to 2L satisfying the following set of basic postulates. The contraction of a belief
set by a sentence yields a new set, called the contracted belief set.

(K .−1) K .−ϕ = Cn(K .−ϕ). (Closure)
(K .−2) K .−ϕ ⊆ K (Inclusion)
(K .−3) If ϕ 6∈ K, then K .−ϕ = K. (V acuity)
(K .−4) If 6|= ϕ, then ϕ 6∈ K .−A (Success)
(K .−5) If |= ϕ ≡ ψ, then K .−ϕ ≡ K .−ψ (Extensionality)
(K .−6) K ⊆ (K .−ϕ) + ϕ. (Recovery)
Note that AGM presupposes full propositional logic which contains connec-

tives such as negation and disjunction that are not fully supported in DLs. For
instance, negations (¬(A v B)) and disjunctions ((A v B) ∨ (C v D)) of DL
axioms are not expressible as DL axioms. As a result, the recovery postulate
(K .−6) cannot be satisfied by contraction operators defined in most DLs [10].
Since recovery captures the minimal change property of belief contraction, which
is essential for any rational contraction operator. Our goal is to postulate the
property in a way that its satisfaction no longer relies on the expressive power
of the underlying logic and to replace recovery with the new postulate.
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To specify the minimal difference between the original belief set and the
contracted one, we need a notion of difference between belief sets and a way
of comparing them. A contraction that always picks the belief set that has the
smallest (or weakest) difference from the original belief set as the contracted one,
will satisfy the minimal change property. In this paper, we use logical difference
as the measure of difference. In Section 3 we defined the notion of logical differ-
ence between TBoxes in DLs. This can be easily extended to propositional logic
by considering the TBoxes T and T

′
as belief sets and the GCI C v D,A v B

as sentences in propositional logic.
The alternative postulate should be as close as possible to Recovery, in the

sense that when propositional logic is assumed it coincides with recovery. The
following is an equivalent formulation of the Recovery postulate in terms of
logical difference.

Lemma 3. Let K be a belief set, ϕ a sentence, .− a contraction operator satis-
fisfying (K .−1)− (K .−5) then .− satisfies (K .−6) iff

(K .−ϕ) ∪ {ϕ} |= Diff(K,K .−ϕ) (∗)

Proof.
(⇒)
From K ⊆ (K .−ϕ) + ϕ, we have (K .−ϕ) + ϕ |= K. Due to definition of Diff,
K |= Diff(K,K .−ϕ) which implies (K .−ϕ) + ϕ |= Diff(K,K .−ϕ), thus (K .−ϕ) ∪
{ϕ} |= Diff(K,K .−ϕ)
(⇐)
We first prove K

′ ∪Diff(K,K
′
) |= K. Assume K |= α and K

′ ∪Diff(K,K
′
) 6|= α,

then it must be the case K
′ 6|= α,Diff(K,K

′
) 6|= α. From the definition of Diff

(condition 3), since K |= α, K
′ 6|= α and Diff(K,K

′
) 6|= α there exists a β s.t.

K
′ |= β, {α} |= β. Since K |= α and K = Cn(K) (K .−1), K |= β → α. K

′ 6|=
β → α follows from K

′ 6|= α and K
′ |= β. Now we prove Diff(K,K

′
) |= β → α,

that is the three conditions in the definition of Diff must be satisfied by β → α.
Condition 1 and 2 are already satisfied. Assume condition 3 is not satisfied then
it must be the case that K

′ |= ψ ∨ β → α for some sentence ψ, (β → α |=
ψ ∨ β → α) which is not possible as K

′ |= β and K
′ 6|= α ({β, ψ ∨ β → α} |= α).

As Diff(K,K
′
) |= β → α, K

′ ∪ Diff(K,K
′
) |= α, contradiction. Finally, from

(K .−ϕ) ∪ {ϕ} |= Diff(K,K .−ϕ) it follows (K .−ϕ) ∪ {ϕ} |= K. ut

However, (∗) is not suitable for our purpose, as it still assumes certain ex-
pressive power of the underlying logic. As an example, take the TBox T =
Cn(A v B) and let ϕ = A u C v B. If .− satisfies the Success postulate then
T

.−ϕ = Cn(∅), but {A u C v B} 6|= A v B. Note that, with a more expressive
DL such as ALC, we have T .−ϕ = Cn(A v BtC) then (∗) is satisfied. Taking all
the above into consideration, we propose the following set of postulates, where
.− is the contraction operator, ϕ a GCI:
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(T .−1) T .−ϕ = Cn(T .−ϕ)
(T .−2) T .−ϕ ⊆ T
(T .−3) If ϕ 6∈ T , then T .−ϕ = T .
(T .−4) If 6|= ϕ, then ϕ 6∈ T .−ϕ
(T .−5) If Cn(ϕ) = Cn(φ), then T .−ϕ = T .−φ
(T .−6) There exists no T

′
such that T |= T

′
and T

′ 6|= ϕ

and Diff(T, T .−ϕ) |= Diff(T, T
′
) and T

′ 6≡ T .−ϕ.
Postulates (T .−1) − (T .−5) are analogues of (K .−1) − (K .−5). (T .−6) is the

alternative for (K .−6). It selects from all the belief sets which are faithful to
(T .−1)− (T .−5) those that have the weakest logical difference from the original
one. Most importantly, no expressive power of the underlying logic is assumed in
order to satisfy it. (T .−6) is stronger than (K .−6) as there are contraction opera-
tors that satisfy (K .−6) but not (T .−6). The reason is that a contraction operator
which satisfies (T .−6) must be a maxichoice contraction [1], as it is equivalent
to the fullness postulate in [1] which characterises maxichoice contraction.

Lemma 4. Let K be belief set, .− a contraction operator satisfying (K .−1) −
(K .−5). Then the following are equivalent:

1. .− satisfies (T .−6).
2. if β ∈ K and β 6∈ K .−ϕ, then ϕ ∈ Cn((K .−ϕ) ∪ {β})

Proof.
We only sketch the proof from 1 to 2, the proof from 2 to 1 is similar. Assume
β ∈ K and β 6∈ K

.−ϕ but ϕ 6∈ Cn((K .−ϕ) ∪ {β}). We now prove β → ϕ ∈
Diff(T, T .−ϕ), that is the three conditions in the definition of Diff must be satis-
fied by β → ϕ. Condition 1 is satisfied as ϕ ∈ K and K = Cn(K). Condition 2 is
satisfied as β → ϕ 6∈ K .−ϕ which follows from ϕ 6∈ Cn((K .−ϕ)∪{β}). Condition
3 is satisfied where the reasoning is the same as in the proof of Lemma 3. Now let
K

′
= (K .−ϕ)∪{β → ϕ}, thus β → ϕ 6∈ Diff(K,K

′
). K

′
satisfies (K .−1)−(K .−5)

and K
′ 6≡ K .−ϕ however, Diff(K,K .−ϕ) |= Diff(K,K

′
), which violates (T .−6).

ut

In order for Lemma 4 to hold, the underlying logic needs to have certain expres-
sive power, but as far as EL is concerned, this is not a problem.

5 EL Contraction

The previous section proposed an alternative to the recovery postulate which as-
sumes no expressive power of the underlying logic. We also proved that, assuming
propositional logic, the proposed postulate characterises maxichoice contraction.
In this section we develop algorithms that implement a contraction operator
(maxichoice) for the DL EL.

Within the algorithms, let SubT(A) = {B | T |= B v A} be the set of concept
names that are subsumed by A in a TBox T . Since EL has a polynomial time
subsumption checking procedure [11] SubT(A) can be computed in polynomial
time. To simplify the algorithms we assume, without loss of generality, that the
input TBox is normalised and thus contains only axioms of the form:
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– A ≡ ∃R.B or A v ∃R.B, where B is a concept name;
– A ≡ F or A v F , where F is a conjunction of concept names such that each

conjunct B is either pseudo-primitive or B ≡ ∃R.C is in the TBox.

As justified in [9], it takes polynomial time to construct such a normalised TBox
that is logically equivalent to the original one. In the explanation of the al-
gorithms we distinguish between two types of GCIs, namely explicit GCIs and
implicit GCIs. The explicit GCIs are those that are actually present in the TBox
whereas the implicit ones are not present in the TBox but can be deduced from
the explicit GCIs.

for A a subconcept of C or D do

if A ≡ A
′
∈ T then

replace A with A
′

in C or D

T
′
← ∅

for A ∈ NC do
if A is pseudo-primitive in T then

T
′
← T

′
∪ {B v A|B ∈ SubT(A)} ∪ {A v C|A ∈ SubT(C)}

if A ≡ A1 u · · · uAn ∈ T then

T
′
← T

′
∪ {B v A|B ∈ SubT(A)} ∪ {A v C|A ∈

SubT(C)} ∪ {A1 u · · · uAn v A}
if A ≡ ∃R.A

′
∈ T then

T
′
← T

′
∪ {B v A|B ∈ SubT(A)} ∪ {A v C|A ∈ SubT(C)} ∪ {∃R.A

′
v

A} ∪ {A v ∃R.A
′
}

if A v ∃R.C ∈ T then

T
′
← T

′
∪ {B v ∃R.C|B v A ∈ T}

if B v ∃R.A ∈ T then

T
′
← T

′
∪ {B v ∃R.C|A v C ∈ T}

T ← T
′

Algorithm 1: Algorithm Simplify(T,C v D)

Before carrying out steps that will result in contraction of a GCI C v D
from a TBox T , we simplify C v D and reconstruct T in Algorithm 1. The
main purpose is to deduce the implicit GCIs that involve a concept name on
the left and an existential restriction on the right (such as A v ∃R.B) and to
deduce the implicit GCIs that involve only concept names (such as A v B).
This will guarantee none of the implicit GCIs are eliminated unnecessarily in
the contracted TBox. Upon termination T contains all subsumptions between
concept names. Moreover, axioms of the form A ≡ B are replaced with A v B
and B v A. The exception is that if A ≡ A1u· · ·uAn is in T , A v A1u· · ·uAn

is not included as it can be deduced from the subsumptions between A and
A1, . . . , An. As a consequence of the simplification and reconstruction, when we
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reduce the contraction of C v D to contraction of either A v ∃R.B or B v A
for A,B concept names (as in Section 3) then concept A is guaranteed to be
pseudo-primitive. At last, it is easy to check that Algorithm 1 returns a TBox
that is equivalent to the input one.

Input: TBox T , GCI A1 u · · · uAn v B
Output: TBox T

′

Simplify(T,A1 u · · · uAn v B)

T
′
← T

if B is of the form B1 u · · · uBm then
Bi ← λ(B1, . . . , Bm)

T
′
← Contract(T,A1 u · · · uAn v Bi)

else if B is pseudo-primitive in T then
for i← 1 to n do

if Ai v B 6∈ T then
continue

else

T
′
← ContractCN(T

′
, Ai, B)

else if B is of the form ∃R.C then
for i← 1 to n do

if Ai v ∃R.C 6∈ T then
continue

else if Ai ∈ NC then

T
′
← ContractER(T

′
, Ai, ∃R.C)

else if Ai is of the form ∃R.A then

T
′
← ContractCN(T

′
, A, C)

return T
′

Algorithm 2: Algorithm Contract(T,A1 u · · · uAn v B)

Algorithm 2 is our main algorithm. To contract GCIs of the form A1 u · · · u
An v B1 u · · · u Bm, it is sufficient to contract one of A1 u · · · u An v Bi

for 1 ≤ i ≤ m, as {A1 u · · · u An v Bi} |= A1 u · · · u An v B1 u · · · u Bm. A
selection function λ is used to model the user decision on which GCI to contract.
According to Lemma 2, contraction of C v D can be reduced to contraction of
either A v ∃R.B in which case Algorithm 2 calls Algorithm 4 or B v A in which
case Algorithm 2 calls Algorithm 3. Note that when concept B in the algorithm
is pseudo-primitive, then due to Part 1 of Lemma 1, if T |= Ai v B then Ai

must be a concept name. Similarly when B is of the form ∃R.C, due to Part 2
of Lemma 1, the possible forms of concepts subsumed by B are fixed.

Algorithm 3 handles contraction of GCIs of the form A v B where A,B
are concept names (B is pseudo-primitive). It first removes A v B from T
as subsumption between concept names are all present in T . A v B may be
implied by other GCIs which have to be eliminated. In detail, for every concept
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Input: TBox T , GCI A v B where A,B ∈ NC

Output: TBox T
′

T
′
← T

T
′
← T

′
\ {A v B}

for C ∈ NC and A v C ∈ T do
if C v B then

T
′
← T

′
\ λ{A v C,C v B}

return T
′

Algorithm 3: Algorithm ContractCN(T,A v B)

name C such that A v C,C v B ∈ T , either A v C or C v B is eliminated.
Once again the decision is modelled by the selection function λ. We do not
have to consider the case that there are concepts of the form ∃R.C such that
A v ∃R.C,∃R.C v B ∈ T , because due to Lemma 1, this will imply B is not
pseudo-primitive.

Algorithm 4 handles contraction of GCIs of the form A v ∃R.B where A,B
are concept names (A is pseudo-primitive). If T |= A v ∃R.B then either there is
a concept ∃R.D such that A v ∃R.D,D v ∃B ∈ T or there is a concept name D
such that A v D,D v ∃R.B ∈ T . For each of the two cases there are two ways of
breaking the entailment, the decision is again modelled by the selection function
λ. Depending on the decision either Algorithm 4 or Algorithm 3 is called.

Input: TBox T , GCI A v ∃R.B where A,B ∈ NC

Output: TBox T
′

T
′
← T \ {A v ∃R.B}

foreach D ∈ NC such that A v ∃R.D ∈ T and D v B ∈ T do

T
′
← λ{ContractER(T

′
, A v ∃R.D), ContractCN(T

′
, D v B)}

foreach D ∈ NC such that A v D ∈ T and D v ∃R.B ∈ T do

T
′
← λ{ContractER(T

′
, D v ∃R.B), ContractCN(T

′
, A v D)}

return T
′

Algorithm 4: Algorithm ContractER(T,A v ∃R.B)

The algorithms successfully implement a contraction operator for the DL EL
as justified by the following theorem.

Theorem 1. Let T be an EL TBox, C v D an EL GCI. If we define T .−(C v
D) = Contracting(T,C v D), then .− satisfies (T .−1)− (T .−6).

Proof.
We only sketch the proof for satisfaction of (T .−6) as others are straightforward.
Due to Lemma 4 (T .−6) is satisfied if the following holds: If β ∈ Cn(T ) and
β 6∈ Cn(T .−ϕ) then ϕ ∈ Cn((T .−ϕ) ∪ {β}) for ϕ, β GCIs. It is clear from the
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algorithm, whenever a GCI β is removed, it must be the case that 1) there is a
GCI ψ ∈ Cn(T ) such that {β, ψ} |= ϕ, and ψ ∈ T .−ϕ, and 2) β = ϕ. In both
cases, ϕ ∈ Cn((T .−ϕ) ∪ {β}) ut

The algorithms will run in polynomial time because each for loop in the algorithm
iterates a constant number of times and the most time consuming operation is
subsumption checking which has a polynomial procedure. In the following, we
give an example for contracting a GCI from a TBox. At the beginning Algo-
rithm 2 is called.

Example 1. T = {C v F, F v A,E v D u B,D v ∃R.A}, we want to contact
Eu∃R.D v ∃R.A from T . Firstly, upon termination of Simplify(T,Eu∃R.D v
∃R.A), T = {C v F, F v A,C v A,E v B,E v D,D v ∃R.A,E v ∃R.A},
that is the implicit GCIs C v A,E v B,E v D and E v ∃R.A are made explicit.
Now we will proceed to the last if statement of Algorithm 2. As E v ∃R.A ∈ T ,
ContractER(T,E v ∃R.A) is called. Now in running ContractER(T,E v ∃R.A),
E v ∃R.A is first removed resulting in T = {C v F, F v A,C v A,E v
B,E v D,D v ∃R.A}. As E v D and D v ∃R.A are in T , one of them
needs to be removed. Assume the selection function selects E v D, which means
ContractCN(T,E,D) is called which removes E v D from T resulting in T =
{C v F, F v A,C v A,E v B,D v ∃R.A}. Upon termination of Algorithm 2
T = {C v F, F v A,C v A,E v B,D v ∃R.A}. The GCIs removed are E v D
and E v ∃R.A. It is easy to see that T ∪ {E v D} |= E u ∃R.D v ∃R.A and
T ∪ {E v ∃R.A} |= E u ∃R.D v ∃R.A.

Note that if we were to use a belief base approach, where only the explicit
GCIs are considered, we will end up with T = {C v F, F v A,D v ∃R.A} or
T = {C v F, F v A,E v D u B}. In either case we have some implicit GCIs
removed unnecessarily. For instance, in the former case, E v D uB is removed
therefore T no longer entails E v B, however E v B has nothing to do with
T entailing E u ∃R.D v ∃R.A. In this respect our approach, which concerns
belief contraction with belief sets (logically closed theory), turns out to be more
plausible as it eliminates only what is necessary and preserves the rest.

6 Related Work

The problem of belief revision in DLs has been extensively studied. So far existing
works propose different constructions of revision operators that consider only
explicitly presented GCIs [6–8]. In these works the resulting TBox is obtained
by adding the new GCIs to the original TBox then resolving any inconsistency
caused. The latter part is achieved by first using the debugging service in [13,
14] to identify the minimum sets of GCIs responsible for the inconsistency then
removing at least one element from each set. As demonstrated in [15] the removal
of GCIs responsible for the entailment of some consequences may result in the
loss of some implicit GCIs. Since our work adheres to the AGM framework where
all the implicit GCIs are taken into account when performing belief change, there



Belief Contraction for the Description Logic EL 11

will be no loss of such GCIs. Also, instead of revision, our work is concerned with
contraction. In terms of generalising the AGM postulates, the work in [5] is the
closest to ours. They generalise the AGM revision postulates model-theoretically.
The generalized postulates are applicable to any DLs as expressiveness is no
longer an issue.

7 Conclusion and Future Work

In this paper we have developed algorithms for contracting GCIs from an EL
TBox. These algorithms are significant for a number of reasons. Firstly, the
operation they realise adheres to all of the basic AGM contraction postulates
except the recovery postulate. We argue that the original recovery postulate is
not appropriate to DLs as they are less expressive than classical logics. Therefore,
we introduced a variant of the recovery postulate that is based on the notion of
logical difference. In fact, when the underlying logic is classical, our postulates
coincide with the AGM. As such, ours is the closest account of belief change
for DLs to the AGM account of those currently proposed in the literature. We
argue that it is more important to focus on contraction since revision behavior
is simply set union in EL as it is not possible to have an inconsistent TBox.

It should be noted that as our contraction operation only guarantees mini-
mal change in terms of logical difference, all axioms could change their syntactic
form so that it may be the case that the contracted TBox bears no syntactic
resemblance to the original TBox. However, for the DL EL, this may not be
undesirable. Additionally, the contracted TBox obtained by our contraction op-
erator may contain arbitrary GCIs that violate our assumptions, thus preventing
further application of the contraction operator. In other words our algorithm can
not handle iterated contraction. In future work, we would like to address these
issues. It would also be useful to consider the supplementary AGM postulates
and how they or similar postulates would be satisfied.
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