
Probabilistic Partial User Model Similarity
for Collaborative Filtering

Amancio Bouza, Gerald Reif, Abraham Bernstein

Department of Informatics, University of Zurich
{bouza,reif,bernstein}@ifi.uzh.ch

Abstract. Recommender systems play an important role in supporting
people getting items they like. One type of recommender systems is user-
based collaborative filtering. The fundamental assumption of user-based
collaborative filtering is that people who share similar preferences for
common items behave similar in the future. The similarity of user pref-
erences is computed globally on common rated items such that partial
preference similarities might be missed. Consequently, valuable ratings
of partially similar users are ignored. Furthermore, two users may even
have similar preferences but the set of common rated items is too small
to infer preference similarity. We propose first, an approach that com-
putes user preference similarities based on learned user preference mod-
els and second, we propose a method to compute partial user preference
similarities based on partial user model similarities. For users with few
common rated items, we show that user similarity based on preferences
significantly outperforms user similarity based on common rated items.

1 Introduction

Users are overwhelmed with the vast amount of items (e.g. books, movies, loca-
tions such as bars or restaurants) offered by online stores or web guides. They
have to invest a lot of effort to discover relevant items. Keyword-based filtering
approaches are not suitable to reduce the vast amount of items to a reasonable
size. Additionally, keyword-based filtering does not consider the user’s prefer-
ences or the item quality. Even the use of average item ratings over all users is
not expressing a single user opinion adequately and for that reason only provides
poor user support. For this reason, recommender systems play an important role
in supporting people finding items they like. Recommender systems aim to filter
relevant items according to personal user preferences. Relevant items are pro-
vided directly to the user instead of asking the user to search for relevant items.
A good example of a recommender system is the Amazon online store which
provides recommendations such as ”People that bought product X, also bought
product Y ”.

The fundamental assumption of recommender systems that are based on
user-based collaborative filtering is that people who share similar preferences for
the same items behave similar in the future. Consequently, each user can benefit
from the past item experiences of these users. Typical recommender systems

compare user preferences based on the set of items that both users rated. We
call these items the common rated items. However, we argue that the set of
common rated items reflect the user preferences only partially. First, two users
might share the same interest only in parts of the item domain. For example in
the domain of restaurant recommendations, users might share similar ratings on
Italian restaurants but not on Chinese restaurants. Traditionally, the similarity
of the user preferences is computed globally over all common rated items and do
not consider that the user preferences can overlap only in parts of the domain.
Second, if two users live in different cities, the set of common rated items might
be empty, if the users did not visit at least one time the same restaurant. In
this case traditional recommender systems cannot compute the similarity of the
preferences between these users.

In this paper we argue that the set of common rated items might be too small
to infer the similarity of the user preferences and may reflect the user preferences
only partially. In addition, partial similarities between users might be missed
because the user preference similarity is computed globally. Thus, we suggest to
compare the similarity among user preferences based on learned user preference
models that are an accurate approximation of the users’ real preferences. We
propose a formal probabilistic framework that compares user preference models
and enables the similarity computations of partial user preferences.

2 Related Work

The fundamental assumption of recommender systems is that people who share
similar preferences for common items behave similar in the future. Thus, com-
puting the user preference similarity is a key challenge. Several user preference
metrics like Pearson correlation and cosine similarity have been proposed [15, 5,
10] that compute user preference similarity based on common rated items. But
user-based collaborative filtering approaches face the challenge of rating sparsity
[16]. In case the set of common rated items is small, no accurate user similarity
can be inferred. Instead of common rated items, user profiles are used to com-
pute user preference similarities. The Fab system [2] recommends documents. Its
users are asked to create a user profile by selecting topics of interest. Users are
similar if they share many topics of interest. Documents are then recommended
that matches the user’s profile and that have been liked by users with similar
user profiles. In [8], user profiles are represented as topic preference vectors that
describe the relevance of every topic for the user. The synergy between ontolo-
gies and recommender systems has been demonstrated in [12]. Quickstep [13]
uses an ontology for user profiling. It learns by observing the user’s behavior in
what research domain the user is interested and recommends other papers of
that research domain. The user profile consists of a preference vector containing
the relevance of the corresponding category in the ontology. In [1], the relevance
of item features is used to build the user’s feature preference vectors instead.
Instead of building user profiles, missing user ratings are predicted with a user
model to overcome the sparsity of user ratings [11].

Computing partial user preferences has been discussed in [3]. Basu et al.
suggests grouping items and computing user similarity within a group. A group
is defined by a single feature. An item belongs to a feature group if the item
provides the feature. A similar approach has been proposed in [6] where items
are clustered based on item feature descriptions to build communities of interest.

3 Formal Framework of User Preference Model Similarity

In this section, we first introduce the notation used in this paper and the basic
framework of recommender systems. Section 3.2 discusses the formal representa-
tions of the user’s true preferences. In Section 3.3, we introduce our approach of
how to define the similarity of user preference models followed by its application
to predict item ratings. We continue in Section 3.5 with our second approach and
the definition of the partial user preference similarity. We close with Section 3.6
that describes how to compute item ratings based on partial user preference
similarities.

3.1 Formal Framework and Notation

The basic elements in a collaborative recommender system are the set of users
N , the set of items I, the set of ratings that are provided by the users for some
items and the set of rating concepts C from which users can choose to describe
adequately their opinion about an item. We denote R as the n×m rating matrix
with n = |N | as the number of users and m = |I| as the number of items such
that the value of the ith row at position j corresponds to the rating of the ith
user for the jth item. We refer to a certain user as Ui with i ∈ {1, . . . , n}, to a
certain item as Ij with j ∈ {1, . . . ,m} and denote rij ∈ C ∪ {∅} of the rating
matrix R as the rating of user Ui for the item Ij . The value of rating rij is either
a rating concept ck ∈ C or ∅, if no rating has been provided yet. z = |C| is
the number of rating concepts the user can assign to every item in I. The item
rating vector Ri for the user Ui contains the rating for every item in I. Further,
we refer to the set of items that user Ui has actually rated (rij 6= ∅) as the item
subset Ii ⊆ I. We denote the user for whom we compute the recommendations
as the active user Ua with a ∈ {1, . . . , n}.

Depending on the recommendation algorithm, we can distinguish between
several sets of rating concepts C. These can be classified into four groups:

– Nominal rating : The task of item recommendation can be treated as a
classification problem that associates an item with one ore more rating
classes. Popular classes of rating concepts C are {relevant, irrelevant} or
{likes, likes not}.

– Ordinal rating : The rating concepts are interrelated and can be ordered. The
typical example for ordinal rating concepts is the star-rating on a 1-5 integer
scale: {F, . . . ,FFFFF}. With ordinal ratings only the assertion can be
done that a 4-star rated item is better then a 2-star rated item.

– Interval rating : Items can be rated with a numeric value from R. In general,
such ratings can be normalized to a [−1, 1] scale.

– Ratio rating : Items can be rated with a numeric value from R. In general,
such ratings can be normalized to a [0, 1] scale.

In general, a recommender system is a function f which returns for the active
user Ua the computed item rating vector Ra. The function f takes all ratings
in R, the user Ua, all users in N , all items in I and the rating concepts in C as
input. We can conceptualize a recommender system as follows:

R̂a = f(R, I, C, Ua), r ∈ C ∪∅

3.2 User Preference Model

Most recommender systems represent the true user preferences as item true
rating vector Rtrue

i which contains for every item Vj ∈ I the true rating r̃ij ∈ C:

Rtrue
i = 〈rtrue

i1 , . . . , rtrue
im 〉

If all true item ratings of a user are known, providing recommendation comes
down to a trivial sorting problem (sorting the vector Rtrue

i). In general, a recom-
mender system has only partial knowledge about the user Ui’s true preferences
Rtrue

i . We assume that the provided ratings in Ri are equal to the corresponding
true ratings in Rtrue

i . The user Ui provides only partial rating information for
three reasons:

– Costs: Temporal or monetary costs restrict the amount of items that a user
is able to consume and provide a rating for.

– Usability : The rating effort is too high because the item has to be found first
(search costs) and then being rated with too much effort (usability).

– Privacy : The user has an interest in not to publish all personal item ratings

Since the true item rating vector Rtrue
i is only partially known, we adjust

the representation of the user’s preferences to a more general way and more
adaptable to machine learning. We assume that every user is able to assign the
proper rating concept to an item. More formally, every user Ui ∈ N is able to
assign a rating concept ck ∈ C to every item Ij ∈ I using his mental rating
function ui(I):

ui(Ij) : Ij 7→ ck = rtrue
ij ,∀Ij ∈ I

We can reason that the user Ui always associates the item Ij with the true
rating concept ck. Therefore, the probability that the rating function ui(I) pro-
vides the true rating concept ck for all Ij ∈ I is always 1.

P
(
ui(Ij) = ck|rtrue

ij = ck
)

= 1,∀Ij ∈ I

Instead of guessing all the user Ui’s ratings, we approximate the rating func-
tion ui(I) based on the known user Ui’s ratings Ri over the subset Ii ⊆ I. We
assume, that the distribution of ratings of Ri represent the real rating distribu-
tion of Rtrue

i . The rating distribution is the frequency of appearance of every
rating concept in C in the vector Ri. Hence, a computer program can learn an
approximation of ui(I) based on Ri and the set of items I.

The learner faces the problem to hypothesize the rating concepts ck ∈ C for
the items Ij ∈ Ia. For this purpose, the learner has to find the hypothesis h from
the hypotheses space of all possible hypotheses H that estimates best the proper
rating concept ck the active user Ua associates with item Ij . The performance
measure P is used to determine the best hypothesis h. To summarize, the rating
concept learning task is to find the set of hypotheses that associates all items
Ij ∈ Ia with the proper rating concepts ck ∈ C. The learner selects the
hypotheses subset Ha ⊂ H and builds a hypothesized rating function ha(I) that
selects the best hypothesis h ∈ Ha to hypothesize the active user Ua’s rating
for the item Ij . The hypothesized rating function is a classifier that is built
by the learner. A perfect hypothesized rating function ha(I) for Ij ∈ Ia with
j = {1, . . . ,m} means:

ha(Ij) = ua(Ij),∀Ij ∈ Ia

In general, ha(I) is an approximation of ua(I) such that the probability that
ha(I) = ua(I) is usually below 1. That can be expressed as:

α

z∑
k=1

m∑
j=1

P
(
ha(Ij) = ck|ua(Ij) = ck

)
≤ 1

The sum is normalized to 1 with the normalization factor α. Hence, we can
state that ha(I) approximates ua(I) by an error function ε(Ij):

ua(I) = ha(I) + ε(I)

The performance of ha(I) depends on the hypotheses spaceH that is based on
the human designer’s choice and on the other side on the amount of experience
E respectively amount of the user’s item ratings. If an adequate hypotheses
space H has been defined by a human designer, we argue that the error function
ε(I) → 0 because the performance of ha(I) increases with more experience E.
Hence, we can state:

ua(I) ≈ ha(I) (3.1)

3.3 User Preference Model Similarity

We denote the similarity of preferences between user Ua and Ub as sim(Ua, Ub).
If user Ua and Ub always rate the same item identically, user Ua and Ub share
the identical preferences. If user Ua and Ub always rate the same item differently,
no preference similarity exists between the preferences of user Ua and Ub. We

define the similarity sim(Ua, Ub) as the probability P that user Ua and user Ub

both rate all items Ij ∈ I with j = {1, . . . ,m} equally. We denote z = |C| as the
number of rating concepts.

sim(Ua, Ub) ≡ α
z∑

k=1

m∑
j=1

P (raj = ck ∧ rbj = ck)

The sum is normalized to 1 with the normalization factor α. Hence, we define
the similarity on the interval [0, 1] with 0, no similar preferences, and 1, identical
preferences. Since not all ratings are known by the recommender system, the
similarity sim(Ua, Ub) can be computed only based on common rated items
Ij ∈ Ia ∩ Ib. The smaller the size of the intersecting item set is, the smaller
the confidence of the accuracy and the smaller the accuracy of the similarity
sim(Ua, Ub) is.

Therefore, we have to generalize the idea of similarity. The user Ui’s prefer-
ences can be explained with his personal rating function ui(I) as demonstrated
in the previous Section 3.2. Hence, we can formulate the similarity sim(Ua, Ub)
between user Ua and Ub as the similarity of both personal rating functions ua(I)
and ub(I):

sim(Ua, Ub) = sim
(
(ua(I), ub(I)

)
≡ α

z∑
k=1

P
(
ua(I) = ck ∧ ub(I) = ck

)
≡ α

z∑
k=1

P
(
ua(I) = ck|ub(I) = ck

)
P
(
ub(I) = ck

)
Because either ua(I) or ub(I) are known, we approximate both with ha(I)

and hb(I) respectively according to Eq. 3.1. Hence, we can write the similarity
sim

(
ua(I), ub(I)

)
as:

sim
(
ua(I), ub(I)

)
≈ sim

(
ha(I), hb(I)

)
u α

z∑
k=1

P
(
ha(I) = ck|hb(I) = ck

)
P
(
hb(I) = ck

) (3.2)

Compared to the computation of the similarity sim(Ua, Ub) on common rated
items Ia ∩ Ib, we now can compute the similarity sim(Ua, Ub) on the merged
item set Ia ∪ Ib. The probabilities are computed by applying ha(I) and hb(I) to
the merged item set and comparing the predicted rating concepts.

3.4 Collaborative Filtering based on User Model Similarity

In user-based collaborative filtering, the similarity among users can be used to
predict for the active user Ua the rating r̂aj of the item Ij . The rating r̂aj is the

Listing 1.1. Example of a conjunction of constraints of movie features
movie hasGenre Drama = yes
movie hasGenre Romance = yes
movie hasReleaseYear = 1942
movie isOfCountry = m: Country USA
movie i sPre s en t ed In Black and White = yes
movie i sPre s en t ed In Color = no : 5

weighted deviation from the active user Ua’s average rating. More specifically,
the rating r̂aj is the sum of Ua’s average rating ra and the normalized sum of
the weighted difference of all the other user Ub’s rating rbj and their average
ratings rb [5]:

r̂aj = ra + κ

n∑
b 6=a

sim(Ua, Ub) ∗ (rbj − rb)

The factor κ is a normalization factor such that the similarities sum to unity.
According to the previous section 3.3, it is feasible to approximate the similarity
sim(Ua, Ub) of user Ua and Ub with the similarity sim

(
ha(I), hb(I)

)
. Therefore,

we predict the rating r̂aj as follows:

r̂aj = ra + κ

n∑
b6=a

sim
(
ha(Ij), hb(Ij)

)
∗ (rbj − rb)

3.5 Partial User Preference Model Similarity

In the previous Section 3.3, we proposed a probabilistic approach to define the
similarity of two user preference models. But as we have already argued, overall
similarity of user preferences misses partial user preference similarity. In general,
a user has various preferences. In the context of movies, a user may not only
like action movies, but also romantic movies. The user’s preferences consist of a
set of single preferences. Each such preference is described by a conjunction of
constraints of features as shown in Lst. 1.1. The constraints may be a specific
value, no acceptable value exists or any value is acceptable.

It is not feasible to compare single preferences of two users because a single
preference may be similar to a set of preferences of the other user. Hence, it is
necessary to describe the problem of computing partial user preference similar-
ity of user Ua and Ub as the problem of computing the similarity of user Ua’s
preference to a composition of user Ub’s preferences.

According to Eq. 3.1 in Section 3.2, it is feasible to approximate hypotheses to
preferences. A user Ui’s preference model hi(I) consists of a subset of hypotheses
ha,q ∈ Ha with q ∈ {1, . . . , |Ha|} of the hypotheses space H. Analogously to
preferences, a hypothesis h is described as a conjunction of constraints of the set
of features [14]. Hence, partial user preference similarity can be described on the
basis of hypotheses and hypotheses space. We denote w = |Ia,q| as the number

of items in Ia,q. We define partial user preference similarity ∂sim(Ua, Ub|ha,q)
as the similarity of user Ua’s qth preference hypothesis ha,q and the user Ub’s
hypotheses space Hb respectively user Ub’s user model hb(I):

∂sim(Ua, Ub|ha,q) ≡ sim
(
ha,q, hb(I)

)
To compare the hypotheses ha,q ∈ Ha with q ∈ {1, . . . , |Ha|} of user Ua’s

preference model with the preference model hb(I) of user Ub, all hypotheses
ha,q of user Ua’s preference model have to be extracted. For each hypothesis
ha,q, an item set Ia,q is built with the items that matches ha,q’s conjunction of
constraints of item features. Note, that the item set I is partitioned into item
sets Ia,q with q ∈ {1, . . . , |Ha|} and are disjoint. That is because each item is
associated with one rating concept by a well-defined hypothesis. The hypothesis
ha,q associates every item Ij ∈ Ia,q with exactly one concept ck ∈ C. We define
the partial similarity of user Ua’s hypothesis ha,q and user Ub’s user preference
model hb(I) as the probability P , that the user preference model hb(I) predicts
rating concept ck under the condition that the hypothesis ha,q(I) associates all
items I ∈ Ia,q with ck:

sim
(
ha,q, hb(I)

)
≡ P

(
hb(I) = ck ∧ ha,q(I) = ck

)
≡ P

(
hb(I) = ck|ha,q(I) = ck

)
P
(
ha,q(I) = ck

)
The hypothesis ha,q associates all items with ck that matches ha,q’s con-

junction of constraints of item features. Hence, the probability of P (ha,q) = 1.
Therewith, we can simplify the upper definition:

sim
(
ha,q, hb(I)

)
≡ P

(
hb(I) = ck|ha,q(I) = ck

)
,∀Ij ∈ Ia,q (3.3)

3.6 Collaborative Filtering based on Partial User Model Similarity

Similar to Section 3.4, partial preference similarity can be used to predict for user
Ua the rating r̂aj of item Ij . To this goal, the proper hypothesis ha,q has to be
identified that is chosen by the user Ua’s preference model ha(Ij) given the item
Ij . The well-defined hypothesis ha,q is identified by matching the conjunction of
constraints of features with the item’s feature vector. Thereafter, the similarity
of ha,q and the user models hb(I) of other users Ub can be computed. Note,
that all partial user preference similarities can be computed offline to provide
a rating predictions online. The similarity sim

(
ha,q, hb(I)

)
between two people

is computed on the merged item set Iha,q
that matches the hypothesis ha,q and

have been rated by at least one of both people. The rating r̂aj is the sum of Ua’s
average rating ra and the normalized sum of the weighted difference of all the
other user Ub’s rating rbj and their average ratings rb:

r̂aj = ra + κ

n∑
b6=a

sim
(
ha,q, hb(I)

)
∗ (rbj − rb) (3.4)

The sum is normalized to 1 with the normalization factor κ.

4 Evaluation

In this section, we provide an empirical evaluation of our two proposed methods
to compute user preference similarities and partial user preference similarities.
First, we describe the used dataset and second, we describe the experimental
settings. We close discussing the comparison of our approach with others.

4.1 Dataset

We created a movie dataset that consists of user ratings and movie descriptions.
We used the Netflix-Prize dataset [4] that originally consists of 17 000 movies,
480 189 users and 100 480 507 ratings from a 1 to 5 integer scale. We enriched this
dataset with movie informations from the Internet movie database IMDb. We
built a movie ontology based on the IMDb movie descriptions and domain knowl-
edge. The movie ontology consists among other things of 28 genres, 10 different
movie awards including nominations, movie color information (i.e. black&white,
colored) and 240 countries. We used this information to build the hypotheses
space and to generate movie feature vectors to learn the user preference models.

Both datasets provide partially different movie informations like year releases
or titles. Furthermore, movie titles tend to be used by several movies. Thus, we
unified movie titles of both datasets. We defined a movie of one dataset identical
to a movie dataset of the other dataset if the unified titles are identical and
the difference between the year releases is minimal. We made the assumption
that movies with the same title are not produced and published within several
years. With this method, we automatically identified 10 128 Netflix movies in
the IMDb with 83 029 805 ratings of 479 437 users. In a precedent data analysis,
we measured the average number of ratings per user of 173.2 and the median of
80 ratings. The average rating is 3.56 and the median is 4.

4.2 Experimental Setting

To evaluate our approach we used two different settings: the first setting consists
of users with few common rated items and the second setting consists of users
with many common rated items. We assume that users with few ratings have less
common rated items then users with many ratings. Hence, we selected randomly
500 users with 50 ratings and 500 users with 200 ratings for the first and second
setting, respectively. We chose 50 ratings to have a reasonable amount of ratings
to learn user preferences from and 50 are below the median and the average. We
chose users with 200 ratings because it is more then the median or the average
and thus a reasonable amount. We split both datasets in a training set and a
test set with a ratio of 4:1.

For the partial user preference model approach pUMsim, we used the machine
learning algorithm Part [7] that obtains rules from partial decision trees. Because
every rule is also a hypothesis, the hypotheses extraction is relatively simple. For
the model-based similarity approach we used Part and SVM to test if the applied
machine learning algorithm has a significant impact on the computed similarity.

We compared our approach with three collaborative filtering approaches. We
used Pearson correlation [15, 5] to measure the global user preference similarities
among users. The other two approaches learn user preference models respectively
classifiers. Both predict the item ratings for a specific user by classifying movies
with the learned user models based on Part and SVM, respectively. We used the
implementations of Part and SVM from the Weka library [17].

4.3 Comparison

We evaluate all approaches by measuring the root mean square error (RMSE)
and mean absolute error (MAE) as suggested in [9]. MAE measures the average
absolute error between the user’s rating and the predicted rating. In contrast,
the RMSE measures the average squared error and extracts the root. Hence, the
RMSE metric is sensitive on very bad recommendations. Further, we calculate
the precision, recall and the F1-measure. The precision describes the percentage
of relevant items of all the set of predicted relevant items. The recall describes
the percentage of all predicted relevant items compared to all relevant items.
The F1-measure combines the precision and recall value to one single value. For
this purpose, we classified items into two groups: relevant items with high ratings
and irrelevant items with low ratings. We used the threshold of 3.5 to classify
items as relevant or irrelevant.

The evaluation results are presented in Table 1. We tested the significance
with a non parametric test for dependent samples because the results are not
normal distributed. We applied the Wilcoxon signed-ranks test and tested all
methods pairwise. Therefore, we applied Bonferroni correction to control the
family-wise error. We set α = 0.01 as significance level.

In Table 1 and the setting with few common rated items (50 rat./user),
both classifiers based on Part and SVM perform worst regarding RMSE and
MAE. In case of RMSE and MAE, computing user preference similarity based
on user preference model similarity (UMSim) and partial user model similarity
(pUMSim) significantly outperform the user similarity based on Pearson corre-
lation. That is because Pearson correlation is computed on common rated items
that are rarely found in this setting. In contrast, the user model similarity is
computed on all rated items of the users and thus, is based on more examples.
However, UMSim significantly outpferoms pUMSim regarding MAE, but does
not regarding RMSE. We assume that the hypotheses partition the set of items
into too small sets such that partial user preference model similarity is less ac-
curate compared to user preference model similarity. No significant difference
exists regarding precision, recall and the F1-measure in this setting.

In the setting with many common rated items (200 rat./user), both classifiers
still perform significantly worst regarding RMSE and MAE. In contrast to the
previous setting, UMSim based on SVM is not significantly better then Pearson
correlation, but both are significantly better then UMSim based on Part regard-
ing RMSE. However, they are not significantly better then UMSim based on Part
regarding MAE. In this setting, UMSim and Pearson correlation are significantly
better then pUMSim. Regarding precision, the classifier based on SVM performs

Table 1. Evaluation with the setting of 50 and 200 rated items per user

Setting Algorithm RMSE MAE Precision Recall F1-Meas.

pUMSim (Part) 1.097698 0.898961 66.70% 68.23% 67.46%
UMSim (SVM) 1.077945 0.889020 68.27% 68.74% 68.05%
UMSim (Part) 1.075843 0.885730 67.82% 68.34% 68.08%

50 rat./user
CF (Pearson Corr) 1.131921 0.929923 65.76% 68.30% 67.01%
SVM Classifier 1.309146 0.976800 65.07% 71.17% 67.98%
Part Classifier 1.334507 1.003800 65.05% 70.98% 67.89%

pUMSim (Part) 1.048786 0.843029 60.90% 66.83% 63.73%
UMSim (SVM) 1.035611 0.835009 60.77% 67.33% 63.88%
UMSim (Part) 1.032746 0.833374 60.89% 67.31% 63.94%

200 rat./user
CF (Pearson Corr) 1.035324 0.832373 60.56% 68.71% 64.38%
SVM Classifier 1.230682 0.896450 58.54% 67.80% 62.83%
Part Classifier 1.292360 0.953600 58.76% 64.72% 61.60%

significantly worse compared to others. The classifier based on Part performs
significantly worse then other approaches only globally but not with the Bonfer-
roni correction. In case of recall, Pearson correlation significantly outperforms
all approaches. Our proposed approaches together with Pearson correlation sig-
nificantly outperform the two classifiers only without Bonferroni correction.

In general, our proposed approaches perform similar to traditional collab-
orative filtering approaches. However, they significantly outperform traditional
collaborative filtering in settings with few common rated items.

5 Conclusion

We proposed a probabilistic method to compute user preference similarities
based on user preference models and partial user preference similarities based
on hypothesized user preferences that are extracted from learned user preference
models. We have empirically shown that user similarity based on preferences is
significantly better then user similarity based on common rated items for users
with few common rated items. However, the accuracy of partial user preference
similarity is promising but needs further improvement. Note, the learned user
models might not be total functions and the user model comparison incomplete.
But we argue that these missing items are irrelevant because they do not match
the user’s preferences.

Due to user-user comparison, our proposed approach is suitable for small
amount of users because it has order of O(n2) time complexity. Therefore, in
future work, we investigate clustering and filtering to improve scalability. Fur-
ther, we will improve the accuracy of the learned user preference models. For
this purpose, we will increase the hypotheses space by applying more features
and enrich them with background knowledge from domain ontologies. In a next
step, we will consider regression-based machine learning algorithms to improve
the rating predictions and refine the currently suggested probabilistic similarity

with a more semantical interpretation of what similar ratings are. In addition,
we will consider global user preference similarity as background evidence for
partial user preference similarity. In a last step, we will investigate how to prune
hypotheses such that partial preference similarity relies on more examples. That
leads to higher evidence of the accuracy of partial preference similarity. We will
investigate how background knowledge in form of a domain ontology can be
used to prune hypotheses since the features are related to instances in the movie
ontology.

6 Acknowledgements

We would like to Thank Jörg-Uwe Kietz for his insightful comments on the
ideas.

References

1. S. S. Anand, P. Kearney, and M. Shapcott. Generating semantically enriched user
profiles for web personalization. ACM Transactions on Internet Technology, 2007.

2. M. Balabanovic and Y. Shoham. Fab: Content-based, collaborative recommenda-
tion. In Communications of the ACM, 1997.

3. C. Basu, H. Hirsh, and W. Cohen. Recommendation as classification: Using social
and content-based information in recommendation. In AAAI, 1998.

4. J. Bennett and S. Lanning. The netflix prize. KDD Cup and Workshop, 2007.
5. J. S. Breese, D. Heckerman, and C. Kadie. Empirical analysis of predictive algo-

rithms for collaborative filtering. In 14th Conference on Uncertainty in AI, 1998.
6. I. Cantador, A. Belloǵın, and P. Castells. A multilayer ontology-based hybrid

recommendation model. AI Communcations, 2008.
7. E. Frank and I. H. Witten. Generating accurate rule sets without global optimiza-

tion. In 15th International Conference on Machine Learning, 1998.
8. N. Good, J. B. Schafer, J. A. Konstan, A. Borchers, B. Sarwar, J. Herlocker,

and J. Riedl. Combining collaborative filtering with personal agents for better
recommendations. In AAAI /IAAI, 1999.

9. J. L. Herlocker, J. A. Konstan, L. G. Reveen, and J. T. Riedl. Evaluating collab-
orative filtering recommender systems. ACM Trans. on Information Sys., 2004.

10. D. Lemire and A. Maclachlan. Slope one predictors for online rating-based collab-
orative filtering. In Proceedings of SIAM Data Mining (SDM’05), 2005.

11. P. Melville, R. J. Mooney, and R. Nagarajan. Content-boosted collaborative fil-
tering for improved recommendations. In AAAI, 2002.

12. S. E. Middleton, H. Alani, and D. C. de Roure. Exploiting synergy between on-
tologies and recommender systems. In WWW, 2002.

13. S. E. Middleton, N. R. Shadbolt, and D. C. de Roure. Ontological user profiling
in recommender systems. In ACM Transactions on Information Systems, 2004.

14. T. M. Mitchel. Machine Learning. 1997.
15. P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl. Grouplens: an

open architecture for collaborative filtering of netnews. In CSCW, 1994.
16. B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based collaborative filtering

recommendation algorithms. In WWW, 2001.
17. I. H. Witten and E. Frank. Data Mining - Practical Machine Learning Tools and

Techniques. 2005.

