
Anchor-PROMPT:
 Using Non-Local Context for Semantic Matching

Natalya F. Noy and Mark A. Musen

Stanford Medical Informatics, Stanford University, Stanford, CA 94305-5479
{noy, musen}@smi.stanford.edu

Abstract
Researchers in the ontology-design field have developed the
content for ontologies in many domain areas. Recently,
ontologies have become increasingly common on the World-
Wide Web where they provide semantics for annotations in
Web pages. This distributed nature of ontology development
has led to a large number of ontologies covering overlapping
domains, which researchers now need to merge or align to
one another. The processes of ontology alignment and
merging are usually handled manually and often constitute a
large and tedious portion of the sharing process. We have
developed and implemented Anchor-PROMPT—an
algorithm that finds semantically similar terms
automatically. Anchor-PROMPT takes as input a set of
anchors—pairs of related terms defined by the user or
automatically identified by lexical matching. Anchor-
PROMPT treats an ontology as a graph with classes as
nodes and slots as links. The algorithm analyzes the paths in
the subgraph limited by the anchors and determines which
classes frequently appear in similar positions on similar
paths. These classes are likely to represent semantically
similar concepts. Our experiments show that when we use
Anchor-PROMPT with ontologies developed independently
by different groups of researchers, 75% of its results are
correct.

1 Ontology Merging and Anchor-PROMPT

Researchers have pursued development of ontologies—
explicit formal specifications of domains of discourse—on
the premise that ontologies facilitate knowledge sharing
and reuse (Musen 1992; Gruber 1993). Today, ontology
development is moving from academic knowledge-
representation projects to the world of e-commerce.
Companies use ontologies to share information and to guide
customers through their Web sites. The ontologies on the
World-Wide Web range from large taxonomies
categorizing Web sites (such as on Yahoo!) to
categorizations of products for sale and their features (such
as on Amazon.com). The WWW Consortium is developing
the Resource Description Framework (Brickley and Guha
1999), a language for encoding semantic information on
Web pages in machine-readable form. Such encoding
makes it possible for electronic agents searching for
information to share the common understanding of the
semantics of the data represented on the Web. Many
disciplines now develop standardized ontologies that
domain experts can use to share and annotate information
in their fields. Medicine, for example, has produced large,
standardized, structured vocabularies such as SNOMED

(Price and Spackman 2000) and the semantic network of
the Unified Medical Language System (Humphreys and
Lindberg 1993).

With this widespread distributed use of ontologies,
different parties inevitably develop ontologies with
overlapping content. For example, both Yahoo! and the
DMOZ Open Directory (Netscape 1999) categorize
information available on the Web. The two resulting
directories are similar, but also have many differences.

Currently, there are extremely few theories or methods
that facilitate or automate the process of reconciling
disparate ontologies. Ontology management today is mostly
a manual process. A domain expert who wants to determine
a correlation between two ontologies must find all the
concepts in the two source ontologies that are similar to one
another, determine what the similarities are, and either
change the source ontologies to remove the overlaps or
record a mapping between the sources for future reference.
This process is both labor-intensive and error-prone.

The semi-automated approaches to ontology merging
that do exist today (Section 2) such as PROMPT and
Chimaera analyze only local context in ontology structure:
given two similar classes, the algorithms consider classes
and slots that are directly related to the classes in question.
The algorithm that we present here, Anchor-PROMPT,
uses a set of heuristics to analyze non-local context.

The goal of Anchor-PROMPT is not to provide a
complete solution to automated ontology merging but rather
to augment existing methods, like PROMPT and Chimaera,
by determining additional possible points of similarity
between ontologies.

Anchor-PROMPT takes as input a set of pairs of
related terms—anchors—from the source ontologies.
Either the user identifies the anchors manually or the
system generates them automatically. From this set of
previously identified anchors, Anchor-PROMPT produces
a set of new pairs of semantically close terms. To do that,
Anchor-PROMPT traverses the paths between the anchors
in the corresponding ontologies. A path follows the links
between classes defined by the hierarchical relations or by
slots and their domains and ranges. Anchor-PROMPT then
compares the terms along these paths to find similar terms.

For example, suppose we identify two pairs of anchors:
classes A and B and classes H and G (Figure 1). That is, a
class A from one ontology is similar to a class B in the
other ontology; and a class H from the first ontology is
similar to a class G from the second one. Figure 1 shows

one path from A to H in the first ontology and one path
from B to G in the second ontology. We traverse the two
paths in parallel, incrementing the similarity score between
each two classes that we reach in the same step. For
example, after traversing the paths in Figure 1, we
increment the similarity score between the classes C and D
and between the classes E and F. We repeat the process for
all the existing paths that originate and terminate in the
anchor points, cumulatively aggregating the similarity
score.
The central observation behind Anchor-PROMPT is that if
two pairs of terms from the source ontologies are similar
and there are paths connecting the terms, then the elements
in those paths are often similar as well. Therefore, from a
small set of previously identified related terms, Anchor-
PROMPT is able to suggest a large number of terms that
are likely to be semantically similar as well.

Figure 1. Traversing the paths between anchors. The rectangles
represent classes and labeled edges represent slots that relate
classes to one another. The left part of the figure represents
classes and slots from one ontology; the right part represents
classes and slots from the other. Solid arrows connect pairs of
anchors; dashed arrows connect pairs of related terms.

2 Related Work

To date, researchers working on tools for ontology merging
have expended their greatest effort finding mostly lexical
matches among concepts in the source ontologies. Such
systems usually rely on dictionaries to determine
synonyms, evaluate common substrings, consider concepts
whose documentation shares many uncommon words, and
so on (Chapulsky et al. 1997; Wiederhold and Jannink

1999). These approaches, however, do not take into account
the internal structure of concept representation, the
structure of an ontology itself, or the steps users take during
merging.

Researchers in the database community have addressed
the problem of finding semantically similar terms in
automating the process of matching database schemas. A
number of schema-matching approaches use not only
syntactic information (the similarity of the term names) but
also the types of relations among terms. For example, the
Artemis system (Castano and De Antonellis 1999) uses
thesauri to determine lexical affinity between terms and
combines uses domain types of schema elements with user
input to determine structural affinity. The TransScm system
(Milo and Zohar 1998) traverses the graph representation of
two schemas performing a node-by-node comparison.
However, the TransScm approach works well only if the
input schemas have an extremely high degree of similarity.

The Chimaera ontology-merging environment
(McGuinness et al. 2000), an interactive merging tool based
on the Ontolingua ontology editor (Farquhar et al. 1996),
considers limited ontology structure in suggesting merging
steps. However, the only relations that Chimaera currently
considers is the subclass–superclass relation and slot
attachment.

In our earlier work, we developed PROMPT—a tool
for semi-automatic guided ontology merging (Noy and
Musen 2000). PROMPT identifies candidates for merging
as pairs of matching terms—terms from different source
ontologies representing similar concepts. It determines not
only syntactic but also semantic match based on (1) the
content and structure of the source ontologies (e.g., names
of classes and slots, subclasses, superclasses, domains and
ranges of slot values) and (2) the user’s actions (i.e.,
incorporating in its analysis the knowledge about
similarities and differences that the user has already
identified).

To summarize, those automatic approaches to semantic
matching that do consider the structural relations among
terms, base their analysis on studying only the terms that
are directly related to one another. Both PROMPT and
Chimaera consider subclasses and superclasses in question
and slots directly attached to a class. PROMPT also
considers classes that are referenced by the slots attached to
the class in question.

Anchor-PROMPT, which we present here,
complements these approaches by analyzing non-local
context, by “looking further,” and by providing additional
suggestions for possible matching terms.

3 The Problem

To illustrate how Anchor-PROMPT works, we will
consider two ontologies for representing clinical trials, their
protocols, applications, and results. The first ontology, the
Design-a-Trial (DaT) ontology (Modgil et al. 2000),
underlies a knowledge-based system that helps doctors
produce protocols for randomized controlled trials. The

Ontology 1 Ontology 2

second ontology, the randomized clinical-trial (RCT)
ontology (Sim 1997), is used in creating electronic trial
banks that store the results of clinical trials and allow
researchers to find, appraise, and apply the results. Both
ontologies represent clinical trials, but one of them, DaT,
concentrates on defining a trial protocol itself, and the
other, RCT, on representing the results of the trial. The two
groups developed their respective ontologies completely
independent from each other. Therefore there is no
intensional correlation between them. As part of the work
on representing clinical guidelines in our laboratory, we
needed to merge the two ontologies.

We implemented Anchor-PROMPT based on the
knowledge model defined by the Open Knowledge-Base
Connectivity (OKBC) protocol (Chaudhri et al. 1998). An
ontology in OKBC consists of classes organized in a
hierarchy, instances of classes, and slots representing
relations between classes and between instances of classes.

In Anchor-PROMPT, we represent classes, slots, and
their relations in the ontologies as directed labeled graphs.
Figure 2 shows a part of the graph representing the RCT
ontology. Classes are nodes in the graph. Slots are edges in
the graph. A slot S connects two classes, A and B, in the
graph, if both of the following conditions are true:
(1) The slot S is attached to class A (either as template slot

or as an own slot), and
(2) The class B is either a value of slot S for the class A, or

B is the range of allowed values for slot S at class A.
For example, the edge representing the slot latest-
protocol in the RCT ontology links the class TRIAL to
the class PROTOCOL (Figure 2). The slot latest-
protocol at class TRIAL can have as its values instances
of the class PROTOCOL.
Two nodes connected by an edge in a graph are adjacent.
There is a path between two nodes of a graph, A

Figure 2. A graph representing a part of the RCT ontology.

and B, if, starting at node A, it is possible to follow a
sequence of adjacent edges to reach node B. The length of
the path is the number of edges in the path.

The goal of the Anchor-PROMPT algorithm is to
produce automatically a set of semantically related
concepts from the source ontologies using a set of anchor
matches identified earlier (manually or automatically) as its
input.

4 The Anchor-PROMPT Algorithm

Anchor-PROMPT takes as input a set of anchors—pairs of
related terms in the two ontologies. We can use any of the
existing approaches to term matching to identify the
anchors (Section 2). A user can identify the anchors
manually. An automated system can identify them by
comparing the names of the terms. For example, we can
assume that if the source ontologies cover the same
domain, the terms with the same names are likely to
represent the same concepts. We can also use a
combination of system-determined and user-defined
anchors. We can use pairs of related terms that Anchor-
PROMPT has identified in an earlier iteration after the user
has validated them.

For the example in this section, we will consider the
following two pairs of anchors for the two clinical-trial
ontologies (the first class in the pair is in the RCT ontology;
the second is in the DaT ontology1):

TRIAL, Trial
PERSON, Person

Using these two pairs as input, the algorithm must
determine pairs of other related terms in the RCT and DaT
ontologies. It generates a set of all the paths between
PERSON and TRIAL in the RCT ontology and between
Person and Trial in DaT ontology (Figure 3 shows
some of these paths2). It considers only the paths that are
shorter than a pre-defined parameter length. Now consider
a pair of paths in this set that have the same length. For
example:
Path 1 (in the RCT ontology):

TRIAL PROTOCOL STUDY-SITE PERSON
Path 2 (in the DaT ontology):

Trial Design Blinding Person
As it traverses the two paths, Anchor-PROMPT increases
the similarity score—a coefficient that indicates how
closely two terms are related—for the pairs of terms in the
same positions in the paths. For the two paths in our
example, it will increase the similarity score for the
following two pairs of terms:

PROTOCOL, Design
STUDY-SITE, Blinding

1The RCT ontology uses all UPPER-CASE letters for class names.
The DaT ontology Capitalizes the class names. Therefore, it
is easy to distinguish which class names come from which
ontology, and we will sometimes omit the source information.
2 We have changed the original RCT ontology slightly to simplify
this example.

Figure 3. (a) The paths between the classes TRIAL and PERSON in the RCT ontology; (b) the paths between the classes Trial and
Person in the DaT ontology

Anchor-PROMPT repeats the process for each pair of paths
of the same lengths that have one pair of anchors as their
originating points (e.g., TRIAL and Trial) and another
pair of anchors as terminating points (e.g., PERSON and
Person). During this process it increases the similarity
scores for the pairs of terms that it encounters. It aggregates
the similarity score from all the traversals to generate the
final similarity score. Consequently, the terms that often
appear in the same positions on the paths going from one
pair of anchors to another will get the highest score.

4.1 Equivalence groups

In traversing the graph representing the ontology and
generating the paths between classes Anchor-PROMPT
treats the subclass–superclass links differently from links
representing other slots. Consider for example the path
from TRIAL to CROSSOVER in Figure 4.

Figure 4. A path from TRIAL to CROSSOVER: The classes EXECUTED-
PROTOCOL and PROTOCOL form an equivalence group

We could treat the is-a link in exactly the same way
we treat other slots. However, this approach would
disregard the distinct semantics associated with is-a
links. Instead we can employ the difference in meaning
between the is-a link and regular slots to improve the
algorithm. An is-a link connects the terms that are
already similar (e.g., PROTOCOL and EXECUTED-
PROTOCOL); in fact one describes a subset of the other.
Other slots link terms that are arbitrarily related to each
other.

Anchor-PROMPT joins the terms linked by the
subclass–superclass relation in equivalence groups. In the
example in Figure 4, the classes PROTOCOL and
EXECUTED-PROTOCOL constitute an equivalence group.
Here is one of the paths from TRIAL to CROSSOVER in
Figure 4 that goes through EXECUTED-PROTOCOL. We
identify the equivalence group by brackets.

TRIAL
 [EXECUTED-PROTOCOL, PROTOCOL]
 TREATMENT-POPULATION CROSSOVER.

Anchor-PROMPT treats an equivalence group as a single
node in the path. The set of incoming edges for an
equivalence-group node is the union of the sets of incoming
edges for each of the group elements. Similarly, the set of
outgoing edges for an equivalence-group node is the union
of the sets of outgoing edges for each of its elements.

The [EXECUTED-PROTOCOL, PROTOCOL] equivalence
group in Figure 4 has one incoming edge, executed-
protocol, and one outgoing edge, treatment-
groups.

(a) (b)

4.2 Similarity score

We use the following process to compute the similarity
score S(C1, C2) between two terms C1 and C2 (where C1 is a
class from the source ontology O1 and C2 is a class from the
source ontology O2).

1. Generate a set of all paths of length less than a
parameter L that connect input anchors in O1 and O2.

2. From the set of paths generated in step 1, generate a
set of all possible pairs of paths of equal length such
that one path in the pair comes from O1 and the other
path comes from O2.

3. For each pair of paths in the set generated in step 2
and for each pair of nodes N1 and N2 located in the
identical positions in the paths, increment the
similarity score between each pair of classes C1 and
C2 in N1 and N2 respectively be a constant X. (Recall
that N1 and N2 can be either single classes or
equivalence groups that include several classes).

Therefore the similarity score S(C1, C2) is a cumulative
score reflecting how often C1 and C2 appear in identical
positions along the paths considering all the possible paths
between anchors (of length less than L).

We change the constant by which we increment the
similarity score when the matching nodes along the paths
include not single classes but equivalence groups. Suppose
we have the following two nodes at the same position on
two paths between anchors: A1 and [B2, C2], a single class
A1 on one side, and an equivalence group with two classes
B2 and C2 on the other side. Do we give the same score to
both pairs of classes A1, B2 and A1, C2? Is this score the
same as the one we would have given the pair A1, B2 had B2

been the only class at the node? Do we give the pairs A1, B2

and A1, C2 any similarity score at all? We analyze the
results for different values of these constants in Section
5.3.2.

4.3 Revisiting the example

We provided Anchor-PROMPT with the following set of
three pairs of anchors from the RCT and DaT ontologies
correspondingly:

TRIAL, Trial
PERSON, Person
CROSSOVER, Crossover

We allowed the paths of length less than or equal to 5 and
limited the equivalence-group size to 2. Here are the output
results in the order of the descending similarity score.

PROTOCOL, Design
TRIAL-SUBJECT, Person
INVESTIGATORS, Person
POPULATION, Action_Spec
PERSON, Character
TREATMENT-POPULATION, Crossover_arm

In fact, all but one of these results represents a pair of
concepts that either are similar or one is a specialization
(subclass) of the other. The only exception is the pair
POPULATION, Action_Spec. Note that many of these
pairings are specific to the domain of clinical trials (e.g.,

PROTOCOL, Design and TRIAL-SUBJECT, Person).
The pair PERSON, Character indeed identifies the
correct sense in which Character is used in the DaT
ontology.

5 Evaluation

We perform a formative evaluation of Anchor-PROMPT
by testing it on a pair of ontologies that were also
developed independently by different groups of researchers.
In our experiments, we varied the set of anchor pairs that
was the input to the algorithm and various parameters, such
as maximum path length, maximum size of equivalence
groups, and constants in the similarity score computation.
We then analyzed which fraction of the results produced by
Anchor-PROMPT were indeed correct results and which
parameter settings produced optimal performance.

5.1 Source ontologies

In order to evaluate Anchor-PROMPT formally, we chose a
set of ontologies that was different from the two ontologies
we used to develop and illustrate the algorithm. We
imported two ontologies from the DAML ontology library
(DAML 2001):
1. An ontology for describing individuals, computer-

science academic departments, universities, and activities
that occur at them developed at the University of
Maryland (UMD), and

2. An ontology for describing employees in an academic
institutions, publications, and relationships among
research groups and projects developed at Carnegie
Mellon University (CMU).1

These two ontologies constituted a good target for the
merging experiment because on the one hand, they covered
similar subject domains (research organizations and
projects, publications, etc.) and on the other hand, their
developers worked completely independent of each other
and therefore there was no intensional correlation among
terms in the ontologies.

5.2 Experiment setup

Input:
The UMD and the CMU ontologies;
Four anchor pairs.

Parameters:
1. A set of anchor pairs (we generated all possible sets

of anchor pairs from the four input pairs)
2. The maximum number of elements allowed in an

equivalence group (0, 1, or 2)
3. Similarity score for equivalence-group members

along the path given that the score for single
elements is 1 (1 and 3)

4. Length of path to consider (2, 3, or 4)
Output:

1 Both ontologies consisted of several smaller ontologies which
we merged into a single ontology for the experiment.

For each set of parameters, a set of related terms as
determined by Anchor-PROMPT.

Process:
Run Anchor-PROMPT for all the possible combinations
of parameters.
For each set of results, compute the median similarity
score M and discard from the results set all pairs of terms
with a similarity score less than M.

We then analyzed the results determining how many of the
results were pairs of concepts that were either equivalent or
were in a subclass–superclass relationship.

5.3 Evaluation results

5.3.1 Equivalence-group size

If the maximum equivalence-group size is 0 (do not
consider subclass–superclass relationships at all) or 1
(allow equivalence groups of size 1), 87% of the
experiments produce empty result sets. If the maximum
equivalence-group size is 2, only 12% of the result sets are
empty.
For the rest of the experiments we fix the maximum
equivalence-group size at 2.

5.3.2 Similarity score for equivalence-group
members

We have conducted two sets of experiments: in the first set
all classes in the same position along the path got the same
score N and in the second experiment classes that shared
their position with other members of an equivalence group
received only 1/3 of the score.1

Differentiating the score improved the correctness of results
by 14%.
For the rest of the experiments we reduced the scores for
members of equivalence groups.

5.3.3 Number of anchor pairs and maximum length
of path

Table 1 presents results for various values for the two
remaining parameters: the number of anchor pairs that were
input to an experiment and the maximum allowed length of
the path. For these experiments (as well as for a set of other
experiments with different source ontologies), we received
the best result precision (the highest ratio of correct results
to all the returned results) with the maximum length of path
equal to 2. When we limit the maximum path length to 3,
we achieve the average precision of 61%. The precision
goes up slightly (to 65%) with maximum path length of 4.

1 In fact, varying the fraction of the score that we assigned to
equivalence-group members has not changed the result: The
results were identical for equivalence-group scores that were 1/3
or 1/2 of the score for single classes.

Max path length Number of anchors Result precision

4 4 67%
4 3 67%
4 2 61%
3 4 67%
3 3 61%
3 2 56%
2 4 100%
2 3 100%
2 2 100%

Table 1. Result precision with respect to maximum path length
and the number of anchors.

6 Discussion
To understand the intuition behind Anchor-PROMPT,
consider paths of length one (Figure 5a). Recall that the
length of a path is the number of edges in the path. If class
A is similar to class A’ and class B is similar to class B’, it
is plausible to assume that the slots connecting them, s and
s’, are similar as well. In Figure 5b, we introduce an
additional class, C and C’ correspondingly, on the path. We
get the paths of length 2). We continue the analogy by
assuming that there is an increased likelihood that C and C’
are similar. In addition, slots s and s’ and p and p’ are
similar (Anchor-PROMPT does not currently record the
similarity among slots).

The algorithm is based on the assumption that
developers link the terms in the ontology in a similar
manner even if they do not call the terms with the same
names. Therefore, very long paths are unlikely to produce
accurate results. As the path that we traverse becomes
longer, it becomes less likely that they represent the same
series of terms and relations.
Very short paths, however, consistently produced extremely
small (but also extremely precise results sets). For the
maximum path length of 2, Anchor-PROMPT produced
result sets that contained only one pair of terms (with a
similarity score above the median for that set) but this pair
was always a correct one.

Figure 5. The simple case: the paths of length 1 and 2.

(a) (b)

Setting maximum path length to 0 will produce the
results that are equivalent to Chimaera’s results. Limiting
the path length by 1 will produce the results that are
equivalent to PROMPT’s results (Section 2).

6.1 Reducing the effect of negative results

The similarity score between concepts is a cumulative
similarity score: Anchor-PROMPT combines the score
along all the paths. As a result, we reduce the effect of false
matches: Two unrelated terms could certainly appear in
identical positions in one pair of paths (and usually do).
However, the same two unrelated terms are less likely to
appear in identical positions on a different pair of paths.

To remove these incidental matches, we determine the
median similarity score in each experiment and discard the
pairs of terms with a similarity score less than the median.
Therefore, Anchor-PROMPT will discard most of the
incidental pairs of terms because they would have appeared
only once in the identical positions and would have a low
similarity score.

6.2 Performing ontology mapping

Throughout our discussion we have referred to the process
of ontology merging, the process in which we start with
two source ontologies and generate a new ontology that
includes and reconciles all the information from the two
source ontologies.

However, the approach that we have presented can be
used directly for creating a mapping between terms in
ontologies, as well as in matching database schemas. The
result of the Anchor-PROMPT algorithm is a set of pairs of
similar terms ranked by how close to each other the terms
are. This result can be used either to trigger merging of the
closely related terms or to establish a mapping between the
terms.

6.3 Limitations

Anchor-PROMPT produced highly promising results with
two sets of ontologies that were developed entirely
independently from each other.

Our approach does not work equally well for all
ontologies however. The approach does not work well
when the source ontologies are constructed differently. For
example, we used Anchor-PROMPT to find related terms
in two ontologies of problem-solving methods: (1) the
ontology for the unified problem-solving method (UPML)
development language (Fensel et al. 1999) and (2) the
ontology for the method-description language (MDL)
(Gennari et al. 1998). Both ontologies describe reusable
problem-solving methods, however, their designers used
different approaches to knowledge modeling. The UPML
ontology has a large number of classes with slots attached
to and referring to classes at many different levels of
hierarchy. The MDL ontology has a lot fewer classes with
the hierarchy which is only two levels deep. If we think of
the ontologies in terms of a graph, many of the nodes from
the UPML ontology were “collapsed” in a single node in

the MDL ontology. As a result, no two pairs of anchors had
paths with the same length between them and the output of
Anchor-PROMPT was empty.

In general, Anchor-PROMPT does not work well
when one of the source ontologies is a deep one with many
inter-linked classes and the other ontology is a shallow one
where the hierarchy has only a few levels and most of the
slots are associated with the concepts at the top of the
hierarchy, and very few notions are reified. If this is the
case, the results produced by the algorithm are no different
from the results produced by the approaches that consider
only very local context.

7 Conclusions

The Anchor-PROMPT algorithm that we have presented
uses relations among the terms in an ontology and a set of
anchors—pairs of similar terms—to determine which other
terms in the ontology are similar.

We conducted experiments using unrelated source
ontologies developed by different research groups. We have
achieved the results that could not have been achieved
using just the terms names (e.g., determine that TRIAL-
SUBJECT and Person are very similar terms in the
ontology of trial protocols).

Our experiments show that we can achieve result
precision between 61% and 100% depending on the size of
the initial anchor set and the maximum length of the path
that we traverse.

The algorithm relies on limited input from the user.
The user does not need to analyze the structure of the
ontology deeply, just to determine some pairs of terms that
“look similar”.

Based on our results, we believe that Anchor-PROMPT
can significantly improve the sets of suggestions that other
tools identify by producing sets of semantically similar
terms using a small set of previously determined similar
terms.

Acknowledgments
We have implemented Anchor-PROMPT as a plugin to the
Protégé-2000 ontology-editing and knowledge-acquisition
tool developed at Stanford Medical Informatics
(http://protege.stanford.edu). We generated all the graphs in
this paper automatically using OntoViz, a Protégé-2000
plugin, developed by Michael Sintek. Samson Tu and John
Nguyen helped us to understand the clinical-trial
ontologies. Whatever clarity and readability this paper has,
it owes it all to the detailed and thoughtful comments of
Monica Crubézy and Ray Fergerson. We are very grateful
to anonymous reviewers for suggestions on improving the
paper. This work was supported in part by a grant from
Spawar and by a grant from FastTrack Systems, Inc

References

Brickley, D. and Guha, R.V. (1999). Resource Description
Framework (RDF) Schema Specification. Proposed

Recommendation, World Wide Web Consortium:
http://www.w3.org/TR/PR-rdf-schema.

Castano, S. and De Antonellis, V. (1999). A Schema
Analysis amd Reconciliation Tool Environment. In:
Proceedings of the International Database Engineering and
Applications Symposium (IDEAS’99), IEEE.

Chapulsky, H., Hovy, E. and Russ, T. (1997). Progress on
an Automatic Ontology Alignment Methodology.

Chaudhri, V.K., Farquhar, A., Fikes, R., Karp, P.D. and
Rice, J.P. (1998). OKBC: A programmatic foundation for
knowledge base interoperability. In: Proceedings of the
Fifteenth National Conference on Artificial Intelligence
(AAAI-98), Madison, Wisconsin, AAAI Press/The MIT
Press.

DAML (2001). DAML ontology library.
http://www.daml.org/ontologies/

Farquhar, A., Fikes, R. and Rice, J. (1996). The Ontolingua
Server: a Tool for Collaborative Ontology Construction. In:
Proceedings of the Tenth Knowledge Acquisition for
Knowledge-Based Systems Workshop, Banff, Canada.

Fensel, D., Benjamins, V.R., Motta, E. and Wielinga, R.
(1999). UPML: A Framework for knowledge system reuse.
In: Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI-99), Stockholm, Sweden.

Gennari, J.H., Grosso, W. and Musen, M.A. (1998). A
method-description language: An initial ontology with
examples. In: Proceedings of the Eleventh Banff Knowledge
Acquisition for Knowledge-Bases Systems Workshop,
Banff, Canada.

Gruber, T.R. (1993). A Translation Approach to Portable
Ontology Specification. Knowledge Acquisition 5: 199-220.

Humphreys, B.L. and Lindberg, D.A.B. (1993). The UMLS
project: making the conceptual connection between users
and the information they need. Bulletin of the Medical
Library Association 81(2): 170.

McGuinness, D.L., Fikes, R., Rice, J. and Wilder, S.
(2000). An Environment for Merging and Testing Large
Ontologies. Principles of Knowledge Representation and
Reasoning: Proceedings of the Seventh International
Conference (KR2000). A. G. Cohn, F. Giunchiglia and B.
Selman, editors. San Francisco, CA, Morgan Kaufmann
Publishers.

Milo, T. and Zohar, S. (1998). Using Schema Matching to
Simplify Heterogeneous Data Translation. In: Proceedings
of the 24th International Conference on Very Large Data
Bases, New York City, Morgan Kaufmann.

Modgil, S., Hammond, P., Wyatt, J. and Potts, H. (2000).
The Design-A-Trial Project: Developing A Knowledge-
Based Tool for Authoring Clinical Trial Protocols. In:
Proceedings of the First European Workshop on Computer-
based Support for Clinical Guidelines and Protocols
(EWGLP 2000), Leipzig, Germany, IOS Press, Amsterdam.

Musen, M.A. (1992). Dimensions of knowledge sharing
and reuse. Computers and Biomedical Research 25: 435-
467.

Netscape (1999). DMOZ Open Directory.
http://www.dmoz.org/

Noy, N.F. and Musen, M.A. (2000). PROMPT: Algorithm
and Tool for Automated Ontology Merging and Alignment.
In: Proceedings of the Seventeenth National Conference on
Artificial Intelligence (AAAI-2000), Austin, TX.

Price, C. and Spackman, K. (2000). SNOMED clinical
terms. BJHC&IM-British Journal of Healthcare Computing
& Information Management 17(3): 27-31.

Sim, I. (1997). Trial Banks: An Informatics Foundation for
Evidence-Based Medicine. PhD Dissertation, Stanford
University: SMI-97-0701/STAN-CS-TR-97-1599.

Wiederhold, G. and Jannink, J. (1999). Composing Diverse
Ontologies. In: Proceedings of the IFIP Working Group on
Database, 8th Working Conference on Database Semantics
(DS-8), Rotorua, New Zealand.

