
 1

Proceedings of the IJCAI-01 Workshop on

Ontologies and Information Sharing

A. Gómez Pérez

M. Gruninger

H. Stuckenschmidt

M. Uschold

(editors)

Held on August 4 and 5, 2001 in conjunction with the

International Joint Conference on Artificial Intelligence

Seattle, USA

Heiner Stuckenschmidt

 2

IJCAI-01 Workshop on

Ontologies and Information Sharing

Held on August 4 and 5, 2001 in conjunction with the

International Joint Conference on Artificial Intelligence

Seattle, USA

From the early 1990s, there has been a fruitful series of over a dozen workshops, symposiums and
conferences on the emerging field concerned with the development and application of ontologies. Early
workshops were focused in large part on identifying what ontologies were, and how they might be used.
As the field developed and matured, we have obtained a reasonable understanding and consensus about
the nature of ontologies. The core idea is to explicitly encode a shared understanding of some domain that
can be agreed among different parties (be they people or computers). This shared understanding is the
ontology – it is an explicit representation comprising a vocabulary of terms, each with a definition
specifying its meaning. All parties commit to using these terms in accordance to their definitions.

Although there was a consensus on what an ontology was, how exactly ontologies could be created, put to
use, and what enabling technologies would be required remained unclear. Thus, subsequent workshops
focused mainly on the theoretical aspects of engineering, designing, building, maintaining and applying
ontologies. There were a number of tools and methodologies were developed to assist building
ontologies. However, the methodologies being reported were either immature or were developed and
tested in one domain only. Also, there were few if any practical applications being reported, other than
immature research prototypes.

In the last two years the aim of ontology workshops has shifted towards promoting a deep understanding
of how ontologies may be applied in working systems. Frameworks for understanding ontology
representation languages, ontology development environments, and ontology applications have been
described. Also, a growing number of applications have been reported in a wide variety of areas. These
include: e-commerce, knowledge management, enterprise modelling, intelligent integration information,
communication between people and organisations, knowledge discovery in databases and data-mining,
interoperability between systems (data bases, digital libraries), knowledge elicitation from text and the
web, etc. There has also been some significant, theoretically well-founded work in providing
methodological assistance for constructing ontologies.

The goals of the current workshop are twofold:
1. to go into detail in one particular application area: information sharing
2. to continue the further understanding of the field in general from both theoretical and practical

standpoints.

Although the ways that ontologies may be applied are many and varied, a strong recurring theme has
always been on information sharing. The central problem is the heterogeneity of data, information and
knowledge that different people and computers need access to.

In the past, several approaches have been developed to reconcile the heterogeneity of data structures (e.g.
federated databases or existing middleware solutions). Very often, these approaches are not able to satisfy
all needs for the integration of data. Therefore, semantic approaches considering the intended meaning of
terms in a special context or application must be developed. Theoretical and application-oriented
approaches that are developed to achieve semantic interoperability are vital and therefore welcome.
Scientists will have the opportunity to discuss new developments, innovative implementations and new
ideas.

To further our understanding of this key application area, we aim to discuss state-of-the-art technologies,
identify open problems and outline a further program of research to progress our understanding and reap
the benefits of applications in the area of information sharing. To make this a success, we aim to attract
researchers in a variety of application areas concerned with information sharing, to complement the core
ontology researchers.

 3

We received 23 submissions for the workshop. Of these submissions 18 were selected for oral
presentation at the workshop. These proceedings contain long and short papers on the topics presented at
the workshop. These topics can roughly be categorized into five main topics of interest

Foundations and Languages
While applications become more and more important, there are still open questions concerning the nature
of ontologies and the way they should be encoded in order to be useful. Gangemi and others present a
methodology for selecting top-level ontological categories and introduce domain independent relations
for analyzing these categories. Euzenat addresses the problem of handling ontologies that have been
encoded in different languages. He reviews and compares existing approaches for solving this problem
using a model-theoretic framework. The contribution of Stuckenschmidt focuses on the idea of
customizing ontology languages for specific applications and proposes a general approaches that is in line
with the ideas of Euzenat. Wohner uses the term ‘application semantics’ to refer to the problem of using
ontologies for a specific application. He discusses ontology ‘laws’, i.e. special properties of ontologies
and discusses their potential impact on an application. Tamma and Bench-Capon finally present a
formal model to describe meta properties of concepts including which properties are prototypical of a
concept and which are exceptional, the behaviour of properties over time and the degree of applicability
of properties to subconcepts.

Ontology Engineering
A well-known problem connected with the use of ontologies is the acquisition and formalization of
generalized knowledge. Several papers address this problem from different points of view. Boicu and
others demonstrate, how reuse of existing ontologies together with translation and machine leraning
techniques can be used to ease and speed up the knowledge acquisition process. Their approach is
demonstrated using an example from the DARPA RKF programme. Stevens and others describe their
experiences with using the OIL language and associated tools to build a bioinformatics ontology. Based
on a case study they emphasize the assistance provided by the description logic based reasoning service
that can be used to structure the ontology. The work decsribed by Golebiowska and others is concerned
with a different application domain, namely the managemnet of knowledge in complex development
processes. They describe techniques applied in a automobile project and draw some conclusions about the
use of ontologies for knowledge management. Gandon discusses the use of ontologies in multi-agent
information systems focussing on the development process and the use of standards.

Ontology Integration
Quite a number of papers address the problem of integrating different ontologies. The paper of Klein
contains a classification of different tasks and problems related to the combination of different ontologies.
Klein further reviews some existing approaches to ontology integration. Two of the submitted papers
contain concrete approaches for ontology integration: Noy and Musen present Anchor-PROMPT, an
extension of their previously developped system PROMPT. The extension tries to exploit the overall
structure of an ontology in order to determine similar classes. Stumme and Mädche present FCA-Merge,
an approach that combines techniques from natural language processing and formal concept analysis to
derive a lattice of concepts, starting with instances from two ontologies as input. While these
contributions focus on algorithms and systems, the work of Sofia-Pinto and Martins try to develop
guidelines for the process of integaring ontologies, thus supplementing general development
methodologies.

Applications of Ontologies
Today, ontologies are understood well enough to be used in real-life applications. Quite a number of
contributions report or review successful applications of ontologies. Wache and others review existing
work concerned with the use of ontologies for information integration. Their survey of over twenty
existing systems shows that information integration is an interesting application area where significant
results have been achieved. However the paper still points out to open problems worth being discussed.
Kalfoglou and Vargas-Vera present a special module of OntoWeb – an intelligent news broadcast
system – that allows the personalization of information services based on ontologies.

 4

Ontologies and E-Business Applications
In a joint session with the IJCAI-01 Workshop on E-Business and the Intelligent Web, Applications of
ontologies in the E-Business domain are presented. Three contributions were selected for presentation in
this special session. Corcho and Gomez-Perez demonstrate the use of multi-lingual ontologies for the
integration of e-commerce standards used in B2B marketplaces. Flett and Brown report on the activities
at SemanticEdge that are undertaken to develop standardized ontology tools for real-life applications.
Izumi and Yamaguchi finally propose an ambitious methodology for building business applications
based on explicit business models that are integrated using ontologies. The joint session is completed by
three papers that have been submitted to the E-Business and the Intelligent Web Workshop. These papers
are also included in the Proceedings.

Program Committee and Reviewers.

We are grateful to the following members of the international program committee for helping us to make
this a high quality workshop:

• Mike Brown, SemanticEdge, Berlin, Germany
• Jerome Euzenat, INRIA Rhone-Alpes, France
• Dieter Fensel, Free University Amsterdam, The Netherlands
• Nicola Guarino, LADSEB-CNR, Padova, Italy
• Frank van Harmelen, AI Department, Free University Amsterdam, The Netherlands
• James Hendler, DARPA, USA
• Ora Lassila, Nokia Research Center, Boston, USA
• Deborah McGuiness, KSL, Stanford University, USA
• Enrico Motta, KMI, Open University, UK
• Mark Musen, Stanford University, USA
• Christoph Schlieder, Center for Computing Technologies, University of Bremen, Germany
• Steffen Staab, AIfB, University of Karlsruhe, Germany
• Rudi Studer, AIfB, University of Karlsruhe, Germany
• Gerd Stumme, AifB, University of Karlsruhe, Germany
• Ubbo Visser, Center for Computing Technologies, University of Bremen, Germany
• Holger Wache, Center for Computing Technologies, University of Bremen, Germany

We would also like to thank the following additional reviewers:

• Oscar Corcho, Facultad de Informática, Universidad Politécnica de Madrid, Spain
• Mariano Fernandez-Lopez, Facultad de Informática, Universidad Politécnica de Madrid, Spain
• Yannis Kalfoglou, KMI, Open University, UK
• Alexander Mädche, AIfB, University of Karlsruhe, Germany
• Claudio Masolo, Dept. of Electronics and Computer Science, University of Padova, Italy
• Alessandro Oltramari, LADSEB-CNR, Padova, Italy
• Ingo Timm, Center for Computing Technologies, University of Bremen. Germany
• Maria Vargas-Vera, KMI, Open University, UK

 5

Related Workshops of the last years
This Workshop continues the series of ontology-related workshops listed below, in which members of the
organization committee were strongly involved. It thereby adopts ideas and questions, which have been
discussed at various workshops on information integration and sharing also listed below

Workshops on Ontologies:

• Applications of Ontologies and Problem-Solving Methods, ECAI 2000
http://delicias.dia.fi.upm.es/WORKSHOP/ECAI00/index.html

• Ontology Management, AAAI 1999, Orlando, Florida, USA.
http://www.aaai.org/Workshops/1999/ws-99.html

• Ontologies and Problem-Solving Methods: Lessons Learned and Future Trends, IJCAI'99
http://www.swi.psy.uva.nl/usr/richard/workshops/ijcai99/home.html

• Formal Ontologies in Information Systems, FOIS-98, Italy
http://www.ladseb.pd.cnr.it/infor/ontology/FOIS98/FOIS98.html

• Cost Effective Development and use of Ontologies and Problem Solving Methods, KAW'99
http://sern.ucalgary.ca/KSI/KAW/KAW99/

• Applications of Ontologies and Problem-Solving Methods, ECAI'98
http://delicias.dia.fi.upm.es/WORKSHOP/ECAI98/index.html

• Shareable and Reusable Components for Knowledge Systems, KAW'98
http://spuds.cpsc.ucalgary.ca/KAW/KAW98/KAW98Call.html

Workshops on Information Sharing and Integration:

• Workshop “Information Sharing” at the International Symposium on Computer Science for
Environmental Protection (UI 2000) http://www.giub.uni-bonn.de/ui2000/cfp_is.html

• Third Workshop on Intelligent Information Integration at the International Joint Conference on
Artificial Intelligence (IJCAI-99) http://www.aifb.uni-karlsruhe.de/WBS/dfe/iii99.html

• Second International Workshop on Practical Information Mediation, Brokering, and Commerce
on the Internet (I'MEDIAT'99), 1999 http://context.mit.edu/imediat99

• First International Workshop on Information Integration and Web-based Applications &
Services (IIWAS'99), 1999 http://www.te.ugm.ac.id/iiwas99.html

• Second Workshop on Intelligent Information Integration at the European Conference on
Artificial Intelligence (ECAI-98) http://www.tzi.de/grp/i3/ws-ecai98/

• First International Workshop on Practical Information Mediation, Brokering, and Commerce on
the Internet (I'MEDIAT'98), 1998 http://context.mit.edu/imediat98

There have been a couple of other workshops on ontologies before 1998. Prominent examples are
corresponding workshops at ECAI 96 and IJCAI 95. Beyond this, ontologies have been discussed as an
important enabling technology at workshops not directly dedicated to ontologies. Examples are the
Dagstuhl seminar ‘Semantics for the Web’ in March 2000. We can also mention several workshops on
Knowledge Management.

 6

Table of Contents

FULL PAPERS

Ontologies and the Knowledge Acquisition Bottleneck...9

Mihai Boicu, Gheorghe Tecuci, Bogdan Stanescu, Catalin Balan and Elena Popovici

Towards a principled approach to semantic interoperability ..19

Jerome Euzenat

Understanding top-level ontological distinctions ...26

Aldo Gangemi, Nicola Guarino, Claudio Masolo, Alessandro Oltramari

Building and Exploiting Ontologies for an Automobile Project Memory34

Joanna Golebiowska, Rose Dieng-Kuntz, Olivier Corby and Didier Mousseau

myPlanet: an ontology-driven Web-based personalized news service................................44

Yannis Kalfoglou, John Domingue, Enrico Motta, Maria Vargas-Vera,
Simon Buckingham Shum

Combining and relating ontologies: an analysis of problems and solutions53

Michel Klein

Anchor-PROMPT: Using Non-Local Context for Semantic Matching63

Natalya F. Noy and Mark A. Musen

Ontology Integration: How to perform the Process ..71

Helena Sofia Pinto and Joao P. Martins

Building a Reason-able Bioinformatics Ontology Using OIL...81

Robert Stevens, Ian Horrocks, Carole Goble and Sean Bechhofer

Ontology Merging for Federated Ontologies on the Semantic Web91

Gerd Stumme and Alexander Mädche

A knowledge model to support inconsistency management when reasoning

with shared knowledge...100

Valentina Tamma, Trevor Bench-Capon

Ontology-Based Integration of Information - A Survey of Existing Approaches108

H. Wache, T. Voegele, U. Visser, H. Stuckenschmidt, G. Schuster, H. Neumann

and S. Huebner

http://www.tzi.de/buster/IJCAIwp/Papers/euzenat.pdf
http://www.tzi.de/buster/IJCAIwp/Papers/Gangemi.pdf
Heiner Stuckenschmidt

 7

SHORT PAPERS AND STATEMENTS

Experience in Ontology Engineering for a Multi-Agents Corporate Memory System119

Fabien Gandon

Towards Ontology Language Customization...123

Heiner Stuckenschmidt

A Modest Proposal: Reasoning Beyond the Limits of Ontologies126

Wolfgang Wohner

JOINT SESSION WITH THE E-BUSINESS AND THE INTELLENGENT

WEB WORKSHOP

Solving Integration Problems of e-commerce standards and

initiatives through ontological mappings..131

O. Corcho, A. Gómez-Pérez

Issues in Ontology-based Information Integration..141

Zhan Cui, Dean Jones & Paul O’Brien

Extending RDF(S) with Contextual and Definitional Knowledge......................................147

Alexandre Delteil & Catherine Faron-Zucker

Enterprise-Standard Ontology Environments for intelligent e-business...........................157

Alan Flett, Mike Brown

Building Business Applications By Integrating Heterogeneous Repositories

Based on Ontologies ...166

Noriaki Izumi and Takahira Yamaguchi

Engineering Ontologies using Semantic Patterns ..174

Steffen Staab, Michael Erdmann & Alexander Maedche

Full Papers

Heiner Stuckenschmidt

Ontologies and the Knowledge Acquisition Bottleneck

Mihai Boicu, Gheorghe Tecuci, Bogdan Stanescu, Gabriel C. Balan and Elena Popovici
Learning Agents Laboratory, Department of Computer Science, MS 4A5

George Mason University, 4400 University Drive, Fairfax, VA 22030-4444
{mboicu, tecuci, bstanesc, gbalan, epopovic}@gmu.edu, http://lalab.gmu.edu

Abstract

Ontologies and information sharing have a major role to play
in the development of knowledge-based agents and the
overcome of the knowledge acquisition bottleneck. This
paper supports this claim by presenting an approach to
ontology specification, import, and development that is part
of Disciple-RKF. Disciple-RKF is a theory, methodology,
and learning agent shell for the rapid development of
knowledge-based agents by subject matter experts, with
limited assistance from knowledge engineers. The Disciple
approach has been subject of intensive evaluations, as part of
DARPA’s “High Performance Knowledge Bases” and
“Rapid Knowledge Formation” programs, demonstrating
very good results.

1 Introduction
Ontologies and information sharing have a major role to
play in the development of knowledge-based agents and the
overcome of the knowledge acquisition bottleneck
[Buchanan and Wilkins, 1993]. Indeed, building a
knowledge base is too difficult a task to always start from
scratch when a new knowledge-based system needs to be
created. It makes more sense to reuse knowledge from
related knowledge bases than to recreate such knowledge
because this process should, in principle, be easier.
Moreover, this reuse should also facilitate the
communication between the systems because of their shared
knowledge.
 However, knowledge sharing and reuse are in themselves
very complicated processes, especially if the systems
involved have not been specifically designed for this
purpose. How to design a knowledge-based system to
facilitate knowledge sharing or reuse is an open research
question.
 In this paper we present an approach to rapid
development of knowledge-based agents that illustrates
several general methods and ideas related to ontology reuse
and development. This approach is implemented in the
Disciple-RKF learning agent shell.
 Disciple-RKF is a tool for the development of a
knowledge-based agent directly by a subject matter expert,
with limited assistance from a knowledge engineer.
Disciple-RKF contains a general problem solving engine, a
learning engine and an initially empty knowledge base. The

process of developing a Disciple agent for a specific
application relies on importing ontologies from existing
repositories of knowledge, and on teaching Disciple how to
perform various tasks, in a way that resembles how an
expert would teach a human apprentice when solving
problems in cooperation. While teaching Disciple how to
solve problems is a major feature of this system, in this
paper we concentrate on its ontology-related aspects.
 The next section describes the architecture of the
Disciple-RKF shell. An important feature of this
architecture is the structuring of the knowledge base into a
general object ontology that can be imported and a set of
problem solving methods or rules that can be learned from a
subject matter expert.
 Section 3 presents the general domain modeling
methodology used with the Disciple approach. A
characteristic feature of this methodology is that it produces
an initial specification of the object ontology needed for the
application knowledge base being developed. This ontology
specification is the input to the ontology import module that
is described in section 4. This module implements a general
approach to ontology import.
 Section 5 discusses several intelligent assistants that help
in the complex process of extending and improving the
object ontology. Then section 6 presents a practical
approach for eliciting instances from subject matter experts,
to populate the object ontology.
 Section 7 discusses briefly the process of agent teaching
and rule learning. This is continued in section 8 with a
discussion of the ontology learning issue.
 The knowledge base developed through the processes
mentioned above can also be exported into existing
knowledge servers, for further reuse. The knowledge export
method of the Disciple approach is presented in section 9.
 The work reported here has been done as part of the
DARPA's High Performance Knowledge Bases program
[Cohen et al., 1998], and continues as part of the Rapid
Knowledge Formation program [Burke, 1999]. These
programs included intensive experimentation periods that
tested the claim that with the latest AI technology
knowledge bases can be built quickly and efficiently. The
tests required the development of knowledge-based systems
for solving several challenge problems, including the
following ones: 1) the workaround challenge problem:

Heiner Stuckenschmidt
9

 2

planning the repair of damaged bridges and roads [Jones,
1998; Tecuci et al., 2000a]; 2) the COA challenge problem:
critiquing military courses of action [Jones, 1999; Tecuci et
al., 2000b], and 3) the COG challenge problem: identifying
strategic center of gravity candidates in military conflicts
[Gilles et al., 1996]. In section 10 we present experimental
results from these evaluations that support the claims made
in this paper.
 We conclude the paper with a discussion of our future
research related to ontology and information sharing.

2 The Disciple-RKF Learning Agent
Disciple-RKF contains a domain modeling and problem-
solving engine that is based on the general problem (or task)
reduction paradigm of problem solving, and is therefore
applicable to a wide range of domains. In this paradigm, a
problem to be solved (or a task to be performed) is
successively reduced to simpler problems until the problems
are simple enough to be immediately solved. Their solutions
are then successively combined to produce the solution to
the initial problem.
 An important feature of Disciple-RKF is the structuring
of the knowledge base into two distinct components: an
object ontology and a set of reduction and composition
rules. The object ontology is a hierarchical representation of
the objects and types of objects from a particular domain,
such as military or medicine. That is, it represents the
different kinds of objects, the properties of each object, and
the relationships existing between objects. The object
ontology provides a representation vocabulary that is used
in the description of the reduction and composition rules.
Each reduction rule is an IF-THEN structure that expresses
the conditions under which a problem (or task) P1 can be
reduced to the simpler problems (tasks) P11, … , P1n.
Similarly, a composition rule is an IF-THEN structure that
expresses the conditions under which the solutions S11, … ,
S1n of the problems (tasks) P11, … , P1n can be combined
into a solution S1 of P1.
 Dividing the knowledge base into an object ontology and
a set of rules is very important because it clearly separates
the most general part of it (the object ontology), from its
most specific part (the rules). Indeed, an object ontology is
characteristic to an entire domain. In the military domain,
for instance, the object ontology will include descriptions of
military units and of military equipment. These descriptions
are most likely needed in almost any specific military
application. Because building the object ontology is a very
complex task, it makes sense to reuse these descriptions
when developing a knowledge base for another military
application, rather than starting from scratch. In the case of
Disciple-RKF the ontology reuse is further facilitated by the
fact that the objects and the features are represented as
frames, based on the knowledge model of the Open
Knowledge Base Connectivity (OKBC) protocol. OKBC
has been developed as a standard for accessing knowledge
bases stored in different frame representation systems
[Chaudhri et al., 1998]. Therefore, importing an ontology
from an OKBC compliant knowledge server, such as Loom

[MacGregor, 1999], Ontolingua [Farquhar et al., 1996], and
Protégé [Fridman et al., 2000] does not raise translation
problems.
 The rules from the knowledge base are much more
specific than the object ontology. Consider, for instance,
two agents in the military domain, one that critiques courses
of action with respect to the principles of war, and another
that plans the repair of damaged bridges or roads. While
both agents need to reason with military units and military
equipment, their reasoning rules are very different, being
specific not only to their particular application (critiquing vs
planning), but also to the subject matter experts whose
expertise they encode.

3 Domain Modeling and Problem Solving
Domain modeling is the first and the most difficult

activity when developing a knowledge base. First, the
subject matter expert and the knowledge engineer have to
develop a model of the application domain that will make
explicit, at a qualitative and informal level, the way the
subject matter expert performs tasks. In the case of Disciple-
RKF this means modeling the process of performing a
specific task as a sequence of qualitative and informal task
reduction and composition steps. The knowledge engineer
and the subject matter expert will consider a set of specific
tasks that are representative of the set of tasks that the final
agent should be able to perform. Then, for each of these
tasks, they will represent the problem solving process as a
sequence of task reductions (and, possibly, task
composition) steps.

The left hand side of Figure 1, for instance, represents an
example of task reduction modeling from the Course of
Action critiquing domain. The task to perform is “Assess
COA411 with respect to the Principle of Surprise”. To
perform this assessment, the expert needs a certain amount
of information about COA411. This information is obtained
through a series of questions and answers that help reduce
the initial assessment task to simpler and better-defined
ones, until the expert has enough information to perform the
assessment: "Report strength in surprise for COA411
because of countering enemy recon."

A main result of this modeling process is that it identifies
the concepts and the features that need to be part of the
object ontology in order for the agent to perform the type of
reasoning illustrated in Figure 1. Indeed, the reasoning steps
from the left hand side of Figure 1 reveal the need for the
concepts and the features from the right hand side of Figure
1. The collection of all these concepts and feature represent
a specification of the ontology that will have to be
developed. In our approach, this specification guides the
import of relevant ontological knowledge from external
repositories such as CYC [Lenat, 1995], Loom [MacGregor,
1999], or Ontolingua [Farquhar et al., 1996], as will be
presented in the next section.

A second result of the modeling process are the task
reduction steps themselves. They represent problem solving
examples from which the Disciple agent will learn general

Heiner Stuckenschmidt
10

 3

rules through the application of a mixed-initiative
multistrategy learning method [Boicu et al., 2000].

4 Ontology Import
 As presented in the previous section, when the knowledge
engineer works with the subject matter expert to define an
initial domain model, they also identify the type of objects
and features that are needed in the knowledge base (see
Figure 1). These objects and features will focus the process
of importing relevant ontological knowledge from existing
knowledge repositories. The architecture of the ontology
import module of Disciple is represented in Figure 2.
Basically there are three phases of the ontology import

process: 1) mixed-initiative retrieval of potentially relevant
ontological knowledge from an external knowledge
repository; 2) automatic translation of the retrieved
ontological knowledge into an intermediate Disciple
ontology; and 3) mixed-initiative import from the
intermediate Disciple ontology into the final Disciple
ontology. Each of these phases is discussed bellow.
 In general, one of the practical difficulties encountered in
ontology import is the fact that the subject matter expert has
to deal with the additional representation system and tools
of the knowledge repository from where knowledge has to
be imported. To alleviate this problem, for each knowledge
repository from which we are importing knowledge in
Disciple, a standard ontology retrieval interface is
developed. This interface allows the subject matter expert to
retrieve relevant knowledge from different representation
systems without dealing with the tools or representation of
that knowledge repository. In the current Disciple
architecture there are three planned implementations of the
standard interface, one for the CYC system, which already
exists, another one for any OKBC-compliant knowledge
repository, such as Loom [MacGregor, 1999], Ontolingua
[Farquhar et al., 1996], or Protégé [Fridman et al., 2000],
and another one for older Disciple repositories.
 Figure 3 illustrates the process of mixed-initiative
retrieval of relevant ontological knowledge from the CYC
knowledge repository. The subject matter expert introduces
one of the terms needed in the ontology to be developed. A
specialized CYC-searching module retrieves CYC terms
that are likely to correspond to the input term, together with
their documentation and pretty-names. Then the subject
matter expert selects from the retrieved terms those that
actually correspond semantically to the input term. This
process is repeated for all the terms identified as relevant
during domain modeling and results into a set of relevant

I consider
the presence of
surprise actions

I consider
the presence of

deception actions
I consider

enemy
recon

Does the COA assign appropriate
surprise and deception actions?

Assess COA411 wrt Principle of Surprise

Yes

Is an enemy reconnaissance unit present?

Assess surprise for COA411 wrt
countering enemy reconnaissance

Assess surprise for COA411
when enemy recon is present

Is the enemy reconnaissance unit destroyed?

Yes

Report strength in surprise for COA411
because of countering enemy recon

surprise actions
deception actions

enemy
reconnaissance

unit

destroyed unit

surprise action deception action

military action

type

military unit

enemy
friendly

recon unit

destroy action

military action

coa411

coa specification

acts on military unit

coa411

I consider
the presence of
surprise actions

I consider
the presence of

deception actions
I consider

enemy
recon

Does the COA assign appropriate
surprise and deception actions?

Assess COA411 wrt Principle of Surprise

Yes

Is an enemy reconnaissance unit present?

Assess surprise for COA411 wrt
countering enemy reconnaissance

Assess surprise for COA411
when enemy recon is present

Is the enemy reconnaissance unit destroyed?

Yes

Report strength in surprise for COA411
because of countering enemy recon

surprise actions
deception actions

enemy
reconnaissance

unit

destroyed unit

surprise action deception action

military action

type

military unit

enemy
friendly

recon unit

destroy action

military action

coa411

coa specification

acts on military unit

coa411

Figure 1: An illustration of the Disciple modeling process in the COA domain.

Mixed
initiative
Ontology

Import

DISCIPLE
ONTOLOGY

INTERMEDIATE
DISCIPLE

ONTOLOGY

Mixed-initiative ontology retrieval

ONTOLINGUA-KBCYC-KB …

Specialized Ontology Retrieval

…
CYC

Ontology
Retrieval

OKBC
Ontology
Retrieval

Intermediate
OKBC File

Intermediate
CYC File …

Automatic
Ontology Translation

Translation
Engine

OKBC
Rule

Library

CYC
Rule

Library

Mixed
initiative
Ontology

Import

DISCIPLE
ONTOLOGY

INTERMEDIATE
DISCIPLE

ONTOLOGY

Mixed
initiative
Ontology

Import

DISCIPLE
ONTOLOGY

INTERMEDIATE
DISCIPLE

ONTOLOGY

Mixed-initiative ontology retrieval

ONTOLINGUA-KBCYC-KB …

Specialized Ontology Retrieval

…
CYC

Ontology
Retrieval

OKBC
Ontology
Retrieval

Intermediate
OKBC File

Intermediate
CYC File …

Mixed-initiative ontology retrieval

ONTOLINGUA-KBCYC-KB … ONTOLINGUA-KBCYC-KB …

Specialized Ontology Retrieval

…
CYC

Ontology
Retrieval

OKBC
Ontology
Retrieval

Specialized Ontology Retrieval

…
CYC

Ontology
Retrieval

OKBC
Ontology
Retrieval

Intermediate
OKBC File

Intermediate
CYC File … Intermediate

OKBC File
Intermediate

CYC File …

Automatic
Ontology Translation

Translation
Engine

OKBC
Rule

Library

CYC
Rule

Library

Figure 2: The Ontology import module.

Heiner Stuckenschmidt
11

 4

CYC terms, called seed. This seed represents the input to an
automatic retrieval process that extracts from CYC all the
terms that are related to those in the given seed. The
automatic retrieval process is based on a breath-first search
in a graph where the nodes are the terms and the edges are
the CYC axioms that connect them. The result of this
process is the transitive closure of the knowledge related to
the seed, or a subset of it (the user has the possibility to
specify a bound on the depth of the search or to stop the
process at any time). The output of this process is a subset
of the CYC ontology that is potentially relevant for the
Disciple ontology to be developed.
 In the second phase of the ontology import process, the
retrieved CYC ontology is automatically translated into an
intermediate Disciple ontology by a general rule-based
translation engine that uses a CYC-Disciple rule translation
library. Additional rule translation libraries need to be
defined for each type of knowledge repository (e.g. for an
OKBC-compliant knowledge server, for older Disciple
repositories, etc.). Although we are currently using hand-
written libraries of rules, we plan to use Disciple to learn
general translation rules from the specific examples.
 One important issue in ontology translation is the relative
expressive power of the languages between which the
translation takes place (see [Corcho and Gomez-Perez,
2000] for a comparison of the expressiveness of several
ontology specification languages). As mentioned above, the
representation of the Disciple object ontology is based on
the OKBC knowledge model and is usually less powerful
than the representations of the knowledge servers from
which we need to import knowledge. On the other hand, the
purpose of ontology import in Disciple is not to import the
entire knowledge from the knowledge repository, but only
the relevant knowledge that can be represented in the
Disciple object ontology. This is because the primary
purpose of the Disciple object ontology is to serve as a
generalization hierarchy for learning of problem solving
rules. Most of the representational and inferential power of
Disciple does not come from the object ontology, but from
the learned rules which we consider to be much more
domain-specific and even expert-specific, and therefore less
reusable and less likely to require importing.
 The result of this translation process is an intermediate
Disciple ontology which is the input for the third phase of

the ontology import process. This intermediate ontology
contains all the ontological knowledge retrieved from CYC
or another knowledge repository. This is generally a very
large ontology and only a relatively small part of it is likely
to be useful for the final Disciple ontology to be built. The
actual import is therefore taking place from this
intermediate ontology. However, this is a Disciple ontology,
and can be browsed using the Disciple tools. Therefore, the
subject matter expert and the Disciple agent can collaborate
to effectively import from it into the agent’s ontology the
object concepts that are considered useful.
 An important feature of the Disciple approach is that most
of the ontology import task can be done by the subject
matter expert and the agent, with only limited assistance
from the knowledge engineer. Also, the subject matter
expert does not need to deal with the representation or tools
of the external knowledge repository, but only with the
representation of the system to be built (which, in this case,
is Disciple). Finally, to be able to import knowledge from a
new knowledge repository, the knowledge engineer would
only need to implement a retrieval interface like the one in
Figure 3, and to define rules to translate knowledge from the
external repository to Disciple. These components are not
very complicated. All the other components needed are
independent of the external knowledge server.

5 Ontology Development
The imported ontology will generally need to be further
extended and maintained. Disciple-RKF contains a set of
browsers and viewers for easy navigation and visualization
of the ontology. They include hierarchical browsers that
allow the subject matter expert to navigate the ontology
along the generalization relationships between the object
concepts or the object features. There is also an association
browser that allows the visualization of the object ontology
as a network where the objects are the nodes and their
relationships are the links. Navigating through this network
is done by simply clicking on a object which becomes the
center of the screen.
 While visualizing and navigating the ontology are
relatively simple tasks for a subject matter expert,
modifying the ontology is a very complex task. For
instance, let us consider the case where the user wishes to
delete the subclass-of (is-a) relation between the concept B
and the concept A (see Figure 4). This operation will not
generate any inconsistency related to either A or B, but will
generate an inconsistency for the sub-concept C of B. The
concept C has the feature f, and this feature has the domain
A (the domain of a feature represents the set of all objects
that may have that feature). After removing B as sub-
concept of A, the concept C will no longer be in the domain
A of f, and therefore C may no longer have the feature f. As
this example illustrates, a modification in one part of the
ontology may generate subtle inconsistencies in other parts,
and this makes ontology modification a very complex
process.

CYC-KB
Specialized
CYC Access

Interface

Automatic Retrieval
of Potentially Relevant
Knowledge from CYC

Intermediate
CYC Ontology File

CYC Seed Terms

Natural
Language Term

Corresponding
CYC Terms

Figure 3: Mixed-initiative retrieval of
relevant ontological knowledge

Heiner Stuckenschmidt
12

 5

Figure 4: Inconsistency generated by a
modification in the object ontology

In principle, there are two different approaches to ontology
modification. The first one is to allow the user to introduce
inconsistencies in the knowledge base and then to correct
them. This approach is used in the Chimaera system
[McGuinness et al., 2000]. In this approach the modification
of the knowledge base becomes an easy process. However,
removing the inconsistencies is a very difficult process,
which we think to be well beyond the capabilities that can
be expected from a subject matter expert. Therefore we did
not adopt this approach in Disciple. Instead, we adopted an
approach where specialized ontology management assistants
(which implement knowledge engineering methods and
operations) guide and support the user in modifying the
knowledge base such that the ontology will always be in a
consistent state. There are assistants to create object
concepts and features, to change the superconcepts of an
object concept, to specify the value of a feature, to delete
objects and features, to rename or copy them, and others. To
implement these assistants we are developing a hierarchy of
errors and warnings, as well as corresponding error
correction methods.
 The assistants operate according to the following
scenario. The user formulates a goal, for instance to delete a
given object concept. Then the corresponding assistant,
which in this case is the delete assistant, analyses the
knowledge base to determine all the implications of the
operation intended by the user. It then notifies the user on
the consequences of his or her planned action. After that a
mixed initiative process is started to achieve the user's goal
without introducing inconsistencies in the knowledge base.
The assistant will propose specific knowledge management
operations and the user may select the operations and guide
the assistant to perform them.

6 The Input Ontology
After the object ontology is created, the agent can be trained
to solve problems, as will be briefly presented in section 7.
For this, one has to represent a problem in the agent’s
knowledge base. The part of the object ontology that is used
to describe an input problem represents the input ontology.
Let us consider, for instance, the most recent application of
Disciple: identification of strategic center of gravity

candidates in military conflicts. In 1832 Clausewitz
introduced the concept of a center of gravity of a force as
“the hub of all power and movement, on which everything
depends” [Gilles et al., 1996]. In this domain, an input
problem is a description of a conflict scenario, such as the
World War II planned invasion of Okinawa by the Allied
forces in 1945. This includes the specification of the goals
of the opposing forces, of the relevant factors (such as
economic and geographical factors), and of the dominant
factors (such as the composition of forces, the controlling
and governing elements, and the type of civilization). Only
after all this information is provided can Disciple reason
about the potential centers of gravity of the opposing forces.
From an ontology point of view, specifying an input
problem (a scenario) consists of defining instances of the
concepts from the input ontology, together with their
features. This is not a trivial task for a subject matter expert.
Therefore specialized elicitation forms are used to facilitate
it, such as those from the Protégé system. For Disciple, we
have developed a Scenario Elicitation module that allows
the subject matter expert to create and update a scenario
using a simple interface, which is illustrated in figure 5. The
left hand side of the interface is a tree of titles and subtitles,
similar to a table of contents. Each title (or node)
corresponds to a certain type of information. When the
expert clicks on such a node, Disciple requests relevant
information about that node in the right hand side of the
screen. If the expert has previously provided this
information he can review or update it. The subject matter
expert can go to any entry in this table of contents, to
provide or update the information corresponding to that
entry. Some information provided by the expert may lead to
the creation of additional nodes in the left hand side of the
interface. For instance, when the expert defined Japan-1943
and US-1943 as opposing forces, several nodes have been
introduced in the left hand side of the interface.
 The main idea of the implementation of the scenario
elicitation module is to associate elicitation scripts with the
concepts from the input ontology. The script associated with
a concept plays multiple roles: it specifies how an instance
of that concept is created; what features of the instance need
to be elicited; how the dialog with the user takes place, and
what graphical components are used in this dialog. In the
current version of Disciple these scripts have to be
developed by a knowledge engineer after the input ontology
has been created. A single concept from the ontology is also
marked as the starting concept for the scenario elicitation. In
the example from figure 5, the starting concept is
“Scenario”. The right part of figure 5 shows the dialog
between the system and the user. Once the user introduced
the name of the scenario (“Okinawa”), the system created an
instance of the “Scenario” concept. Then the script to elicit
the features of the Okinawa scenario was activated. To elicit
a specific feature, Disciple also uses the information from
the ontology about that feature, such as the possible values
and its cardinality. When the subject matter expert specifies
a value of a feature that is an instance of some other
concept, the script of that concept is activated and a new

Initial State Modified State

f
domain

A

f 7C

A f
domain

A

C can no longer
have the feature
f because it is no

longer in the
domain of f

B

A

f 7C

B

Heiner Stuckenschmidt
13

 6

entry is added to the table of contents for the features of that
instance. Figure 6 shows a fragment of the elicitation script
for the concept “Scenario.” This script requires the user to
specify the opposing forces as illustrated at the bottom right
of figure 5. Figure 7 shows the corresponding instances and
relationships that have been introduced in the ontology.

7 Agent Teaching and Rule Learning
After an object ontology has been developed, the subject
matter expert starts teaching the agent how to solve
problems through successive reductions and compositions.
This process is explained in [Tecuci et al., 2000b]. Here we
only briefly review it in order to have a complete
description of the Disciple methodology. In essence, the
subject matter expert starts from the domain models that

<object>

Scenario

Force

Opposing_force

Elicitation Script for the instances of the concept: Scenario
. . .
Property: detailed-name

Prompt: “Provide a few words summarizing “ <current-instance>
Control-type: single-line

. . .
Property: has_as_opposing_force

Prompt: “Name the opposing forces in “<current-instance>
Control-type: multiple-names
Other ontology actions: <property-value> instance-of Opposing_force

. . .

subclass-of

subclass-of

subclass-of

<object>

Scenario

Force

Opposing_force

Elicitation Script for the instances of the concept: Scenario
. . .
Property: detailed-name

Prompt: “Provide a few words summarizing “ <current-instance>
Control-type: single-line

. . .
Property: has_as_opposing_force

Prompt: “Name the opposing forces in “<current-instance>
Control-type: multiple-names
Other ontology actions: <property-value> instance-of Opposing_force

. . .

subclass-of

subclass-of

subclass-of

Figure 5: An interface for scenario elicitation

<object>

Scenario

Okinawa

Force

Opposing_force

subclass-of

subclass-of

subclass-of

instance-of

Japan-1945has_as_opposing_force
instance-of

US-1945has_as_opposing_force

instance-of

detailed-name
“WW II invasion of the island of Okinawa”

<object>

Scenario

Okinawa

Force

Opposing_force

subclass-of

subclass-of

subclass-of

instance-of

Japan-1945has_as_opposing_force
instance-of

US-1945has_as_opposing_force

instance-of

detailed-name
“WW II invasion of the island of Okinawa”

Figure 7: The result of the elicitation script from figure 6Figure 6: Fragment of the elicitation script for “Scenario”

Heiner Stuckenschmidt
14

 7

have been previously prepared in collaboration with the
knowledge engineer, as presented in section 3. The left hand
side of Figure 1 shows an example of the task-reduction
modeling of the problem solving process. Each abstract task
reduction step (consisting of a task, a question, an answer,
and a subtask) is expanded into a training example for the
Disciple agent, as illustrated in Figure 8. Each task is now
represented by a name phrase and a set of feature-value
pairs. The answers are also made more specific. From each
such task reduction example the agent learns a general task
reduction rule that will allow it to apply a similar task
reduction operation in future problem-solving situations.
For instance, the rule learned from the second task reduction
step in figure 8 is represented in figure 9. The process of
learning such a general task reduction rule is a mixed-
initiative one. First the subject matter expert and the agent
collaborate in finding a formal justification of why the
current task reduction is correct. Then, based on the found
justification, the agent generalizes the example into a task
reduction rule. As shown in figure 9, the learned rule is an
IF-THEN structure with two applicability conditions, a
plausible lower bound condition and a plausible upper
bound condition. These two conditions represent a plausible
version space for the exact applicability condition of the
rule. Through further learning, the two conditions converge
toward one another and toward this exact condition. An
important thing to notice is that the rule’s conditions are
expressed in term of the concepts and the features from the
object ontology. In general, the rule’s conditions could be

much more complex expressions than the ones illustrated in
figure 9.

8 Ontology Learning
Ontology learning is becoming an important research issue
[Staab et al. 2000]. It also plays an important role in the
Disciple agent development methodology. During the
process of defining or explaining specific task reductions or
compositions, when training the agent, the subject matter
expert may need to refer to objects or object features that are
not yet part of the ontology. From these specific instances
Disciple-RKF will learn general ontological elements. For
example, the subject matter expert may point to a specific
feature of an object, as being responsible for the failure of a
certain task reduction step. In such a case the agent will
learn a general object feature definition from that specific
feature. Any object feature definition specifies a domain (a
concept that represents the set of objects that could have that
feature) and a range (another concept that represents the set
of possible values of that feature).
 Disciple-RKF generates a plausible version space for the
domain concept, and another one for the range concept.
These version spaces are similar to the plausible version
space condition of the rule shown in figure 9. After the
versions spaces are generated, Disciple initiates a feature
refinement experimentation session with the goal of
reducing the plausible version spaces of the feature’s
domain and range.

Yes, RED-CSOP1 is destroyed by DESTROY1

Is the enemy reconnaissance unit destroyed?

Is an enemy reconnaissance unit present?

Does the COA assign appropriate
surprise and deception actions?

Assess surprise wrt countering enemy reconnaissance
for-coa COA411

Assess surprise when enemy recon is present
for-coa COA411
for-unit RED-CSOP1
for-recon-action SCREEN1

Yes, RED-CSOP1 which is performing
the reconnaissance action SCREEN1

Report surprise in security because of countering enemy recon
for-coa COA411
for-unit RED-CSOP1
for-recon-action SCREEN1
for-action DESTROY1
with-importance “high”

I consider enemy reconnaissance

Assess COA wrt Principle of Surprise
for-coa COA411

R
$AC

W
PO

S-001

R
$ASW

C
ER

-001

R
$ASW

ER
IP-002

Rule
Learning

Rule
Learning

Rule
Learning

Yes, RED-CSOP1 is destroyed by DESTROY1

Is the enemy reconnaissance unit destroyed?

Is an enemy reconnaissance unit present?

Does the COA assign appropriate
surprise and deception actions?

Assess surprise wrt countering enemy reconnaissance
for-coa COA411

Assess surprise when enemy recon is present
for-coa COA411
for-unit RED-CSOP1
for-recon-action SCREEN1

Yes, RED-CSOP1 which is performing
the reconnaissance action SCREEN1

Report surprise in security because of countering enemy recon
for-coa COA411
for-unit RED-CSOP1
for-recon-action SCREEN1
for-action DESTROY1
with-importance “high”

I consider enemy reconnaissance

Assess COA wrt Principle of Surprise
for-coa COA411

R
$AC

W
PO

S-001

R
$ASW

C
ER

-001

R
$ASW

ER
IP-002

Rule
Learning

Rule
Learning

Rule
Learning

Rule
Learning

Rule
Learning

Figure 8: Sample teaching and learning scenario

Heiner Stuckenschmidt
15

 8

9 Knowledge Base Export
 Figure 10 illustrates the synergistic relationship between
the Disciple-RKF agent development tool and an external
knowledge server, such as CYC. To develop a knowledge-
based agent with Disciple-RKF one starts by importing an
initial object ontology from the CYC knowledge server, as
discussed in section 4. Then the subject matter expert
interacts with Disciple, teaching it to solve problems, and
thus developing the knowledge base of Disciple to
incorporate the expertise of the subject matter expert. After
the Disciple knowledge base has been developed, it is
exported back into CYC, as a separate CYC microtheory.
This is an automatic translation process that does not raise
any problems because CYC's knowledge representation is
more powerful than that of Disciple-RKF. Then this CYC
microtheory can be semantically integrated with the rest of
the CYC knowledge repository, by the developers of CYC.
This semantic integration is a difficult task, but it is
facilitated in this case by the fact that the initial Disciple
ontology has been imported from CYC, to begin with.
 We have performed a preliminary experiment during
which the knowledge base of Disciple corresponding to the
Course of Action challenge problem has been automatically
translated into a CYC microtheory. Then, using its inference
engine, CYC generated the same critiques of a course of
action as Disciple. The integration model described above
can be adapted for any other knowledge server, with only
minor modifications. For instance, in the case of an OKBC
knowledge server, only the object ontology of Disciple will
be exported because the rules cannot be represented using
the OKBC frame-based knowledge model.

10 Experimental Results
Successive versions of the Disciple approach and other
competing knowledge base development approaches have
been evaluated in several intensive studies requiring the
rapid development and maintenance of knowledge bases for
solving the workaround challenge problem (consisting of
planning the repair of damaged bridges and roads [Jones,
1998]), and the COA challenge problem (consisting of
generating critiques of military courses of action [Jones,
1999]). These evaluations were performed by Alphatech, as
part of the DARPA’s HPKB program, and involved, in
addition to Disciple, the following teams and approaches: 1)
Teknowledge and Cycorp that used the CYC system [Lenat,
1995].

Figure 9: Sample task reduction rule learned by Disciple

R$ASWCER-001
IF the task to accomplish is:
ASSESS-SURPRISE-WRT-COUNTERING-ENEMY-RECONNAISSANCE

FOR-COA ?O1

Question: Is an enemy reconnaissance unit present?
Answer: Yes, ?O2 which is performing the reconnaissance

action?O3.

Then accomplish the task:
ASSESS-SURPRISE-WHEN-ENEMY-RECON-IS-PRESENT

FOR-COA ?O1
FOR-UNIT ?O2
FOR-RECON-ACTION ?O3

Plausible Upper Bound Condition:
?O1 IS COA-SPECIFICATION-MICROTHEORY
?O2 IS MODERN-MILITARY-UNIT--DEPLOYABLE

SOVEREIGN-ALLEGIANCE-OF-ORG ?O4
TASK ?O3

?O3 IS INTELLIGENCE-COLLECTION--MILITARY-TASK
?O4 IS RED--SIDE

Plausible Lower Bound Condition:
?O1 IS COA411
?O2 IS RED-CSOP1

SOVEREIGN-ALLEGIANCE-OF-ORG ?O4
TASK ?O3

?O3 IS SCREEN1
?O4 IS RED--SIDE

Justification:
?O2 SOVEREIGN-ALLEGIANCE-OF-ORG ?O4 IS RED--SIDE
?O2 TASK ?O3 IS INTELLIGENCE-COLLECTION--MILITARY-TASK

R$ASWCER-001
IF the task to accomplish is:
ASSESS-SURPRISE-WRT-COUNTERING-ENEMY-RECONNAISSANCE

FOR-COA ?O1

Question: Is an enemy reconnaissance unit present?
Answer: Yes, ?O2 which is performing the reconnaissance

action?O3.

Then accomplish the task:
ASSESS-SURPRISE-WHEN-ENEMY-RECON-IS-PRESENT

FOR-COA ?O1
FOR-UNIT ?O2
FOR-RECON-ACTION ?O3

Plausible Upper Bound Condition:
?O1 IS COA-SPECIFICATION-MICROTHEORY
?O2 IS MODERN-MILITARY-UNIT--DEPLOYABLE

SOVEREIGN-ALLEGIANCE-OF-ORG ?O4
TASK ?O3

?O3 IS INTELLIGENCE-COLLECTION--MILITARY-TASK
?O4 IS RED--SIDE

Plausible Lower Bound Condition:
?O1 IS COA411
?O2 IS RED-CSOP1

SOVEREIGN-ALLEGIANCE-OF-ORG ?O4
TASK ?O3

?O3 IS SCREEN1
?O4 IS RED--SIDE

Justification:
?O2 SOVEREIGN-ALLEGIANCE-OF-ORG ?O4 IS RED--SIDE
?O2 TASK ?O3 IS INTELLIGENCE-COLLECTION--MILITARY-TASK

Knowledge
Server

(e.g. CYC)

Disciple
RKF

KB

Knowledge-based Assistant

Initial KB

SME KB

Import Ontology

Export Ontology and Rules

Knowledge
Server

(e.g. CYC)

Disciple
RKF

KB

Knowledge-based Assistant

Initial KB

SME KB

Import Ontology

Export Ontology and Rules

Figure 10: The synergy between
Disciple-RKF and the knowledge servers

Heiner Stuckenschmidt
16

 9

They achieved rapid knowledge base development through
extensive re-use of CYC’s carefully developed ontology,
wide-ranging common-sense knowledge, and general
inferential capabilities. 2) The EXPECT group from USC-
ISI. This group developed knowledge bases with wide
problem coverage and expert-level performance, using the
knowledge acquisition tools of EXPECT that assist a
knowledge engineer in debugging and refining a knowledge
base [Kim and Gil, 1999]. 3) The Loom/PowerLoom group
from USC-ISI that used novel case-based reasoning
techniques for the COA challenge problem, in conjunction
with the PowerLoom [MacGregor, 1999] representation
system and an imported ontology. 4) The AIAI group from
the University of Edinburgh that developed a high
performance knowledge base for the workaround challenge
problem by designing a planning ontology in CYC.

In these experiments all the approaches demonstrated
very good results and relative technology strengths.
However, the Disciple approach has achieved the highest
rates of knowledge acquisition and the best problem solving
performance, while the generated solutions and
justifications where judged as being very intelligible.

The first evaluation concerned the workaround challenge
problem and lasted for 17 days. At the beginning of the
evaluation Disciple had an incomplete knowledge base
consisting of 723 object concepts, 100 tasks, and 121 task
reduction rules. Out of the 723 concepts 126 were imported
from LOOM (an OKBC compliant knowledge server). They
included elements of the military unit ontology, as well as
various characteristics of military equipment (such as their
tracked and wheeled military load classes). The extent of
knowledge import was more limited than it could have been
because the LOOM’s ontology was developed at the same
time as that of Disciple, and we had to define concepts that
have later been also defined in LOOM and could have been
imported. In any case, importing those concepts proved to
be very helpful, and has demonstrated the ability to reuse
previously developed knowledge.During the 17 days of the
evaluation, the knowledge base of Disciple was increased
with 147 object concepts, 104 tasks, and 87 complex task
reduction rules. The performance of the developed
knowledge-based agent was judged by the evaluators as
being at the level of a human expert.

The second evaluation concerned the COA challenge
problem and lasted 8 days. In this case the initial ontology
was imported from CYC. During the evaluation period the
knowledge base of Disciple was increased by 46%, which
represents an even higher daily rate of knowledge
acquisition than in the first experiment. Also, in addition to
generating most of the critiques expected by the evaluators,
Disciple generated many new critiques. The final
knowledge base contained 801 concepts, 444 object and task
features, 360 tasks and 342 rules. Also, each input problem
(the description of a course of action) was represented with
around 1500 facts. Currently Disciple is further developed
and evaluated at the US Army War College, being used by
subject matter experts to develop knowledge bases for the
identification of strategic center of gravity candidates.

11 Conclusions and Future Research
We have presented an approach to rapid development of
knowledge-based agents by subject matter experts that is
based on ontology reuse and development.
 In addition to the further development of the methods
presented in this paper, future research on ontologies and
information sharing will consist in extending the Disciple
approach (Tecuci, 1998) and the supporting tools to allow
several experts to collaborate in building different parts of a
larger knowledge base. In particular, we plan to develop a
distributed architecture for collaborative knowledge base
development, as shown in Figure 11.

Figure 11: Collaborative knowledge base development

The right hand side of Figure 11 represents a team of subject
matter experts that collaborate to rapidly build an integrated
knowledge base. Each individual subject matter expert
works with a personal Disciple-RKF agent to build a part of
the integrated knowledge base. These separately developed
knowledge bases are periodically integrated into a single
knowledge base by the mediator team that includes a
knowledge engineer, a subject matter expert, and a Disciple
agent specialized in knowledge integration. The mediator
team not only integrates the knowledge bases, but also
mediates the collaboration between all the subject matter
experts.

Several features of the proposed approach facilitate
collaborative knowledge base development. First, the
knowledge base is structured into an object ontology that
defines the terms of the representation language, and set of
task reduction rules that are expressed using these terms. As
a consequence, the subject matter experts have to agree on
the shared object ontology but they can develop the rules
independently.
 Second, the knowledge base to be built is divided into
parts that are as independent as possible, with each subject
matter expert responsible for the development of a different
part. The mediator team coordinates the partitioning and the
integration of the knowledge base, and facilitates a
consensus among the subject matter experts concerning the
developed knowledge that is to be shared.

Mediator Team
Subject Matter Expert
Knowledge Engineer

Disciple-RKF
Mediator Assistant

Mediated KB

Local KB

Disciple-RKF
Assistant SME

Local KB

Disciple-RKF
Assistant SME

Local KB

Disciple-RKF
Assistant SME

Local KB

Disciple-RKF
Assistant SME

Heiner Stuckenschmidt
17

 10

Third, the integrated knowledge base consists of a
hierarchy of component knowledge bases that are each
internally consistent, but may contain portions that
supersede or contradict portions from other knowledge
bases. This corresponds to the fact that the knowledge
model of a subject matter expert is internally consistent but
it may contain knowledge that contradicts aspects of the
knowledge model of another subject matter expert. This
knowledge base organization not only facilitates knowledge
acquisition from multiple subject matter experts, but also
leads to a knowledge base that can provide solutions to
problems from different points of view.

Acknowledgements
This research has been performed in the GMU Learning
Agents Laboratory and was sponsored by the Defense
Advanced Research Projects Agency (DARPA), Air Force
Research Laboratory, Air Force Material Command, USAF,
under agreement number F30602-00-2-0546, by the Air
Force Office of Scientific Research (AFOSR) under grant
no. F49620-00-1-0072, and by the US Army. The U.S.
Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any
copyright annotation thereon. Dorin Marcu, Michael
Bowman, Cristina Cascaval, and other members of the
LALAB have contributed to successive versions of Disciple.
In addition to Michael Bowman, Tony Lopez and Jim
Donlon, from the Center for Strategic Leadership of the US
Army War College, have contributed to the application of
Disciple to the center of gravity challenge problem. The
anonymous reviewers of this paper provided insightful
comments that helped us to improve it.

References
[Boicu et al., 2000] Mihai Boicu, Gheorghe Tecuci, Dorin

Marcu, Michael Bowman, Ping Shyr, Florin Ciucu, and
Cristian Levcovici. Disciple-COA: From Agent
Programming to Agent Teaching. In Proceedings of the
Seventeenth International Conference on Machine
Learning, Stanford, CA, Morgan Kaufmann, 2000.

[Buchanan and Wilkins, 1993] Bruce G. Buchanan and
David C. Wilkins (editors). Readings in Knowledge
Acquisition and Learning: Automating the Construction
and Improvement of Expert Systems. Morgan Kaufmann,
San Mateo, CA., 1993

[Burke, 1999] Murray Burke. Rapid Knowledge Formation
(RKF) Program Description, http://dtsn.darpa.mil/iso/
index2.asp?mode=9

[Chaudhri et al. 1998] Vinay K. Chaudhri, Adam Farquhar,
Richard Fikes, Daniel P. Park, and James P. Rice. OKBC:
A Programmatic Foundation for Knowledge Base
Interoperability. In Proceedings of the Fifteenth National
Conference on Artificial Intelligence, Menlo Park, CA:
AAAI Press, pages 600 – 607, 1998.

[Cohen et al., 1998] Paul Cohen, Robert Schrag, Eric Jones,
Adam Pease, Albert Lin, Barbara Starr, David Gunning
and Murray Burke. The DARPA High-Performance Know-
ledge Bases Project, AI Magazine, 19(4), 25-49, 1998.

[Corcho and Gomez-Perez, 200] Oscar Corcho and
Asuncion Gomez-Perez. Evaluating Knowledge
Representation and Reasoning Capabilities of Ontology
Specification Languages. In Proceedings of the ECAI
2000 Workshop on Application of Ontologies and
Problem-Solving Methods, Berlin, 2000.

[Farquhar et al., 1996] Adam Farquhar, Richard Fikes, and
James Rice. The Ontolingua Server: a Tool for
Collaborative Ontology Construction. In Proceedings of
the Knowledge Acquisition for Knowledge-Based Systems
Workshop, Banff, Alberta, Canada, 1996.

[Fridman et al., 2000] Natalya Fridman Noy, Ray W.
Fergerson, Mark A. Musen. The Knowledge Model of
Protégé-2000: Combining Interoperability and Flexibility.
In Proceedings of the European Knowledge Acquisition
Workshop, pages 17-32, 2000.

[Gilles et al., 1996] MAJ Phillip Kevin Giles, CPT Thomas
P. Galvin. Center of Gravity: Determination, Analysis,
and Application, U.S. Army War College, Carlisle
Barracks, PA, 1996.

[Jones, 1998]. Eric Jones. HPKB Year1 End-to-End Battle-
space Challenge Problem Specification. Burlington, 1998.

[Jones, 1999]. Eric Jones. HPKB Course of Action Chal-
lenge Problem Specification. Alphatech, Burlington, 1998.

[Kim and Gil, 1999]. Jihie Kim and Yolanda Gil. Deriving
Expectations to Guide Knowledge Base Creation. In
Proc. of the Sixteenth National Conference on Artificial
Intelligence,235-241, Menlo Park, CA: AAAI Press, 1999.

[Lenat, 1995] Douglas B. Lenat. CYC: A Large-scale
investment in knowledge infrastructure. In
Communications of the ACM 38(11): 33-38, 1995.

[MacGregor, 1999] Robert MacGregor. Retrospective on
LOOM. Available online: http://www.isi.edu/isd/LOOM/
papers/macgregor/Loom_Retrospective.html, 1999.

[McGuinness et al., 2000] Deborah L. McGuinness, Richard
Fikes, James Rice, Steve Wilder. The Chimaera Ontology
Environment. In Proceedings of the Seventeenth National
Conference on Artificial Intelligence, Menlo Park, CA,
AAAI Press, pages 1123-1124, 2000.

[Staab et al. 2000] Steffen Staab, Alexander Maedche,
Claire Nedellec, and Peter Wiemer-Hastings (eds.)
Proceedings of the First Workshop on Ontology Learning
OL'2000, Berlin, Germany, August 25, 2000.

[Tecuci, 1998] Gheorghe Tecuci. Building Intelligent
Agents: An Apprenticeship Multistrategy Learning
Theory, Methodology, Tool and Case Studies. London,
England: Academic Press, 1998.

[Tecuci et al. 2000a] Gheorghe Tecuci, Mihai Boicu,
Kathryn Wright, Seok-Won Lee, Dorin Marcu, and
Michael Bowman. A Tutoring Based Approach to the
Development of Intelligent Agents. In Teodorescu, H.N.,
Mlynek, D., Kandel, A. and Zimmermann, H.J. (editors).
Intelligent Systems and Interfaces, Kluwer Academic
Press. 2000.

[Tecuci et al. 2000b] Gheorghe Tecuci, Mihai Boicu,
Michael Bowman, Dorin Marcu, Ping Shyr, and Cristina
Cascaval. 2000 "An Experiment in Agent Teaching by
Subject Matter Experts," International Journal of Human-
Computer Studies 53: 583-610.

Heiner Stuckenschmidt
18

Towards a principled approach to semantic interoperability

Jérôme Euzenat
INRIA Rhône-Alpes

655 avenue de l’Europe, 38330 Montbonnot Saint-Martin (France)

Jerome.Euzenat@inrialpes.fr

Abstract

Semantic interoperability is the faculty of interpret-
ing knowledge imported from other languages at
the semantic level, i.e. to ascribe to each imported
piece of knowledge the correct interpretation or set
of models. It is a very important requirement for
delivering a worldwide semantic web. This paper
presents preliminary investigations towards devel-
oping a unified view of the problem. It proposes
a definition of semantic interoperability based on
model theory and shows how it applies to already
existing works in the domain. Then, new applica-
tions of this definition to family of languages, on-
tology patterns and explicit description of seman-
tics are presented.
Keywords: Semantic interoperability, ontology
sharing, knowledge transformation, ontology pat-
terns.

1 Introduction
The vision of a “semantic web”[Berners-Lee, 1998; Berners-
Leeet al., 2001] is realized by the annotation of web pages,
containing informal knowledge as we know it now, with for-
mal knowledge. These annotations can reference each other
and depend on ontologies and background knowledge. Tak-
ing advantage of the semantic web requires to be able to
gather, compare, transform and compose the annotations. For
several reasons (legacy knowledge, ease of use, heterogeneity
of devices and adaptability, timelessness), it is not likely that
this formal knowledge will be encoded in the very same lan-
guage. The interoperability of formal knowledge languages
must then be studied in order to interpret the knowledge ac-
quired through the semantic web.

The problem of comparing theory is well known but it
takes a fantastic importance in the context of the semantic
web.

Semantic interoperability is the faculty of interpreting the
annotations at the semantic level, i.e. to ascribe to each im-
ported piece of knowledge the correct interpretation or set of
models. It will be further characterized below by considering
that the final transformed knowledge must have the transfor-

mation of the consequences of the initial knowledge as con-
sequences.

There are several approaches to semantic interoperability
[Masolo, 2000; Ciocoiu and Nau, 2000; Stuckenschmidt and
Visser, 2000]. Although, they are not stated in the same
terms, we believe that there can be a unified view of compari-
son and transformation at a semantic level that can be applied
to these approaches.

We first provide some definitions of the concepts at work
here (language, representation, semantics and transforma-
tion) and a classification of possible interoperability require-
ments. Then the already available approaches to semantic
interoperability are considered and rephrased in the context
of model-theory. Afterwards, we turn to consider three possi-
ble approaches for the semantic web (and especially when the
languages are different): family of languages, ontology pat-
terns and explicit semantics representation. We show how the
contribution of these techniques to semantic interoperability
can be expressed in comparable terms.

2 Principles
2.1 Language, semantics, transformation
For the simple purpose of the present paper, a languageLwill
be a set of expressions. A representation (r) is a set of expres-
sions inL. No distinction will be made between ontologies,
background knowledge and formal annotations: they will all
be representations.

There have been many studies of knowledge representation
language semantics[Nebel, 1990]. The semantics is gener-
ally defined in model theory by using simple set theory. Usu-
ally, an interpretation functionI, to a domain of interpretation
D, is defined iteratively over the structure of the languageL.
The interpretation function is compositional, i.e. it builds the
meaning of an expression from that of its sub-expressions (or
components). The expressionsδ in a languageL are said to
be satisfied by interpretationI if they meet a certain condi-
tion (usually thatI(δ) belongs to a distinguished subset of
the domain). In this framework, a model of a set of assertions
r ⊆ L, is an interpretationI satisfying all the assertions in
r. An expressionδ is said to be a consequence of a set of
expressionr if it is satisfied by all models ofr (this is noted
r |=L δ).

A computer has to find if a particular expression (e.g. a

Heiner Stuckenschmidt
19

query) is the consequence of a set of expression (e.g. a
knowledge base). To that extent, executable systems (called
provers) are developed which can be grounded on inference
rules or more classical programs. From a set of axioms
r ⊆ L, they establish if the expressionδ ∈ L is a theo-
rem (notedr `L δ). These provers are said correct if any
theorem is a consequence of the axioms and complete if any
consequence of the axioms is a theorem. However, depend-
ing on the language and its semantics, the decidability (i.e.
the existence of such provers) is not ensured and, even in this
event, the algorithmic complexity of such provers can be pro-
hibitive.

Hence, system developers must establish a trade-off be-
tween expressivity and complexity of representation lan-
guages or completeness of the prover. This choice has led
to the definition of languages with a low expressivity (like
simple conceptual graphs or object-based representations) or
modular family of representation languages (like description
logics). As a consequence, there are many different repre-
sentations languages that can be used in the context of the
semantic web. Therefore, if some annotation, ontology or
background knowledge is found on the semantic web, it might
have to be translated from a language to another.

Transformations are applied to representations in order to
import them from one language to another. The transforma-
tions are functionsτ : L −→ L′ (L′ can beL). These trans-
formations must be computable (and so they are syntactic
mechanisms) and in the context of the semantic web, they can
be implemented asXSLT (or a similar language) stylesheets
[James Clark (ed.), 1999]. These transformations can be com-
posed into more complex transformations.

We will consider here the problem of ensuring the inter-
operability of representations through transformations. There
are several levels at which interoperability can be accounted
for.

2.2 Levels of interoperability
When trying to assess the understanding of an expression
coming from a system by another one, there are several pos-
sible levels of interoperability:

• encoding: being able to segment the representation in
characters;
• lexical: being able to segment the representation in

words (or symbols);
• syntactic: being able to structure the representation in

structured sentences (or formulas or assertions);
• semantic: being able to construct the propositional

meaning of the representation;
• semiotic: being able to construct the pragmatic meaning

of the representation (or its meaning in context).

This layered presentation is arguable in general; it is not as
strict as it seems. It makes sense because each level cannot
be achieved if the previous ones have not been completed. In
the context of the semantic web, it can be assumed that the
three first levels can be easily achieved by the use ofXML or
RDF.

The properties of transformations can be set at these var-
ious levels. There are many kinds of properties (e.g. at the

syntactic level we could care of just preserving the elements,
or their ordering or both). Here are some of their expressions:

• lexical: given a mappingσ between terms of a particular
language (that can be the terms in a structured formal
language or the lexical units of a natural language). For
instance, one can ask that this mapping preservessynsets
(connected components of the synonymy graph,S), i.e.
∀t, t′ ∈ L, S(t) = S(t′)⇒ S(σ(t)) = S(σ(t′)).

• syntactic: Order-preservation, for instance, will require
that, given two order relations≤L and≤L′ , if r ≤L s,
thenτ(r) ≤L′ τ(s).

• semantic: Consequence preservation requires that

∀δ, r |=L δ ⇒ τ(r) |=L′ τ(δ);(1)

It is noteworthy that consequence preservation is not
trivially granted by syntactic preservation, e.g. addition
in the structure. As a matter of fact, adding a class or
an attribute in a frame-based knowledge base is struc-
ture preserving (it preserve both elements and their or-
der) though the second addition is not consequence pre-
serving.

• semiotic: interpretation preservation (letΣ be the inter-
pretation rules and̀�i the interpretation relation for per-
soni, ∀δ,∀i, j, r,Σ �̀i δ ⇒ τ(r), τ(Σ) �̀j τ(δ))). This
consists in mapping signs to equivalent signs with re-
spect to the expected interpretation of a reader. These
aspects can be related to rhetoric[Rutledgeet al., 2000]
or pragmatics (i.e. properties not directly relevant to
a compositional view of semantics but which interfere
with sheer semantic interpretation).

We do not pretend that these properties must be satisfied
in the semantic web. There can be situations where only
some moderate preservation of meaning or content is suf-
ficient. However, characterizing the exact properties of the
available transformations will be very useful.

The present paper will only consider semantic interoper-
ability and especially how the formula 1 can be satisfied in
various contexts. This scheme, in which a first statement in
a system constrains another one in another system, is neces-
sary for relating statements across languages while pure log-
ical statements can be used (e.g. in modal logics of knowl-
edge[Faginet al., 1995]) when the language is shared across
agents.

3 Related work
In the context of first-order logic (FOL), Claudio Masolo
[Masolo, 2000] has investigated the relations between logi-
cal theories. He first considers the deductive closure of sets
of axioms (Cn(r) = {δ|r `FOL δ}) and the relationships
between these representations derived from the five possi-
ble containment relations on their deductive closure. Since
this can only be applied to theories with coinciding vocab-
ularies, he goes on by considering the definitional extension
(notedr′|r) of a representationr′, by the definition of the
terms (predicate and function symbols) of a representationr,

Heiner Stuckenschmidt
20

in functions of the terms inr′. In such a case, importing a rep-
resentation from an ontology into another is simplyr′|r ∪ r.
And this warrants that:

∀δ ∈ FOL, r |=FOL δ ⇒ r′|r ∪ r |=FOL δ

So, consequence is trivially preserved (the importance of this
notion in [Masolo, 2000] is related to inter-expressibility of
theories). Of course, there can be no definitional extension of
r′ by r.

Claudio Masolo also considers translations (φ) which are
transformations preserving the structure of formulas (i.e.
atomic formulas are replaced by arbitrary formulas and the
rest of the transformation is defined by induction on the struc-
ture of formulas) and renaming (σ) which are translations
only affecting the name of predicates and functions. These
translations can be though of as our transformationτ . The
theories can be compared based on mutual translations:

r ≈τ,τ ′ r′ iff r′ `FOL τ(r) andr `FOL τ ′(r′)
r ≺τ,τ ′ r′ iff r′ `FOL τ(r) andr 6`FOL τ ′(r′)
r �τ,τ ′ r′ iff r′ 6`FOL τ(r) andr `FOL τ ′(r′)
r ×τ,τ ′ r′ iff r′ 6`FOL τ(r) andr 6`FOL τ ′(r′)

For our purposes, this is equivalent to define:

r �φ r′ iff r′ `FOL φ(r)

and thus (by induction on the formula structures):

∀δ, r |=FOL δ ⇒ φ(r) |=FOL φ(δ)

Claudio Masolo shows that the equivalence relations through
translations and the equivalence through definitional ex-
tensions are indeed equivalent (in terms of deductive clo-
sures). These relations have their equivalent characterization
in model theory:

r ≈τ,τ ′ r′ iff ∀δ, r |=FOL δ ⇔ r′ |=FOL δ
r ≺τ,τ ′ r′ iff ∀δ, r |=FOL δ ⇒ r′ |=FOL δ
r �τ,τ ′ r′ iff ∀δ, r′ |=FOL δ ⇒ r |=FOL δ
r ×τ,τ ′ r′ iff ∃δ ∈ L, δ′ ∈ L′, r |=FOL δ, r′ |=FOL δ′,

r 6|=FOL δ′ andr′ 6|=FOL δ

He demonstrates that, provided with completeness of first or-
der logic, the straightforward semantics characterization for
the theory with coinciding vocabularies (and theories equiv-
alent through renaming alone) is equivalent to the syntactic
one. The formulation of the equivalent of definitional exten-
sions is related to the notion of “coalescent models” which is
not detailed here.

A last contribution of[Masolo, 2000] is the comparison
of logics whose set of models coincide while they do not use
translatable primitives (e.g. the geometry based on points and
those based on spheres). The notion of model-structure trans-
formations (i.e. transformation applying at a semantic level)
are introduced.

Ciocoiu [Ciocoiu and Nau, 2000], takes into account the
implicit knowledge (K) that is not formally expressed in the
ontologies but should be taken into account by building the

models. Their framework uses a first-order logical language
as a pivot languages in which both languages can be trans-
lated (and from which models can be extracted) and an ontol-
ogy of explicit assumptions expressed in the formal language.
The goals of this work is the translation-checking (i.e. know-
ing if a representationis the translation of another, i.e. if it
has the same set of models). This is theoretically achieved by
comparing the corresponding the sets of extracted models.

This can be further refined by considering two background
knowledge sets (K andK ′), the knowledge transformations
can be justified in our framework without the common ontol-
ogy and logical translation:

∀δ,K, r |=FOL δ ⇒ K ′, τ(r) |=FOL τ(δ)

In a similar vein,[Stuckenschmidt and Visser, 2000] intro-
duced the idea that, beside the correct syntactic transforma-
tion required for semantic interoperability, there is room for
several completeness levels that must be taken into account.
The most basic level is sheer translation of what is (syntacti-
cally) transcriptible from the source representation. A second
level consists of ensuring that whatever is a consequence of
the source representation that can be expressed in the target
language is indeed translated. In case of a more expressive
source language this might require the use of a prover in or-
der to deduce these formulas that can be represented by the
target (but more generally, a prover might be required what-
ever the expressivity of either languages). This means that,
given a sheer syntactic transformationτ , one must build a se-
mantic transformationτ such that:

∀δ ∈ L′, τ(Cn(r)) |=L′ δ ⇒ τ(r) |=L′ δ

or

∀δ ∈ L, r |=L δ ⇒ τ(r) |=L′ τ(δ)

The translations of[Masolo, 2000] are such semantic trans-
formations.

A further refinement, well represented in[Ciocoiu and
Nau, 2000], is the explicitation of implicit knowledge, that
can be added as background for the translated theory. In
the context of geographical information integration[Visseret
al., 2000], the authors have integrated the domain ontologies
by providing translations from the source ontologies in a tar-
get language and by reclassifying the corresponding concepts
(grounded on their descriptions) with regard to each other.

OntoMorph [Chalupsky, 2000] is a system of syntactic
transformation of ontologies with a syntactic transformation
language not very different fromXSLT. It however is integrated
with a knowledge representation system (PowerLoom) which
provides the opportunity to have semantically-grounded rules
in the transformations. The system can query assertions for
not only being syntactically in the source representation, but
also for being a consequence of this initial representation
(as soon as PowerLoom is semantically complete). This is
a generic implementation of what is proposed in[Stucken-
schmidt and Visser, 2000]. Of course, this option requires
to use PowerLoom as an initial pivot language and the prob-
lem of translation arises when transforming from the source
representation to the PowerLoom representation.

Heiner Stuckenschmidt
21

Semantic, knowledge or ontology patterns[Staabet al.,
2000; Clarket al., 2000; Stuckenschmidt, 2000] have recently
been introduced as the equivalent, in the ontology engineer-
ing field, of the design patterns (or rather frameworks) in soft-
ware engineering. They are used for factoring out notions that
are common across, and despite, languages. Instead of con-
sidering a knowledge representation construct in isolation, it
considers a set of constructs and their interrelations satisfying
a particular function (e.g. how to deal with part-whole rela-
tions, how to deal with class specialization). To that extent,
ontology patterns offer a languageP for expressing the re-
quired constructs and the constraints that hold between them.
A patternp is usually made of a set of termsT , a set of
grammar rules for articulating themG and a set of constraints
C. Implementations consist in instantiating the patterns, i.e.
mapping the constructions and constraints to the concrete lan-
guage. The mappingµ is specified in terms of signature mor-
phism between the patternp and an actual languageL such
that:

∀δ, p |=P δ ⇒ µ(p) |=L µ(δ)

These contributions have especially considered semantic
interoperability within the same language (using different sets
of axioms or ontologies) or generic to specific languages
(through pattern mapping). We will now take a look at sev-
eral proposals for expressing semantic interoperability across
different languages as it shall happen on the semantic web.

4 Language family approach
In the words of Tim Berners-Lee, the semantic web requires a
set of languages of increasing expressiveness and anyone can
pick up the right language for each particular semantic web
application.

A modular family of languages is a setL of languages that
have a similar kind of formulas (e.g. build from a subset of
the same set of formula constructors) and the same kind of
semantic characterization (i.e. if a formula belongs to two
languages, it is interpreted in the same way in both). It is
then easy to transform a representation from one language to
another and one can take advantage of more efficient provers
or more expressive languages.

This is what have been developed by the description logic
community over the years: a family of representation lan-
guages with known decidability, complexity and equivalence
results[Donini et al., 1994]. It has been experimented for the
web with the “Description Logic Mark-up Language”1 (DLML)
that we have developed.

DLML is not a language but rather a modular system of docu-
ment type descriptions (DTD) encoding the syntax of many de-
scription logics. It takes advantage of the modular design of
description logics by describing individual constructors sep-
arately. The specification of a particular logic is achieved by
declaring the set of possible constructors and the logic’sDTD

is automatically build up by just assembling those of elemen-
tary constructors. The actual system contains the description
of more than 40 constructors and 25 logics.

1http://co4.inrialpes.fr/xml/dlml/

To theDLML language is a associated a set of transforma-
tions (written inXSLT) allowing to convert a representation
from a logic to another. The simplest transformation is the
transformation from a logic to another syntactically more ex-
pressive one (i.e. which adds new formulas). The transfor-
mation is then trivial, but yet useful, because the initial repre-
sentation is valid in the new language, it is thus identity:

∀δ ∈ AL, r |=AL δ ⇒ r |=ALC δ

This trivial interpretation of semantic interoperability is one
strength of the “family of languages” approach because, in
the present situation, nothing has to be done for gathering
knowledge. For this case, one can define the relation between
two languagesL andL′ asL�L′ which has to comply with
L ⊆ L′. We can then defineL=L′ as equivalent toL�L′
andL′�L.

We can further defineL∨L′ by L�L∨L′ and
L′�L∨L′ and there exists no other languageL′′ such
that L�L′′�L∨L′ and L′�L′′�L∨L′. For all L and
L′, L∨L′ andL∧L′ have to satisfyL ∪ L′ ⊆ L∨L′ and
∧L′ ⊆ L ∩ L′ (in the case of term-based languages such
as description logics we haveL∧L′ = L ∩ L′, but not
necessarilyL∨L′ = L ∪ L′, see figure 1). This defines the
syntactic structure ofL.

L∧L′

L L′

L ∪ L′

L∨L′

@
@
@@R

�
�

��	

@
@
@@R

�
�
��	

A
A
A
A
A
A
AAU

�
�
�
�
�
�
���?

Figure 1: The relations between syntactic languages

If L6�L′, the transformation is more difficult. The initial
representationr can be restricted to what is (syntactically) ex-
pressible inL′: r. However, this operation (which is correct)
is incomplete because it can happen that a consequence of a
representation expressible inL′ is not a consequence of the
expression of that representation inL′:

∃δ ∈ L′; r 6|=L′ δ andr |=L δ

To solve this problem, as stated in[Visseret al., 2000], it is
necessary to deduce fromr in L whatever is expressible in
L′. Let r = Cn(r) be this expression. It is such that

∀r ⊆ L,∀δ ∈ L∧L′, r |=L δ ⇒ r |=L′ δ

The preceding proposal is restricted in the sense that it only
allows, in the target language, expressions expressible in the
source language, while there are equivalent non-syntactically
comparable languages. This is the case of the description

Heiner Stuckenschmidt
22

logic languagesALC andALUE which are known to be
equivalent while none has all the constructors of the other.
For that purpose, one can defineL�L′ if and only if the mod-
els are preserved, i.e.∃τ ;

∀r ⊆ L,∀〈I,D〉; 〈I,D〉 |=L′ τ(r),⇒ 〈I,D〉 |=L r

Similarly, L=L′ if and only if L�L′ andL′�L. More-
over,L∨L′ is defined by a language such thatL�L∨L′ and
L′�L∨L′ and there exists no other languageL′′ such that
L�L′′�L∨L′ andL′�L∨L′. 2

The τ transformation is not easy to produce (and it can
generally be computationally expensive) but we show, in §6
how this could be practically achieved.

Another possibility is to definẽ� as the existence of an
isomorphism between the models ofr and those ofτ(r)

∃τ ;∀〈I,D〉,∃〈I ′, D′〉; I, r |=L δ ⇒ I ′, τ(r) |=L′ τ(δ)

This also ensures thatr |=L δ ⇒ τ(r) |=L′ τ(δ).
This provides to the family of languages a structure based

on semantics.

5 Pattern-based approach
The generic pattern based approach provides patterns of con-
structs involved in a language. In the present article, a pattern
p ∈ P is characterized by a set of constructions that can be
mapped to that of a language and an interpretation of these
constructions that must be preserved by the mapping to a con-
crete language (this is also seen as a constraint). For instance,
a CONJ(.) pattern is interpreted over sets as the intersection
of conjunct constructions. It is mapped to theANDandAN-
DROLEoperators in description logics or the class construc-
tor in frame-based languages. The patterns do not provide
a direct way to ensure the interoperability between two lan-
guages.

However, translating between two languages which share
some patterns should be easier than the general case. As a
matter of fact, if, as is assumed, the mappings preserve mean-
ing (i.e. p |=P δ ⇒ µ(p) |=L µ(δ)). Then, in the case of
reversible or bijective mappings (i.e. such that

∃µ−1; r |=L δ ⇔ p = µ−1(r) |=P µ−1(δ))

it is possible to ensure that the transformation fromL to L′

made byµ′oµ−1 indeed preserves meaning. More precisely,
since the constraints are implemented and satisfied by both
systems, only the mapping of constructors and grammar are
required to be bijective.

Of course, not all such mappings are bijective, though there
should be numerous cases in which the mapping is indeed bi-
jective: it should be possible to establish whenµ is bijective
and to take advantage of this. Moreover, even if just a part
of the constructors used in the pattern are in a bijective rela-
tionship with the target language – or if only a few patterns,

2L∨L′ andL∧L′ are defined as sets of languages and not as
a particular language. If we want to define a lattice of language
from these operators, they must be grouped in congruence classes
(modulo equiexpressivity, e.g.ALC andALUE are in the same
class). But we cannot always guarantee that the result is a lattice.

among those instantiated by the language, are bijective – it is
possible to take advantage of the affected knowledge in the
target language (the transformation is not anymore complete,
but at least it is correct).

With pattern languages, it seems desirable to decompose
the languageL in two parts: L̂ and Ľ such thatµ(p) = L̂

and Ľ = L − L̂. We then haveL = L̂ ∨ Ľ � L̂ � p.
But no non-trivial results are currently available about such a
decomposition.

Like in the family of language approach, the mappings
could be used for refining patterns themselves (i.e.µ : P −→
L∪P). Then, as before, meet and join among patterns can be
defined and a lattices of patterns can be extracted from which
the frontier between bijective and non-bijective mappings for
a particular languageL can be extracted and systematically
exploited.

6 Semantic description and transformations

As seen above, the expression of semantic interoperability re-
lies on two ingredients:τ and|=. Its expression in machine-
readable form can be achieved in various ways.τ can be ex-
pressed inXSLT or some similar language, but nothing really
practical has been set up for|=.

We have defined the notion of Document Semantic De-
scription (DSD) which enables to describe the formal seman-
tics of anXML language (just like theDTD or schemas express
the syntax). TheDSD language, defined inXML takes advan-
tage of Xpath for expressing references to sub-expressions
and MathML for expressing the mathematical gear. TheDLML

family of languages contains theDSD of all the covered opera-
tors and is able to build automatically from the description of
a logic theDSD of that logic.

DSD can be used for many purposes:

documenting language semanticsfor the user or the appli-
cation developer who will require a precise knowledge
of the semantics of constructs. This is eased by a trans-
formation fromDSD to LATEX.

computing interpretations from the input of the base as-
signment of the variables.

checking proof of transformations is a very promising ap-
plication in the line of the “web of trust” idea[Berners-
Lee, 1998].

proving transformations in an assisted or automatic way;
inferring transformations from the semantics description

is a very hard problem. However, from a given proof,
it can be a straightforward task.

This program is rather ambitious. However, in some very
restricted setting, this can be quite easy to set up. As an ex-
ample, one can take theDLML context. Here, the languages
have the same syntactic structure and the semantics of the
operators remains the same across languages. Consider the
ALC andALUE languages which are known to be equiva-
lent. The proof of equivalence is a demonstration that any op-
erator missing in one language can be expressed in the other
language (preserving interpretations). This iterative proof can

Heiner Stuckenschmidt
23

be expressed, by a human being, that way:

∀〈D, I〉, . . .
I((not Nothing)))⇔ I(Anything)

I((not c))⇔ I((anot c)) for c ∈ NC
I((not (anot c)))⇔ I(c)
I((not (all r c)))⇔ I((csome r (not c)))

. . .

It is straightforward to transform that proof into the follow-
ing XSLT templates:
...
<xsl:template mode="process-not" match="dl:NOTHING">

<dl:ANYTHING/>
</xsl:template>

<xsl:template mode="process-not" match="dl:CATOM">
<dl:ANOT>

<xsl:apply-templates select="."/>
</dl:ANOT>

</xsl:template>

<xsl:template mode="process-not" match="dl:ANOT">
<xsl:apply-templates select="*"/>

</xsl:template>

<xsl:template mode="process-not" match="dl:ALL">
<dl:CSOME>

<xsl:apply-templates select="*[1]"/>
<xsl:apply-templates mode="process-not"

select="*[2]"/>
</dl:CSOME>

</xsl:template>
...

The last rule tells that when encountering aALL in the
scope of a negation (mode="process-not"), it must be
transformed in aCSOMEwith the non-negated transformation
of the first argument and the negated transformation of the
second one.

Moreover, if we use a language for describing proofs in
conjunction withDSD, then it is possible to document the
languages withDSD, the transformation with the proof and
a client application will have everything that is required for
proof-checking the transformation before using it.

This shows that this approach can be useful in the context
of family of languages. It can be useful in the context of the
ontology pattern too. Again, having the proof of the semantic
preservation ofµ−1 is the key to having a correct transforma-
tion fromL toL′.

7 Conclusion and discussion
The semantic web could be a distributed web of knowl-
edge structure and interoperability can be problematic when
knowledge is expressed in different languages or in function
of different ontologies. This will be an obstacle to taking
advantage of imported knowledge. Semantic interoperabil-
ity attempts to ensure that the interpretation of imported and
transformed knowledge remains the same across languages.

We have presented a framework for expressing semantic
interoperability based on the notion of transformations and
semantic consequences. It has been used to analyze the vari-
ous techniques employed in order to enforce interoperability.
Because it is a common framework, it can be used in order

to articulate the various proposals and compose all the solu-
tions into a global one. We showed that, applied to restricted
settings, it helps a lot.

This work is only a preliminary study of the relation be-
tween our expression of semantic interoperability and the im-
plemented tools for that purpose. It seems clear, however,
that many refinements are possible in the context of particu-
lar families of languages or restrictions of knowledge patterns
for formally ensuring interoperability.

One of our goal is the construction of transformations satis-
fying semantic interoperability by composing more elemen-
tary transformations satisfying it. This will depend on the
kind of property satisfied by the transformations and the kind
of composition. If the transformations and their properties
are published in the semantic web, then it becomes possible
to create such compound transformations more conveniently.

It is worth recalling, that semantic interoperability is not
total interoperability and that even with semantic properties
there can be other interesting properties than full-fledged cor-
rectness and completeness. We hope that future work will
enable to characterize precisely the expected properties in se-
mantic terms.

References
[Berners-Leeet al., 2001] Tim Berners-Lee, James

Hendler, and Ora Lassila. The seman-
tic web. Scientific american, (5), 2001.
http://www.scientificamerican.com/2001/0501issue/0501berners-
lee.html.

[Berners-Lee, 1998] Tim Berners-
Lee. Semantic web roadmap, 1998.
http://www.w3.org/DesignIssues/Semantic.html.

[Chalupsky, 2000] Hans Chalupsky. OntoMorph: a transla-
tion system for symbolic knowledge. InProceedings of 7th
international conference on knowledge representation and
reasoning (KR), Breckenridge, (CO US), pages 471–482,
2000.

[Ciocoiu and Nau, 2000] Mihai Ciocoiu and Dana Nau.
Ontology-based semantics. InProceedings of 7th in-
ternational conference on knowledge representation and
reasoning (KR), Breckenridge, (CO US), pages 539–546,
2000. http://www.cs.umd.edu/ nau/papers/KR-2000.pdf.

[Clarket al., 2000] Peter Clark, John Thompson, and Bruce
Porter. Knowledge patterns. InProceedings of 7th in-
ternational conference on knowledge representation and
reasoning (KR), Breckenridge, (CO US), pages 591–600,
2000.

[Donini et al., 1994] Francesco Donini, Maurizio Lenzerini,
Daniele Nardi, and Andrea Schaerf. Deduction in concept
languages: from subsumption to instance checking.Jour-
nal of logic and computation, 4(4):423–452, 1994.

[Faginet al., 1995] Ronald Fagin, Joseph Halpern, Yoram
Moses, and Moshe Vardi.Reasoning about knowledge.
The MIT press, Cambridge (MA US), 1995.

[James Clark (ed.), 1999] James Clark (ed.). XSL transfor-
mations (XSLT) version 1.0. Recommendation, W3C,
1999. http://www.w3.org/TR/xslt.

Heiner Stuckenschmidt
24

[Masolo, 2000] Claudio Masolo. Criteri di confronto e
costruzione di teorie assiomatiche per la rappresentazione
della conoscenza: ontologie dello spazio e del tempo. Tesi
di dottorato, Università di Padova, Padova (IT), 2000.

[Nebel, 1990] Bernhard Nebel.Reasoning and revision in
hybrid representation systems. Lecture Notes in Artificial
Intelligence 422. Springer Verlag, Berlin (DE), 1990.

[Rutledgeet al., 2000] Lloyd Rutledge, Jim Davis,
Jacco van Ossenbruggen, and Lynda Hardman.
Inter-dimensionnal hypermedia communicative de-
vices for rhetorical structure. InProceedings of
the Multimedia Modeling conference, ?, (?), 2000.
http://www.cwi.nl/ lynda/publications.html.

[Staabet al., 2000] Steffen Staab, Michael Erd-
mann, and Alexander Mädche. Seman-
tic patterns, 2000. http://www.aifb.uni-
karlsruhe.de/ sst/Research/Publications/semanticpatterns.pdf.

[Stuckenschmidt and Visser, 2000] Heiner Stuckenschmidt
and Ubbo Visser. Semantic translation based on
approximate re-classification. InProceedings of
the KR workshop on semantic approximation gran-
ularity and vagueness, Breckenridge, (CO US), 2000.
http://www.tzi.de/ heiner/public/ApproximateReClassification.ps.gz.

[Stuckenschmidt, 2000] Heiner Stuckenschmidt. A pattern-
based ontology language, 2000. in preparation.

[Visseret al., 2000] Ubbo Visser, Heiner Stucken-
schmidt, G. Schuster, and Thomas Vögele. Ontolo-
gies for geographic information processing. 2000.
http://www.tzi.de/buster/papers/Ontologies.pdf.

Heiner Stuckenschmidt
25

Understanding top-level ontological distinctions
Aldo Gangemi(1), Nicola Guarino(2), Claudio Masolo(3), Alessandro Oltramari(2)

1. ITBM-CNR, Rome, Italy
2. LADSEB-CNR, Padova, Italy

(3) Dept. of Electronics and Computer Science, University of Padova, Italy
nicola.guarino@ladseb.pd.cnr.it

Abstract
The main goal of this paper is to present a system-
atic methodology for selecting general ontological
categories to be used for multiple practical pur-
poses. After a brief overview of our basic assump-
tions concerning the way a useful top-level ontol-
ogy should be linked to language and cognition,
we present a set of primitive relations that we be-
lieve play a foundational role. On the basis of these
relations, we define a few formal properties, which
combined together help to understand and clarify
the nature of many common ontological distinc-
tions.

1 Introduction

1.1 Goals of this paper
The main goal of this paper is to present a systematic meth-
odology for selecting general ontological categories to be
used for multiple practical purposes. After a brief overview
of our basic assumptions concerning the way a useful top-
level ontology should be linked to language and cognition,
we present a set of formal (i.e., domain-neutral) primitive
relations that we believe play a foundational role. On the
basis of these relations, we define a few further properties,
which combined together help to understand and clarify the
nature of many common ontological distinctions.

Our attempt is to avoid strong ontological commit-
ments in the early steps of the methodology, trying first to
establish the formal framework needed to understand, com-
pare, and evaluate the ontological choices that ultimately
will be taken.

1.2 Limits of this paper
We are conscious that our task is very ambitious, as it nec-
essarily faces deep and highly debated philosophical and
technical problems. So we have tried to be as humble as
possible, making drastic simplifications whenever possible,
but trying however to save the logical rigor.

One of the most serious simplifications we have made
concerns the treatment of time, which is not addressed ex-
plicitly. This is in part because we believe that ontological

choices about time need to be taken after a more general
ontological framework is established and in part just be-
cause temporal issues are hard.

2 Ontology, cognition and language
Is ontology about the “real world” (as seen, say, by a physi-
cist)? Or, rather, should it take cognition into account, in-
cluding the complex interactions and dependencies between
our ecological niche and us? We will not attempt a general
answer to this question, but we believe that the latter posi-
tion is very useful when building ontologies for practical
purposes. As knowledge systems manage information rele-
vant to human agents, their ontologies need to make room
for entities that depend on our perception and language, and
ultimately on the way we use reality to survive and com-
municate. Some of these entities will depend on specific
groups of human beings (with their own culture, language,
and so on); others will reflect common cognitive structures
that depend on our sensorial interaction with reality. A gen-
eral-purpose ontology is specially interested to the latter
kind of entities, which help generalize our specific knowl-
edge of the world. This position reflects the so-called “inter-
actionist” paradigm, which (though not prevalent) has
strong support in psychology of perception and cognitive
linguistics [Gibson 1977, Lakoff and Johnson 1999] and
seems to be a good compromise between hard 'referentialist'
ontology and purely context-oriented semiotics.

An extreme example of how ontologically relevant enti-
ties depend on our perceptive and cognitive structures is the
notion of constellation: is a constellation a genuine thing,
different from a collection of stars? This is not so clear at a
first sight. But, if we distinguish between stars and their
specific arrangements, we are able to understand how con-
stellations may be considered as cognitive things dependent
on states of mind. To see a "Taurus" in the sky does not
mean, obviously, that an animal is flying in the space or
(less obviously) that a bull-shaped astronomic object (differ-
ent from a collection of stars) is localized in a region of the
sky. Rather, the perspective we embrace consists in recog-
nizing a cognitive entity dependent on the way we perceive
some particular arrangement of stars. It is to this entity that
we (often) refer when we use the term "Taurus constellation"
in our language. Including cognitive entities in our ontol-

Heiner Stuckenschmidt
26

ogy seems therefore a good idea if natural language plays a
relevant role in our applications.

For these reasons, we believe that a very useful and
important requirement for top-level ontologies is the possi-
bility of mapping them into large lexical databases (as, for
example, WordNet [Fellbaum, 1998]). Although these large
lexicons present many problems and limitations, they pro-
vide i) a source for distinctions used by humans as cogni-
tive agents; ii) a way to give understandable names to onto-
logical entities; iii) a practical hook towards NLP applica-
tions.

But, how do lexicons and ontologies link to each
other? Assuming all lexical concepts as distinct (as for ex-
ample the WordNet’s synsets), ontologies that want to have
the same conceptual coverage have to contain at least every
concept of a lexicon. Adding non-lexicalized nodes to on-
tologies would be useful under different points of view.
First of all, their presence may result in a better taxonomic
organization; second, they may simplify the alignment with
other ontologies and lexical sources, isolating the differ-
ences and the integration problems. So, an important
(though idealistic) requirement to be satisfied would be that
each term of a lexicon has an unique correspondent category
in the ontology and that each ontological concept maps into
at most one lexical concepts.

3 Methodology and basic assumptions
The requirement of a link with language and cognition
makes the task of designing a good top-level ontology even
more complicated. We outline here the methodology we
suggest to accomplish such a task.

3.1 The role of formal relations
In philosophy we find a distinction between formal ontol-
ogy and material ontology. Intuitively, this distinction
seems to deal with the “level of generality” of ontological
properties and relations, but its logical implications are not
very clear. Smith gives the following “definition”:

“As formal logic deals with properties of inferences which
are formal in the sense they apply to inferences in virtue of
their form alone, so formal ontology deals with properties
of objects which are formal in the sense that they can be
exemplified, in principle, by objects in all material spheres
or domains of reality.” [Smith, 1998]

In this sense, we can consider formal relations as relations
involving entities in all “material spheres”, so that they are
understandable per se as a universal notions. On the con-
trary, material relations are specific to one or more material
spheres. This account seems however to presuppose an a
priori division of the domain into “material spheres”: first
we establish a set of primitive subdomains (categories?),

1 Clarifying the distinction between so-called 3-d and 4-d on-
tologies is out of the purpose of this paper. We just point out
that 3-d ontologists believe in a crisp distinction between ob-
jects and events (or continuants and occurrents, roughly corre-
sponding to nouns and verbs), while 4-d ontologists don’t, as
they see concrete entities in terms of spatiotemporal regions.

and then we distinguish between formal and material rela-
tions on the basis of their scope’s behavior with respect to
these subdomains. So, formal relations establish the connec-
tions and the differences between primitive subdomains;
while material relations characterize, in a more detailed way,
the properties of a specific subdomain. If we assume a flat
domain, with no a priori structure, then the proposed dis-
tinction between formal and material relations collapses.

In both cases, choosing the right primitives is not easy.
In one case, we must answer the question: “Which are the
primitive subdomains?”. In the other case, the question is:
“Which are the primitive relations?”. The two questions
look indeed quite similar.

In this work we prefer to start with a set of primitive
relations defined on a flat domain, and use them to recon-
struct the classic categorial distinctions. This choice is
mainly a matter of methodological clarity and economy, and
is also motivated by our desire to maintain ontological neu-
trality as much as possible. These primitive relations will
be still called “formal”, as they will be selected among
those considered as “formal” in the philosophical literature.
By means of these formal relations we shall be able to:
• Formulate general constraints (e.g., atomicity) on all

domain entities;
• Induce distinctions between entities (e.g., dependent vs.

independent), and impose a general structure on the
domain.

3.2 The methodology in a nutshell2

The methodology we have adopted can be summed up as
follows:
1. Select from the classical philosophical repertoire a set

of formal relations (neutral with respect to the domain
choice) which shall play a foundational role in our on-
tology.

2. Select and adapt from the literature the ground axioms
for these relations, such as those concerning their alge-
braic properties.

3. Add non-ground axioms, which establish constraints
across basic relations.

4. Define a set of formal properties induced by the formal
relations.

5. Analyze systematically the allowed combinations of
formal properties, introducing a set of basic categories

6. Classify the relevant kinds of domain entities according
to the basic categories. The result will help to under-
stand the minimal domain structure.

7. Study the dependencies/interrelationships among basic
categories, introducing intercategorial relations.

8. Increase the depth level of ontological analysis, by iter-
ating this methodology within each basic category.

This work is still in progress, and in this paper we discuss
in detail only points 1-4 of the methodology. However, we

2 See ([Thomasson, 1999] p.111-134) for an interesting discus-
sion which advocates a methodology for ontological analysis
very similar to the present one.

Heiner Stuckenschmidt
27

hope in the possibility of a progressive methodological re-
finement and adjustment in the way we have outlined.
Moreover, we must make clear that, to start the above proc-
ess, we need first some minimal assumptions (or at least
intuitions) about our largest domain of interest (which de-
pend on the choices discussed in section 2). We also need to
make some preliminary choices concerning the formal
treatment of existence, modality, space and time. We shall
not discuss these issues here, although we believe that these
choices can be better understood, refined, or modified, by
applying the methodology above.

4 Formal Relations

4.1 Instantiation and Membership
In the ontological engineering community, classical first
order logic with equality is generally adopted as a formaliza-
tion language (more or less reduced in its expressivity if
computational efficiency is important). This means that we
take for granted the distinction between properties and do-
main entities: the latter (syntactically denoted by constants)
are usually called instances of the formers (syntactically
denoted by predicates). The instantiation relation seems to
have therefore an intrinsic meta-logical nature, as it links
together entities belonging to different logical levels.
Things are complicated by the fact that, given a theory A,
we can construct a meta-level theory B whose constant
symbols correspond to A’s predicates, and whose intended
domain is that of A’s properties. So the term “instance” is
ontologically ambiguous, unless the corresponding level is
specified. There is however a bottom level, that of ultimate
instances, things that cannot be predicated of anything else.
These are what philosophers call ‘particulars’, i.e., entities
that cannot be instantiated, as opposed to ‘universals’, i.e.
entities that can be predicated on particulars3.

Despite its apparent simplicity, the notion of instantia-
tion is subtle, and should not be confused with that of set
membership. Let’s try to clarify this by means of a classical
example. There are two possible interpretations of the sen-
tence “Socrates is a man”:
1. Socrates belongs to the class of all human beings;
2. Socrates exhibits the property of being a man;
Usually, in mathematics, the two views are assumed to be
equivalent, and a predicate is taken as coinciding with the
set of entities that satisfy it. This view is however too sim-
plistic, since in Tarskian semantics set membership is taken
as a basis to decide the truth value of property instantiation,
so the former notion is independent from the latter. The
existence of a mapping between the two relations does not
justify their identification: one thing is a set, another thing
is a property common to the elements of a set. A set may

3 The term “universal” is due to the fact that, metaphorically, we
may see a property as multiply present in different things. Note
however that this doesn’t mean that different instances of the
same universal have any part in common.

have many common properties, or maybe none4. A set has a
cardinality, while a property abstracts from cardinality. A
set is not something that can be multiply “present” in dif-
ferent things like a property: a set is a particular, a property
is a universal. Membership involves the former, instantia-
tion the latter.

So properties (universals) correspond to sets (called
their extension), but are not sets. We may wonder however
whether two universals that correspond to the same set are
the same. Those who take intensionality into account usu-
ally refuse this assumption. The classical “realist example”
of intensionality is that of the three predicates “human”,
“featherless biped”, and “animal that laughs” that have the
same extension but are considered to be different. An inter-
esting alternative, suggested in [Lewis, 1983], is to include
in the extension of a predicate all its possible instances
(possibilia). In this case, “featherless biped” would include
other instances besides humans, so that we can more safely
assume that two universals are the same if they have the
same extension.

A final problem concerns the possibility of having a
(first order) logical theory of universals. In general, this
appears to be impossible, since the predicates used to talk
about universals (like instantiation) would themselves refer
to universals. The solution we adopt is to reserve the term
“universal” to those properties and relations whose instances
are particulars. Limiting our domain to the first two levels,
we can aim at building a separate meta-theory that accounts
for the distinctions we need for our purposes. To stick to
first order logic, however, we need to avoid quantifying on
arbitrary universals. To this purpose, we adopt a practical
suggestion proposed by Pat Hayes5, to further restrict the
universals we quantify on to a pre-defined set of relevant
properties and relations, corresponding to the predicates
explicitly mentioned in our object-level theory. Within this
theory, we can state some minimal ground axioms for the
instantiation relation, and introduce definitions for particu-
lars and universals. Reading I(x, y) as “x is an instance of y”,
we have:
(I1) I(x, y) → ¬I(y, x) (asymmetry)
(I2) (I(x,y) ∧ I(x,z)) → (¬I(y,z) ∧ ¬I(z,y)) (antitransitivity)
Par(x) =∆ ¬∃y(I(y, x))
Uni(x) =∆ ¬Par(x)

We shall not discuss distinctions among universals in detail
here. A preliminary discussion on this topic (focused on
properties) has been published in [Guarino and Welty,
2000a].

4.2 Parthood
The parthood relation is a very basic and investigated no-
tion, which has been formalized only at the beginning of
20th century [Leonard and Goodman, 1940; Lesniewski,
1991]. These works intend to build a single theory (called

4 In other words, a set doesn’t coincide with its characteristic
function.
5 Message to the IEEE SUO list, http://suo.ieee.org

Heiner Stuckenschmidt
28

classical extensional mereology) that, unlike set theory, is
founded only on concrete entities. More recently, [Simons,
1987] and [Casati and Varzi, 1999] pointed out that we can
have different mereologies corresponding to different
parthood relations, and made explicit the formal dependen-
cies among them.

We shall write P(x, y) as “x is a part of y”. Only three
ground axioms (P1-P3) are considered as minimal, although
the weak supplementation axiom (P4) is often accepted:
(P1) P(x, x)
(P2) (P(x, y) ∧ P(y, x)) → x = y)
(P3) (P(x, y) ∧ P(y, z)) → P(x, z)
(P4) PP(x, y) → ∃z(P(z, y) ∧ ¬O(z, x))
where
(DPP) PP(x, y) =∆ (P(x, y) ∧ ¬P(y, x))
(DO) O(x, y) =∆ ∃z(P(z, x) ∧ P(z, y)).

The extensionality axiom (P5) and the stronger supple-
mentation axiom (P6) 6:
(P5) (∃z(PP(z, x)) ∧ ∀z(PP(z, x) → PP(z, y))) → P(x, y)
(P6) ¬P(x, y) → ∃z(P(z, x) ∧ ¬O(z, y))
are much more controversial. It is safer therefore to assume
they hold only for some classes of entities called exten-
sional7 entities.

Axioms guaranteeing existence of sum, difference,
product, fusion of entities or establishing mereological
properties (such as atomicity or divisibility) are debatable,
and then we shall not commit to them at this stage of our
methodology.

4.3 Connection
Parthood only is not enough to analyze the internal struc-
ture of a given entity, as it only allows us to check whether
it is atomic or divisible. To the purpose of capturing at least
some basic intuitions related to the notion of whole, con-
nection is usually introduced in the meretopological litera-
ture [Simons, 1987; Varzi, 1999] as a further primitive in
addition to parthood. It is assumed to satisfy the following
minimal axioms:
Ground axioms:
(C1) C(x, x)
(C2) C(x, y) → C(y, x)
Link with part relation:
(C3) P(x, y) → ∀z(C(z, x) → C(z, y))
Note that from (C3) and (P1) we can deduce (C2), then (C2)
is redundant. The converse of (C3) is controversial, as it
seems to be acceptable only for spatial regions.

These axioms can be specialized in various ways to ac-
count for different notions of connection. For instance,
within topological connection between 3-d regions, it may
be useful to distinguish among point-connection, line-
connection, and surface-connection [Borgo et al., 1996].

6 Note that P6 implies P5, but not viceversa.
7 Unfortunately, this adjective is used with different meanings
in the literature, see section 5.2.

4.4 Location and Extension
Recently, Casati and Varzi [Casati and Varzi, 1999] have
axiomatized the notion of location by means of a primitive
L intended to capture the intuition of “being (exactly) in a
place”. Although their approach is focused on space only,
we believe it can be generalized to account for the relation-
ship existing between arbitrary entities and four-dimensional
regions. Since – at least at this point – we want to be neu-
tral about the commitments on the distinction between con-
tinuants and occurrents, we prefer renaming this relation in
terms of being extended in a (n-dimensional) region. We
introduce therefore a binary primitive E(x, y) to be read as “x
is the extension of y”8, and we assume for it the axioms
from [Casati and Varzi, 1999]:
Ground Axioms:
(E1) (E(x, y) ∧ E(z,y)) → x = z (functionality)
(E2) E(x, y) → E(x, x) (conditional reflexivity)

Links with parthood:
(E3) (P(x, y) ∧ E(z, x) ∧ E(w, y)) → P(z, w)
(E4) (P(x, y) ∧ E(y, z)) → PE(x, z)
where
PE(x, y) =∆ ∃z(P(z, y) ∧ E(x, z)) (partial extension)
Link with connection:
(E5) (C(x, y) ∧ E(z, x) ∧ E(w, y)) → C(z, w)

Note that transitivity and antisymmetry follow from ground
axioms. Note that we do not exclude that different entities
can have the same extension, and that we assume a region as
something that is extended in itself. Some useful defini-
tions follow:
Reg(x) =∆ E(x, x) (x is a region)
Extd(x) =∆ ∃y(E(y, x)) (x is extended)
Coext(x, y) =∆ ∃z,u(E(z, x) ∧ E(u, y) ∧ u = z)

(x and y are co-extensional)
OCφ(x, y) =∆ φ(x) ∧ E(y, x) ∧ ∀z((φ(z) ∧ E(y, z)) → O(z, x))

(x φ-occupies y)
We take for granted the further axioms introduced by [Casati
and Varzi, 1999] to ensure the topological properties of re-
gions (pp. 122-126), which will not be discussed here. On
the basis of this theory, the following relevant theorem can
be proved for any extensional property φ (see section 5.2):
(OCφ(x, y) ∧ OCφ(z, y)) → z = x.

We can’t prove the same for co-extensionality, and this
makes clear the difference between being extended in a re-
gion and occupying that region.

4.5 Dependence
We consider here ontological dependence as a general rela-
tion potentially involving all the entities of the domain. In

8 Note that we reversed the arguments of Casati and Varzi’s L
primitive.

Heiner Stuckenschmidt
29

this sense we try to understand dependence as a formal rela-
tion with a minimal ontological commitment, which can be
specialized in different ways. The classical philosophical
reference for the notion of dependence is Husserl’s work
[Husserl, 1970]. Recently, Fine and Simons [Simons,
1987; Fine, 1995b] have suggested some alternative formal-
izations of Husserl’s analysis, discussing their problems and
possible solutions.

Following Husserl, Fine proposes four axioms for de-
pendence:
Ground Axioms:
(D1) D(x, x)
(D2) D(x, y) ∧ D(y, z) → D(x, z)
Links with Part relation:
(D3) P(x, y) → D(y, x)
(D4) ∃y(D(x, y) ∧ ∀z(D(x, z) → P(z, y)))

Is this a good axiomatization of dependence relation? A
minor problem is that (D1) is provable from (D3) and from
the reflexivity of parthood, (P1), then (D1) is redundant.
Another problem regards (D4). This axiom guarantees the
existence of an entity y that is the maximal (with respect to
part relation) entity from which x depends, and then it is
clearly not ontologically neutral.

Moreover, Simons criticizes these axioms from a more
general point of view. He points out that these axioms can
be interpreted in terms of weak topological structures, where
dependent entities correspond to non-closed sets, and inde-
pendent entities correspond to closed sets. Dependence
would therefore resemble a sort of topological relation, and
this may sound as counterintuitive.

Indeed, ontological dependence is usually not intro-
duced as a primitive relation, but rather defined in terms of
a modal operator and an existence predicate (Ex) as:
(DD) D(x, y) =∆ n(Ex(x) → Ex(y)).

In order to accept this, we have to accept however that de-
pendence is intrinsically linked to modality, and somebody
finds this debatable, too. If we want to be neutral with re-
spect to this issue, we need a theory that is compatible with
the modal interpretation of D relation. But, as Simons
points out, if we interpret D as in (DD), axiom (D3) is sat-
isfied only if we either subscribe to mereological essential-
ism (any part of x is necessarily such) or if we consider a
modal interpretation of P (part means essential part). Oth-
erwise in general from “x is part of y it does not follow that
y could not exist without x” (Simons, p. 317). This is a big
problem. If we abandon axioms (D3- D4) the characteriza-
tion of dependence relation is really weak.

We are tempted therefore to accept (DD). In this case we
have however other problems. One problem is that we may
have different kinds of modal operators each inducing differ-
ent kinds of dependence relations and that present technical
difficulties (for example, formal necessity, material neces-
sity, nomological necessity, etc.). A more serious problem
is the characterization of predicate Ex. This seems really not
so simple. For example, does being something coincide

with existing? Do things like ordinary objects and events
exist in the same way? (see [Fine, 1995a]). In order to clar-
ify these issues we may introduce time too, but in this case
we need either to introduce another modal operator that in-
teracts with the first one, or to treat time independently. The
latter approach has been adopted in [Thomasson, 1999],
where the author informally introduces different kinds of
temporal dependence, such as:
CD(x, y) =∆ n(Ex(x, t) → Ex(y, t)) (constant dep.)
HD(x, y) =∆ n(Ex(x, t) → (Ex(y, t') ∧ t' ≤ t) (historical dep.)

Thomasson also includes the possibility for a universal
to depend on a specific particular (being a wife of Henry
VIII depends on Henry VIII), and for a particular to depend
only generically on another particular that instantiates a
specific universal (the US generically depend on some US
citizen).

We find these definitions extremely interesting intui-
tively, but we do not attempt at formalizing them here. So,
for the time being, we take only axioms (D1) and (D2),
leaving the interpretation of ontological dependence to intui-
tion. We introduce however some useful definitions based
on P and D:

MD(x, y) =∆ D(x, y) ∧ D(y, x) (mutual dependence)
SD(x, y) =∆ D(x, y) ∧ ¬D(y, x) (one-side dependence)
ED(x, y) =∆ D(x, y) ∧ ¬P(y, x) (external dependence)

5 Formal Properties
On the basis of the formal relations discussed above, let us
briefly introduce a set of formal properties that we believe
especially useful for our purposes. For the sake of simplic-
ity, our domain of quantification will be limited to particu-
lars so that the formal properties will not correspond to
logical definitions, but will be stated in the meta-language.
Those meta-level definitions that classify a particular with
respect to the universal denoted by φ are expressed by using
a φ subscript.

5.1 Concreteness and abstractness
In section 4.4 we have already defined the notion of an ex-
tended entity as something that extends in a (spatiotempo-
ral) region. We shall take the property of being extended as
synonymous of being concrete. A non-extended entity will
be called abstract.

Note that this sense of “abstract” has nothing to do
with the process of abstracting a common property from a
set of entities. So the decision whether properties (or uni-
versals) are abstract or concrete, according to our terminol-
ogy, cannot be taken on the basis of the theory of extension
we have introduced. What the theory tells us is that, if the
elements of a set or the instances of a property are concrete,
we assume universals to be concrete, then we have to inter-
pret the meaning of parthood and connection for universals
in a suitable way. Moreover, we have to establish a link
between the extension of a particular and the extension of
the universal that it instantiates. Similar difficulties would
occur assuming that sets are concrete, since in this case we

Heiner Stuckenschmidt
30

need a theory that links their extension to that of their
members (and to the parts of their members). For these rea-
sons, it seems pretty safe to stick to the usual assumption
that universals and sets are both abstract. Collections, which
will be discussed below, are the concrete correspondent of
sets.

5.2 Extensionality
We say that an entity is extensional if and only if every-
thing that has the same proper parts is identical to it:
Extl(x) =∆ ∃z(PP(z, x) ∧ (∀z(PP(z, x) ↔ PP(z, y)) → x = y)

Examples of extensional entities are regions and
amounts of matter.

We say that a property is extensional iff all its instances
are extensional. We say in this case that this property car-
ries an extensional criterion of identity9.

Unfortunately, the adjective “extensional” is also used
with different meanings in the literature. Sets are said to be
extensional since they are identical when they have the same
members, and properties are considered as extensional when
properties with the same instances are taken as identical.

5.3 Unity and plurality
We believe that the formal relations we have introduced
allow us to exactly define the notion of unity, but this re-
quires some care.

Let us first give some definitions based on the parthood
relation, which may capture some notions related to that of
unity:
At(x) =∆ ¬∃y(PP(y, x)) (atomicity)
Div(x) =∆ ¬At(x) (divisibility)
Atφ(x) =∆ φ(x) ∧ ¬∃y(φ(y) ∧ PP(y, x)) (φ-atomicity)
Divφ(x) =∆ φ(x) ∧ ∃y(φ(y) ∧ PP(y, x)) (φ-divisibility)
IHomφ(x) =∆ φ(x) ∧ ∀y(PP(y, x) → φ(y)) (φ-int. homogeneity)
Maxφ(x) =∆ φ(x) ∧ ¬∃y(φ(y) ∧ PP(x, y)) (φ maximality)
EHomφ(x) =∆ φ(x) ∧ ∀y(PP(x, y) → φ(y))(φ-ext. homogeneity)
Σφ(x)=∆ ∀y(P(y, x) → ∃z(φ(z) ∧ P(z, x) ∧ O(z, y)) (sum of φs)

The notion of maximality seems indeed very much related
to unity (wrt a certain φ), but it does not account for the
way the various parts of x are bound together. Indeed, there
are different aspects behind the notion of unity of an object,
which are merged together in the following definition:

“Every member of some division of the object stands in a
certain relation to every other member, and no member
bears this relation to anything other than members of the
division.” ([Simons, 1987], p.328)

We see here at least three fundamental aspects: a notion of
division within a whole, with members of such division; a
suitable unifying relation that binds the members together,
and a maximality constraint with respect to this relation on
the members. The notion of “member of a division” is the

9 An extensive analysis of criteria of identity has been done
elsewhere [Guarino and Welty, 2000b; Guarino and Welty,
2001]; for our purposes, we shall only distinguish here be-
tween extensional and non-extensional identity criteria.

subtle issue here. Simons takes class membership as a
primitive distinct from parthood. We’d rather analyze it in
terms of parthood, in the spirit of the analysis presented in
[Guarino and Welty, 2000b]. The definition of unity pro-
posed in that paper has however some problems10, so we
propose here a new one that captures more carefully the no-
tion of member of a division.

Our intuition is that any member of x is a special part
of x. So we need a property that individuates the members
within the parts of x. Observe that, if x forms a unity under
a unifying relation R, then the property we need must only
pick up the parts of x that belong to R’s domain. All other
parts can be ignored11.

Note now that R must be at least symmetric and reflex-
ive (let's postpone by now the discussion about transitiv-
ity). Then we can define a predicate δR denoting R’s do-
main, which must hold when x is a member of a division
unified by R:
δ

R
(x) =∆ R(x, x)

We can observe that, if R is defined on the whole domain,
then δR(y) also holds for all the parts y of x.

We define now the notion of a whole as follows:
υ

R
(x) =∆ ΣδR

(x) ∧ ∀y,z((δ
R
(y) ∧ δ

R
(z) ∧ P(y, x) ∧ P(z, x)) →

R(y, z)) (x is unified by R)
ω R(x) =∆ MaxυR

(x) (x is a whole under R)

The first definition says that x is unified by R iff it is a sum
of entities belonging to R's domain, and all these entities
are linked together by R. The second one says that x is a
whole under R iff it is maximally unified by R.
Let us discuss now the assumptions regarding R's transitiv-
ity. At a first sight, it would be obvious to assume R as
transitive; together with the previous assumptions, this
would result in R being an equivalence relation. However,
this would exclude the possibility of overlapping wholes
with a common unifying relation12. Consider for example
the notions of committee or organization : two committees
may have a member in common while being two different
wholes. Of course, in a strict sense, there would two differ-
ent unifying relations in this case (say, having mission A
vs. having mission B). The point is that there would be no
common unifying relation attached to the property commit-
tee. A plausible common relation would be "having the
same mission", but this is not transitive. This is why, con-

10 Consider the following counterexample: suppose you want
to say that all the children a, b, c of a certain person form a
whole. So all the parts of a+b+c must be linked together by the
unifying relation “having the same parent”. But two of them,
namely a+b and b+c, are not linked by such relation, since they
are not persons. Another problem is linked to the fact that the
previous definition excludes the possibility of overlapping of
entities that are wholes (see below).
11 We may also study the property of internal uniformity of x
with respect the predicate φ(y) =∆ R(y, x) but this is another prob-
lem.
12 We are grateful to Aaron Kaplan for this counterexample.

Heiner Stuckenschmidt
31

trary to the previous papers by Guarino and Welty, we shall
not assume transitivity for R.

For the purpose of ontological analysis, it is interesting
to explore how various unifying relations can be defined on
the basis of simpler relations, called characteristic relations
([Simons, 1987] p.330). This analysis can be used to intro-
duce different kinds of wholes.

In particular, from the cognitive point of view, it is
very interesting to consider topological connection as a
characteristic relation. More exactly, the cognitively relevant
characteristic relations are those that restrict topological
connection to hold between physical entities of the same
kind, such as matter, color, or physical bodies (otherwise,
using topological connection only, the only whole would be
the universe).

Under this perspective, take Cϕ as the transitive closure
of the projection of C on ϕ entities. We say that x is a topo-
logical whole under ϕ if ω Cϕ(x).

We can now introduce the notions of singularity and
plurality, assuming that they are cognitively bound to topo-
logical connection:

Singϕ(x) =∆ ω Cϕ(x) (singularity)
Plurϕ(x) =∆ ¬Singϕ(x) ∧ ∃y(PP(y, x) ∧ Singϕ(y)) (plurality)

A singular entity is therefore one that is a topological
whole. We define a plurality as anything that contains a
topological whole and is not itself a topological whole.

Topological wholes have two parameters, corresponding
to the C and ϕ above. If we take C as the usual topological
connection, an isolated piece of matter will be a topological
whole under “matter”, while a spot of color will be a topo-
logical whole under “color”. Note that nothing excludes a
topological whole (under a certain kind of connection) to
include other topological wholes (under a different kind of
connection): think of a lump of spheres, which can be seen
as a whole under point connection and contains many
wholes under surface connection.

Note that if something does not contain a whole, it will
be neither singular nor plural (think for instance of an unde-
tached piece of matter).

A special case of plurality is a collection, which must
be a sum of wholes. Each of these wholes will be a member
of the collection.

Within singular entities, it may be interesting to dis-
tinguish between homogenous and non-homogeneous enti-
ties with respect to φ:

Simpleϕφ(x) =∆ Singϕ(x) ∧ IHomφ(x)
Complexϕφ(x) =∆ Singϕ(x) ∧ ¬IHomφ(x)

For instance, if we assume singularity as based on point
connection (that is, roughly, physical contact), we have that
a physical body is homogenous wrt surface-self-connection,
while an assembly formed by different bodies that touch
each others is not.

5.4 Dependence and Independence
Finally, the last formal property that we consider is whether
or not an entity is externally dependent, i.e. dependent on
other things besides its parts:

Dep(x) =∆ ∃y(ED(x, y)) (dependence)
Depφ(x) =∆ ∃y(φ(y) ∧ ED(x, y)) (φ-dep., or generic dep.)
Ind(x) =∆ ¬Dep(x) (independence)

According to our discussion in section 4.5, we have how-
ever to select an intended interpretation for D, since there are
different kinds of dependence. For the purpose of isolating
broad, relevant categories of entities, we believe that a spe-
cial importance should be given to what Thomasson calls
constant dependence, whose proper formalization requires an
account of time that must be subject of future work. Under
this view, for example, we can stipulate that ordinary ob-
jects (continuants) are independent, while events (occur-
rents) are dependent. More work on this is needed, however.

Conclusions
Developing a well-founded top-level ontology is an very
difficult task, that requires a carefully designed methodol-
ogy and rigorous formal framework. We hope to have con-
tributed on both these aspects.

Since this is work in progress, we haven’t been able to
explore and discuss in detail the practical consequences of
the methodology we have presented, although we have defi-
nite evidence of its relevance.

We are presently at step 4 of the sequence discussed in
section 3.2. We hope in the possibility of a cooperative
effort to proceed (through refinements and adjustments) in
the way we have outlined.

This work has been done in the framework of the Euro-
pean Eureka project E!2235 “IKF” (Intelligent Knowledge
Fusion). In this framework, we plan to develop a general
reference ontology linked to a lexical resource such as
WordNet, by using the methodology we have outlined. The
final result will be of public domain, and will hopefully
profit from (and contribute to) existing cooperation initia-
tives in this area, such as the IEEE SUO.

Bibliography
[Borgo et al. , 1996] Stefano Borgo, Nicola Guarino and

Claudio Masolo. A Pointless Theory of Space based on
Strong Connection and Congruence. In Principles of
Knowledge Representation and Reasoning (KR96), pp.
220-229, Boston, MA, 1996.

[Carrol, 1956] J. B. Carrol (ed.). Language, Thought and
Reality: Selected Writings of Benjamin Lee Whorf. MIT
Press, New York, 1956.

[Casati and Varzi, 1999] Roberto Casati and Achille Varzi.
Parts and Places. MIT Press, Cambridge, 1999.

[Fellbaum, 1998] C. Fellbaum (ed.), WordNet. An Elec-
tronic Lexical Database. MIT Press, Cambridge, 1998.

Heiner Stuckenschmidt
32

[Fine, 1995a] K. Fine. Ontological Dependence. Proceed-
ings of the Aristotelian Society, 95:269-90,1995a.

[Fine, 1995b] K. Fine. Part-Whole. In B. Smith and D.W.
Smith (eds.), The Cambridge Companion to Husserl,
pp. 463-485, New York, Cambridge University Press,
1995b.

[Gibson, 1977] J. J. Gibson. The Theory of Affordances. In
R. E. Shaw, J. Bransford (eds.), Perceiving, Acting and
Knowing , Hillsdale, LEA, 1977.

[Guarino and Welty, 2000a] Nicola Guarino and Christopher
Welty. A Formal Ontology of Properties. In Proceed-
ings of the ECAI-00 Workshop on Applications of On-
tologies and Problem Solving Methods, pp. 12-1 12-8,
Berlin, Germany, 2000a.

[Guarino and Welty, 2000b] Nicola Guarino and Christo-
pher Welty. Identity, Unity, and Individuality: Towards
a Formal Toolkit for Ontological Analysis. In Werner
Horn (ed.) ECAI-2000: Proceedings of the 14th Euro-
pean Conference on Artificial Intelligence, pp. 219-
223, IOS Press, Berlin, Germany, 2000b.

[Guarino and Welty, 2001] Nicola Guarino and Christopher
Welty. Subsumption and Identity. Technical Report n.
01/2001, LADSEB-CNR, Italy, 2001.

[Hjelmslev, 1961] Louis Hjelmslev, Prolegomena to a
Theory of Language. Madison, University of Wiscon-
sin Press, 1961 (translation of Omkring sprogteoriens
grundlæggelse, Copenhagen, 1943)

[Husserl, 1970] Edmund Husserl. Logical Investigations.
Routledge and Kegan Paul, London, 1970.

[Kaplan, 2001] A. N. Kaplan, Personal Communication.
2001.

[Lakoff and Johnson, 1999] G. Lakoff and M. Johnson.
Philosophy in the Flesh: The Embodied Mind and Its
Challenge to Western Thought. Basic Books, 1999.

[Leonard and Goodman, 1940] H. Leonard, S. and N.
Goodman. The Calculus of Individuals and Its Uses.
Journal of Symbolic Logic, 5:45-55,1940.

[Lesniewski, 1991] S. Lesniewski. Collected Works. Klu-
wer, Dordrecht, 1991.

[Lewis, 1983] David Lewis. New Work for a Theory of
Universals. Australasian Journal of Philosophy,
61(4)1983.

[Simons, 1987] P. Simons. Parts: a Study in Ontology.
Clarendon Press, Oxford, 1987.

[Smith, 1998] Barry Smith. Basic Concepts of Formal On-
tology. In Nicola Guarino (ed.) Formal Ontology in In-
formation Systems, pp. 19-28, IOS Press, Amsterdam,
1998.

[Thomasson, 1999] Amie L. Thomasson. Fiction and
Metaphysics. Cambridge University Press, Cambridge,
1999.

i

Heiner Stuckenschmidt
33

Building and Exploiting Ontologies for an Automobile Project Memory

Joanna Golebiowska 1 2, Rose Dieng-Kuntz 1, Olivier Corby 1, Didier Mousseau 2

1 INRIA, ACACIA Project, 2004 route des Lucioles, BP 93, 06902 Sophia-Antipolis Cedex, France
2 RENAULT, TPZ D12 138, DTSI/DTPU/KMPD, sce 18820 860 quai de Stalingrad, 92109 Boulogne, France
E-mail: {Joanna.Golebiowska, Rose.Dieng, Olivier.Corby}@sophia.inria.fr

Abstract

This paper describes SAMOVAR (Systems
Analysis of Modelling and Validation of Renault
Automobiles), aiming at preserving and
exploiting the memory of past projects in
automobile design (in particular the memory of
the problems encountered during a project) so as
to exploit them in new projects. SAMOVAR
relies on (1) the building of ontologies (in
particular, thanks to the use of a linguistic tool on
a textual corpus in order to enrich a core ontology
in a semi-automatic way), (2) the «semantic»
annotations of the descriptions of problems
relatively to these ontologies, (3) the
formalisation of the ontologies and annotations in
RDF(S) so as to integrate in SAMOVAR the tool
CORESE that enables an ontology-guided search
in the base of the problem descriptions.

Keywords: Design and engineering of domain
ontologies ;Ontology-based search and retrieval
of information ; Knowledge management
solutions for large organizations.

1 Introduction
How to preserve and exploit the memory of past projects in
automobile design (in particular the memory of the problems
encountered during a project) so as to exploit them in new
projects? The role of ontologies for knowledge management
is more and more. They can play an important role for
building a project memory, that is a specific kind of
corporate memory [Dieng et al, 1999, 2000]. Several
researchers aim at proposing a methodology for building
such ontologies, possibly from textual information sources
[Aussenac-Gilles et al, 2000a]. Such a methodological
framework is interesting for us, as there are several
heterogeneous sources of information inside the company:

different databases, official references, problem
management systems and other specific bases in the
departments; moreover, in addition to basic data which can
be processed by traditional means, some bases contain
important textual data.
After detailing our problematic and the concrete problem to
be solved at Renault, we will present the approach adopted
for SAMOVAR. Then we will detail our techniques for
building the SAMOVAR ontologies, relying on both manual
construction and semi-automatic construction thanks to the
application of heuristic rules on the output of a linguistic
tool applied on a textual corpus stemming from textual
comments of a database. Then we will explain their
exploitation and the use of the CORESE (Conceptual
Resource Search Engine) tool [Corby et al, 2000] for
information retrieval about the descriptions of past problems
encountered in vehicle projects. We will generalize our
approach so as to propose a method for building a project
memory in the framework of any complex system design. In
our conclusion, we will compare SAMOVAR to related
work.

2 The problematic
The field of SAMOVAR is the process of prototype
validation during a vehicle project. This process is
intrinsically complex and raises many problems. These
problems frequently slow down the cycle due to the
necessity of repeating validations: so, it increases both the
delays and the costs of such projects.
A close observation of validation shows that part of the
failure is due to loss of information and of experience
gained. The objective of SAMOVAR is to improve the
exploitation of this information and make it available for
future projects. Useful data exist in the form of text.
Therefore it is necessary to find suitable techniques and
tools, such as for example linguistic techniques for
exploiting the knowledge underlying such texts.

Heiner Stuckenschmidt
34

2.1 Context
The product development cycle of an automobile is made of
numerous repetitive sub-cycles (design / development /
validation) - of short or long duration. The whole cycle is
punctuated by milestones and prototype waves which mark
the production of successive models and prototypes, more or
less complex. During a vehicle project, validations are
carried out: the testing department checks that the
component-parts or the functions satisfy the requirements of
the product specifications.
Thus, the quality of smoothness of the dashboard, the noise
of a car door being shut, the behaviour of the car on cobble
stones, or even its resistance to high or low temperatures are
tested. These validations are spread throughout the vehicle
project and done successively by the testing department,
starting from the most elementary functions till the final
synthesis test. The project begins with tests related to the
engineering center according to the parts validated and ends
with tests on performance, speed and crash.
These project validation phases often reveal discrepancies
with respect to the specifications. From detection of a
problem to its resolution, such problems are documented in
a unique data management system called Problem
Management System (PMS). This system uses a database
including the information needed for the process of problem
management: especially information on the actors involved
in the project and above all, the descriptions and comments
on the problems that arose.

2.2 Interest of exploiting the Problem
Management System
The appearance of problems increases the additional costs
and the project duration. Therefore solutions have been
thought out. One possible solution would be to exploit the
information contained in the PMS in order to use the PMS
not only as a problem management system but also as a
source of information.
The PMS can be considered as a huge source of information,
thanks to the textual fields of the base which are particularly
rich and under-exploited. The actors involved in the
automobile design project express themselves freely for
describing the problems detected, as well as the various
solutions proposed, or the constraints for carrying out such
or such solution. This base can therefore be considered as
archives or even as constituting (a part of) the memory of a
project, more precisely the memory of the problems
encountered during the project.
Furthermore, in the company, there are other information
sources, such as the official corporate referential or the
numerous local bases of the testing department. It would be

useful to exploit this information with the contents of the
PMS.
Therefore our aim is to propose a means of retrieving,
structuring and making reusable this wide quantity of
information for the same project or for the other projects.
The participants of current projects have expressed needs
related to information search and retrieval useful during the
validation phases. Their needs concerned especially the
retrieval of similar incidents, detection of any correlation or
dependency with other incidents and so the reuse of existing
solutions within the same or even a different project.
Some pieces of information are relatively simple to retrieve.
However, this is not the case for the textual data of PMS.
The vocabulary used by the project participants in such
comments is broad and varied: a given term (existing in the
corporate official referential) frequently has different
designations according to the department or even the phase
reached in the project. Therefore, our objective was to detect
a suitable semantic term, to classify it according to the
validation process and to link it with all the variations
encountered. So, we needed to extract the main terms of the
domain (and the relations between them if possible) and to
structure them in our ontology.

2.3 SAMOVAR’s approach
A synthesis of tools dedicated to the extraction of terms and
of relations from textual corpora is proposed in [Aussenac et
al, 2000]. Several linguistic tools exist to extract candidate
terms: Lexter [Bourigault, 1994], Nomino1 , Ana
[Enguehard, 1992] [Enguehard and Pantera, 1995]. With
regard to the acquisition of semantic relations, several
approaches enable to acquire them (based on the
exploitation of syntactical contexts : [Grefenstette, 1994], or
the use of the lexical-syntactical patterns : [Hearts, 1992],
[Desclès and Jouis, 1993]). Few tools are offered such as
Coatis [Garcia, 1998] for causal relationships, Cameleon
[Seguela, 1999] [Seguela and Aussenac-Gilles, 1999] for
hyponymy and meronymy relations.
The approach of SAMOVAR consists of structuring the
knowledge contained in the PMS textual fields describing
problems, and of enabling the user to carry out searches with
the aim of finding similar problem-descriptions
As a starting point, we took directly the exploitable sources
(i.e. the different databases of the company), and then we
built up several ontologies offering different viewpoints on
the validation process: problems, projects, services,
components (i.e. parts). After having primed our base
manually, we completed it progressively, with the elements
from the PMS textual data using Natural Language
Processing (NLP) tools – in particular, Nomino that was
chosen as term extractor for availability reasons. This stage

1
http://www.ling.uqam.ca/nomino

Heiner Stuckenschmidt
35

is automatic, however the support of an expert is necessary
throughout the process. Then we annotated the problem
descriptions automatically with instances of concepts of the
ontologies. Finally we facilitated the access to the base of
problem-descriptions thanks to the formalization in RDF(S)
of the ontologies and of the annotations, enabling the use of
the CORESE tool [Corby et al, 2000] to carry out ontology-
guided searches through the such annotated base of
problem-descriptions. The wholeSAMOVAR approach is
summarized in figure 6.

3 SAMOVAR ontologies
The SAMOVAR base is composed of 4 ontologies, each
dedicated to the description of a precise field :
! Component Ontology: it is based on the official

company referential, corresponding to the functional
segmentation of a vehicle into sub-components;

! Problem Ontology: it contains the problem types and it
is built up semi-automatically from a manually-
activated core from textual fields taken from the
problem management system;

! Service Ontology: it corresponds to the services cross-
referenced with the company organization (management
and profession) and it is supplemented by PMS
information. This ontology gives an additional overall
point of view on the problems;

! Project Ontology: it reflects the structure of a project
and it is made up of knowledge acquired during a
project vehicle, according to the interviews carried out
with different actors on the project.

Each ontology is a n-leveled hierarchy of concepts linked by
the specialization link.

Remark: Instead of building several interconnected
ontologies, we could have built one single ontology
organized through several sub-ontologies. We chose to
distinguish the different ontologies in order to enable their
possible reuse independently from one another.

3.1 Construction of the ontologies
The ontologies were built through two phases according to
the data type and the means involved:
! a first extraction of the information contained in data

bases,
! a second extraction, with specific techniques and tools

for discovering the information « hidden » in texts.
The core of our ontology was primed manually, thanks to
elements stemming from existing bases (see figure 1).

Traduction
RDFS (Perl)

Annotation
(Perl)

Data
extraction

(Excel)

Model of
data

Data
extraction

(DataSelect)

Official Component
record

Official Component
record_txt

Ontologie_PB

Ontologie_PIE

Ontologie_PREST

Base onto_RDFS
(3)

Annotated bases
SGPb (XML)(4)

X-j1 X-j2

SGPb Bases (1)

X-j1 X-j2

SGPb Bases-txt (2)

X-j1 X-j2

Figure 1: Construction of ontologies for SAMOVAR

A first extraction of the initial data (1) supplied a textual
format (2) which was then translated in the form of an
ontology, by respecting the RDFS format (as expected by
CORESE). In parallel, another extraction was made from the
Component referential in order to complete the previous
data with additional information. Then the ontological base
(3) was used to annotate the data with the terms designating
concepts of the ontologies. Thus we obtained the initial base
annotated with annotations related to the concepts of the
ontologies (4).
A second process deals with the textual data (the final goal
being to enrich the result of the first extraction with the
information stemming from the texts).
This process exploits the output obtained after application of
the linguistic tool Nomino on the textual corpus stemming
from the textual comments contained in the problem
management system (PMS). Nomino is a tool for extraction
of nominal groups from a representative corpus in a domain.
Nomino takes as input a textual corpus and produces as
output a set of « lexicons » - lists of nouns, nominal complex
units (NCU), additional nominal complex units (ANCU),
verbs, adjectives, adverbs. The (A)NCU corresponds to the
prepositional groups (PG) or the nominal groups (NG). The
lexicons of the NCU are accessible in the form of graphs
which illustrate the existing dependencies for a PG or a NG.
Then, we exploited the lexicons and the graphs produced by
Nomino, in order to :
! detect the significant terms (i.e. corresponding to

important validation points in the automobile design
validation process),

! enrich the Problem ontology by means of the Nomino
graphs, by exploiting the regularity of their structures.

Detection of significant terms
Firstly, we analysed the lexicons produced by Nomino in
order to discover the most frequent terms, likely to be the
most representative terms of the domain : wiring,
assembling, pipe, attachment, centring, component,
installation, conformity, branch, hole, clip, screw, contact,

Heiner Stuckenschmidt
36

maintains, tightening, paw, position, geometry, nut, to
screw, hygiene, connecting.
These structured terms allowed us to set up the Problem
ontology. The initial structuring of this ontology was based
on discussions with the experts. Figure 2 shows an
extract of this Problem ontology.

Problem

Assembly Deterioration

Screw

Geometry

Resistance Play Interference

Noise

Centring

Implementation

Figure 2: Extract of the Problem Ontology

The terms selected for the bootstrap were those which are
exploitable as semantic clues for a problem type: for
example, a problem of Centring can be discovered thanks
to the presence of such clues as «indexage»,
coaxiality, «entraxe», etc.
Indeed the Nomino outputs can be sorted by frequence
numbers. The most frequent words can be considered as
relevant fr the processed domain and we exploit them as
clues for the Problem ontology bootstrap.
The validity of the terms (i.e. the candidate terms for the
bootstrap, and the clues exploited to find them) was
confirmed with support of the experts.

Once the bootstrap of ontology was constituted, it needed to
be enriched. For this purpose, we used the prepositional
groups stemming from Nomino.

Enrichment of the Problem ontology
Besides nouns, Nomino produces nominal and prepositional
groups. We exploited the structures of the most frequent
cases : figure 3 shows an extract of the ANCU produced by
Nomino.

difficulte_de_mep, difficulte_de_mise_ne_place,
difficulte_d’alignement, difficulte_de_chaussage,
difficulte_d’emmanchement, difficulte_d’accostage,
difficulte_d’agraphage, difficulte_d’acces,
difficulte_de_vissage, difficulte_de_serrage,
difficulte_de_emmanchement, difficulte_de_montage,
durete_de_clipsage, durete_de_connexion,
durete_de_manoeuvre, durete_de_mep,
probleme_de_clipsage, clipsage_impossible,
clipsage_difficile clipsage_inefficace,
probleme_de_fixation, eclairage_insuffisant,
effort_de_clipsage, effort_de_declipsage,
effort_de_mep, effort_de_montage,
effort_de_positionnement, effort_de_raccordement,
effort_de_serrage, effort_de_sertissage,

effort_de_sertissage_insuffisant,
effort_d_encliquetage, effort_de_branchement,
effort_de_chaussage, collier_agressif,
deplacement_goulotte, deplacement_locating,
deterioration_de_connecteur,
deterioriation_lecheur_ext,
detrompage_insuffisant, gene_pour_clipsage,
gene_pour_fixation,
gene_pour_la_fixation_du_presseur,
gene_pour_la_mep,
gene_pour_la_mep_de_l_agrafe_du_cablage_moteur,
gene_pour_la_mep_de_l_agrafe_tuyau,
gene_pour_la_mep_du_monogramme,
gene_pour_la_mep_du_rivet,
gene_pour_la_mep_du_tuyau_hp,
impossibilite_de_clipsage_du_tuyau,
impossibilite_de_mep_du_protecteur,
impossibilite_de_montage_de_la_facade_de_console,
impossibilite_de_mep_boitier_gps/gsm,
mal_indexee_sur_moteur,
mal_placee_pour_l_operateur,
mal_positionnees_sur_cablage, manque_boutonniere,
mauvais_tenu_du_gicleur, mauvais_tenu_du_moteur,
mauvais_centrage, mep_difficile

Figure 3: Extract of ANCU produced by Nomino

The manual analysis of these NCU was performed by
studying each Nomino output carefully so as to find some
regularities in the NCU obtained by Nomino. This manual
analysis, carried out with the support of the expert, supplied
the structures which we exploited to build the SAMOVAR
heuristic rules. For instance, we could find cases such as:

(DIFFICULTE EFFORT PROBLEME DURETE MANQUE RISQUE

EFFORT) DE PROBLEME
GENE POUR PROBLEME DE PIECE
MAUVAIS PROBLEME DE PIECE
IMPOSSIBILITE DE PROBLEME DE PIECE
PROBLEME(INCORRECT IMPOSSIBLE INSUFFISANT DIFFICILE)
(DETERIORATION DEPLACEMENT MANQUE RUPTURE CASSE) DE

PIECE
PIECE(DETERIORE AGRESSIF INEFFICACE)

or in English:

(DIFFICULTY EFFORT PROBLEM HARDNESS LACK RISK EFFORT)
OF PROBLEM
DISCOMFORT FOR PROBLEM OF PART
BAD PROBLEM OF PART
IMPOSSIBILITY OF PROBLEM OF PART
PROBLEM(INCORRECT IMPOSSIBLE INSUFFICIENT DIFFICULT)
(DAMAGE DISPLACEMENT LACK BREAK BREAKAGE) OF PART
PART (DAMAGED AGRESSIVE INEFFICIENT)

We exploited these structural regularities of Nomino
outputs to build manually heuristics rules validated by the
expert, heuristic rules which would enable the feeding of the
ontology in a semi-automatic way.
These rules that reflected the existing structures in the
corpus were determined manually, but once implemented
and activated, they helped us to enrich the Problem ontology
automatically by suggesting to attach a relevant new concept
corresponding to a new term, at the right position in the
ontology. Figure 4 shows examples of heuristic rules.

Heiner Stuckenschmidt
37

R1 : Noun [type=Problem,n=i]
Prep[lemma=« of »]
Noun[type=Problem,n=i+1] ;
R2 :(difficulty||effort||hardness||lack||ri
sk||effort) Prep[lemma=« of »]
Noun[type=Problem]
R3 : impossibility Prep[lemma=« of »]
Noun[type=Problem] Prep[lemme=« of »]
Noun[type=Component]
R4 : Noun[type=Problem]
Prep[lemma=« of »||lemma=« on »||lemma=« un
der »] Noun[type=Component]

Figure 4: Examples of heuristic rules

These rules represent the possible combinations between the
elements of the Component and Problem ontologies as
attested in the texts. A rule is presented as a series of
categories, each one possibly decorated with a set of features
(for example type=Problem to indicate that the element is
part of the Problem ontology, type=Component for an
element of Component ontology, etc.).
These rules were implemented in PERL.

Kinematic of the process

PB Ontology
Augmentation

(2)

{Heuristic rules}

PB Ontology
Starting (1)

PB Ontology
Bootstrap

UCN(A)

N

Adj

Extraction
with Nomino

SGPb Bases (txt)

Xj1 Xj2

Component
Ontology

Interviews
Validation

(3)

Candidats for Problems
Places for insertion

PB Ontology

Figure 5: Process of enrichment of the ontology Problem

We enriched the Problem ontology gradually. For that, the
SAMOVAR system takes in entry the Nomino outputs, the
Component ontology, and the heuristic rule base. Then it
analyses the nominal groups to see with which rule each of
them can match.

Example of a Nominal Group and the corresponding rule:

NOISE OF RUBBING OF THE WHEEL DURING ITS

HEIGHT ADJUSTMENT

Noun[type=Problem,n=i] Prep[lemma=« of »]

Nom[type=Problem,n=i+1] ;2

The rule matches the nominal group, recognises the first
term as a noise (that corresponds to an existing concept in
the Problem ontology) and proposes to build a concept for
the second noun and to insert it in the Problem ontology, as
a son of the Noise concept. In the following case, the rule
matches the name of the part and proposes to link the first
term as a Problem :

JUDDERING OF THE REAR SWEEP ARM ON PPP3

Noun[type=Problem]

Prep[lemma=« of »||lemma=« on »||lemme=« under »]

Noun[type=Component] ;3

The output provides the candidate terms to insert in the
Problem ontology. The knowledge engineer (possibly with
the support of the expert) validates each candidate and
decides if the position proposed for insertion in the existing
Problem hierarchy is correct. If yes, a concept
corresponding to the term is inserted in the ontology. Such a
concept – that was attested in the textual corpus - can be
compared to a «terminological concept» if we use the
terminology of Terminae [Biébow and Szulman, 1999].
To formalize our ontologies, we chose the RDF Schema
(RDFS) language, which is recommended by W3C for
description of resources accessible by the Web. RDFS
allows to simply describe the ontology to which RDF
annotations will be relative to. Such RDF annotations are
quite relevant to describe resources within a company. We
can consider the descriptions of the problems met in a
vehicle project (i.e. problem descriptions contained in PMS)
as resources being a part of the memory of this project.
Therefore, we developed a parser which, at the end of the
process, generates a version of the ontology in RDF Schema
(which is also the formalism required by the CORESE
software). After RDF(S) generation, the annotations of the
PMS problem-descriptions are automatically updated by
SAMOVAR in the form of RDF statements.

2 BRUIT DE FROTTEMENT DU VOLANT PENDANT
SON REGLAGE EN HAUTEUR

Nom[type=Problème,n=i] Prep[lemme=« de »]
Nom[type=Problème,n=i+1]

2 BROUTEMENT DU BRAS-BALAI AR SUR PPP3

Nom[type=Problème]
Prep[lemme=« de »||lemme=« sur »||lemme=« sous »]
Nom[type=Pièce] ;

Heiner Stuckenschmidt
38

4 Exploitation of the Ontologies

4.1 Use of the CORESE Tool
The ontologies set up were used to make annotations on the
problem-descriptions from the PMS, considered as
document elements. Their formalization in RDF Schema and
the formalization of the annotations in RDF enabled to use
the CORESE tool for information retrieval guided by such
RDF(S) ontologies and annotations [Corby et al, 2000].
The CORESE tool implements a RDF(S) processor based on
the conceptual graph (CG) formalism [Sowa, 1984].
CORESE relies on RDF(S) to express and exchange
metadata about documents. CORESE offers a query and
inference mechanism based on the conceptual graph (CG)
formalism. It may be compared to a search engine which
enables inferences on the RDF statements by translating
them into CGs.
CORESE translates the classes and properties of RDFS
towards CG concept types and relation. CORESE also
translates the base of RDF annotations into a base of CGs.
This enables the user to ask queries to the RDF/CG base. A
query is presented in the form of an RDF statement which is
translated by CORESE into a query graph which is then
projected on the CG base (using the projection operator
available in CG formalism). The graphs results of this
projection are then translated back into RDF for providing
the user with the answers to his query. The projection
mechanism takes into account the concept type hierarchy
and the relation type hierarchy (obtained by translation of
the RDF schemas).
To exploit CORESE, we formalised the SAMOVAR
ontologies into RDFS. Then, we indexed the problem-
descriptions of the PMS base with instances of concepts
from these ontologies, while respecting the XML-based
RDF syntax. After these two stages, the user could carry out
information retrieval from the annotated problem-
description base. The results of the user’s query take into
account not only the initial terms of the query but the links
modeled in the different ontologies.

Feeding

SGPb Bases XML

Xj1 Xj2

CORESE

Generation IHM_CORESE
(html+javascript)

Xsl

<s:Slapping
s:pièce="?"/>

Comp_Ontology

Service_Ontology

PB_Ontology

Figure 6: Architecture of SAMOVAR

4.2 Examples of queries

Here are two examples in which we show that the problems
extracted from texts and structured with hierarchical links
allows us to find duplications of problem descriptions:

Q1: Fixing & gearshift lever

A1.1: Fixing & gearshift lever
A1.2: Assembling & gearshift lever

Component OntologyProblem Ontology

CA_Air-conditionning CA_Dashboard CA_ ...

Cockpit_area Basis_area

Vehicle_area

Steering wheel

Gearshift lever
Instrument panel

Cross-member of Cockpit area

Assembling

Stapling

Installation

Screwing

Fixing

Clipping Fitting

Coupling

Problem

Geometry

Centring

Figure 7: Pathway for the ontologies to retrieve
information

In the first example, the user is looking for the problems of
fixing on the gearshift lever bellows. A single answer is
obtained:

T_Fixation

rdf:about=http://coco.tpz.totto.fr:8080/SAMOVARXML/MO
Xj1-02057.xml

Libelle DIAMETRE DU SOUFFLET AU NIVEAU DU BOUTON
PRESSION NON EN CONCORDANCE AVEC LE DIAMETRE DU
POMMEAU DU SELECTEUR DE VITESSE (VOIR PSXj2-00193)

Piece SOUFFLET_DE_LEVIER_DE_VITESSE

Heiner Stuckenschmidt
39

On the other hand, if the user extends her query to take into
account more general concepts, following the ontological
links (in our case - assembling), she will find a second case,
which is effectively a similar problem-description.
Following a successive route through the ontologies thanks
to the generalization and specialization links, the user can
expand the query to find the subsuming concepts (cf. the
fathers of the elements of the query) and the
sibling concepts. In the example, the user can explore the
problems on gearshift lever, level by level: from problems
of fixing /connecting, she can go up to the father of this last
concept (i.e. Assembling), and then go down to the other
children concepts (e.g. Installation). The second case thus
found is a similar problem-description to the first answer :

T_Montage

rdf:about=http://coco.tpz.totto.fr:8080/SAMOVARXML/PS
Xj2-00193.xml

Libelle BOUTON PRESSION DU SOUFFLET DE LEVIER DE
VITESSE IMMONTABLE (GEREE PAR MOXj1-02057)

Piece SOUFFLET_DE_LEVIER_DE_VITESSE

In the second example, the user would like to find the
problems of centring on crossbar of cockpit area. The
system returns three cases among which two turn out to be
problem-descriptions pointing mutually:

T_Centrage
rdf:about="http://coco.tpz.totto.fr:8080/SAMOVARXML/MOXj1-
00403.xml"

libelle FIXATIONS PDB : FIXATIONS LATERALE G ET COMPTEUR
DECENTRE SUR TRAVERSE.

piece TRAVERSE_DE_POSTE_DE_CONDUITE

T_Centrage
rdf:about="http://coco.tpz.totto.fr:8080/SAMOVARXML/MOXj1-
02071.xml"

libelle FIXATION : SUPPORT CARMINAT SUR TRAVERSE
DECENTREE. (VOIR PSXj2-00023)

piece TRAVERSE_DE_POSTE_DE_CONDUITE

T_Centrage
rdf:about="http://coco.tpz.totto.fr:8080/SAMOVARXML/PSXj2-
00023.xml"

libelle NON COAXIALITE DES TROUS DE FIXATION SUPPORT
CALCULATEUR CARMINAT SUR TRAVERSE.(GEREE PAR
MOXj1-02071)

piece TRAVERSE_DE_POSTE_DE_CONDUITE

The browsing through the ontology lets the user browse the
whole base of problem-descriptions, following the semantic
axes modeled through links in the ontologies. This browsing
helps the user to find similar problem-descriptions.

4.3 Evaluation of the ontologies for the search of
similar problem-descriptions
The tests were made on the Component and Problem
ontologies covering the corpus corresponding to an extract
of the PMS base of a vehicle-project:
! a first step was concerning a specific perimeter

(Dashboard) for 2 milestones,
! a second step processed the entire base of the project.
We created these ontologies taking the different information
sources into account (official references cross-checked with
items from the problem base). In professional terms the
domain corresponds to the process of assembling. At present
the Dashboard perimeter contains 118 concepts and 3
relations among which 22 components within 6 architectural
areas, 12 sections and 3 levels reflecting the official
Component referential. The Problem ontology contains
about 43 types of problems. The Service ontology comprises
9 services extracted automatically from the base. These
ontologies have been used to annotate around 351 problem-
descriptions.
The whole base contains 792 concepts and 4 relations
among which 467 components are structured in the same
way, but updated with a typology of 39 component
managers. The Problem ontology contains about 75 types of
problems. The Service ontology contains about 38 types of
services retrieved from base. These ontologies have been
used to annotate around 4483 problem-descriptions.

Discussion
The first exploratory investigations on search of similar
problem-descriptions have been proved to be interesting. All
problem-descriptions mutually pointing have been found (in
the case where problem-descriptions belong to the covered
perimeter). Furthermore, there were less answers, but only
the relevant ones.
So, we can conclude that good results are obtained thanks to
the annotations of problem-descriptions with the instances of
the problem types discovered from texts and structured in an
ontology.
We can also notice that the modeling of the ontology is
essential in this method. Test modifications in the Problem
ontology had more or less positive repercussions on the
results. It is important to make sure of the validity of the
ontology with the experts’ support.
More generally, the method strongly depends on the corpus
of the handled domain : if we reuse it for another domain, it
will probably be necessary to update the heuristic rules
allowing extraction of new concepts in order to cover the
structures not processed. Indeed, the heuristic rules depend
on the regularities found among the candidate terms
extracted from the corpus.

Heiner Stuckenschmidt
40

Other « adjustments » were necessary during the process.
For example, annotations with problems are at present
performed by pattern matching : an annotation with a
specific problem is activated as soon as the presence of
some clues (for example Centring will be detected thanks
to the presence of such clues as indexage,
coaxiality, entraxe). According to the order of
triggering of the rules, a problem-description can be
annotated with instances of different ontology concepts. It
would be interesting to order the rule triggering.
Besides, some other NLP tools (such as relation extractors
[Garcia, 1998] [Seguela, 1999]) could help to refine
furthermore the results of the Problem ontology
construction.

As a further work, we intend to apply the same approach for
building a Solution ontology (that would be connected to the
Problem ontology). The same approach can be adopted: i.e.
write heuristic rules from the manual analysis of the
regularities of the candidate terms produced by Nomino and
expressing possible solutions to the problems.
It would enable to index the problem-descriptions not only
with instances of the concepts of the ontologies Problem,
Project, Service and Component, but also with adequate
instances of concepts of this Solution ontology.

6 Conclusions

6.1 Related Work
We have previously evoked several linguistic tools,
dedicated to the extraction of terms and of relations from
textual corpora. Among such tools, the choice of Nomino
was due to both its relevance for our purposes and its
availability. SAMOVAR can be compared to several
approaches or tools integrating linguistic tools for
extraction of candidate terms from a textual corpus.
Terminae [Biébow and Szulman, 1999] offers a
methodology and an environment for building ontologies
thanks to linguistic-based techniques of textual corpus
analysis. The method is based on a study of the occurrences
of terms in a corpus in order to extract the conceptual
definitions and the environment helps the user in her
modeling task by checking the characteristics of a new
concept and by proposing potential family knot. Lexiclass
[Assadi, 1998] offers an interesting approach for building a
regional ontology from technical documents. This tool
enables the classification of syntagms extracted from a
corpus, in order to help the knowledge engineer to discover
important conceptual fields in the domain. Lexiclass coupled
with Lexter, carries out a syntagm classification from Lexter
according to the terminological context of the terms.
[Aussenac-Gilles et al, 2000] describes a general method
for building an ontology, method based on analysis of
textual corpus using linguistic tools. The authors give the
example of the Th(IC)2 project where they combine several

tools for processing the textual corpus, each tool dedicated
to a specific task (Lexter for terms extraction, Cameleon for
relations, Terminae - for concept hierarchy construction)
Our method is situated in such a methodological framework:
we use various specific tools in every step of the process,
but with a corpus stemming from different origins (i.e. both
interviews and textual data retrieved from existing
databases). This variety characterizes the originality of our
approach. [Maedche and Staab, 2000a, 2000b] [Kietz et al,
2000] also present a general architecture for building an
ontology from a textual corpus. [Maedche and Staab, 2000a,
2000b] exploit different linguistic tools so as to build a
concept taxonomy and exploit a learning algorithm for
mining non-taxonomic relations from texts.
The integration of CORESE in SAMOVAR and its ability to
enable information retrieval thanks to annotations linked to
the concepts of the ontologies thus build in a semi-automatic
way is one originality of SAMOVAR. We must notice that
SAMOVAR thus implements an approach for finding
similar problems among past problem descriptions, which is
a typical capability of case-based reasoning systems
[Moussavi, 1999].

6.2 Further work
As noticed earlier, we will study heuristic rules for
extraction of the Solution ontology from the textual corpus.
Moreover, making explicit the links between the Problem
and the Solution ontologies would enable to refine the
indexing of the problem descriptions. Therefore, we will
exploit a linguistic tool enabling the extraction of domain-
dependent semantic relations, adapted to the automobile
domain.

6.3 Towards a Method for Building a Project
Memory

By finding information about similar problems processed
during a given project, SAMOVAR has begun the process of
capitalization in the company. It would be henceforth
possible to spread it to wider scale - to exploit the incidents
and the existing solutions between different vehicle projects,
to study problems and solutions within the same range or the
same project, and in longer term, exploit this capitalization
to discover the recurring problems of a company by making
re-show tender spots "generators of problems " in the
engineering centres. So SAMOVAR could enhance
information sharing among the teams involved in the same
or different vehicle projects.

We could exploit the SAMOVAR principles for other
projects, provided that the right adaptations are carried out,
especially at the level of the ontologies. We can thus
generalize our approach to other domains than automobile
design, for example to build and exploit a memory of the

Heiner Stuckenschmidt
41

project of design or construction of any complex system,
particularly regarding the memory of the problems
encountered in such projects (e.g. incidents met during the
design of a plane, a satellite, even a power plant, etc.). We
propose a method relying on the following steps:

1. If there exists a database or a referential describing the
components of this complex system, exploit it to build
semi-automatically a Component ontology. Otherwise,
use linguistic tools and method such as the ones
described in [Aussenac-Gilles et al, 2000b] in order to
build this Component ontology.

2. If there exists a description of a project characteristics
in the considered company, exploit it to build a Project
ontology. Otherwise, rely on interviews of the experts.

3. Establish a corpus of texts describing the problems met
during one or several existing projects. It can involve
texts resulting from textual documents or from textual
comments in databases.

4. Exploit some existing linguistic tools allowing the
extraction of candidate terms (e.g. Lexter [Bourigault,
1994, 1996] or Nomino for French texts).

5. Analyse manually (with the support of an expert) the
regularities among the candidate terms which are liable
to describe types of problems (resp. solutions). Then
thanks to the regularities observed, write heuristic rules
exploiting both these regularities and the Component
and Project ontologies in order to suggest terms to
include as concepts into the Problem (resp. Solution)
ontology and even more to propose their position in this
ontology. Validate such heuristic rules by the expert.

6. Use these heuristic rules and let an expert validate the
propositions of the system obtained thanks to these
heuristic rules.

7. Use the concepts of the Problem, Solution, Component
and Project ontologies, so as to index automatically the
elementary problem-descriptions (in the textual corpus)
with instances of these concepts.

8. Exploit an RDFS generator for the ontologies and an
RDF generator for the annotations, in order to be able to
use the search engine CORESE to query the base
annotated by the instances of problems.

The proposed methodology is generic. However the rules
are constructed relying on the corpus: they reflect the
existing structures of the corpus and are strongly connected
to it. So, to apply the methodology for another domain it will
be necessary to rebuild the heuristic rule base, so as to make
it reflect the regularities observed in the corpus. This is
typical of a methodology based on corpus analysis.

Acknowledgments
We wish to thank our colleagues for their precious advices
on our work and for their contribution in reading over this
article.

References
[Assadi, 1998] Assadi H, Construction of a regional

ontology form text and its use with a documentary system.
In N. Guarino, ed. Proc. of the 1st Int. Conf. On Formal
Ontology and Information Systems (FOIS’98), p. 236-
249, IOS Press, 1998.

[Aussenac-Gilles et al 2000a] Aussenac-Gilles N, Biébow
B, Szulman S, Corpus analysis for conceptual modelling,
EKAW’2000 Workshop Ontologies and Texts, Juan-les-
Pins, October 2-6, 2000 pages 13-20

[Aussenac-Gilles et al, 2000b] Aussenac-Gilles N, Biébow
B, Szulman S, Revisiting Ontology Design : a Method
Based on Corpus Analysis, In R. Dieng and O. Corby eds,
Knowledge Engineering and Knowledge Management:
Methods, Models and Tools, EKAW 2000, Juan-les-Pins,
French Riviera, October 2-6, 2000, p. 172-188.

[Biébow and Szulman, 1999] Biébow B, Szulman S,
Terminae : a linguistics-based tool for building of a
domain ontology, In D. Fensel and R. Studer, eds,
Knowledge Acquisition, Modeling and Management,
Proc. of the 11th European Workshop (EKAW'99), LNAI
1621,. Springer-Verlag, 1999.

[Bourigault, 1994] Bourigault D, Lexter, un Logiciel
d’Extraction de TERminologie, Application à
l’acquisition des connaissances à partir de textes, PhD
thesis, E.H.E.S.S, Paris, France, 1994

[Bourigault, 1996] Bourigault D, Lexter, a natural language
processing tool for terminology extraction. Proc. of the 7th

EURALEX Int. Congress, Goteborg, 1996.
[Brickley, 2000] Brickley D. and Guha R.V. eds. Resource

Description Framework (RDF) Schema Specification 1.0,
W3C Candidate Recommendation 27 March 2000,
http://www.w3.org/TR/rdf-schema

[Corby et al, 2000] Corby O, Dieng R , Hébert C, A
Conceptual Graph Model for W3C Resource Description
Framework, ICCS’2000, Springer-Verlag, Darmstadt,
August 2000.

[Dieng et al, 1999] Dieng R., Corby O., Giboin A. and
Ribière M. Methods and Tools for Corporate Knowledge
Management. In S. Decker and F. Maurer eds,
International Journal of Human-Computer Studies,
Special issue on Knowledge Management, 51:567-598,
September 1999.

[Dieng et al, 2000] Dieng R., Corby O., Giboin A.,
Golebiowska J., Matta N. and Ribière M. Méthodes et
Outils pour la Gestion des Connaissances, Dunod, 2000.

[Enguehard, 1992] Enguehard C, ANA, Apprentissage
Naturel Automatique d’un réseau sémantique, thèse de
doctorat, UTC, 1992

[Enguehard and Pantera, 1995] Enguehard C, and Pantera L.
Automatic natural acquisition of terminology. Journal of
Quantitative Linguistics, 2/1:27-32, 1995.

[Faure and Nédellec, 1999] D. Faure and C. Nédellec., In D.
Fensel and R. Studer, editors, Proc. of the 11th European
Workshop (EKAW'99), LNAI 1621,. Springer-Verlag,
1999.

[Garcia, 1998] Garcia D, Analyse automatique des textes
pour l’organisation causale des actions. Réalisation du

Heiner Stuckenschmidt
42

système informatique COATIS, PhD thesis, Université de
PARIS IV, Paris 1998

[Golebiowska, 2000a] Golebiowska J, SAMOVAR -
Knowledge Capitalization in the Automobile Industry
aided by Ontologies, PKAW 2000, Sydney, December 11-
13, 2000.

[Golebiowska, 2000b] Golebiowska J, SAMOVAR - Setting
up and Exploitation of Ontologies for capitalising on
Vehicle Project Knowledge. In Aussenac-Gilles N.,
Biébow B., Szulman S., eds, Proc. of EKAW’2000
Workshop Ontologies and Texts, Juan-les-Pins, October
2000 pages 79-90

[Grefenstette, 1994] Grefenstette G, Explorations in
automatic thesaurus discovery, Kluwer Academic
Publishers, Boston, 1994

[Hearst, 1992] Hearst M, Automatic Acquisition of
Hyponyms from Large Text Corpora, ICCL, COLING 92,
Nantes July 25-28, 1992

[Jouis, 1993] Jouis C, Contribution à la conceptualisation et
à la Modélisation des connaissances à partir d’un analyse
linguistique de textes. Réalisation d’un prototype : le
système SEEK. Thèse de doctorat, 1993, EHESS.

[Kietz et al, 2000] Kietz J.-U., Maedche A. and Volz R. A
Method for Semi-Automatic Ontology Acquisition from a
Corporate Intranet. In Aussenac-Gilles N., Biébow B.,
Szulman S., EKAW’2000 Workshop Ontologies and
Texts, Juan-les-Pins, October 2-6, 2000 pages 37-50.

[Lassila, 1999] O. Lassila and R. R. Swick eds. Resource
Description Framework (RDF) Model and Syntax
Specification, W3C Recommendation 22 February 1999,
http ://www.w3.org/TR/REC-rdf-syntax

[Maedche and Staab, 2000a] Maedche A. and Staab S.,
Mining Ontologies from Texts. In Dieng R. and Corby O.
eds, Knowledge Engineering and Knowledge

Management: Methods, Models and Tools, EKAW 2000,
Juan-les-Pins, French Riviera, October 2-6, 2000, p. 189-
202.

[Maedche and Staab, 2000b] Maedche A. and Staab S.,
Discovering conceptual relations from text. Proc. of
ECAI’2000, IOS Press, August 2000.

[Morin, 1999a] Morin E. Acquisition de patrons lexico-
syntaxiques caractéristiques d’une relation sémantique,
TAL (Traitement Automatique des Langues), 1999

[Morin, 1999b] Morin E Automatic acquisition of semantic
relations between terms from technical corpora. Proc. of
the 5th Int. Congress on Terminology and Knowledge
Engineering (TKE’99), 1999.

[Moussavi, 1999] Moussavi M. - A Case-Based Approach to
Knowledge Management, in Aha D.W. (Ed). Proc. of the
AAAI'99 Workshop on "Exploring Synergies of
Knowledge Management and Case-Based Reasoning".
Juillet 1999; Orlando, FL. AAAI Press Technical Report
WS-99-10.

[Séguéla and Aussenac-Gilles, 1999] Séguéla P. and
Aussenac-Gilles N.. Extraction de relations sémantiques
entre termes et enrichissement de modèles du domaine.
IC'99, pages 79-88, Paris, 1999.

[Séguéla, 1999] Séguela P, Adaptation semi-automatique
d'une base de marqueurs de relations sémantiques sur des
corpus spécialisés. Terminologies Nouvelles, 19:52-60,
1999.

[Séguéla, 2001] Séguéla P. Construction de modèles de
connaissances par analyse linguistique de relations
lexicales dans les documents techniques. PhD Thesis,
Université de Toulouse, March 2001.

[Sowa,1984] Sowa J. F. Conceptual Graphs : Information
Processing in Mind and Machine. Reading, Addison
Wesley, 1984.

Heiner Stuckenschmidt
43

myPlanet: an ontology-drivenWeb-basedpersonalisednewsservice

YannisKalf oglou,John Domingue,Enrico Motta,
Maria Vargas-Vera, SimonBuckingham Shum

KnowledgeMediaInstitute(KMi),
TheOpenUniversity,

Milton KeynesMK7 6AA, UK�
y.kalfoglou,j.b.domingue,e.motta,m.vargas-vera,s.buckingham.shum� @open.ac.uk

Abstract

In this paperwe presentmyPlanet, an ontology-
driven personalisedWeb-basedservice. We ex-
tended the existing infrastructureof the Plane-
tOnto newspublishingsystem.Our concernswere
mainly to provide lightweight meansfor ontology
maintenanceandeasetheaccessto repositoriesof
newsitems,arich resourcefor informationsharing.
We reasonaboutthe informationbeingsharedby
providing anontology-driveninterest-profilingtool
which enableusersto specify their interests. We
also developedontology-driven heuristicsto find
news itemsrelatedto users’interests. This paper
arguesfor therole of ontology-drivenpersonalised
Web-basedservicesin informationsharing.

1 Intr oduction
Nowadays,we observe a trend in providing personalized
Web-basedservicesin order to accommodatethe versatile
needsof an ever increasingnumberof Web users. Recent
advancesin agentandInternettechnologyprovide the tech-
nological means,however, equally important is to provide
the meansfor semanticinfrastructure. Towards this goal,
[HuhnsandStephens,1999] proposetheuseof “personalon-
tologies”whereeachWeb userwill beableto createhis/her
own ontologytailoredto his/herview of theworld. Although
we found this idea fruitful, it bearsa contradictoryconno-
tation. Whenwe talk aboutontologies,we can’t really say
“personal”. Ontologiesare- by definition - sharedviews of
the world([Kalfoglou, 2000a]). We ratherprefer to usethe
metaphor“personalviews” of anontologytailoredto specific
services.That is, eachuserwill see- andeventuallybeable
to edit - partof anontologythat is tailoredto a specificser-
vice. Theontologyitself will remainshared,in thesensethat
thecreation,editingandmaintenancetasksinvolvetheefforts
of many agents(letthembe peopleor software). The way it
will beexposedto userswill dependon thekind of services
they want. For example,in our domainof Web-basednews
services,a useris able to browsethosecontentsof the on-
tology thatarerelatedto news items,like peoplewho wrote
them,projectsmentioned,etc. This kind of Web-basednews
servicesenableusersto accessinformation tailoredto their
interests.

Valuable information is sharedamong the membersof
a community by using the lowest-common-denominator
medium:anemailmessage.Userssendastoryin theform of
anemail(hereafter, e-Story)to anewsserver from whichdes-
ignatedsystemsredirectthe e-Storyback to targetedmem-
bersof thecommunity. This is anindirectform of communi-
cation(incomparisonwith amember-to-memberform), how-
ever, weenrichit by anontology-driveninterest-profilingtool
anddeductive knowledgeretrieval techniques.This allowed
us to reasonabout the knowledgebeing sharedand target
it to certainpeople. The meansfor connectingknowledge
to peoplewere analyzedfrom the processpoint of view in
[O’Leary, 1998]. His framework hasbeenusedin someon-
tology applications([Kalfoglou, 2000b]) and in [Domingue
and Motta, 2000] the authorsshowed how theseprocesses
arerealizedin thecontext of PlanetOnto. In particularthey
focussedon the two connectingprocesses:peopleto knowl-
edge andknowledge to people. Themeanswhich wereused
to connectpeopleto knowledgein PlanetOnto were inte-
gratedvisualisation,search,and query-answeringfacilities
whereastheconnectionof knowledgeto peopleachievedby
pro-actively contactingpeopleto solicit e-Storiesand alert
themwhenitemsof interestwerepublished.

To deliver such an ontology-driven servicewe need to
have flexible mechanismsfor ontology maintenance,an
area which is still in its infancy and hampersontology
applications([Kalfoglou et al., 2000]). In this work, we de-
ployed InformationExtraction(hereafter, IE) systemsto ex-
tract informationfrom usersusinga servicewhich could be
usedto updatethe underlyingontology. In that sense,the
userbecomesthemainagentresponsiblefor maintainingthe
ontologyinstances,lifting the burderfrom ontologicalengi-
neerswhocanfocusonstructuralandsemanticissuesrelated
with ontologydesignanddeployment.In our domainwe ex-
perimentedwith extractinginformationfrom users’e-Stories
in orderto updatetheunderlyingontology.

Our researchgoalsaretwo-fold: (a) to improve andease
ontologyusabilityfor Webusersbymeansof ontology-driven
Web-basedfront-endsto personalizedservices;and (b) to
provide lightweight meansfor ontology maintenancetrig-
geredby users’input by deploying IE techniquesalongwith
domainspecifictemplates.This tight couplingof Web-based
environmentswith underlyingontologiesis a promisingand
appealingtechnologyfor themajorityof users.

Heiner Stuckenschmidt
44

1

7

6

5

4

3

2

Figure1: ThePlanetOnto architecture.

We organizethis paperas follows: in section2 we de-
scribetheexisting infrastructure,PlanetOnto, which we ex-
tendin section3 with the personalizedservicesprovidedby
myPlanet. We reporton relatedefforts in section4 andwe
concludethe paperin section5 by discussingfuture direc-
tionsandimplicationsof this work.

2 PlanetOnto
In this sectionwe briefly describetheexisting infrastructure,
PlanetOnto, an integratedsuiteof tools developedover the
last 4 yearsin the Knowledge Media Institute(KMi). The
whole infrastructureis describedin detail in [Domingueand
Motta,2000]. Herewerecapitulateontheimportantelements
of thePlanetOntoarchitecturesomeof whichwerethefocus
of ourwork aswedescribein thenext section.

In thePlanetOntodomainweidentify threetypesof users:
journalistswho sendstoriesto KMI Planet, knowledgeedi-
torswhomaintainthePlanetontologyandthePlanetknowl-
edgebase,andreaderswho readthePlanetstories.In figure
1, we illustrate the PlanetOnto architecturealong with the
activities thatsupports:

1. Storysubmission:Storiesaresubmittedto KMi Planet
in theform of emailwhich is thenformattedandstored
in KMi Planet’sstorydatabase;

2. Storyreading: Storiescanbe readby usinga standard
Webbrowser;

3. Storyannotation:A specializedtool, KNote, is usedto
help the journalistor the knowledgeeditor to associate

thestorywith knowledgestructureof theunderlyingon-
tology. This processwas manualand we have semi-
automatedit aswe describein section3.2;

4. Provision of customizedalerts: An agent, Newsboy,
builds userprofiles from patternsof accessto Plane-
tOntoandthenusestheseprofilesto alert readersabout
relevantstories.While thattool usesstatisticalevidence
to build profiles, in section3.1 we presentmyPlanet
which makesit possiblefor a userto build a profile by
usinganontology-drawn structure;

5. Ontology editing: A Web-based ontology editor,
WebOnto[Domingue, 1998], is used for construct-
ing knowledgemodelsin the OCML language[Motta,
1999];

6. Story soliciting: An agent, Newshound, gathersdata
aboutpopularnews items and then solicits potentially
popular stories from the journalists. The ontology-
driven heuristicsof myPlanet, describedin section3,
could extendthis tool to solicit storiesfrom journalists
with similar interests;

7. Storyretrieval and queryanswering:A Web-basedin-
terface,Lois, providesaccessto thestoryarchiveandthe
associatedknowledgebaseby integratingWeb-browsing
andsearchwith knowledge-basedqueryretrieval.

3 myPlanet
PlanetOnto wasoriginally conceivedasaninternalnewslet-

Heiner Stuckenschmidt
45

Figure2: Thee-StoriesfinderJava Applet.

ter andprogressively becamean integratedsuiteof tools for
knowledgemanagement.It is usedasa masscommunication
mediumfrom membersof our lab but lacks the advantages
of personalised,tailored-to-preferences,services.myPlanet
aimsto fill-in this gapby providing themeansfor easynav-
igation throughthe e-Storiesrepository, settinguserprefer-
ences,andproviding assistanceto theknowledgeeditorsfor
annotatinge-Stories.Wedescribethesetoolsin thefollowing
two sections.

3.1 Ontological interest-profiling
Oneof the limitations of the PlanetOnto suiteof tools was
thelack of ane-Storiesretrieval methodwhich would enable
usersto readonly the e-Storiesof their interestinsteadof
forcing themto browsethee-Storiesdatabasefor potentially
interestingitems. A possiblefix to this problemwould have
beento provide a keyword-basedsearchengine.This sortof
solution,however, bearstheknown limitationsthateveryone
of ushasexperiencedwith currentkeyword-basedsearchen-
gines(e.g,unrelatedmatches).

Consequently, we worked on a methodwhich allows the
userto specifyhis/herinterests(crudelyspeaking,“the search
criteria”), andthenwe searchfor e-Storiesthat matchthese
interests.Thedifferenceof our approachwhencomparingit

with a keyword-basedsearchengineis that the structureof
the interestsis drawn from the underlyingontology. Hence,
we deliberatelyimposea genericstructureof intereststo the
userwhich containsthemostimportanttypesof information
onewould typically find in the KMi Planete-Stories. This
structureis composedof thefollowing items:

� Research areas thatareinvestigatedin KMi;
� Research themes thatareinvestigatedin KMi;
� Organizations thatKMi collaborateswith;
� Projects in KMi;
� Technologies usedin KMi;
� Application domains that are investigated in

KMi;
� People - membersof theKMi lab.

All of these items are classesin the underlying KMi
Planet ontology1. The advantageof this is that we can
go beyond the expectedcategory namematching: we can

1Accessiblefrom the Web through the WebOnto browser on
URL: http://webonto.open.ac.uk/

Heiner Stuckenschmidt
46

reasonaboutthe categoriesselectedby applying ontology-
driven� deductiveheuristics.For example,if someoneis inter-
estedin Research Area GeneticAlgorithms, we would
normally return all the e-Storiesthat talk about that Re-
search Area by employing thestring-matchingtechnique
we describein the sequel.However, by usingthe ontologi-
cal relationsthat hold betweenthesecategorieswe canfind
which Projects have asResearch Area GeneticAl-
gorithmsand thensearchfor e-Storiesthat talk aboutthese
Projects. Thesewould then be includedin our answer
setaspotentiallyinterestinge-Storiesalthoughthey don’t ex-
plicitly mentiontheGeneticAlgorithmsResearch Area.
In the samemanner, we can apply more complex heuris-
tics suchas finding Technologies that have beenused
in Projects andPeople who aremembersor leadersof
theseProjects - which have asResearch Area Ge-
netic Algorithms - thereforeinferring that thesePeople
mightbeapotentialcontactfor informationonTechnolo-
gies for GeneticAlgorithms. In termsof the underlying
ontologystructure,our aim is to take advantageof the rich
definitionsof classesin the OCML language.For example,
thefollowing OCML codeis thedefinitionof aninstanceof a
KMi researchanddevelopmentproject,the “sharingontolo-
gieson theweb” project:

(def-instanceproject-sharing-ontologies-on-the-webkmi-r&d-pr oject
((has-research-area
res-area-ontologiesres-area-knowledge-sharing-and-reuse)
(project-application-domainorganisational-learning)
(addresses-theme
theme-collaboratingtheme-communicatingtheme-reasoning)
(has-project-leader
john-domingueenrico-mottazdenek-zdrahal)
(funding-sourceorg-european-commission)
(has-goals
”Enablingknowledgeengineersto shareontologieson theweb.”)
(has-web-address
web-page-project-sharing-ontologies-on-the-web)
(uses-technologylisp java tech-lispwebtech-ocml)
(associated-productstech-webontotech-tadzebao)))

As we can see,this definition is sufficient for deducing
factsrelatedto theproject’s researchareas,themes,applica-
tion domain,leaders,etc. Most of theseconstructsareused
directly in the browsablestructurewe imposedto the user
in myPlanet’s interface. Thus, the deductionstepinvolves
a straightforward OCML query. Other slots, however, like
funding sourceand technologiesused,canbe usedto infer
furtherlinks asin thescenariowedescribedbefore.This rich
representationof aprojectinstancehighlightsthestrengthsof
OCML as a knowledgemodelling language([Motta, 1999])
which hasbeenusedin many projectsover the last 6 years.
Currently, thereareover 90 modelsdefinedin the WebOnto
library all of which areaccessiblewith a Web browserfrom
webonto.open.ac.uk. Wealsouserelationsto link peo-
plewith projectssuchas:

(def-relationinvolved-in-projects(?x ?project)
:constraint(and(person?x)

(project?project))
:sufficient (or (has-project-member?project?x)

(has-project-leader?project?X)))

The OCML languageprovides supportfor defining opera-
tional optionsfor eachrelationsuchasthe:sufficient

constructin our exampleabove. Its purposeis to helpchar-
acterizethe extensionof a relation. For the relation given
above, it is sufficient to prove that a personis a memberor
leaderof a projectin orderfor therelationinvolved-in-
project/2 to hold. We also store the selectionsa user
makes,that is, we save the user’s profile with respectto the
selectedinterests.This profile canbeeditedlateron aswell
asusedfor findingpro-actively e-Storiesthatmatchit.

The matchingof interestsin a e-Storyis basedon string-
matchingbut employs the notion of “cue phrases”and“cue
words” which areassociatedwith the instancesof the cate-
goriesgivenabove. Weusetwo meaningsof “cue”: evidence
andabstraction.A cuephrase,in ourapproach,is bothanab-
stractionof thecategory that is associatedwith andevidence
that thee-Storywhich containsit is relevantto thatcategory.
For example,we defineasa cuephrasefor theResearch
AreaOntologies, thephrase“knowledgesharingandreuse”.
This is anabstractionof the termOntologies. Whenever we
find thatphrasein an e-Storywe assumethat this e-Storyis
relevant to Ontologies. This finding is the evidenceof rel-
evance. This techniquehasbeenproved easyto apply and
gave usa broaderandmoreaccurateanswersetthantheone
we would getwith a simplematchof thecategoryname.On
the other hand,we needto be careful whenwe identify or
devise cuesfor a particularcategory sincea looselydefined
cuephrasecould result in looselyrelatede-Stories.For ex-
ample,thecuephrase“survival of thefittest” couldbeargued
that is an abstractionof the GeneticalgorithmsResearch
Area sinceit describesa commontechniqueof molecular
biology usedin Geneticalgorithms. It might be dangerous
to useit though,sinceit is looselyconnectedto thetermGe-
neticalgorithmsandthepossibilityto getunrelatede-Stories
is high(e.g,e-Storiesabouta fighting contestmight contain
this phrase).We seethis asa tradeoff: the moregenericthe
cuephrasesarethemorephraseswecandefineor devise,the
lessgenericthe cuephrasesarethe lessphraseswe cande-
fine or devise. It is obvious that,with morecuephraseswe
canfind moree-Storiesbut the phrasescan’t be too generic
becausethismayresultin unrelatede-Stories.To resolvethis
tradeoff, we hadto follow a manualapproachin identifying
or evendevising,whenevernecessary, cuephrasesfor all the
instancesof thesevencategoriesdescribedabove. Thatway,
we wereableto judgeby ourselvesthe “closeness”of a cue
phraseto a particularcategory by referring to literaturere-
sources,askingexpertsin that category for advice,etc. We
areplanning,however, to automatethis processto themaxi-
mumdegreepossibleasthis is adesiredrequirementin order
to scale-upthisapproachin a time-effectivemanner.

To illustrate the usageof this tool, we will go througha
detailedscenarioin which a usertries to find e-Storiesre-
latedto his/herinterests.As we canseefrom figure2, a Java
Applet is usedas the front-endfor choosingthe categories
uponwhich the searchwill be based. When this Applet is
loadedover the Web it loadsall the instancesfor the seven
categoriesgiven above, henceit provides a partial view of
theunderlyingontology’scontents.In our example,theuser
“yanniskalfoglou” hasbrowsethehierarchytreeandchosen
two categories: Application Domain Distanceteach-
ing andProjectSharingOntologiesontheWeb. Thesetwo

Heiner Stuckenschmidt
47

Figure3: A e-Storyof myPlanet.

aredisplayedin theupperright paneof thewindow in figure
2. Thelower left paneis usedfor displayingadditionalinfor-
mationwith respectto the category currentlyviewed in the
tree.In ourexample,weseea textualdescriptionof thegoals
for theProject beingviewed.This informationis obtained
by queryingthe underlyingontologyfor the project’s goals.
We displaydifferenttypesof textual informationtailoredto
thetypeof categorybeingviewed.For example,whenanin-
stanceof People is viewedthenwedisplaytheprojectsthat
this personis involvedto. This informationis obtainedfrom
theontologyafterfiring therelevantquery.

After selectingthecategories,user“yanniskalfoglou” can
save his profile andinitiate thesearchby pressingtheView
myPlanet button. This will displaythe results,if any, in a
personalizedWeb-pagewhich will beusedin futuresessions
astheuser’s personalPlanet Web-page(hence,myPlanet).
Sucha pagecontainsthe setof e-Storiesthat matchthe se-
lectedcategoriesby employing thestring-matchingtechnique
we describedabove. We includea snapshotof a e-Storythat
wasfound relevant to the user’s interestsin figure 3. As we
cansee,this e-Storycontainsthecuephrase“distancelearn-
ing”(which is deliberatelycircled for the sake of this exam-
ple) which is associatedwith theApplication domain
Distanceteaching.

3.2 Populating the ontology
The e-Storiesare formalized in terms of associatingthem
with a formal representationwhich supportsvariousforms
of reasoningin PlanetOnto. This formalizationprocess,as
[DomingueandMotta,2000] describe:

“is drivenby anontologythatdefinestheconcepts
neededto describeeventsrelatedto academiclife -

for example,projects,products,seminars,publica-
tionsandsoforth. This meansthatwe ignoreparts
of anewsstorythatarenotrelevantto theontology,
muchasin template-driveninformationextraction
approaches.”

In theseapproaches,IE systemsfocus only on portionsof
text that arerelevant to a particulardomain. From that per-
spective, IE can be seenas the task of pulling pre-defined
relationsfrom texts aswe seein applicationsof IE in vari-
ousdomains(see,for example,[ProuxandChenevoy, 1997]).
Furthermore,IE canbeusedto partially parsea pieceof text
in orderto recognisesyntacticconstructswithout theneedof
generatinga completeparsetreefor eachsentence.This ap-
proachcould be coupledwith domainspecifictemplatesin
orderto identify relevant information. If no extractiontem-
plate appliesto the parsedsentencethen no information is
retrieved.

Thesecharacteristicsof IE technologywereappealingfor
our task: to populatethe ontologywith new instancesof e-
Storiesin an automatedmanner. IE gave us the meansto
identify thepartof ane-Storythatwill beprocessed,whereas
domainspecifictemplatesmadeit possibleto fill-in slots in
ontology instances.For example,in a e-Storyfor the KMi
domainonemight be interestedto extract only the nameof
KMi projects,KMi members,KMi funding organisations,
KMi award bodies,money being awarded,etc., and ignore
the rest. As it is describedin [Vargas-Veraet al., 2001], the
kind of information that will be extractedis determinedby
thepre-definedtemplateswhich arebasedon thetypologyof
eventsin our KMi Planet ontology. Examplesof events
are visiting-a-place-or-people, academic-

Heiner Stuckenschmidt
48

Figure4: A e-Storysendto KMi Planet.

conference, event-involving-project, and so
forth. Currently, we have 40 event typesdefinedin our on-
tology andwe have devise templatesfor 10 of them. These
arethedomainspecifictemplatesusedin IE systems.

An exampletemplatefor the event type visiting-a-
place-or-people is asfollows:

[,X, ,visited,Y,from, Z,]

This templatematchesthe sentenceword list where X is
recognisableasan entity capableof visiting, Y is the place
beingvisitedandcannotbea preposition,andZ is recognis-
ableasa rangeof datesby virtue of their syntacticfeatures.
The remainingtokensin the sentenceare ignored. We use
theunderlyingkmi-ontology instancesto identify proper
namesfor visitors(if they areKMi employees)andwhenever
this failswedeploy anamedentity recogniserto helpuswith
identifying additionalpropernamesfor visitors andplaces.
Each templateis triggeredby the main verb in any tense.
In this template,the trigger word is the verb “visited”. As
[Riloff, 1996] describes,linguistic rulescouldbedeployedto
help identify trigger wordsreliably. For example,if the tar-
getedinformationis thesubjector thedirectobjectof a verb
thenthetriggerword shouldbethemainverb.

Assumethat a KMi journalistsubmitsa e-Storyaboutan
AKT meeting.We illustratesuchae-Storyin figure4. As we
cansee,thefirst sentenceof thee-Storymatchesthetemplate
givenabove. It containsthetriggerword “visited”. This will

activatethetemplateandvariablesX, Y, andZ will beinstan-
tiatedto visitor, placebeingvisitedandrangeof dates,which
giveusthefollowing information:

� visitor: “AKT collaboratinginstitutions”
� place:“Sheffield”
� date:“January29-312001”

This will beautomaticallyconvertedto OCML codein or-
derto fill-in theslotsin theinstanceof theeventtypewe are
dealingwith:

(def-instancevisit-of-akt-collaborating-institutions
visiting-a-place-or-people
((has-duration‘3 days’)
(start-timejanuary-29-2001)
(end-timejanuary-31-2001)
(has-locationsheffield)
(visitor akt-collaborating-institutions)))

In the sequel,a form-basedinterfaceis usedto visualize
the informationextractedasshown in figure 5. Uninstanti-
atedslotscould be filled-in manuallyby the knowledgeen-
gineer. Themainhelpof this semi-automaticinstantiationof
eventtypeis theextractionof informationfrom e-Stories,the
partialslots-filling,andtheidentificationof eventtype.

In sometemplateswe canalsomake useof the underly-
ing ontologyto supporttheeventidentification.For example,
thetemplatefor theconferring-a-monetary-award
eventtypeis:

[X, ,has been awarded,Y,from,Z,]

whereY is amountof money, Z is a funding body, andX is
eitherapersonof aproject.To decidewhichone,wetraverse
the instancesof peopleandprojectsin theunderlyingkmi-
ontology to find outwhich matchesX.

4 Relatedwork
Althoughwe couldn’t find directly comparableprojectswith
our domain- ontology-drivenWeb-basedpersonalizednews
services- there several efforts describedin the literature
whereontologiesandWeb-basedserviceswereput together.
We reporton thesein thesequel:

In the FindURproject[McGuinness,1998], the meansfor
knowledge-enhancedsearchby usingontologieswereinves-
tigated.McGuinnessdescribesa tool, deployedat theAT&T
researchlabs, which usesontologiesto improve the search
experiencesfrom the perspectivesof recall andprecisionas
well as easeof query formation. Their tool is mainly tar-
getedto the InformationRetrieval researchareaandaimsto
improvethesearchenginestechnology. However, theideaof
deploying ontologiesto achieve thesegoalsis similar to our
approachwhich is mostlyconcernedwith usingontologiesto
structurethe searchspace(i.e.,pre-selectedcategoriesof in-
terests- section3.1) andincreasetheanswerset(i.e.,heuris-
tics deployed to selecta relevant e-Story- section3.1). In
their work though,meansfor updatingthe topic setsused
to categorizeinformation(similarto our interestscategories)
were investigated.In contrastwith our approachwherethe

Heiner Stuckenschmidt
49

3 days

Figure5: Semi-automaticallyannotatethe e-Storyof figure 4: a partial instantiationof the event type: visiting a placeor
people.

categoriesof interestsarepre-definedandmaintainedinter-
nally, the FindUR teamwere“experimentingwith a collab-
orative topic-building environment that allows domain ex-
pertsto expandof modify topic setsdirectly”[McGuinness,
1998]. Although this approachhasthe advantageof speed-
ing up the maintenancetask, in our casewe seethe pre-
selectedcategoriesasa stablepieceof knowledgeover time.
If however, thesecategoriesneedto be updated,we could
use the WebOnto[Domingue,1998] environment for edit-
ing andbrowsing the underlyingontology. We shouldalso
pointout asimilarity in theuseof cuephrasesandcuewords
to increasethe numberof relatede-Stories. In the FindUR
project,thenotionof “evidencephrases”wasused.However,
their definitionas“evidence”phraseshighlightsa difference
in their application: aswe describedin section3.1, we use
cuesbothasabstractionsof termsandasevidencewhereasin
the FindUR domainthey usedonly asevidence. For exam-
ple, asthe authorsdescribe,the company Vocalteccould be
an evidencefor the topic Internet telephonybut certainly is
not anabstractionof it. In particular, they defineda typology

of evidencephrases:synonyms, subclasses, products, compa-
nies, associatedstandards, key people. Thesewerethenused
to increasethe numberof relatedanswersto a given query.
They weredeployedin thebackgroundalongwith rulesthat
govern their interrelations. As in our approach,thesewere
not automaticallygenerated.

A similar approachwhich deploys contentmatching tech-
niquesisdescribedin [Guarinoetal., 1999] wheretheauthors
presentthe OntoSeeksystemdesignedto supportcontent-
basedaccessto theWeb. As in theFindURproject,thetarget
wastheInformationRetrieval areawith theaimof improving
recall and precisionand the focus was two specificclasses
of informationrepositories:yellow pagesandproductcata-
logues.Their underlyingmechanismusesconceptualgraphs
to representqueriesand resourcesdescriptions.As the au-
thorsargue,“with conceptualgraphs,theproblemof content
matchingreducesto ontology-drivengraphmatching,where
individualnodesandarcsmatchif theontologyindicatesthat
a subsumptionrelationshipholdsbetweenthem”[Guarinoet
al., 1999]. However thesegraphsarenot constructedauto-

Heiner Stuckenschmidt
50

matically. The OntoSeekteamdevelopeda semi-automatic
approach� in which the userhasto verify the links between
differentnodesin the graphvia a designateduser-interface.
Thesimilarity of thiswork with myPlanetlies in theusageof
anontology. However, aspreviously, we deployedour ontol-
ogy in differentphases:in structuringthesearchspaceandin
increasingtheanswerset.

On a slightly different focus, the IMPS(Internet-based
Multi-agent ProblemSolving) systemusessoftware agents
to conductknowledgeacquisitionon-line using distributed
resources[Crow andShadbolt,1999]. Oneof theseagents,
OCA(OntologyConstructionAgent), is usedto facilitatethe
taskof constructinganontologyat runtime,that is, querying
variousresourcesfor filling in the gapsin the ontology. Al-
thoughthe goalsof this work weredifferent,the underlying
ideafor theOCA is similartooureffortsof populatingtheon-
tology by automaticallyinstantiatingclassesaswe described
in section3.2. OCA wasused“to extract information from
networked knowledgeresources- like WordNet, the online
thesaurus/lexical databaseanda plain text domaindatabase
in the field of geology, the IGBA dataset”[Crow andShad-
bolt, 1999]. Our approachis different in that we deploy IE
techniquesalongwith domainspecifictemplatesto instantiate
specificontologyclasseswhereastheOCAdeploys heuristic
methodsfor extractionandfocuseson creatingan hierarchy
latticeof classesof concepts.

In the context of managinguserprofileswe shouldpoint
to attemptsthat have beenmadeto infer userprofiles from
analyzingpatternsof accessto documents[Krulwich and
Burkley, 1997]. However, most of theseapproachestry to
induceuserinterestsby employing empiricalmethods.In our
case,we deliberatelyimposeanontology-drivenstructureto
theuserprofile whichenabledusto reasonaboutit.

Finally, [Rouxetal., 2000] and[Faatzetal., 2000] discuss
early ideason theuseof IE techniquescoupledwith ontolo-
giesin orderto helpthemunderstandcomplex relationships,
statementsor termsin semi-structuredor unstructureddocu-
ments.

5 Summary and futur e work
In this paperwe presenteda system,myPlanet, which actsas
the front-endto a news server. It is placedon the top of the
existing infrastructurefor ontology-driven Web-basednews
services,PlanetOnto. It aimsto allow usersbrowsee-Stories
accordingto their preferences(i.e.,searchcriteria). The us-
ageof theunderlyingontologyallowedusto deviseheuristics
which make it possibleto increasethe answersetof related
e-Stories.Wealsoprovidefacilitiesfor saving users’profiles,
a featurevital for providing furtherservicestailoredto their
preferences.

While the easeof accessibilityto our e-Storiesrepository
wasaprimarygoal,equallyimportantwasthemaintenanceof
this repository. Sincewebaseourserviceson theenrichment
of e-Storiesin termsof annotatingthemwith ontology-drawn
knowledgestructureswe hadto find waysof automatingthis
process.We usedIE techniquesanddevelopeddomainspe-
cific templatesto automaticallyidentify the event type of a
e-Storyandextract specificinformationneededfor instanti-

atingit in theunderlyingontology.
Therearecertainresearchissueswhichremainopenin this

work. In theareaof personalisedservicesweneedto takethe
ontology-basedreasoningto a furtherstage:reasonaboutthe
kind of outputthatwill bedispatchedto theuserby analysing
his/herprofile. Sincewesavetheuser’spreferenceswecould
applydeductiveheuristicsto find e-Storiesthatarerelatedto
thesepreferencesby meansof tracing their interrelationsin
the underlyingontology. A simpleexamplecould be to in-
fer that technologiesusedin projectsmight be of interestto
usersthat looking for e-Storiesrelatedto otherprojectswith
thesameresearcharea.Furthermore,weareinvestigatingthe
possibility of extendingthe type of output. Currently, a re-
latede-Storyis theoutputof myPlanet. In thefuturethough,
wemightwantto provideotherkind of outputlike,for exam-
ple, suggestionsaboutpotentialcollaboratorson a research
topic, or organizationswith a potentialinterestin the user’s
researchareas.Thesecouldbeinferredby applyingthesame
styleof deductiveheuristicsbut changingtheoutputto ades-
ignated“personalinterests”Web-page.As in theexistingsys-
tem,editingfacilitiesarevital to keepthesystemupdatedand
let theuserdrive thereasoningprocess.

One of the advantages of our “lowest-common-
denominator” medium(the email message) is that we
make no commitmentsas to what the structure should
be. Which meansthat we can apply exactly the same
infrastructure to any kind of document, not necessarily
emailmessages.Thetechnologyneedsno changes,however
we might need to edit or even createnew ontologies to
characterisethe new domain. Towards this direction, we
plan to extend the usageof IE techniquescoupled with
domainspecifictemplatesasit hasbeenproveda fastway of
instantiatingour ontologies.In our ontologypopulationtask
we hadto manuallyconstructthe templatesfor eachtypeof
event. We areplanningto automatethis taskby deploying
inductive learningalgorithms. The existing setof e-Stories
could be used, potentially, as the training set to identify
characteristicsof event typeswhich will eventually lead to
automaticallyconstruct their templates. These templates
canthenbe testedon the annotatede-Storiesto judge their
quality and appropriateness.In the sameline of work, we
intend to expand on IE techniquesand include tools that
allow detectionof anaphorawhich is an important feature
when dealing with large corpussesof text from the same
organisationbut differentdepartments.In thesecases,terms
areoften usedin different formats(i.e.,abbreviatednames).
Co-referrencesbetweenthoseare importantto be identified
prior to IE tasksin orderto avoid duplicationsor omissions
of information.

Finally, theuseof cuephrasesandcuewordsfor increasing
theanswersetworkedwell in ourapproach.Althoughtheset
is relatively small(wehave somethinglike 200 cue phrases
defined)their identification needto be automated. To do
this we have begunto work with a techniqueborrowedfrom
thedataengineeringdomain[Krulwich,1995], whichapplies
heuristicsto identify ‘semanticallysignificantphrases’.The
underlyingprincipleis to observevisualeffectsoftenusedby
authorsto emphasizeimportantconceptsin their documents.
For example,boldfacedor italicisedwords,heavily repeated

Heiner Stuckenschmidt
51

phrases,compoundnounphrases,list of items,etc. We have
build� a prototypetool which extractsa largesetof potential
cuephrasesafterapplyinga designatedsetof heuristics.The
potentialphraseswill thenbeeditedto constructthefinal set.

With this first versionof myPlanetandthe extensionswe
planto makeweareworkingtowardsthevisionof theKnowl-
edge User erawherethe useris the focal point in a setting
with a plethoraof knowledge-intensive systemsaim to de-
liver intelligentservicesover theWebsurroundinghim. This
metaphor, althoughin its infancy yet, is in contrastwith the
traditionalview of knowledge-intensivesystemsbeingthefo-
cal point with userssurroundingthemactingassubscribers
for knowledgeservices.

Acknowledgements
Theresearchdescribedin thispaperis supportedby theInter-
disciplinaryResearchCollaboration(IRC)project: Advance
Knowledge Technologies(AKT - http://www.aktors.org)
fundedby theUK government.

References
[Crow andShadbolt,1999] L. Crow and N. Shadbolt. Ac-

quiring and Structuring Web Content with Knowledge
Level Models. In R. Studer and D. Fensel, editors,
Proceedingsof the 11th EuropeanWorkshopon Knowl-
edgeAcquisition,ModellingandManagement(EKAW’99),
Dagstuhl,Germany, pages83–101.SpringerVerlag,May
1999.

[DomingueandMotta,2000] J. Domingue and E. Motta.
Planet-Onto:FromNewsPublishingto IntegratedKnowl-
edgeManagementSupport. IEEE Intelligent Systems,
15(3):26–32,2000.

[Domingue,1998] J. Domingue. Tadzebaoand WebOnto:
Discussing, Browsing, and Editing Ontologies on the
Web. In Proceedingsof the11thKnowledge Acquisition,
Modelling and ManagementWorkshop,KAW’98, Banff,
Canada, April 1998.

[Faatzet al., 2000] A. Faatz,T. Kaamps,andR. Steinmetz.
Backgroundknowledge,indexing and matchinginterde-
pendenciesif documentmanagementandontologymain-
tenance.In positionpaperin Proceedingsof theECAI2000
workshopon Ontology Learning(OL2000),Berlin, Ger-
many, August2000.

[Guarinoet al., 1999] N. Guarino,C.Masolo,andG.Vetere.
OntoSeek:Content-BasedAccessto theWeb. IEEEIntel-
ligentSystems, 14(3):70–80,May 1999.

[HuhnsandStephens,1999] M. HuhnsandL. Stephens.Per-
sonalOntologies. IEEE InternetComputing, 3(5):85–87,
September1999.

[Kalfoglouet al., 2000] Y. Kalfoglou, T. Menzies,K-D. Al-
thoff, andE. Motta. Meta-knowledgein systemsdesign:
panacea...orundeliveredpromise? TheKnowledge Engi-
neeringReview, 15(4),2000.

[Kalfoglou,2000a] Y. Kalfoglou. DeployingOntologies in
Software Design. PhDthesis,Departmentof Artificial In-
telligence,Universityof Edinburgh,June2000.

[Kalfoglou,2000b] Y. Kalfoglou. On the convergenceof
coretechnologiesfor knowledgemanagementandorgan-
isationalmemories:ontologiesand experiencefactories.
In Proceedingsof the ECAI 2000 Workshopon Knowl-
edge Managementand Organisational Memories(W11-
KMOM’00), Berlin, Germany, August2000.

[Krulwich andBurkley, 1997] B. Krulwich andC. Burkley.
The InfoFinder Agent: LearningUser Intereststhrough
Heuristic PhraseExtraction. IEEE Intelligent Systems,
12(5):22–27,1997.

[Krulwich, 1995] B. Krulwich. Learningdocumentcategory
descriptionsthroughtheextractionof semanticallysignif-
icant phrases.In Proceedingsof the IJCAI’95 Workshop
on DataEngineeringfor InductiveLearning, 1995.

[McGuinness,1998] L.D. McGuinness.OntologicalIssues
for Knowledge-EnhancedSearch. In N. Guarino,editor,
Proceedingsof the1stInternationalConferenceonFormal
Ontology in InformationSystems(FOIS’98),Trento,Italy,
pages302–316.IOSPress,June1998.

[Motta,1999] E. Motta. ReusableComponentsfor Knowl-
edgeModels:CaseStudiesin ParametricDesignProblem
Solving, volume53 of Frontiers in Artificial Intelligence
andApplications. IOS Press,1999. ISBN: 1-58603-003-
5.

[O’Leary, 1998] D. O’Leary. KnowledgeManagementSys-
tems: ConvertingandConnecting. IEEE Intelligent Sys-
tems, 13(3):30–33,June1998.

[ProuxandChenevoy, 1997] D. Proux and Y. Chenevoy.
Naturallanguageprocessingfor bookstorage:Automatic
extractionof information from bibliographicnotices. In
Proceedingsof the Natural Language ProcessingPacific
RimSymposium(NLPRS’97), pages229–234,1997.

[Riloff, 1996] E. Riloff. An empirical study of automated
dictionaryconstructionfor informationextractionin three
domains.AI Journal, (85):101–134,1996.

[Rouxet al., 2000] C. Roux,D. Proux,F. Rechermann,and
L. Julliard. An ontologyenrichmentmethodfor a prag-
maticinformationextractionsystemgatheringdataon ge-
netic interactions. In position paper in Proceedingsof
theECAI2000Workshopon OntologyLearning(OL2000),
Berlin, Germany. August2000.

[Vargas-Veraet al., 2001] M. Vargas-Vera, J. Domingue,
Y. Kalfoglou, E. Motta, and S. Buckingham-Shum.
Template-driveninformationextractionfor populatingon-
tologies.In Proceedingsof theIJCAI’01 WorkshoponOn-
tologyLearning, Seattle, WA, USA, August2001.

Heiner Stuckenschmidt
52

Combining and relating ontologies:
an analysis of problems and solutions

Michel Klein
Vrije Universiteit Amsterdam

Michel.Klein@cs.vu.nl

Abstract

With the grown availability of large and specialized
online ontologies, the questions about the com-
bined use of independently developed ontologies
have become even more important. Although there
is already a lot of research done in this area, there
are still many open questions. In this paper we try
to classify the problems that may arise into a com-
mon framework. We then use that framework to
examine several projects that aim at some ontology
combination task, thus sketching the state of the art.
We conclude with an overview of the different ap-
proaches and some recommandations for future re-
search.

1 Introduction
In the last few years, there has been put a lot of effort in the
development of techniques that aim at the “Semantic Web”.
This next step in the evolution of the World Wide Web, will
enable computers to partly “understand” the information on
the internet. A lot of those newly developed techniques re-
quires and enables the specification of ontologies (Gruber,
1993) on the web. Consequently, there will emerge a lot of
freely accessible domain specific ontologies. The reuse of
these ontologies may be very attractive.

However, there are several problems when one tries to use
independently developed ontologies together, or when exist-
ing ontologies are adapted for new purposes. Although there
is already a lot of research done in this area, there are still
many open questions. In this paper, we investigate the prob-
lems that may arise. We will distinguish several types of mis-
matches that can occur between different ontologies, we will
look at practical problems and we will look at some of the
consequences of changes to ontologies. Altogether, this will
give us a framework that can be used to compare approaches
that aim at solving the problems. We will use this to exam-
ine several techniques and tools that has the purpose to solve
these problems or to support users in performing ontology
combining tasks.

The paper is organized as follows. We will first clarify
the terminology that is used in the field of ontology combin-
ing (section 2). In section 3, we will investigate all problems

that arise when ontologies are combined or related, which re-
sults in a framework of relevant issues. Next, in section 4, we
will use the framework to examine existing approaches for
ontology combining. In section 5, we summarize the tech-
niques and give an overview of the different approaches that
are used. Finally, in section 6 we will conclude the paper and
we will make some remarks based on our observations.

2 Terminology

Before we can analyse the problems that play a role, we need
to clarify the terminology and define the terms we will use.
We will have to make some decisions about our understand-
ing of the terminology, because there is not always an agree-
ment on the exact meaning of the terms. We have tried to be
consistent as far as possible with definitions and descriptions
found elsewhere.

Reuse of existing ontologies is often not possible without
considerable effort (Uscholdet al., 1998). When one wants
to reuse different ontologies together, those ontologies have
to becombinedin some way. This can be done byintegrating
(Pintoet al., 1999) the ontologies, which means that they are
merged into one new ontology, or the ontologies can be kept
separate. In both cases, the ontologies have to bealigned,
which means that they have to be brought into mutual agree-
ment.

Ontology integration consist of (the iteration of) the fol-
lowing steps (McGuinnesset al., 2000):

1. find the places in the ontologies where they overlap;

2. relate concepts that are semantically close via equiva-
lence and subsumption relations (aligning);

3. check the consistency, coherency and non-redundancy
of the result.

The alignment of concepts between ontologies is especially
difficult, because this requires understanding of the meaning
of concepts. Aligning two ontologies implies changes to at
least one of them. Changes to an ontology will result in a
newversionof an ontology.

If the ontologies are not represented in the same language,
a translationis often required.

Throughout this paper, we will use the following terms
consistently according to their specified meaning:

Michel.Klein@cs.vu.nl
Heiner Stuckenschmidt
53

combining: Using two or more different ontologies for a
task in which their mutual relation is relevant.

merging, integrating: Creating a new ontology from two
or more existing ontologies with overlapping
parts, which can be either virtual or physical.

aligning: Bring two or more ontologies into mutual
agreement, making them consistent and co-
herent.

mapping: Relating similar (according to some metric)
concepts or relations from different sources
to each other by an equivalence relation. A
mapping result in a virtual integration.

articulation: The points of linkage between two aligned
ontologies, ie. the specification of the align-
ment.

translating: Changing the representation formalism of an
ontology while preserving the semantics.

transforming: Changing the semantics of an ontology
slightly (possibly also changing the represen-
tion) to make it suitable for purposes other
than the original one.

version: The result of a change that may exist next to
the original.

versioning: A method to keep the relation between newly
created ontologies, the existing ones, and the
data that conforms to them consistent.

3 Problems with ontology combination
The combined use of multiple ontologies is hindered by sev-
eral problems. In this section, we will investigate and de-
scribe them.

The problems that underlies the difficulties in merging and
aligning are the mismatches that may exist between separate
ontologies. In the next subsection, we will discuss these mis-
matches. We will then look at the different type of problems
involved with versioning and revisioning. Finally, we will
discuss some practical problems that come up when one tries
to combine ontologies.

Thus doing, we will build a framework with the different
types of problems that can occur when relating ontologies.
This framework can be used when we compare the existing
approaches and tools.

3.1 Mismatches between ontologies
Mismatches between ontologies are the key type of problems
that hinder the combined use of independently developed on-
tologies. We will now explorehow ontologies may differ.
In the literature, there are a lot of possible mismatches men-
tioned, which are not always easy comparable. To make them
more comparable, we try to classify the different types of mis-
matches and relate them to each other.

As a first step, we will distinguish between two levels at
which mismatches may appear. The first level is thelanguage
or meta-model level. This is the level of the language prim-
itives that are used to specify an ontology. Mismatches at

this level are mismatches between themechanimsto define
classes, relations and so on. The second level is theontol-
ogy or model level, at which the actual ontology of a do-
main lives. A mismatch at this level is a difference in the
way the domain is modelled. The distinction between these
two levels of differences is made very often. Kitakamiet al.
(1996) and Visseret al. (1997) call these kinds of differences
respectivelynon-semanticandsemanticdifferences. Others
make this distinction implicitly, by only concentrating on one
of the two levels. For example, Wiederhold (1994) analyses
domain differences (i.e., ontology level), while Grossoet al.
(1998) and Bowers and Delcambre (2000) look at langauge
level differences. In the following, we will avoid the use of
the words “semantic differences” for ontology level differ-
ences, because we reserve those words for a more specific
type of difference (which will be described below).

Below, we will give an overview and characterization of
different types of mismatches that can appear at each of those
two levels.

Language level mismatches
Mismatches at the language level occur when ontologies writ-
ten in different ontology languages are combined. Chalupsky
(2000) defines mismatches insyntaxandexpressivity. In to-
tal, we distinguish four types of mismatches that can occur,
although they often coincide.

• Syntax Obviously, different ontology languages often
use different syntaxes. For example, to define the class
of chairs in RDF Schema (Brickley and Guha, 2000),
one uses<rdfs:Class ID="Chair"> . In LOOM, the
expression(defconcept Chair) is used to define the
same class. This difference is probably the most simple
kind of mismatch. However, this mismatch often doesn’t
come alone, but is coupled with other differences at the
language level. A typical example of a “syntax only”
mismatch is an ontology language that has several syn-
tactical representations. In this simple case, a rewrite
mechanims is sufficient to solve those problems.

• Logical representation An slightly more complicated
mismatches at this level is the difference in repre-
sentation of logical notions. For example, in some
languages it is possible to state explicitly that two
classes are disjoint (e.g.,disjoint A B), whereas it
is necessary to use negation in subclass statements
(e.g., A subclass-of (NOT B), B subclass-of
(NOT A) in other languages. The point here is not
whether something can be expressed — the statements
are logically equivalent — but which langauge con-
structs should be used to express something. Also, no-
tice that this mismatch is not about the representation of
concepts, but about the representation oflogical notions.
This type of mismatch is still relatively easy solvable,
e.g. by giving translation rules from one logical repre-
sentation to another.

• Semantics of primitivesA more subtle possible differ-
ence at the metamodel level is the semantics of language
constructs. Despite the fact that sometimes the same
name is used for a language construct in two languages,

Heiner Stuckenschmidt
54

the semantics may differ; e.g., there are several interpre-
tations ofA equalTo B .
Note that even when two ontologies seem to use the
same syntax, the semantics can differ. For example, the
OIL RDF Schema syntax (Broekstraet al., 2001) inter-
prets multiple<rdfs:domain> statements as the inter-
section of the arguments, whereas RDF Schema itself
uses union semantics1.

• Language expressivityThe mismatch at the metamodel
level with the most impact is the difference in expressiv-
ity between two languages. This difference implies that
some langauges are able to express things that are not
expressible in other languages. For example, some lan-
guages have constructs to express negation, others have
not. Other typical differences in expressivity are the sup-
port of lists and sets, default values, etc.
This type of mismatch has probably the most impact,
and is mentioned by several others. The “fundamen-
tal differences” between knowledge models that are de-
scribed in (Grossoet al., 1998) are also very close to our
interpretation.

Our list of differences at the language level can be seen
as more or less compatible with the broad term “language
heterogeneity” of Visseret al. (1997).

Ontology level mismatches
Mismatches at the ontology — or model — level happen
when two or more ontologies that describe (partly) overlap-
ping domains are combined. These mismatches may occur
when the ontologies are written in the same language, as well
as when they use different languages. Based on the literature
and on our own observations, we can distinguish several types
of mismatches at the model level.

Visseret al.(1997) make a very useful distinction between
mismatches in theconceptualizationandexplicationof on-
tologies. A conceptualization mismatch is a difference in the
way a domain is interpreted (conceptualized), which results in
different ontological concepts or different relations between
those concepts. An explication mismatch, on the other hand,
is a difference in the way the conceptualization isspecified.
This can manifest itself in mismatches in definitions, mis-
matches in terms and combinations of both. Visseret al. list
all the combinations. Four of them are related to hymonym
terms and synonym terms.

Wiederhold (1994) also mentions the problems with syn-
onym terms (callednaming differences) and homonym terms
(subjective meaning). Besides that, he describes possible dif-
ferences in thescope of concepts, which is an example of
a conceptual mismatch. Finally, he mentionsvalue encoding
differences, for example, differences in the currency of prices.

Chalupsky (2000) list four types of mismatches in ontolo-
gies. One of them,inference system biasis in our opinion
not a real mismatch, but a reason for modeling style differ-
ences. The other three mismatches,modeling conventions,
coverage and granularityandparadigmscan be categorized

1Although this will probably change in the next revision of RDF
Schema, according to a discussion on the RDF-interest mailinglist.

as instances of the two main mismatch types of Visseret al..
We will describe them in a slightly altered way below.

We will now relate the different types of mismatches that
are distinguished by the authors cited above. Thus, we will
continue the build of our framework.

The first two mismatches at the model level that we dis-
tinguish are instances of theconceptualization mismatches
of Visseret al.. This are semantic differences, i.e., not only
the specification, but also the conceptualization of the domain
(see the definition of Gruber, 1993) is different in the ontolo-
gies that are involved.

• Scope Two classes seem to represent the same con-
cept, but do not have exactly the same instances, al-
though these intersect. The standard example is the class
“employee”: several administrations use slightly differ-
ent concepts of employee, as mentioned by Wiederhold
(1994). In (Visseret al., 1997), this is called aclass mis-
matchand is worked out further into detailed descrip-
tions at class- or relation-level.

• Model coverage and granularity This is a mismatch
in the part of the domain that is covered by the on-
tology, or the level of detail to which that domain is
modelled. Chalupsky (2000) gives the example of an
ontology about cars: one ontology might model cars
but not trucks. Another one might represent trucks but
only classify them into a few categories, while a third
one might make very fine-grained distrinctions between
types of trucks based on their general physical structure,
weight, purpose, etc.

Conceptualization differences as described above can not be
solved automatically, but require knowledge and decisions of
a domain expert. In the second case, the mismatch is often not
a problem, but a motive to use different ontologies together.
In that case, the remaining problem is to align the overlapping
parts of the ontology.

The other ontology-level mismatches can be categorized
asexplication mismatches, in the terminology of Visseret
al.. The first two of them result from explicit choices of the
modeler about thestyle of modeling:

• Paradigm Different paradigms can be used to represent
concepts such as time, action, plans, causality, propo-
sitional attitudes, etc. For example, one model might
use temporal representations based on interval logic
while another might use a representation based on point
(Chalupsky, 2000). The use of different “top-level” on-
tology is also an example of this kind of mismatch.

• Concept descriptionThis type of differences are called
modeling conventionsin (Chalupsky, 2000). Several
choices can be made for the modeling of concepts in
the ontology. For example, a distinctions between two
classes can be modeled using a qualifying attribute or
by introducing a separate class. These choices are some-
times influenced by the intended inference system. An-
other choice in concept descriptions is the way in which
is-a hierarchy is build; distinctions between features can
be made higher or lower in the hierarchy. For exam-
ple, consider the place where the distinction between

Heiner Stuckenschmidt
55

scientific and non-scientific publications is made: a dis-
sertation can be modeled asdissertation < book
< scientific publication < publication , or
as dissertation < scientific book < book <
publication , or even as subclass of bothbook and
scientific publication .

Further, the next two types of differences can be classified as
terminological mismatches.

• Synonym termsConcepts are represented by different
names. A trivial example is the use of the term “car”
in one ontology and the term “automobile” in another
ontology. This type of problem is calledterm mismatch
(T or TD) in (Visseret al., 1997).
A special type of this problem is the case that the natural
language in which ontologies are described differ.
Although the technical solution for this type of prob-
lems seems relatively simple (the use of thesauri), the
integration of ontologies with synonyms or different lan-
guages requires usually a lot of human effort and comes
with several semantic problems. Especially, one must be
careful not to overlook a scope difference (see above).

• Homonym terms The meaning of a term is different in
an other context. For example, the term “conductor” has
a different meaning in a music domain than in an elec-
tric engineering domain. Visseret al. (1997) calls this a
concept mismatch (C or CD).
This inconsistency is much harder to handle; (human)
knowledge is required to solve this ambiguity.

Finally, there is a one trivial type of difference left.

• Encoding Values in the ontologies may be encoded in
different formats. For example, a date may be repre-
sented as “dd/mm/yyyy” or as “mm-dd-yy”, distance
may be described in miles or kilometers, etc. There are
many mismatches of this type, but these are all very easy
to solve. In most cases, a transformation step or wrapper
is sufficient to eliminate all those differences.

3.2 Ontology versioning
The problems listed above are mismatches between ontolo-
gies. Most projects and approaches focus on solving these
mismatches. However, mismatches are not the only problems
that have to be solved when one want to use several ontolo-
gies together for one task.

As changes to ontologies are inevitable in an open domain,
it becomes very important to keep track of the changes and of
its impact on the dependencies of that ontology. It is often not
practically possible to synchronize the changes of an ontol-
ogy with the revisions to the applications and datasources that
use them. Therefore, a versioning method is needed to handle
revisions of ontologies and the impact on existing sources. In
some sense, the versioning problem can also be regarded as
a derivation of ontology combination; it results from changes
(possibly required by combination tasks) to individual ontolo-
gies.

Ontology versioning covers several aspects. Although the
problem is introduced by subsequent changes to one specific

ontology, the most important problems are caused by the de-
pendencies on that ontology. Therefore, it is useful to dis-
tinguish the aspects of ontology versioning. A versioning
scheme should take care of the following aspects:

1. the relation between succeeding revisions of one ontol-
ogy;

2. the relation between the ontology and its dependencies:

• instance data that conforms to the ontology;
• other ontologies that are built from, or import the

ontology;
• applications that use the ontology.

The central question that a versioning scheme answers is:
how to reuse existing ontologies in new situations, without
invalidating the existing ones. A versioning scheme provides
ways to disambiguate the interpretation of concepts for users
of the ontology revisions, and it makes the compatibility of
the revisions explicit. Consequently, we can impose the fol-
lowing requirements on a versioning scheme, in increasing
level of difficulty:

• for every use of a concept or a relation, a versioning
framework should provide an unambigious reference to
the intended definition (identification);

• a versioning framework should make the relation of one
version of a concept or relation to other versions of that
construct explicit (change tracking);

• a versioning framework should — as far as possible
— automatically perform conversions from one version
to another, to enable transparant access (transparant
translating).

We will examine the current approaches with respect to those
requirements.

3.3 Practical problems
Besides the technical problems that we discussed in the pre-
vious sections, there are also practical problems that hinder
the easy use of combined ontologies. Aligning and merg-
ing ontologies, the central aspect of ontology combining, is a
complicated process and requires serious effort of the ontol-
ogy designers. Until now, this task is mostly done by hand
(Noy and Musen, 2000), which makes it difficult to overlook
in two aspects:

• it is difficult to find the terms that need to be aligned;

• the consequences of a specific mapping (unforeseen im-
plications) are difficult to see.

Because it is unrealistic to hope that merging or alignment at
the semantic level could be performed completely automati-
cally, we should take these practical aspects into considera-
tion.

Another practical problem is that repeatability of merges.
Most often, the sources that are used for the merging,
continue to evolve. The alignments that are created for
the merging, should be as much reusable as possible for
the merging of the revised ontologies. This issue is very
important in the context of ontology maintenance. The
repeatability could for example be achieved by an executable

Heiner Stuckenschmidt
56

specification of the alignment.

Summarizing the previous sections, we can construct the
framework of issues that is depicted in Figure 1.

4 Current approaches and techniques
In this section, we will use the framework to examine several
tools and techniques that are aimed at ontology combining.
We start at the top of the framework, looking at techniques
for solving language mismatches. Then, we will look at tech-
niques for solving ontology level mismatches and user sup-
port. Of course, it is not possible to make a strict distinction
between the type of problems that a technique solves, because
some tools or techniques provide support for several types of
problems. The place where we mention them does therefore
not imply a classification, but serves as a guideline only.

4.1 Solving language mismatches
There are several approaches for solving the problem of in-
tegrating ontologies that are written in different knowledge
representation languages. Some of them are just techniques,
others also provide some kind of automated support.

Superimposed metamodel
Bowers and Delcambre (2000) describes an approach to
transforming information from one representation to another.
Their focus is on model-based information where the infor-
mation representation scheme provides structural modeling
constructs (analogous to a data model in a database). For ex-
ample, the XML model includes elements, attributes, and per-
mits elements to be nested. Similarly, RDF models informa-
tion through resources and properties. The goal of their work
is to enable the user to apply tools of interest to the informa-
tion at hand. Their approach is to represent information for
a wide variety of model-based applications in a uniform way,
and to provide a mapping formalism that can easily transform
information from one representation to another.

To achieve this, the ontology languages (i.e., the specific
constructs in the language that are used to describe an ontol-
ogy) are each represented in a meta-model, a so called ”su-
perimposed” model. These superimposed models are repre-
sented as RDF triples. Mappings are then specified using pro-
duction rules. The rules are defined over triples of the RDF
representation for superimposed information. Since a triple is
a simple predicate, mapping rules are specified using a logic-
based language such as Prolog, which allows to both specify
and implement the mappings. There is no requirement that
the mappings between superimposed layers should be com-
plete, since only part of a model or schema may be needed
while using a specific tool.

If superimposed information from a source language is be-
ing mapped to the target language, is is possible to convert
data from the source layer into data that conforms to the tar-
get layer. Although the focus is on conversion, it is also possi-
ble to perform integration between superimposed layers. Inte-
gration goes a step further by combining the source and target
data. The mapping rules can be used to provide integration at
both the schema and instance levels.

The “superimposed model approach” provides mecha-
nisms to solve language level mismatches of syntax, repre-
sentation and semantics. The mappings between the language
constructs have to be specified manually. The semantic reso-
lution of mismatches at the ontology level is not covered by
this approach.

Layered approach to interoperability
Melnik and Decker (2000) introduce some initial ideas tar-
geted at facilitating data interoperation using a layered ap-
proach. Their approach resembles the layering principles
used in internetworking. To harness the complexity of data
interoperation, Melnik and Decker suggest viewing Web-
enabled information models as a series of layers: the syn-
tax layer, the object layer, and the semantic layer. The se-
mantic layer, or knowledge representation layer, deals with
conceptual modeling and knowledge engineering tasks. The
basic function of the object layer, or frame layer, is to pro-
vide applications with an object-oriented view of their do-
main. The syntax layer is responsible for ”dumbing down”
object-oriented information into document instances and byte
streams. Each layers has a number of sublayers, which corre-
sponds to a specific data modeling feature (e.g., aggregation
or reification) that can be logically implemented in different
ways.

It seems that a clean separation between different layers
may ease the achievement of interoperability. The first two
layers that the authors distinguish map nicely onto the first
two types of mismatches that we described in Section 3.1.
However, all other types of mismatches that we distinguish
are comprised in the “semantic layer”. Therefore, the layer-
ing as described in its inital version only solves some of the
language level mismatches.

As the authors also have noticed, considering data models
in a layered fashion is a contemporary approach. For exam-
ple, OIL is presented as an extension to RDF Schema (Broek-
straet al., 2001), and Euzenat (2001) investigates the charac-
teristics of interoperability of knowledge representations at
various levels.

OKBC
The Open Knowledge Base Connectivity (Chaudhriet al.,
1998) is a generic interface to knowledge representation sys-
tems (KRS). An “application programming interface” (API),
specifies the operations that can be used to access a sys-
tem by an application program. When specifying this API
for knowledge representation systems, some assumptions are
made about the representation used by that KRS. These as-
sumptions are made explicit in the OKBC knowledge model.

A specific knowledge representation language — or ontol-
ogy language — can be bound to OKBC by defining a map-
ping from OKBC knowledge model to the specific language.
The users of the ontology are then isolated from the peculiar-
ities of specific language and can use the OKBC model. The
interoperability achieved by using OKBC is at the level of the
OKBC knowledge model.

OKBC thus can solve some mismatches at the language
level. However, semantic differences that are beyond rep-
resentation can not be solved by providing mappings to the

Heiner Stuckenschmidt
57

problems in ontology combination tasks

mismatches between ontologies

language level ontology level

syntax

logical representation

semantics of primitives

language expressivity

conceptualization explication

modelling styleterminological

paradigm

concept description

homonyms

synonyms

coverage

concept scope

encoding

practical problems

finding alignments

diagnosis

repeatability

versioning

identification

tracebility

translation

Figure 1: The resulting framework of issues that are involved in ontology combining

OKBC knowledge model. More general, when using a map-
ping to a common knowledge model, the notions that requires
a higher level of expressivity than that model provides, will
be lost.

OntoMorph
OntoMorph (Chalupsky, 2000) is a transformation system for
symbolic knowledge. It facilitates ontology merging and the
rapid generation of knowledge base translators. It combines
two mechanisms to describe knowledge base transformations:
(1) syntactic rewritingvia pattern-directed rewrite rules that
allow the concise specification of sentence-level transforma-
tions based on pattern matching, and (2)semantic rewrit-
ing which modulates sytactic rewriting via (partial) seman-
tic models and logical inference via an integrated KR system.
The integration of these mechanisms allows transformations
to be based on any mixture of syntactic and semantic crite-
ria. The OntoMorph architecture facilitates incremental de-
velopment and scripted replay of transformations, which is
particulary important during merging operations.

OntoMorph focuses at transformations to individual on-
tologies that are needed to align two or more ontologies. This
is small but important step in the process of merging ontolo-
gies. In fact, step number 2 of the ontology merging process
(see Section 2) is split into three:

2a. design transformations to bring the sources into mutual
agreement;

2b. editing ormorphingthe sources to carry out the transfor-
mations;

2c. taking the union of the morphed sources;

OntoMorph facilitates step 2b, by transforming the ontologies
into a common format with common names, common syntax,
uniform modeling assumptions, etc.

Step 2a, the design of the transformations, involves under-
standing of the meaning of the representation, and is therefore

a less automatable task. Additionally, this step often involves
human negotiation to reconcile competing views on how a
particular modeling problem should be solved.

OntoMorph is able to solve several problems at the lan-
guage level of ontology mismatches framework. Of course, a
difference in expressivity between two languages is not solv-
able, but some implies loss of knowledge. Solutions for on-
tology level problems can also be formulated in OntoMorph.
Because OntoMorph requires a clear and executable specifi-
cation of the transformation, the process can be repeated with
modified versions of the original ontologies.

4.2 Ontology level integration and user support
In the previous section, we saw that OntoMorph provide
mechanisms and support for some model level integration,
too. We will now look at a transformation system, that allows
the specification and execution of transformation of individ-
ual ontologies. We will then discuss two tools that assist the
user in the complicated task of performing a merge.

Algebra for Scalable Knowledge Composition
The Scalable Knowledge Composition (SKC)2 project devel-
oped analgebra for ontology composition. This algebra is
used in the ONION system (ONtology compositION), de-
scribed in (Mitraet al., 2000). The current work in the SKC
project is not solely in the area of ontology combination, but
in the broader field of integrating heterogenous datasources.

The algebra operates on ontologes that are represented by
nodes and arcs (terms and relationships) in a directed labelled
graph. Each algebraic operator takes as input a graph of
semistructured data and transforms it to another graph. This
guarantees that the algebra is composable. The algebra op-
erations are themselves knowledge driven, using articulation
rules. The rules can be both logical rules (e.g., semantic

2Seehttp://www-db.stanford.edu/SKC/ .

http://www-db.stanford.edu/SKC/
Heiner Stuckenschmidt
58

implication between terms across ontologies) and functional
rules (e.g., dealing with conversion between terms across on-
tologies). The composition rules are partly suggested by ex-
pert and lexical knowledge.

Intersection is the most crucial operation since it identifies
the terms where linkage occurs among the domains, which is
called “the articulation”. Anarticulation ontologycontains
the terms from the source ontologies that are related and their
relation, and can be seen as a specification of an alignment.
This separate specification facilitates repeated executions of
the composition.

When we relate this to our framework, we see that the alge-
bra allows the specification of solutions to solve several con-
ceptual and terminological mismatches. Via the functional
rules, term synonyms and encoding problems can be elimi-
nated. The logical articulation rules provides a mean to solve
mismatches in scope, coverage and homonym terms. By us-
ing expert and lexical knowledge to suggest articulations, the
system also meets the practical problems of finding align-
ments.

One of the main advantages of using an algebra for combi-
nation, is the reusability. The unified ontology is not an phys-
ical entity, but an term to denote the result of applying the
articulation rules. This approach ensures minimal coupling
between the sources, so that the sources can be developed
and maintained independently.

Chimaera
Chimaera (McGuinnesset al., 2000) is an ontology merg-
ing and diagnosis tool developed by the Stanford University
Knowledge Systems Laboratory (KSL). Its initial design goal
was to provide substantial assistance with the task of merg-
ing KBs produced by multiple authors in multiple settings.
Later, it took on another goal of supporting testing and diag-
nosing ontologies as well. Finally, inherent in the goals of
supporting merging and diagnosis are requirements for ontol-
ogy browsing and editing. It is mainly targeted at lightweight
ontologies.

The two major tasks in merging ontologies that Chimaera
support are (1) coalesce two semantically identical terms
from different ontologies so that they are referred to by the
same name in the resulting ontology, and (2) identify terms
that should be related by subsumption, disjointness, or in-
stance relationships and provide support for introducing those
relationships. There are many auxiliary tasks inherent in
these tasks, such as identifying the locations for editing, per-
forming the edits, identifying when two terms could be iden-
tical if they had small modifications such as a further special-
ization on a value-type constraint, etc.

Chimaera generates name resolution lists that help the user
in the merging task by suggesting terms each of which is from
a different ontology that are candidates to be merged or to
have taxonomic relationships not yet included in the merged
ontology. It also generates a taxonomy resolution list where
it suggests taxonomy areas that are candidates for reorganiza-
tion. It uses a number of heuristic strategies for finding such
edit points.

Finally, Chimaere also has diagnostic support for verify-
ing, validating, and critiquing ontologies. Those functions

only include domain independent tests that showed value in
previous experiments.

We see that Chimaera can be used to solve mismatches at
the terminological level. It is also able to find some similar
concepts that have a different description at the model level.
Further, Chimaera seems to do a great job in helping the user
to find possible edit point. The diagnostic functions are diffi-
cult to evaluate, because their description is very brief.

PROMPT
PROMPT (formerly known as SMART) is an interactive
ontology-merging tool (Noy and Musen, 2000). It guides
the user through the merging process making suggestions, de-
termining conflicts, and proposing conflict-resolution strate-
gies. PROMPT starts with the linguistic-similarity matches
of frame names for the initial comparison, but concentrates
on finding clues based on the structure of the ontology and
users actions. After the user selects an operation to perform,
PROMPT determines the conflicts in the merged ontology
that the operation have caused and proposes possible solu-
tions to the conflict. It then considers the structure of the
ontology around the arguments to the latest operations — re-
lations among the arguments and other concepts in the on-
tology — and proposes other operations that the user should
perform.

In the PROMPT project, a set of knowledge-base opera-
tions for ontology merging or alignment is identified. For
each operation in this set is defined (1) the changes that
PROMPT performs automatically, (2) the new suggestions
that PROMPT presents to the user, and (3) the conflicts that
the operation may introduce and that the user needs to re-
solve. When the user invokes an operation, PROMPT creates
members of these three sets based on the arguments to the
specific invocation of the operation.

The conflicts that may appear in the merged ontology as the
result of these operations are: name conflicts, dangling refer-
ences, redundancy in the class-hierarchy and inconsistencies.
PROMPT not only points to the places where changes should
be made, but also presents a list of actions to the user.

Summarizing, PROMPT gives iterative suggestions for
concept merges and changes, based on linguistic and struc-
tural knowledge, and it points the user to possible effects of
these changes.

Common top level model
A different approach for enabling model level interoperabil-
ity, is the use of a common top level ontology. One of
the project that takes this approach is ABC (Brickleyet al.,
1999), a common conceptual model to facilitate interoper-
ability among application metadata vocabularies.

ABC aims at the interoperability of multiple metadata
packages that may be associated with and across resources.
These packages are by nature not semantically distinct, but
overlap and relate to each other in numerous ways. It exploits
the fact that many entities and relationships - for example,
people, places, creations, organizations, events, certain rela-
tionships and the like - are so frequently encountered that they
do not fall clearly into the domain of any particular metadata
vocabulary but apply across all of them. ABC is an attempt
to:

Heiner Stuckenschmidt
59

• formally define these underlying common entities and
relationships;

• describe them (and their inter-relationships) in a
s/usr/bin/smbclient -M pelikaanimple logical model;

• provide the framework for extending these common se-
mantics to domain and application-specific metadata vo-
cabularies.

A comparable approach - although more general - is
the IEEE Standard Upper Ontology (IEEE SUO Working
Group). This standard will specify the semantics of a general-
purpose upper level ontology. This will be limited to the up-
per level, which provides definition for general-purpose terms
and provides a structure for compliant lower level domain on-
tologies. It is estimated to contain between 1000 and 2500
terms plus roughly ten definitional statements for each term.
Is intended to provide the foundation for ontologies of much
larger size and more specific scope.

These approaches can solve some interoperability, but re-
quires a manual mapping of the ontologies to the common
ontology.

4.3 Versioning
We only found one technique that provides support for the
ontology versioning problems. Of course, there is a lot of
experience with these kind of problems in the area of software
engineering and databases, but it is not yet clear whether this
can directly applied to web-based ontologies. This should be
investigated further.

SHOE ontology integration
SHOE (Heflin and Hendler, 2000) is an is an HTML-based
ontology language. The language includes techniques for
combining and integrating different ontologies. SHOE pro-
vides a rule mechanism to align ontologies. Common items
between ontologies can be mapped by inference rules. First,
terminological differences can be mapped using simple if-
and-only-if rules. Second, scope differences require mapping
a category to the most specific category in the other domain
that subsumes it. Third, some encoding differences can be
handled by mapping individual values. Not all encodings can
be mapped in SHOE, for example arithmetic functions would
be needed to map meters to feet.

To solve versioning problems, the SHOE project gives ver-
sion numbers to ontologies and suggest three ways to incor-
porate the results of an ontology integration effort. These re-
vising schemes allows for the different effects of revisions on
the compatibility.

• In the first approach, a new mapping ontology that ex-
tends all the existing ones is created; users of the inte-
grated ontology should explicitly conform to the newly
created ontology.

• Second, each ontology that is involved in the integration
could be revised with the mutual relations to the other
ontologies.

• Third, it is possible to create a new intersection ontology,
that will be extended by the already existing ontologies.

Any source can commit to the ontology of its choice, thus say-
ing that it agrees with any conclusions that logically follow
from its statements and the rules in the ontology. Agents are
free to pick which ontologies they use to interpret a source,
and depending on the differences between these two ontolo-
gies they may get the intended meaning or an alternate one.

The SHOE versioning facilities provides both identifica-
tion of the revisions and an explicit specification of its rela-
tion to other versions.

5 Overview of approaches
We will now give an overview of the approaches that are used
in the projects and techniques mentioned above and also list
some papers that describe a similar approach.

Additionally, Table 1 relates the the tools and approaches
that we have discussed to the framework. The table should
read as follows: an ‘A’ means ”tool or technique solves this
without user interaction (automatically)”, ‘U’ means ”tool or
technique suggests solutions to the user, and ‘M’ means ”tool
or technique provides a mechanism for specifying the solu-
tion to this problem”.

• We discovered four different approaches that aims at en-
abling interoperability between different ontologies at
the language level.

– aligning the metamodel: the constructs in the lan-
guage are formally specified in a general model
(Bowers and Delcambre, 2000), (MOF);

– layered interoperability: aspects of the language are
split up in clearly defined layers, as a result of what
interoperability can be solved layer by layer (Mel-
nik and Decker, 2000);

– transformation rules: the relation between two spe-
cific constructs in different ontology languages is
described with a rule that specifies the transforma-
tion from the one to the other (OntoMorph);

– mapping onto a common knowledge model: the
constructs of an ontology language are mapped
onto a common knowledge model (OKBC).

Note that the third approach can be used to implement
the fourth.

• We want to recall that the alignment of concepts is a
task that requires understanding of the meaning of con-
cepts, and cannot be fully automated. Consequently, at
themodel level, we only found tools thatsuggest align-
ments and mappingsbased on heuristics matching al-
gorithms and provide means to specify these mappings.
Such tools support the user in finding the concepts in the
separate ontologies that might be candidates for merg-
ing. Some tools go a little bit further by even suggesting
the actions that should be performed. Roughly spoken,
there are two types of heuristics:

– linguistic based matches: terms with the same
word-stem, nearby terms in WordNet, or even sim-
pler heuristics, like omitting hyphens and capitaliz-
ing all terms, etc. Examples can be found in (Hovy,
1998; Knight and Luk, 1994);

Heiner Stuckenschmidt
60

Table 1: Table of problems and approaches for combined use of ontologies

Issues SKC Chim. PROMPT SHOE OntoM. Metamodel OKBC Layering

Language
level
mismatches

Syntax M M M M
Representation M M M M
Semantics M M M
Expressivity

Ontology
level
mismatches

Paradigm M
Concept description M
Coverage of model
Scope of concepts M U U M M
Synonyms M U U M M
Homonyms M U
Encoding M M M

Practical
problems

Finding alignments U U U
Diagnosis of results A A A
Repeatability A A A

Ontology
versioning

Identification M
Change tracking M
Translation

– structural and model similarity: see for example the
techniques described in Chimaera and Weinstein
and Birmingham (1999).

• A slightly different approach for interoperability at the
model is the use of acommon top level ontology. This
approach is only useful if there is a willingness to con-
form to a common standard.

• There are also different approaches fordiagnosing or
checking the results of the alignments. We have seen
two types of checks:

– domain independent verification and validation
checks: name conflicts, dangling references, etc.
(Chimaera, and others);

– validation that requires some kind of reasoning: re-
dundancy in the class hierarchy, value restrictions
that violate class inheritance, etc. (OntoMorph,
PROMPT).

• Several tools support anexecutable specificationof
the mappings and transformations (SKC, OntoMorph,
PROMPT). This allows re-merging of revised ontolo-
gies. In this way, the intellectual effort that is invested in
finding and formulation the alignments is preserved.

• Finally, most techniques and tools do not deal withver-
sioning. Only SHOE elaborates on schemes that enables
the combined use of different ontologies. They mention
three ways to integrate separate (revisions of) ontologies
without invalidating the existing ones.

6 Conclusion and remarks
In this paper, we analyzed the problems that hinder the com-
bined use of ontologies. These problems are of several kinds
and may occur at several levels. The analyse of the problems

yielded a framework that is used to examine what solutions
are provided by current tools and techniques. This examina-
tion is still very general, and will be worked out further in the
future.

We have seen that there are several approaches that provide
reasonable support for language level interoperability. Mis-
matches in expressiveness between languages are not solv-
able, and consequently, none of the approaches takes this into
account.

The most difficult problems are those of conceptual inte-
gration. There are a lot of techniques and heuristics for sug-
gesting alignments. We think that semantic mapping at the
model level will remain a task that requires a certain level of
human intervention.

Finally, in an open environment such as the Web, version-
ing methods will be very important. We have seen that this
aspect is underdeveloped in most approaches. We think that
more comprehensive schemes for interoperability of ontolo-
gies are required.

Acknowledgements
We would like to thank Dieter Fensel, Mike Uschold for help-
ful comments and remarks on previous versions of this paper.

References
Shawn Bowers and Lois Delcambre. Representing and trans-

forming model-based information. InFirst Workshop on
the Semantic Web at the Fourth European Conference
on Digital Libraries, Lisbon, Portugal, September 18–20,
2000.

D. Brickley and R. V. Guha. Resource Description Frame-
work (RDF) Schema Specification 1.0. Candidate recom-
mendation, World Wide Web Consortium, March 2000.

Heiner Stuckenschmidt
61

Dan Brickley, Jane Hunter, and Carl Lagoze. ABC:
A logical model for metadata interoperability,
October 1999. Harmony discussion note, see
http://www.ilrt.bris.ac.uk/discovery/
harmony/docs/abc/abc_draft.html .

Jeen Broekstra, Michel Klein, Stefan Decker, Dieter Fensel,
Frank van Harmelen, and Ian Horrocks. Enabling knowl-
edge representation on the web by extending RDF schema.
In Proceedings of the 10th World Wide Web conference,
Hong Kong, China, May 1–5, 2001.

Hans Chalupsky. OntoMorph: A translation system for sym-
bolic logic. In Anthony G. Cohn, Fausto Giunchiglia, and
Bart Selman, editors,KR2000: Principles of Knowledge
Representation and Reasoning, pages 471–482, San Fran-
cisco, CA, 2000. Morgan Kaufmann.

Vinay K. Chaudhri, Adam Farquhar, Richard Fikes, Peter D.
Karp, and James P. Rice. OKBC: A programmatic foun-
dation for knowledge base interoperability. InProceedings
of the 15th National Conference on Artificial Intelligence
(AAAI-98) and of the 10th Conference on Innovative Appli-
cations of Artificial Intelligence (IAAI-98), pages 600–607,
Menlo Park, July 26–30 1998. AAAI Press.

Jérôme Euzenat. Towards a principled approach to seman-
tic interoperability. In Asuncion Gomez-Perez, Michael
Gruninger, Heiner Stuckenschmidt, and Michael Uschold,
editors,Workshop on Ontologies and Information Sharing,
IJCAI’01, Seattle, USA, August 4–5, 2001.

Norman Foo. Ontology revision. In Gerard Ellis, Robert
Levinson, William Rich, and John F. Sowa, editors,Pro-
ceedings of the 3rd International Conference on Concep-
tual Structures (ICCS’95): Applications, Implementation
and Theory, volume 954 ofLNAI, pages 16–31, Berlin,
GER, August 1995. Springer.

William E. Grosso, John H. Gennari, Ray W. Fergerson, and
Mark A. Musen. When knowledge models collide (how
it happens and what to do). InProceedings of the 11th
Workshop on Knowledge Acquisition, Modeling and Man-
agement (KAW ’98), Banff, Canada, April 18–23 1998.

T. R. Gruber. A translation approach to portable ontology
specifications.Knowledge Acquisition, 5(2), 1993.

Jeff Heflin and James Hendler. Dynamic ontologies on the
web. In Proceedings of the Seventeenth National Con-
ference on Artificial Intelligence (AAAI-2000), pages 443–
449. AAAI/MIT Press, Menlo Park, CA, 2000.

E. H. Hovy. Combining and standardizing large-scale, prac-
tical ontologies for machine translation and other uses. In
Proceedings of the 1st International Conference on Lan-
guage Resources and Evaluation (LREC), Granada, Spain,
May 28–30 1998.

IEEE SUO Working Group. Standard upper ontology. See
http://suo.ieee.org/ .

H. Kitakami, Y. Mori, and M. Arikawa. An intelligent sys-
tem for integrating autonomous nomenclature databases in
semantic heterogeneity. InDatabase and Expert System
Applications, DEXA’96, number 1134 in Lecture Notes in

Computer Science, pages 187–196, Zürich, Switzerland,
1996.

Kevin Knight and Steve K. Luk. Building a large-scale
knowledge base for machine translation. InProceedings
of the 12th National Conference on Artificial Intelligence.
Volume 1, pages 773–778, Menlo Park, CA, USA, July 31–
August 4 1994. AAAI Press.

Deborah L. McGuinness, Richard Fikes, James Rice, and
Steve Wilder. An environment for merging and testing
large ontologies. In Anthony G. Cohn, Fausto Giunchiglia,
and Bart Selman, editors,KR2000: Principles of Knowl-
edge Representation and Reasoning, pages 483–493, San
Francisco, 2000. Morgan Kaufmann.

Sergey Melnik and Stefan Decker. A layered approach to
information modeling and interoperability on the web. In
Electronic proceedings of the ECDL 2000 Workshop on the
Semantic Web, Lisbon, Portugal, September 21 2000.

Prasenjit Mitra, Gio Wiederhold, and Martin Kersten. A
graph-oriented model for articulation of ontology interde-
pendencies. InProceedings of Conference on Extending
Database Technology, (EDBT 2000), Konstanz, Germany,
March 2000. Also, Stanford University Technical Note,
CSL-TN-99-411, August, 1999.

Natalya Fridman Noy and Mark A. Musen. PROMPT: Algo-
rithm and tool for automated ontology merging and align-
ment. InProceedings of the Seventeenth National Confer-
ence on Artificial Intelligence (AAAI-2000), Austin, TX,
2000. AAAI/MIT Press.

D. E. Oliver, Y. Shahar, M. A. Musen, and E. H. Short-
liffe. Representation of change in controlled medical termi-
nologies.Artificial Intelligence in Medicine, 15(1):53–76,
1999.

H. Sofia Pinto, Asunción Gómez-Ṕerez, and Jõao P. Martins.
Some issues on ontology integration. InProceedings of
the Workshop on Ontologies and Problem Solving Methods
during IJCAI-99, Stockholm, Sweden, August 1999.

Mike Uschold, Mike Healy, Keith Williamson, Peter Clark,
and Steven Woods. Ontology reuse and application. In
N. Guarino, editor,Formal Ontology in Information Sys-
tems (FOIS’98), Treno, Italy, June 6-8, 1998. IOS Press,
Amsterdam.

Pepijn R. S. Visser, Dean M. Jones, T. J. M. Bench-Capon,
and M. J. R. Shave. An analysis of ontological mismatches:
Heterogeneity versus interoperability. InAAAI 1997
Spring Symposium on Ontological Engineering, Stanford,
USA, 1997.

Peter C. Weinstein and William P. Birmingham. Comparing
concepts in differentiated ontologies. InProceedings of the
12th Workshop on Knowledge Acquisition, Modeling and
Management (KAW ’99), Banff, Canada, October 16–21,
1999.

Gio Wiederhold. An algebra for ontology composition. In
Proceedings of 1994 Monterey Workshop on Formal Meth-
ods, pages 56–61, U.S. Naval Postgraduate School, Mon-
terey CA, September 1994.

http://www.ilrt.bris.ac.uk/discovery/harmony/docs/abc/abc_draft.html
http://www.ilrt.bris.ac.uk/discovery/harmony/docs/abc/abc_draft.html
http://suo.ieee.org/
Heiner Stuckenschmidt
62

Anchor-PROMPT:
 Using Non-Local Context for Semantic Matching

Natalya F. Noy and Mark A. Musen

Stanford Medical Informatics, Stanford University, Stanford, CA 94305-5479
{noy, musen}@smi.stanford.edu

Abstract
Researchers in the ontology-design field have developed the
content for ontologies in many domain areas. Recently,
ontologies have become increasingly common on the World-
Wide Web where they provide semantics for annotations in
Web pages. This distributed nature of ontology development
has led to a large number of ontologies covering overlapping
domains, which researchers now need to merge or align to
one another. The processes of ontology alignment and
merging are usually handled manually and often constitute a
large and tedious portion of the sharing process. We have
developed and implemented Anchor-PROMPT—an
algorithm that finds semantically similar terms
automatically. Anchor-PROMPT takes as input a set of
anchors—pairs of related terms defined by the user or
automatically identified by lexical matching. Anchor-
PROMPT treats an ontology as a graph with classes as
nodes and slots as links. The algorithm analyzes the paths in
the subgraph limited by the anchors and determines which
classes frequently appear in similar positions on similar
paths. These classes are likely to represent semantically
similar concepts. Our experiments show that when we use
Anchor-PROMPT with ontologies developed independently
by different groups of researchers, 75% of its results are
correct.

1 Ontology Merging and Anchor-PROMPT

Researchers have pursued development of ontologies—
explicit formal specifications of domains of discourse—on
the premise that ontologies facilitate knowledge sharing
and reuse (Musen 1992; Gruber 1993). Today, ontology
development is moving from academic knowledge-
representation projects to the world of e-commerce.
Companies use ontologies to share information and to guide
customers through their Web sites. The ontologies on the
World-Wide Web range from large taxonomies
categorizing Web sites (such as on Yahoo!) to
categorizations of products for sale and their features (such
as on Amazon.com). The WWW Consortium is developing
the Resource Description Framework (Brickley and Guha
1999), a language for encoding semantic information on
Web pages in machine-readable form. Such encoding
makes it possible for electronic agents searching for
information to share the common understanding of the
semantics of the data represented on the Web. Many
disciplines now develop standardized ontologies that
domain experts can use to share and annotate information
in their fields. Medicine, for example, has produced large,
standardized, structured vocabularies such as SNOMED

(Price and Spackman 2000) and the semantic network of
the Unified Medical Language System (Humphreys and
Lindberg 1993).

With this widespread distributed use of ontologies,
different parties inevitably develop ontologies with
overlapping content. For example, both Yahoo! and the
DMOZ Open Directory (Netscape 1999) categorize
information available on the Web. The two resulting
directories are similar, but also have many differences.

Currently, there are extremely few theories or methods
that facilitate or automate the process of reconciling
disparate ontologies. Ontology management today is mostly
a manual process. A domain expert who wants to determine
a correlation between two ontologies must find all the
concepts in the two source ontologies that are similar to one
another, determine what the similarities are, and either
change the source ontologies to remove the overlaps or
record a mapping between the sources for future reference.
This process is both labor-intensive and error-prone.

The semi-automated approaches to ontology merging
that do exist today (Section 2) such as PROMPT and
Chimaera analyze only local context in ontology structure:
given two similar classes, the algorithms consider classes
and slots that are directly related to the classes in question.
The algorithm that we present here, Anchor-PROMPT,
uses a set of heuristics to analyze non-local context.

The goal of Anchor-PROMPT is not to provide a
complete solution to automated ontology merging but rather
to augment existing methods, like PROMPT and Chimaera,
by determining additional possible points of similarity
between ontologies.

Anchor-PROMPT takes as input a set of pairs of
related terms—anchors—from the source ontologies.
Either the user identifies the anchors manually or the
system generates them automatically. From this set of
previously identified anchors, Anchor-PROMPT produces
a set of new pairs of semantically close terms. To do that,
Anchor-PROMPT traverses the paths between the anchors
in the corresponding ontologies. A path follows the links
between classes defined by the hierarchical relations or by
slots and their domains and ranges. Anchor-PROMPT then
compares the terms along these paths to find similar terms.

For example, suppose we identify two pairs of anchors:
classes A and B and classes H and G (Figure 1). That is, a
class A from one ontology is similar to a class B in the
other ontology; and a class H from the first ontology is
similar to a class G from the second one. Figure 1 shows

Heiner Stuckenschmidt
63

one path from A to H in the first ontology and one path
from B to G in the second ontology. We traverse the two
paths in parallel, incrementing the similarity score between
each two classes that we reach in the same step. For
example, after traversing the paths in Figure 1, we
increment the similarity score between the classes C and D
and between the classes E and F. We repeat the process for
all the existing paths that originate and terminate in the
anchor points, cumulatively aggregating the similarity
score.
The central observation behind Anchor-PROMPT is that if
two pairs of terms from the source ontologies are similar
and there are paths connecting the terms, then the elements
in those paths are often similar as well. Therefore, from a
small set of previously identified related terms, Anchor-
PROMPT is able to suggest a large number of terms that
are likely to be semantically similar as well.

Figure 1. Traversing the paths between anchors. The rectangles
represent classes and labeled edges represent slots that relate
classes to one another. The left part of the figure represents
classes and slots from one ontology; the right part represents
classes and slots from the other. Solid arrows connect pairs of
anchors; dashed arrows connect pairs of related terms.

2 Related Work

To date, researchers working on tools for ontology merging
have expended their greatest effort finding mostly lexical
matches among concepts in the source ontologies. Such
systems usually rely on dictionaries to determine
synonyms, evaluate common substrings, consider concepts
whose documentation shares many uncommon words, and
so on (Chapulsky et al. 1997; Wiederhold and Jannink

1999). These approaches, however, do not take into account
the internal structure of concept representation, the
structure of an ontology itself, or the steps users take during
merging.

Researchers in the database community have addressed
the problem of finding semantically similar terms in
automating the process of matching database schemas. A
number of schema-matching approaches use not only
syntactic information (the similarity of the term names) but
also the types of relations among terms. For example, the
Artemis system (Castano and De Antonellis 1999) uses
thesauri to determine lexical affinity between terms and
combines uses domain types of schema elements with user
input to determine structural affinity. The TransScm system
(Milo and Zohar 1998) traverses the graph representation of
two schemas performing a node-by-node comparison.
However, the TransScm approach works well only if the
input schemas have an extremely high degree of similarity.

The Chimaera ontology-merging environment
(McGuinness et al. 2000), an interactive merging tool based
on the Ontolingua ontology editor (Farquhar et al. 1996),
considers limited ontology structure in suggesting merging
steps. However, the only relations that Chimaera currently
considers is the subclass–superclass relation and slot
attachment.

In our earlier work, we developed PROMPT—a tool
for semi-automatic guided ontology merging (Noy and
Musen 2000). PROMPT identifies candidates for merging
as pairs of matching terms—terms from different source
ontologies representing similar concepts. It determines not
only syntactic but also semantic match based on (1) the
content and structure of the source ontologies (e.g., names
of classes and slots, subclasses, superclasses, domains and
ranges of slot values) and (2) the user’s actions (i.e.,
incorporating in its analysis the knowledge about
similarities and differences that the user has already
identified).

To summarize, those automatic approaches to semantic
matching that do consider the structural relations among
terms, base their analysis on studying only the terms that
are directly related to one another. Both PROMPT and
Chimaera consider subclasses and superclasses in question
and slots directly attached to a class. PROMPT also
considers classes that are referenced by the slots attached to
the class in question.

Anchor-PROMPT, which we present here,
complements these approaches by analyzing non-local
context, by “looking further,” and by providing additional
suggestions for possible matching terms.

3 The Problem

To illustrate how Anchor-PROMPT works, we will
consider two ontologies for representing clinical trials, their
protocols, applications, and results. The first ontology, the
Design-a-Trial (DaT) ontology (Modgil et al. 2000),
underlies a knowledge-based system that helps doctors
produce protocols for randomized controlled trials. The

Ontology 1 Ontology 2

Heiner Stuckenschmidt
64

second ontology, the randomized clinical-trial (RCT)
ontology (Sim 1997), is used in creating electronic trial
banks that store the results of clinical trials and allow
researchers to find, appraise, and apply the results. Both
ontologies represent clinical trials, but one of them, DaT,
concentrates on defining a trial protocol itself, and the
other, RCT, on representing the results of the trial. The two
groups developed their respective ontologies completely
independent from each other. Therefore there is no
intensional correlation between them. As part of the work
on representing clinical guidelines in our laboratory, we
needed to merge the two ontologies.

We implemented Anchor-PROMPT based on the
knowledge model defined by the Open Knowledge-Base
Connectivity (OKBC) protocol (Chaudhri et al. 1998). An
ontology in OKBC consists of classes organized in a
hierarchy, instances of classes, and slots representing
relations between classes and between instances of classes.

In Anchor-PROMPT, we represent classes, slots, and
their relations in the ontologies as directed labeled graphs.
Figure 2 shows a part of the graph representing the RCT
ontology. Classes are nodes in the graph. Slots are edges in
the graph. A slot S connects two classes, A and B, in the
graph, if both of the following conditions are true:
(1) The slot S is attached to class A (either as template slot

or as an own slot), and
(2) The class B is either a value of slot S for the class A, or

B is the range of allowed values for slot S at class A.
For example, the edge representing the slot latest-
protocol in the RCT ontology links the class TRIAL to
the class PROTOCOL (Figure 2). The slot latest-
protocol at class TRIAL can have as its values instances
of the class PROTOCOL.
Two nodes connected by an edge in a graph are adjacent.
There is a path between two nodes of a graph, A

Figure 2. A graph representing a part of the RCT ontology.

and B, if, starting at node A, it is possible to follow a
sequence of adjacent edges to reach node B. The length of
the path is the number of edges in the path.

The goal of the Anchor-PROMPT algorithm is to
produce automatically a set of semantically related
concepts from the source ontologies using a set of anchor
matches identified earlier (manually or automatically) as its
input.

4 The Anchor-PROMPT Algorithm

Anchor-PROMPT takes as input a set of anchors—pairs of
related terms in the two ontologies. We can use any of the
existing approaches to term matching to identify the
anchors (Section 2). A user can identify the anchors
manually. An automated system can identify them by
comparing the names of the terms. For example, we can
assume that if the source ontologies cover the same
domain, the terms with the same names are likely to
represent the same concepts. We can also use a
combination of system-determined and user-defined
anchors. We can use pairs of related terms that Anchor-
PROMPT has identified in an earlier iteration after the user
has validated them.

For the example in this section, we will consider the
following two pairs of anchors for the two clinical-trial
ontologies (the first class in the pair is in the RCT ontology;
the second is in the DaT ontology1):

TRIAL, Trial
PERSON, Person

Using these two pairs as input, the algorithm must
determine pairs of other related terms in the RCT and DaT
ontologies. It generates a set of all the paths between
PERSON and TRIAL in the RCT ontology and between
Person and Trial in DaT ontology (Figure 3 shows
some of these paths2). It considers only the paths that are
shorter than a pre-defined parameter length. Now consider
a pair of paths in this set that have the same length. For
example:
Path 1 (in the RCT ontology):

TRIAL PROTOCOL STUDY-SITE PERSON
Path 2 (in the DaT ontology):

Trial Design Blinding Person
As it traverses the two paths, Anchor-PROMPT increases
the similarity score—a coefficient that indicates how
closely two terms are related—for the pairs of terms in the
same positions in the paths. For the two paths in our
example, it will increase the similarity score for the
following two pairs of terms:

PROTOCOL, Design
STUDY-SITE, Blinding

1The RCT ontology uses all UPPER-CASE letters for class names.
The DaT ontology Capitalizes the class names. Therefore, it
is easy to distinguish which class names come from which
ontology, and we will sometimes omit the source information.
2 We have changed the original RCT ontology slightly to simplify
this example.

Heiner Stuckenschmidt
65

Figure 3. (a) The paths between the classes TRIAL and PERSON in the RCT ontology; (b) the paths between the classes Trial and
Person in the DaT ontology

Anchor-PROMPT repeats the process for each pair of paths
of the same lengths that have one pair of anchors as their
originating points (e.g., TRIAL and Trial) and another
pair of anchors as terminating points (e.g., PERSON and
Person). During this process it increases the similarity
scores for the pairs of terms that it encounters. It aggregates
the similarity score from all the traversals to generate the
final similarity score. Consequently, the terms that often
appear in the same positions on the paths going from one
pair of anchors to another will get the highest score.

4.1 Equivalence groups

In traversing the graph representing the ontology and
generating the paths between classes Anchor-PROMPT
treats the subclass–superclass links differently from links
representing other slots. Consider for example the path
from TRIAL to CROSSOVER in Figure 4.

Figure 4. A path from TRIAL to CROSSOVER: The classes EXECUTED-
PROTOCOL and PROTOCOL form an equivalence group

We could treat the is-a link in exactly the same way
we treat other slots. However, this approach would
disregard the distinct semantics associated with is-a
links. Instead we can employ the difference in meaning
between the is-a link and regular slots to improve the
algorithm. An is-a link connects the terms that are
already similar (e.g., PROTOCOL and EXECUTED-
PROTOCOL); in fact one describes a subset of the other.
Other slots link terms that are arbitrarily related to each
other.

Anchor-PROMPT joins the terms linked by the
subclass–superclass relation in equivalence groups. In the
example in Figure 4, the classes PROTOCOL and
EXECUTED-PROTOCOL constitute an equivalence group.
Here is one of the paths from TRIAL to CROSSOVER in
Figure 4 that goes through EXECUTED-PROTOCOL. We
identify the equivalence group by brackets.

TRIAL
 [EXECUTED-PROTOCOL, PROTOCOL]
 TREATMENT-POPULATION CROSSOVER.

Anchor-PROMPT treats an equivalence group as a single
node in the path. The set of incoming edges for an
equivalence-group node is the union of the sets of incoming
edges for each of the group elements. Similarly, the set of
outgoing edges for an equivalence-group node is the union
of the sets of outgoing edges for each of its elements.

The [EXECUTED-PROTOCOL, PROTOCOL] equivalence
group in Figure 4 has one incoming edge, executed-
protocol, and one outgoing edge, treatment-
groups.

(a) (b)

Heiner Stuckenschmidt
66

4.2 Similarity score

We use the following process to compute the similarity
score S(C1, C2) between two terms C1 and C2 (where C1 is a
class from the source ontology O1 and C2 is a class from the
source ontology O2).

1. Generate a set of all paths of length less than a
parameter L that connect input anchors in O1 and O2.

2. From the set of paths generated in step 1, generate a
set of all possible pairs of paths of equal length such
that one path in the pair comes from O1 and the other
path comes from O2.

3. For each pair of paths in the set generated in step 2
and for each pair of nodes N1 and N2 located in the
identical positions in the paths, increment the
similarity score between each pair of classes C1 and
C2 in N1 and N2 respectively be a constant X. (Recall
that N1 and N2 can be either single classes or
equivalence groups that include several classes).

Therefore the similarity score S(C1, C2) is a cumulative
score reflecting how often C1 and C2 appear in identical
positions along the paths considering all the possible paths
between anchors (of length less than L).

We change the constant by which we increment the
similarity score when the matching nodes along the paths
include not single classes but equivalence groups. Suppose
we have the following two nodes at the same position on
two paths between anchors: A1 and [B2, C2], a single class
A1 on one side, and an equivalence group with two classes
B2 and C2 on the other side. Do we give the same score to
both pairs of classes A1, B2 and A1, C2? Is this score the
same as the one we would have given the pair A1, B2 had B2

been the only class at the node? Do we give the pairs A1, B2

and A1, C2 any similarity score at all? We analyze the
results for different values of these constants in Section
5.3.2.

4.3 Revisiting the example

We provided Anchor-PROMPT with the following set of
three pairs of anchors from the RCT and DaT ontologies
correspondingly:

TRIAL, Trial
PERSON, Person
CROSSOVER, Crossover

We allowed the paths of length less than or equal to 5 and
limited the equivalence-group size to 2. Here are the output
results in the order of the descending similarity score.

PROTOCOL, Design
TRIAL-SUBJECT, Person
INVESTIGATORS, Person
POPULATION, Action_Spec
PERSON, Character
TREATMENT-POPULATION, Crossover_arm

In fact, all but one of these results represents a pair of
concepts that either are similar or one is a specialization
(subclass) of the other. The only exception is the pair
POPULATION, Action_Spec. Note that many of these
pairings are specific to the domain of clinical trials (e.g.,

PROTOCOL, Design and TRIAL-SUBJECT, Person).
The pair PERSON, Character indeed identifies the
correct sense in which Character is used in the DaT
ontology.

5 Evaluation

We perform a formative evaluation of Anchor-PROMPT
by testing it on a pair of ontologies that were also
developed independently by different groups of researchers.
In our experiments, we varied the set of anchor pairs that
was the input to the algorithm and various parameters, such
as maximum path length, maximum size of equivalence
groups, and constants in the similarity score computation.
We then analyzed which fraction of the results produced by
Anchor-PROMPT were indeed correct results and which
parameter settings produced optimal performance.

5.1 Source ontologies

In order to evaluate Anchor-PROMPT formally, we chose a
set of ontologies that was different from the two ontologies
we used to develop and illustrate the algorithm. We
imported two ontologies from the DAML ontology library
(DAML 2001):
1. An ontology for describing individuals, computer-

science academic departments, universities, and activities
that occur at them developed at the University of
Maryland (UMD), and

2. An ontology for describing employees in an academic
institutions, publications, and relationships among
research groups and projects developed at Carnegie
Mellon University (CMU).1

These two ontologies constituted a good target for the
merging experiment because on the one hand, they covered
similar subject domains (research organizations and
projects, publications, etc.) and on the other hand, their
developers worked completely independent of each other
and therefore there was no intensional correlation among
terms in the ontologies.

5.2 Experiment setup

Input:
The UMD and the CMU ontologies;
Four anchor pairs.

Parameters:
1. A set of anchor pairs (we generated all possible sets

of anchor pairs from the four input pairs)
2. The maximum number of elements allowed in an

equivalence group (0, 1, or 2)
3. Similarity score for equivalence-group members

along the path given that the score for single
elements is 1 (1 and 3)

4. Length of path to consider (2, 3, or 4)
Output:

1 Both ontologies consisted of several smaller ontologies which
we merged into a single ontology for the experiment.

Heiner Stuckenschmidt
67

For each set of parameters, a set of related terms as
determined by Anchor-PROMPT.

Process:
Run Anchor-PROMPT for all the possible combinations
of parameters.
For each set of results, compute the median similarity
score M and discard from the results set all pairs of terms
with a similarity score less than M.

We then analyzed the results determining how many of the
results were pairs of concepts that were either equivalent or
were in a subclass–superclass relationship.

5.3 Evaluation results

5.3.1 Equivalence-group size

If the maximum equivalence-group size is 0 (do not
consider subclass–superclass relationships at all) or 1
(allow equivalence groups of size 1), 87% of the
experiments produce empty result sets. If the maximum
equivalence-group size is 2, only 12% of the result sets are
empty.
For the rest of the experiments we fix the maximum
equivalence-group size at 2.

5.3.2 Similarity score for equivalence-group
members

We have conducted two sets of experiments: in the first set
all classes in the same position along the path got the same
score N and in the second experiment classes that shared
their position with other members of an equivalence group
received only 1/3 of the score.1

Differentiating the score improved the correctness of results
by 14%.
For the rest of the experiments we reduced the scores for
members of equivalence groups.

5.3.3 Number of anchor pairs and maximum length
of path

Table 1 presents results for various values for the two
remaining parameters: the number of anchor pairs that were
input to an experiment and the maximum allowed length of
the path. For these experiments (as well as for a set of other
experiments with different source ontologies), we received
the best result precision (the highest ratio of correct results
to all the returned results) with the maximum length of path
equal to 2. When we limit the maximum path length to 3,
we achieve the average precision of 61%. The precision
goes up slightly (to 65%) with maximum path length of 4.

1 In fact, varying the fraction of the score that we assigned to
equivalence-group members has not changed the result: The
results were identical for equivalence-group scores that were 1/3
or 1/2 of the score for single classes.

Max path length Number of anchors Result precision

4 4 67%
4 3 67%
4 2 61%
3 4 67%
3 3 61%
3 2 56%
2 4 100%
2 3 100%
2 2 100%

Table 1. Result precision with respect to maximum path length
and the number of anchors.

6 Discussion
To understand the intuition behind Anchor-PROMPT,
consider paths of length one (Figure 5a). Recall that the
length of a path is the number of edges in the path. If class
A is similar to class A’ and class B is similar to class B’, it
is plausible to assume that the slots connecting them, s and
s’, are similar as well. In Figure 5b, we introduce an
additional class, C and C’ correspondingly, on the path. We
get the paths of length 2). We continue the analogy by
assuming that there is an increased likelihood that C and C’
are similar. In addition, slots s and s’ and p and p’ are
similar (Anchor-PROMPT does not currently record the
similarity among slots).

The algorithm is based on the assumption that
developers link the terms in the ontology in a similar
manner even if they do not call the terms with the same
names. Therefore, very long paths are unlikely to produce
accurate results. As the path that we traverse becomes
longer, it becomes less likely that they represent the same
series of terms and relations.
Very short paths, however, consistently produced extremely
small (but also extremely precise results sets). For the
maximum path length of 2, Anchor-PROMPT produced
result sets that contained only one pair of terms (with a
similarity score above the median for that set) but this pair
was always a correct one.

Figure 5. The simple case: the paths of length 1 and 2.

(a) (b)

Heiner Stuckenschmidt
68

Setting maximum path length to 0 will produce the
results that are equivalent to Chimaera’s results. Limiting
the path length by 1 will produce the results that are
equivalent to PROMPT’s results (Section 2).

6.1 Reducing the effect of negative results

The similarity score between concepts is a cumulative
similarity score: Anchor-PROMPT combines the score
along all the paths. As a result, we reduce the effect of false
matches: Two unrelated terms could certainly appear in
identical positions in one pair of paths (and usually do).
However, the same two unrelated terms are less likely to
appear in identical positions on a different pair of paths.

To remove these incidental matches, we determine the
median similarity score in each experiment and discard the
pairs of terms with a similarity score less than the median.
Therefore, Anchor-PROMPT will discard most of the
incidental pairs of terms because they would have appeared
only once in the identical positions and would have a low
similarity score.

6.2 Performing ontology mapping

Throughout our discussion we have referred to the process
of ontology merging, the process in which we start with
two source ontologies and generate a new ontology that
includes and reconciles all the information from the two
source ontologies.

However, the approach that we have presented can be
used directly for creating a mapping between terms in
ontologies, as well as in matching database schemas. The
result of the Anchor-PROMPT algorithm is a set of pairs of
similar terms ranked by how close to each other the terms
are. This result can be used either to trigger merging of the
closely related terms or to establish a mapping between the
terms.

6.3 Limitations

Anchor-PROMPT produced highly promising results with
two sets of ontologies that were developed entirely
independently from each other.

Our approach does not work equally well for all
ontologies however. The approach does not work well
when the source ontologies are constructed differently. For
example, we used Anchor-PROMPT to find related terms
in two ontologies of problem-solving methods: (1) the
ontology for the unified problem-solving method (UPML)
development language (Fensel et al. 1999) and (2) the
ontology for the method-description language (MDL)
(Gennari et al. 1998). Both ontologies describe reusable
problem-solving methods, however, their designers used
different approaches to knowledge modeling. The UPML
ontology has a large number of classes with slots attached
to and referring to classes at many different levels of
hierarchy. The MDL ontology has a lot fewer classes with
the hierarchy which is only two levels deep. If we think of
the ontologies in terms of a graph, many of the nodes from
the UPML ontology were “collapsed” in a single node in

the MDL ontology. As a result, no two pairs of anchors had
paths with the same length between them and the output of
Anchor-PROMPT was empty.

In general, Anchor-PROMPT does not work well
when one of the source ontologies is a deep one with many
inter-linked classes and the other ontology is a shallow one
where the hierarchy has only a few levels and most of the
slots are associated with the concepts at the top of the
hierarchy, and very few notions are reified. If this is the
case, the results produced by the algorithm are no different
from the results produced by the approaches that consider
only very local context.

7 Conclusions

The Anchor-PROMPT algorithm that we have presented
uses relations among the terms in an ontology and a set of
anchors—pairs of similar terms—to determine which other
terms in the ontology are similar.

We conducted experiments using unrelated source
ontologies developed by different research groups. We have
achieved the results that could not have been achieved
using just the terms names (e.g., determine that TRIAL-
SUBJECT and Person are very similar terms in the
ontology of trial protocols).

Our experiments show that we can achieve result
precision between 61% and 100% depending on the size of
the initial anchor set and the maximum length of the path
that we traverse.

The algorithm relies on limited input from the user.
The user does not need to analyze the structure of the
ontology deeply, just to determine some pairs of terms that
“look similar”.

Based on our results, we believe that Anchor-PROMPT
can significantly improve the sets of suggestions that other
tools identify by producing sets of semantically similar
terms using a small set of previously determined similar
terms.

Acknowledgments
We have implemented Anchor-PROMPT as a plugin to the
Protégé-2000 ontology-editing and knowledge-acquisition
tool developed at Stanford Medical Informatics
(http://protege.stanford.edu). We generated all the graphs in
this paper automatically using OntoViz, a Protégé-2000
plugin, developed by Michael Sintek. Samson Tu and John
Nguyen helped us to understand the clinical-trial
ontologies. Whatever clarity and readability this paper has,
it owes it all to the detailed and thoughtful comments of
Monica Crubézy and Ray Fergerson. We are very grateful
to anonymous reviewers for suggestions on improving the
paper. This work was supported in part by a grant from
Spawar and by a grant from FastTrack Systems, Inc

References

Brickley, D. and Guha, R.V. (1999). Resource Description
Framework (RDF) Schema Specification. Proposed

Heiner Stuckenschmidt
69

Recommendation, World Wide Web Consortium:
http://www.w3.org/TR/PR-rdf-schema.

Castano, S. and De Antonellis, V. (1999). A Schema
Analysis amd Reconciliation Tool Environment. In:
Proceedings of the International Database Engineering and
Applications Symposium (IDEAS’99), IEEE.

Chapulsky, H., Hovy, E. and Russ, T. (1997). Progress on
an Automatic Ontology Alignment Methodology.

Chaudhri, V.K., Farquhar, A., Fikes, R., Karp, P.D. and
Rice, J.P. (1998). OKBC: A programmatic foundation for
knowledge base interoperability. In: Proceedings of the
Fifteenth National Conference on Artificial Intelligence
(AAAI-98), Madison, Wisconsin, AAAI Press/The MIT
Press.

DAML (2001). DAML ontology library.
http://www.daml.org/ontologies/

Farquhar, A., Fikes, R. and Rice, J. (1996). The Ontolingua
Server: a Tool for Collaborative Ontology Construction. In:
Proceedings of the Tenth Knowledge Acquisition for
Knowledge-Based Systems Workshop, Banff, Canada.

Fensel, D., Benjamins, V.R., Motta, E. and Wielinga, R.
(1999). UPML: A Framework for knowledge system reuse.
In: Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI-99), Stockholm, Sweden.

Gennari, J.H., Grosso, W. and Musen, M.A. (1998). A
method-description language: An initial ontology with
examples. In: Proceedings of the Eleventh Banff Knowledge
Acquisition for Knowledge-Bases Systems Workshop,
Banff, Canada.

Gruber, T.R. (1993). A Translation Approach to Portable
Ontology Specification. Knowledge Acquisition 5: 199-220.

Humphreys, B.L. and Lindberg, D.A.B. (1993). The UMLS
project: making the conceptual connection between users
and the information they need. Bulletin of the Medical
Library Association 81(2): 170.

McGuinness, D.L., Fikes, R., Rice, J. and Wilder, S.
(2000). An Environment for Merging and Testing Large
Ontologies. Principles of Knowledge Representation and
Reasoning: Proceedings of the Seventh International
Conference (KR2000). A. G. Cohn, F. Giunchiglia and B.
Selman, editors. San Francisco, CA, Morgan Kaufmann
Publishers.

Milo, T. and Zohar, S. (1998). Using Schema Matching to
Simplify Heterogeneous Data Translation. In: Proceedings
of the 24th International Conference on Very Large Data
Bases, New York City, Morgan Kaufmann.

Modgil, S., Hammond, P., Wyatt, J. and Potts, H. (2000).
The Design-A-Trial Project: Developing A Knowledge-
Based Tool for Authoring Clinical Trial Protocols. In:
Proceedings of the First European Workshop on Computer-
based Support for Clinical Guidelines and Protocols
(EWGLP 2000), Leipzig, Germany, IOS Press, Amsterdam.

Musen, M.A. (1992). Dimensions of knowledge sharing
and reuse. Computers and Biomedical Research 25: 435-
467.

Netscape (1999). DMOZ Open Directory.
http://www.dmoz.org/

Noy, N.F. and Musen, M.A. (2000). PROMPT: Algorithm
and Tool for Automated Ontology Merging and Alignment.
In: Proceedings of the Seventeenth National Conference on
Artificial Intelligence (AAAI-2000), Austin, TX.

Price, C. and Spackman, K. (2000). SNOMED clinical
terms. BJHC&IM-British Journal of Healthcare Computing
& Information Management 17(3): 27-31.

Sim, I. (1997). Trial Banks: An Informatics Foundation for
Evidence-Based Medicine. PhD Dissertation, Stanford
University: SMI-97-0701/STAN-CS-TR-97-1599.

Wiederhold, G. and Jannink, J. (1999). Composing Diverse
Ontologies. In: Proceedings of the IFIP Working Group on
Database, 8th Working Conference on Database Semantics
(DS-8), Rotorua, New Zealand.

Heiner Stuckenschmidt
70

Ontology Integration: How to perform the Process�

Helena Sofia Pinto and João P. Martins
Grupo de Inteligˆencia Artificial

Departamento de Eng. Inform´atica
Instituto Superior T´ecnico

Universidade T´ecnica de Lisboa
Av. Rovisco Pais

1049-001 Lisboa, Portugal

Abstract

Although ontology reuse is an important research
issue only one of its subprocesses (merge) is fairly
well understood. The time has come to change the
current state of affairs with the other reuse subpro-
cess: integration. In this paper we characterize the
ontology integration process, we identify the activ-
ities that should be performed in this process and
describe a methodology to perform the ontology in-
tegration process.

1 Introduction and motivation
Ontologies aim at capturing static domain knowledge in a
generic way and provide a commonly agreed upon under-
standing of that domain, which may be reused and shared
across applications and groups[Chandrasekaranet al., 1999].
Therefore, one can define an ontology as a shared specifica-
tion of a conceptualization. Ontology reuse is now one of the
important research issues in the ontology field. There are two
different reuse processes[Pinto et al., 1999]: (1) merge and
(2) integration. Merge is the process of building an ontology
in one subject reusing two or more different ontologies on that
subject[Pintoet al., 1999]. In a merge process the source on-
tologies are unified into a single one, so it usually is difficult
to identify regions in the resulting ontology that were taken
from the merged ontologies and that were left more or less
unchanged.1 It should be stressed that in a merge process the
source ontologies are truly different ontologies and not sim-
ple revisions, improvements or variations of the same ontol-
ogy. Integration is the process of building an ontology in one
subject reusing one or more ontologies in different subjects2

[Pintoet al., 1999]. In an integration process source ontolo-
gies are aggregated, combined, assembled together, to form

�This work was partially supported by JNICT grant No. PRAXIS
XXI/BD/11202/97 (Sub-Programa Ciˆencia e Tecnologia do Se-
gundo Quadro Comunit´ario de Apoio).

1In some cases, knowledge from the merged ontologies is ho-
mogenized and altered through the influence of one source ontology
on another (is spite of the fact that the source ontologies do influence
the knowledge represented in the resulting ontology). In other cases,
the knowledge from one particular source ontology is scattered and
mingled with the knowledge that comes from the other sources.

2The subjects of the different ontologies may be related.

the resulting ontology, possibly after reused ontologies have
suffered some changes, such as, extension, specialization or
adaptation. In an integration process one can identify in the
resulting ontology regions that were taken from the integrated
ontologies. Knowledge in those regions was left more or less
unchanged.

A lot of research work has been conducted under the merge
area. There is a clear definition of the merge process[Sowa,
2000], operations to perform merge have been proposed[Noy
and Musen, 1999; Wiederhold, 1994], a methodology is avail-
able[Gangemiet al., 1998] and several ontologies have been
built by merging several ontologies into a single one that
unifies all of the reused ontologies[Swartoutet al., 1997;
Gangemiet al., 1998]. The first tools to help in the merge
process are now available[Noy and Musen, 2000; McGui-
nesset al., 2000].

In the integration area a similar effort is now beginning.
The most representative ontology building methodologies
[Uschold and King, 1995; Gruninger, 1996; Fern´andezet al.,
1999] recognize integration as part of the ontology develop-
ment process, but none really addresses integration. Integra-
tion is only recognized as a difficult problem to be solved.
They don’t even agree on what integration is: for some it is
an activity, for others it is a step. We have been involved in
two integration experiences where publicly available ontolo-
gies were reused: we built the Reference ontology[Arpirez-
Vega et al., 2000; Pinto and Martins, 2000; Pinto, 1999a;
Arpirez-Vegaet al., 1998] and we were involved in build-
ing some of the subontologies needed to build an Environ-
mental Pollutants ontology (EPO)[Pinto and Martins, 2000;
Pinto, 1999a; Amaya, 1998; G´omez-Pérez and Rojas-Amaya,
1999].

We have found that integration is far more complex than
previously hinted. It is a process of its own[Pinto, 1999a;
Pinto and Martins, 2000]. In this article we characterize inte-
gration, we identify the activities that should be performed in
this process and we characterize those activities. We describe
the methodology that we developed to perform the activities
that form this process.

2 Terminology and assumptions

Ontology building is a process that follows an evolving proto-
typing life cycle. The usually acceptedstages through which

Heiner Stuckenschmidt
71

an ontology is built are:3 specification, conceptualization,
formalization, implementation, and maintenance. At each
stage there areactivities to be performed. Besides the activi-
ties ofspecification, in which one identifies the purpose (why
is the ontology being built?) and scope (what are its intended
uses and end-users?) of the ontology,conceptualization, in
which one describes, at a conceptual level, the ontology that
should be built so that it meets the specification found in
the previous step,formalization, in which one transforms the
conceptual description into a formal model,implementation
in which one implements the formalized ontology in a for-
mal knowledge representation language, andmaintenance, in
which one updates and corrects the implemented ontology;
that should be performed at each homonymous stage, there
are other activities, such as,knowledge acquisition, in which
one acquires knowledge about the domain either by using
elicitation techniques on domain experts or by referring to
relevant bibliography,documentation, in which one reports
in a document and along the implementation, what was done,
how it was done and why it was done,integration, in which
one reuses other ontologies as much as possible, andevalua-
tion, in which one technically judges the ontology.

For us, an ontology consists of: classes, instances, rela-
tions, functions and axioms. Generically, we refer the union
of classes and instances asconcepts. Each one of the con-
stituents of an ontology is generically referred to as aknowl-
edge piece. Each knowledge piece is associated with a name,
a documentation and a definition.

The aim of the conceptualization phase is to describe in
a conceptual model the ontology that should be built. We
assume that, in this phase ofany ontology building process
questions like,

� what should be represented in the ontology?

� how should it be represented (as a class, relation, etc.)?

� which relation should be used to structure knowledge in
the ontology?

� which structure is the ontology going to have (graph,
tree, etc.)?

� which ontological commitments and assumptions
should the ontology comply to?

� which knowledge representation ontology should be
used?

� should the ontology be divided in modules?

� in which modules should the ontology be divided?

are answered.

3 The Process

In this section we present the most important conclusions
about integration and its characterization.

3We use the terminology proposed in[Fernándezet al., 1999]
since it is the most consensual in the field.

3.1 Main findings

The main conclusion is that integration is a process that takes
place along the entire ontology building life cycle, rather than
a step or an activity, as previous ontology building method-
ologies proposed[Pinto, 1999a; Pinto and Martins, 2000].

As any process, integration is composed of several activi-
ties. We have identified the activities that should take place
along the ontology building life cycle to perform integration.
Since the development of an ontology follows an evolving
prototyping life cycle, integration activities can take place for
one ontology in any stage of the ontology building process.

Another important conclusion is that integration should be-
gin as early as possible in the ontology building life cycle so
that the overall ontology building process is simplified[Pinto,
1999a; Pinto and Martins, 2000]. In both our cases, integra-
tion began as early as the conceptualization phase. Since in
conceptualization much of the design of the ontology is spec-
ified, it is considerably more difficult to try to integrate an
ontology at the implementation phase because, unless one has
prior knowledge of the ontologies available for reuse, avail-
able ontologies will rarely match the needs and the concep-
tual model found for the resulting ontology. One of the con-
sequences of this conclusion is that more integration effort
should be made at the earliest stages, specially in conceptual-
ization and formalization, than at final ones, implementation
or maintenance[Pinto and Martins, 2000].

At the conceptualization phase, one uses knowledge level
[Newell, 1982] representations of ontologies. Usually, the
knowledge level representation of an ontology is not publicly
available (only implemented ontologies are available at ontol-
ogy libraries). If the knowledge level representation of an on-
tology is not available, then an ontological reengineering pro-
cess[Blázquezet al., 1998] can be applied to get the concep-
tual model of an implemented ontology. This process returns
one possible4 conceptual model of an implemented ontology.
When one begins integration as early as conceptualization,
one needs the ontologies that are going to be considered for
integration represented in an adequate form. Any conceptual
model representation is adequate. An important point to be
stressed out from all of our experiences is the fact that we had
access to knowledge level representations of most reused on-
tologies as proposed by METHONTOLOGY[Fernándezet
al., 1997]. In the case of (KA)2 [Benjamins and Fensel, 1998;
Benjaminset al., 1999] (to build the Reference ontology) and
Chemicals[Gómez-Pérezet al., 1996; Fern´andezet al., 1999]
(to build the Monoatomic Ions subontology of EPO) we had
access to the actual conceptual models that produced their
Ontolingua versions, but, in the case of EPO a reengineering
process was applied[Gómez-Pérez and Rojas-Amaya, 1999]
to produce one conceptual model of Standard Units[Gruber
and Olsen, 1994]. However, any knowledge level represen-
tation would be appropriate. Moreover, due to the particular
framework that was used, ODE[Fernándezet al., 1999], all

4It should be stressed that this process may not produce the ac-
tual conceptual model that originated the final ontology. Moreover,
if the conceptual model found for the ontology after the reverse en-
gineering step shows some deficiencies, it may be improved through
a restructuring step.

Heiner Stuckenschmidt
72

of our work was done at the knowledge level. This simplified
the overall process of integration a lot.

We would also like to point out that in both cases there was
no need to translate ontologies between different knowledge
representation languages. Translation of ontologies is in itself
a very important and difficult problem to be solved in order
to allow more generalized reuse of ontologies. As discussed
in [Uscholdet al., 1998; Russet al., 1999], translation is far
from being a fully automatic process in the near future.

3.2 Integration activities
We are going to describe the most important activities that
compose the ontology integration process. All integration ac-
tivities assume that the ontology building activities are also
performed, that is, the integration process does not substitute
the ontology building process, it rather is a part of it.

Identify the possibility of integration The framework be-
ing used to build the ontology should allow some kind of
knowledge reuse. For instance, the Ontolingua Server[Far-
quharet al., 1996] maintains an ontology library and allows
integration operations, such as inclusion or restriction. More
general systems, such as KACTUS do not allow such kind of
operations, but allow pre-existent ontologies to be imported
and edited. In other cases, integration (or any kind of reuse)
may involve rebuilding an ontology in a framework differ-
ent from the one where the ontology is available. In some
cases, this may be cost-effective, in others it may be more
cost-effective to build a new ontology from scratch that per-
fectly meets present needs and purposes than to try to rebuild
and adapt a pre-existent ontology.

Identify the modules in which the ontology can be di-
vided into The modules (building blocks) needed to build
the future ontology are identified, that is, in which subon-
tologies should the future ontology be divided (in integration,
the modules are obviously related to ontologies). Upper-level
modules and domain modules have to be identified.5

Identify the assumptions and ontological commitments
that each module should comply to The assumptions and
ontological commitments[Gruber, 1995] are described in the
conceptual model and in the specification requirements doc-
ument of the future ontology. This is one of the activities
where documentation of an ontology can be crucial to allow
better, faster and easier reuse. The assumptions and onto-
logical commitments of the building blocks should be com-
patible among themselves and should be compatible with the
assumptions and ontological commitments found for the re-
sulting ontology.

Identify what knowledge should be represented in each
module At this stage, one is only trying to have an idea of
what the modules that are going to compose the future ontol-
ogy should “look like” in order to recognize whether available
ontologies are adequate to be reused. At this stage one only
identifies a list of essential concepts. The conceptual model
of the ontology and abstraction capabilities are used to pro-
duce such list.6

5Representation ontologies are chosen in any ontology building
process. Therefore, they are not specifically addressed here.

6At later stages one will need to know to what level of detail

Identify candidate ontologies that could be used as
modules This is subdivided into: (1)finding available ontolo-
gies, and (2)choosing from the available ontologies which
ones are possible candidates to be integrated. To find pos-
sible ontologies one uses ontology sources. Since available
ontologies are mainly implemented ones one should look for
them in ontology libraries, as for instance, in the Ontolingua
Server7 for ontologies written in Ontolingua, in Ontosaurus8

[Swartoutet al., 1997] for ontologies implemented in Loom
[MacGregor, 1990a], or in the Cyc Server9 for Cyc’s upper-
level ontology. Conceptualized or formalized ontologies are
more difficult to find. Sometimes they are available in the lit-
erature or can be obtained by contacting ontology builders.
However, not every ontology in a given subject will be appro-
priate to be reused. Some may lack some important concepts,
etc. Therefore, from the available ontologies, one must chose
those that satisfy a series of requirements. In the next section
we discuss in detail how this choice is performed.

Get candidate ontologies in an adequate form This in-
cludes, not only, its knowledge level or implementation level
representations, but also, all availabledocumentation. As al-
ready discussed, one should prefer to work with the knowl-
edge level representation of an ontology, if available. In some
cases, this representation can be found in the literature (tech-
nical reports, books, thesis, etc.), or at least parts of it. An-
other possibility is contact ontology developers. However, in
most cases, only the implementation level representation of
an ontology is available, or is more easily available. There-
fore, thereengineering process may be applied using the par-
ticular framework that was adopted to design the resulting
ontology. If the ontology is not available (either at the im-
plementation or knowledge level), one can still try to recon-
struct it, or, at least, parts of it, using available documenta-
tion. While getting the implementation level representation
of an ontology, if the ontology is not written in the adequate
language (the language that was chosen to represent the re-
sulting ontology) a knowledgetranslation process must take
place. There are only a few translation attempts. In general,
there are not many translators available, their technology is
still immature and improving existing translators is a rather
difficult task. In [Uscholdet al., 1998] the translation was
done by hand and the conclusion was that this process is far
from being a fully automatic process in the near future. Au-
tomatic translators are still at draft level[Russet al., 1999],
therefore a lot of human intervention is needed to improve
ontology translated versions. If translators are available they
should be used to produce initial versions. Then, these ini-
tial versions should be improved by hand. Translators be-
tween different knowledge level representation languages are
currently not available. The translation process is, in gen-
eral, complex. It is important that, if the ontology includes
other ontologies, one should also get the included ontolo-

should that knowledge be represented, which relations should orga-
nize (structure) the ontology, and it would be helpful to know how it
should be represented (concept, relation, etc.).

7http://WWW-KSL-SVC.stanford.edu:5915
8http://www.isi.edu/isd/ontosaurus.html
9http://www.cyc.com

Heiner Stuckenschmidt
73

gies. When reusing/using one ontology one must understand
it fully, which includes every definition of every knowledge
piece represented in the ontology (directly or indirectly). In-
cluded ontologies are a hidden part of the ontology. Knowl-
edge pieces from the included ontologies can be used in the
definitions of the ontology, therefore, in order to understand
the ontology and know what is meant by one knowledge piece
that comes from an included ontology one must have access
to it and its definition or its technical documentation.

Study and analysis of candidate ontologies This includes
two important activities: (1)technical evaluation of the can-
didate ontologies bydomain experts through specialized cri-
teria oriented to integration and (2)user assessment of the
candidate ontologies byontologists through specialized cri-
teriaoriented to integration. The specialized criteria used in
integration oriented evaluation and assessment enhance the
possible problems that a particular ontology may have in a
particular integration process. They allow ontologists and do-
main experts to identify and be aware of those problems. In
the next section we discuss the criteria to be used.

Choosing the most adequate source ontologies to be
reused At this stage, and given the study and analysis of
candidate ontologies performed by domain experts and on-
tologists, the final choices must be made. Among the chosen
candidate ontologies that were technically evaluated and user
assessed for integration one has to choose the ontology (or set
of ontologies) that best suit our needs and purpose, or that can
more easily or better be adapted to them. The ontology(ies)
chosen to be reused may lack knowledge, may require that
some knowledge is removed, etc., that is, it(they) may not ex-
actly be what is needed. The best candidate ontology is the
one that can best (more closely) or more easily (using less
operations) be adapted to become the needed ontology. This
choice also depends to some extent on the other ontologies
that are going to be reused since in an integration process one
can reuse more than one ontology. It is important that reused
ontologies are compatible among themselves, namely in what
concerns the overall coherence. Sometimes, one can choose
more than one ontology in a given subject if each one focuses
different points of view of that subject. In the next section we
go into the details of this choice.

Integrate knowledge All these activities precede integra-
tion of knowledge from the integrated ontology into the re-
sulting ontology. They help the ontologist to analyze, com-
pare, and choose the ontologies that are going to be reused.
When this part of the process ends, that is the appropriate
ontologies to be reused in one particular integration process
are found, we must integrate the knowledge of those ontolo-
gies. For that, one needsintegration operations andintegra-
tion oriented design criteria. Integration operations specify
how knowledge from an integrated ontology is going to be
included and combined with knowledge in the resulting on-
tology, or modified before its inclusion. These can be viewed
as composing, combining, modifying or assembling opera-
tions. Knowledge from integrated ontologies can be, among
other things, (1) used as it is, (2) adapted (or modified), (3)
specialized (leading to a more specific ontology on the same
domain) or (4) augmented (either by more general knowledge
or by knowledge at the same level). Design criteria guide the

possibility
Identify integration

Identify modules
ont. commitments

&
Identify assumptions

to be represented
Identify knowledge

ontologies
Get candidate

reengineering)
(translate,

Apply integration
operations

Analyze
resulting ontology

Identify candidate
ontologies

find

choose

Study candidate
ontologies

assessevaluate

source ontologies
Choose most adequate

Figure 1: The integration process

application of integration operations so that the resulting on-
tology has an adequate design and is of quality. In the next
section we discuss the integration operations that were found
useful in our integration experiences and the design criteria
that guided their application.

Analyze resulting ontology After integration of knowl-
edge one should evaluate and analyze the resulting ontology.
Besides the usual criteria involved in evaluation of any on-
tology [Gómez-Pérezet al., 1995] and the features that any
ontology with an adequate design should comply to[Gru-
ber, 1995] one should pay attention to specialized criteria
that specifically analyzes whether the resulting ontology has
enough quality. They are discussed in the next section.

3.3 Discussion
In Figure 1 we present the activities that compose the on-
tology integration process. Although ontology building and
consequently ontology integration follows an evolving pro-
totyping life cycle, some order must be followed. In gen-
eral, the activities that compose the integration process tend
to be performed following the order by which they were pre-
sented. However, some of the activities (and subactivities) to
be performed before applying integration operations are inter-
changeable and some may be even performed in parallel. For
instance, integration-oriented technical evaluation and user
assessment of candidate ontologies. Moreover, the auxiliary
subprocesses, reengineering and translation, may not occur
in a particular integration process. If we find an ontology that
matches the whole ontology that one needs to build, then one
does not need to apply integration operations or analyze the
resulting ontology. However, finding candidate ontologies,
their evaluation and assessment for integration purposes, and

Heiner Stuckenschmidt
74

Specification Conceptualization Formalization Implementation Maintenance

Stages

E
ffo

rt

Figure 2: Integration effort along the ontology building pro-
cess

the choice of the most adequate one remain essential activi-
ties to be performed. Finally, one can go back from any stage
in the process to any other stage as entailed by the kind of life
cycle. The important issue is that these activities are present
in any integration process, although sometimes not explicitly
or with different levels of importance and effort.

All activities, in particular those that precede applica-
tion of integration operations, should be performed prefer-
ably in conceptualization or in formalization stages, that is,
before implementation (some methodologies jump directly
from conceptualization to implementation). However, if in-
tegration begins later in the ontology development life cycle,
they still have to be performed. In both our integration ex-
periences the framework that we used, ODE, automatically
generated the implemented versions of the resulting ontolo-
gies. Therefore, we performed all integration activities dur-
ing conceptualization and formalization stages. Using other
frameworks may extend the process a bit. If the framework
being used does not generate the implementation of the re-
sulting ontology from the conceptual representations, after
performing all activities at the knowledge level, the imple-
mented versions of the chosen ontologies must be obtained
and then one must apply the already determined sequence of
integration operations in order to build the implemented ver-
sion of the resulting ontology. In this case, only two activities
(get ontologies and apply integration operations) had to be
performed at the implementation level. This particular pro-
cess falls into a typical evolving prototyping life cycle.

One important aspect of integration is the fact that this pro-
cess is included in the overall ontology building process. The
relation between the integration process and the overall ontol-
ogy building process is shown in Figure 2. In the case that an
ontology adequate to be reused is not found one must build
it from scratch using one of the available ontology building
methodologies.

The integration effort grows from specification and con-
ceptualization to formalization where it reaches its maximum.
It begins to decrease during implementation. It should be
noted that in our particular case, due to the particular frame-
work that was used the integration effort during implementa-
tion was null. The integration effort is not null during mainte-
nance since integrated ontologies may themselves change due

to maintenance activities making it necessary (or desirable) to
reapply the integration process.

4 A Methodology
In this section we present the methods, procedures and guide-
lines that we developed to perform the activities that form this
process. They form a methodology to perform integration.

4.1 Choosing candidate ontologies
To choose candidate ontologies one analyzes a series of fea-
tures.10 At this stage of the ontology integration process one
is not going to be very particular, fussy, about the ontology,
since one does not want to leave out any possible candidate.
Therefore, only a very general analysis is made. Some of
those features arestrict requirements:

1. domain

2. is the ontology available?

3. formalism paradigms in which the ontology is available

4. main assumptions and ontological commitments

5. main concepts represented

If the ontology does not have adequate values for these prop-
erties they cannot be considered for integration. Therefore,
these properties are used to eliminate ontologies. Other fea-
tures aredesirable requirements or desirable information:

1. where is the ontology available?

2. at what level is the ontology available?

3. what kind of documentation is available (technical re-
ports, articles, etc.)?

4. where is that documentation available?

If some of the properties have certain values, the ontology is
a better candidate: if the knowledge level representation of
an ontology is available, then this ontology is a better can-
didate since the reengineering process would not have to be
performed, if the internal and external documentation is avail-
able, then the most relevant information about the construc-
tion and choices made during the construction of the ontol-
ogy is available, but if only articles are available about the
ontology, then it is likely that some of the choices are not ex-
plained. If all of the values of these properties are unknown,
then the ontology will not be a candidate, that is, if one cannot
find where the ontology and the documentation is available,
one cannot reuse it, therefore, the ontology is not a candi-
date. However, if there is enough documentation available,
then it may be possible to reconstruct the ontology, and if the
ontology is available, then it may be possible to understand
it, provided that the domain is common enough and the on-
tology is simple and not very large (and possibly after some
knowledge acquisition).

One can use a very simple metric to combine these dif-
ferent features. If strict requirements do not have adequate
values, the ontology is eliminated. If desirable requirements

10Here we only describe the most important features involved in
this choice. They are all organized into a taxonomy.

Heiner Stuckenschmidt
75

have appropriate values, then the ontology is a better candi-
date. If not, they are a worse candidate. If none of the desir-
able requirements have appropriate values, then the ontology
is not a candidate. One does not want to eliminate any pos-
sible candidate at this stage of the integration process, only
those that are of no use at all.

If, in a particular integration process, other features should
be taken into consideration while choosing candidate ontolo-
gies, the metrics can be easily updated to take into account
those new features. One only has to decide whether they are
strict or desirable requirements The advantage of the flexibil-
ity of this metric is the fact that it can be better adapted to
integration processes that should take into account particular
features during the choice of one ontology. In particular, this
kind of changes can narrow down the possible ontologies to
choose from, if one introduces more strict requirements. For
instance, one can impose the condition that only already eval-
uated ontologies should be considered as candidates. In that
case, one should add this feature as a strict requirement. If
one only wishes to prefer already evaluated ontologies, then
this feature should be added as a desirable requirement.

4.2 Study and analysis of candidate ontologies
To technically evaluate candidate ontologies the domain ex-
perts should analyze the ontology paying special attention to
[Pinto, 1999a; Pinto and Martins, 2000]:
� what knowledge is missing (concepts, classification cri-

teria, relations, etc),

� what knowledge should be removed,

� which knowledge should be relocated,

� which knowledge sources changes should be performed,

� which documentation changes should be performed,

� which terminology changes should be performed,

� which definition changes should be made,

� which practices changes should be made.
Since domain experts usually find the languages used to im-
plement ontologies difficult to understand[Fernándezet al.,
1999], they should preferably be given a knowledge level rep-
resentation of the ontology.

To user assess candidate ontologies the ontologists should
analyze the ontology paying special attention to[Pinto,
1999a; Pinto and Martins, 2000]:
� the overall structure of the ontology (one hierarchy,

several hierarchies, a graph, etc.) to assess whether
the ontology has an adequate (and preferably well-
balanced) structure, adequate and enough modules, ad-
equate and enough specialization of concepts, adequate
and enough diversity, similar concepts are represented
closer whereas less similar concepts are represented fur-
ther apart, knowledge is correctly “placed” in the struc-
ture so that inheritance mechanisms can infer appropri-
ate knowledge from the ontology, etc;

� the distinctions (classification criteria made of the con-
cepts described in the ontology) upon which the ontol-
ogy is built to assess whether they are relevant and ex-
actly the ones (quantity and quality) required;

� the relation used to structure knowledge11 in the ontol-
ogy to assess whether it is the required one;

� the naming convention rules used to assess whether they
ease and promote reuse;

� the quality of the definitions (do they follow unified pat-
terns, are simple, clear, concise, consistent, complete,
correct —lexically and syntactically—, precise and ac-
curate);

� the quality of the documentation of the ontology,

� the knowledge pieces represented (or included) are the
ones that should be represented and all appropriate
knowledge pieces are represented, etc.

Both domain experts and ontologists should evaluate and
assess all and the whole of possible candidate ontologies. In
[Pinto and Martins, 2000] a detailed discussion about the sets
of integration oriented evaluation and assessment criteria can
be found.

4.3 Choosing source ontologies
Choosing source ontologies is a rather complex multi-criteria
choice where a lot of different aspects are involved. It is a
much more complex choice than choosing candidate ontolo-
gies. For this reason, we propose that the task of choosing
source ontologies should be divided intotwo stages.

First stage
In thefirst stage one tries to find which candidate ontologies
are best suited to be integrated. Domain expert and ontologist
analyses are crucial in this process. We propose that candi-
date ontologies should be analyzed according to a taxonomy
of features, Figure 3.

General features give general information about the ontol-
ogy. It is important that the ontology is of an adequate type,
(general or domain). Depending on theformality [Uschold
and Gruninger, 1996] of the resulting ontology one may inte-
grate different kinds of ontologies.Development status gives
information about the degree of readiness of an ontology to be
reused (intended, on-going, toy example, implemented, ma-
ture). A toy example will only have representative knowledge
pieces represented. An implemented ontology can be a good
candidate provided that it has been carefully built or it has
been evaluated. A mature ontology used in applications is a
good candidate. This ontology should be a more or less sta-
ble ontology (provided that the domain does not evolve very
rapidly).

Development features are related to how the ontology was
built. The quality of knowledge sources and adequacy of
knowledge acquisition practices are analyzed during the do-
main expert integration-driven technical evaluation. It is im-
portant that the ontology ismaintained. One interesting find-
ing about ontologies is the fact that they evolve, are “liv-
ing”, since their domains also evolve. Therefore, if they are
maintained, it is most likely that they are updated. If they
are maintained, it is important to know how maintenance is
performed. Maintenance policies differ inwho changes the

11An ontology can be thought of as structured or organized ac-
cording to one privileged relation, for example, ISA, part-of, etc.

Heiner Stuckenschmidt
76

� general

– generality
– formality
– development status

� development

– knowledge acquisition
� quality of knowledge sources
� adequacy of knowledge acquisition practices

– maintenance
� is it maintained?
� who does maintenance?
� how is maintenance done?

– documentation
� quality of the documentation available
� is the available documentation complete?

– implementation
� language issues
� language(s) in which it is available
� translators: are there translators? for which lan-

guages? quality of those translators
� properties needed of the KR system in which it is

built

� content

– level of detail
– modularity
– adequacy from the domain expert point of view
– adequacy from the ontologist point of view

Figure 3: Features for choosing source ontologies, first stage

ontology (can anybody change the ontology, or only autho-
rized personnel?) andhow those changes are performed (is
the ontology changed regardless of people that built it, use
it or reuse it? are the suggestions of change previously dis-
cussed among those groups? is there any attempt to reach
a consensus between those groups? is there a special board
that decides upon suggestions for changes?). It is important
that thedocumentation has enoughquality (it is clear, it ad-
equately describes the domain, the ontology, the alternative
representations of that ontology and which alternatives were
preferred) and iscomplete (the ontology is completely de-
scribed).

The language in which the ontology is represented is a
rather important issue. If the ontology is available in the
required language the task is greatly simplified. Although
translation of ontologies is an important activity in integra-
tion, the overall effort of building the ontology can be con-
siderably lessened if we avoid it. Therefore, it is important to
know in whichlanguages the ontology is available, whether
translators from those languages are available,for which lan-
guages? those translators are available and theirquality. It
is also important to know whichreasoning capabilities are
needed by the ontology from the knowledge representation
system where it is implemented, in order to know whether the
ontology can be represented under a different knowledge rep-
resentation system. Even if translators are available, one may

not be sure of the possibility of full translation between dif-
ferent knowledge representation systems. For instance, while
translating an ontology represented in first order logic into a
pure frame system, if axioms are represented, they are lost.
Therefore, one needs to know, among other issues:

� formalism paradigm (frames, semantic networks, de-
scription logics, etc.),

� which inference mechanisms are needed (general pur-
pose, automated concept classifier[MacGregor, 1990b],
inheritance,12 monotonic vs modal vs nonmonotonic),

� whethercontexts are required.

Content features give information about what is repre-
sented in the ontology and how that knowledge is represented.
One needs to know whether the ontology has an adequate
level of detail, that is, enough intermediate concepts are rep-
resented between two arbitrary concepts. One also needs to
knowwhich concepts are represented in which modules.

Under the featureadequacy from the domain expert point
of view several analyses are made: does the content of the
ontology include most of the relevant knowledge pieces of
the domain? is the terminology adequate? are the definitions
adopted correct and widely accepted? is the ontology com-
plete in relation to present needs (at least, one needs to know
what important knowledge pieces are missing)? is there su-
perfluous knowledge that should be removed from the ontol-
ogy while integrating it?

Under the featureadequacy from the ontologist point of
view several analyses are made: are the basic distinctions rep-
resented in the ontology appropriate? does the ontology have
an adequate structure? is the ontology structured according
to appropriate relations? are needed knowledge pieces repre-
sented (this covers issues like ”are the appropriate relations
represented?”, “are certain key concepts represented?”)? are
those knowledge pieces adequately represented (this covers
issues like fidelity, minimal encoding bias, correction, coher-
ence, granularity, conciseness, efficiency in terms of time and
space13)? do they follow adequate naming convention rules?
can missing knowledge pieces be added to the ontology with-
out sacrificing coherence and clarity (this covers issues like
extendible)? is the ontology clear?

The preponderant parts in this choice are played by the
adequacy analyses that domain experts and ontologists have
made of the candidate ontologies.

Since this choice is rather complex, simple metrics as the
ones proposed to choose candidate ontologies are rather lim-
ited. The development of accurate metrics is an important
open research area in the OE field.

After the first stage, one has chosen one possible set of on-
tologies to be integrated. It may be possible to have more than
one ontology about one particular domain in that set. Those
different ontologies represent knowledge about the same do-
main from different perspectives. Those different perspec-

12Which kind? defeasible, strict, mixed; credulous vs skeptical;
on-path vs off-path; bottom-up vs top-down.

13It is important to know if we are not reusing an ontology that is
not going to meet our needs and the means that we currently have at
our disposal.

Heiner Stuckenschmidt
77

� content

– completeness
– compatibility

� terminology of common concepts
� definitions of common concepts

Figure 4: Features for choosing source ontologies, second
stage

tives should have been found important to be present in the
resulting ontology (there should not be duplicated knowledge
represented in the resulting ontology). However, the chosen
ontologies may not be compatible among themselves.

Second stage
In the second stage one tackles compatibility and complete-
ness of possibly chosen ontologies in relation to the desired
resulting ontology, Figure 4.

If the ontologies which are possibly going to be chosen to
be integrated are not coherent in what concerns the terminol-
ogy used and the definitions of the concepts that are common
to more than one ontology, then they are notcompatible and,
therefore, cannot be assembled. Sometimes the same concept
is named differently in different ontologies. In the resulting
ontology one concept only has one denomination, therefore
one must be adopted. If one concept has the same definition
in all chosen ontologies but different denominations, then a
change in terminology can solve the problem. All definitions
involving the renamed concept have to be checked and re-
vised accordingly. Sometimes different ontologies adopt dif-
ferent definitions for the same concept. One cannot have this
kind of inconsistencies in the resulting ontology. One defini-
tion should be chosen and adopted all over. It is more diffi-
cult to ensure that the same definition can be adopted by all
integrated ontologies. A thorough analysis of all ontologies
where one particular concept has a different definition from
the adopted one has to be made. It is obvious that only a co-
herent set of ontologies should be considered for integration
purposes.

If chosen ontologies are notcomplete, that is, they do not
comprehend all the ontology that has to be built, then this
piece of information must be known so that missing knowl-
edge pieces are built from scratch and added or another com-
patible ontology that contains those knowledge pieces is inte-
grated.

So, although the problem of lack of completeness has to be
known, it is not as problematic as lack of coherence. Since
one of the issues involved in the domain expert analysis is
missing knowledge, one can check whether it is not repre-
sented in another ontology about the same domain that is
also (or can also be) integrated. However, if chosen ontolo-
gies are not compatible among themselves, then this may im-
ply choosing another possible set of ontologies by combin-
ing candidate ontologies into a different set, or it may imply
building ontologies from scratch (if none of the candidate on-
tologies adopts the adequate terminology and definitions, or
profound changes have to be made to them in order to inte-
grate them).

The problem of choosing the appropriate set of source on-
tologies is also rather complex. From the set of candidate on-
tologies, a coherent and adequate subset must be found that
is as close as possible to the resulting ontology. Once again,
the ontologies in that set may not be perfect candidates. As
long as the changes to be made are not very extensive it is
more cost effective to reuse the ontology. This analysis has to
be performed on a case by case basis. If it is more cost effec-
tive to build the ontology from scratch, then existing ontology
building methodologies can be used to build an ontology that
perfectly suits our needs. If not, ontologies should be reused
and integration operations applied so that adequate changes
transform the ontologies into perfect candidates.

The result of this activity is a set of ontologies that can and
should be assembled together, a description of lacking knowl-
edge that is going to be built from scratch and included in the
resulting ontology (since none of the chosen ontologies has
it and that knowledge has been identified as essential knowl-
edge that must exist in the resulting ontology) and a descrip-
tion of the changes that should be performed to the integrated
ontologies so that they can be perfect candidates and success-
fully reused (which is the starting point for the application of
the integration operations).

4.4 Integration of knowledge
To integrate knowledge one needs integration operations and
design criteria to guide their application. Sometimes the
adaptation of source ontologies may require restructuring ac-
tivities similar to those that are performed in reengineering
processes. Moreover, it may require introduction/removal
of knowledge pieces, correction and improvement of the
definitions, terminology and documentation of the knowl-
edge pieces represented in the ontology, etc. These adap-
tations transform the chosen ontology (whole of it) into the
needed ontology. In[Farquharet al., 1997; Borst, 1997;
Pinto and Martins, 2000; Pinto, 1999a] initial sets of inte-
gration operations are proposed.Integration operations can
be divided into two groups: basic and non-basic. While the
former operations can be algebraically specified the latter can
be defined from the former but are custom-tailored operations
to be defined in a case by case basis. We have developed an
algebraic specification of 39 basic integration operations and
specified how 12 non-basic operations can be defined from
the previous ones. They are described in[Pinto, 1999b]. We
identified a set ofcriteria to guide integration of knowledge:
modularize, specialize, diversify each hierarchy, minimize
the semantic distance between sibling concepts, maximize re-
lationships between taxonomies and standardize names of re-
lations. They are described in detail in[Arpirez-Vegaet al.,
1998].

4.5 Analysis of resulting ontology
To analyze the resulting ontology one uses a set of fea-
tures. Besides having an adequate design according to the
set of features proposed in[Gruber, 1995]14 and compli-
ance with evaluation criteria[Gómez-Pérez et al., 1995;

14Clarity, coherence, extendibility, minimal encoding bias and
minimal ontological commitment.

Heiner Stuckenschmidt
78

Gómez-Pérez, 1996; 1999]15, one should pay attention to
whether the ontology has aregular level of detail all over.
By regular level of detail we mean that there are no ”islands”
of exaggerated level of detail and other parts with an adequate
one. It should be stressed that none of the parts should have
less level of detail than the required one or else the ontology
would be useless, since it would not have sufficient knowl-
edge represented. It should also be noted that the other fea-
tures involved in evaluation and design criteria are analyzed
in relation to the resulting ontology, for instance, the resulting
ontology should be consistent and coherent all over (although
composed by knowledge from different ontologies).

5 Conclusions
In this article we presented the characterization of the on-
tology integration process. The activities that compose this
process are described. The most important activities that
form this process include: finding and choosing candidate
ontologies, integration oriented evaluation and assessment
of candidate ontologies, choosing adequate source ontolo-
gies to be integrated, application of integration operations to
integrate knowledge and analysis of the resulting ontology.
We describe the methods developed to perform these activi-
ties. They provide support and guidance to the activities that
compose the integration process. They form an integration
methodology.

The advantages of the proposed integration methodology
are a direct consequence of its generality. One of the advan-
tages of our integration methodology is the fact that itcan
be used with different methodologies to build ontologies from
scratch. The only assumption made by this methodology is
that knowledge should be represented at the knowledge level.

Special emphasis is given to thequality of the ontologies
involved in a particular integration process. There are two
cases in what regards the ontologies that are reused: (1) they
are available at ontology libraries and were built by others
or (2) they were built by us. Our methodology proposes that
all reused ontologies should be evaluated by domain experts
from a technical point of view and assessed by ontologists
(more precisely by the ontologists that are going to play the
role of integrators) from a user point of view. Integration-
oriented technical evaluation and user assessment criteria as-
sure that reused ontologies have enough technical quality to
be used in the process. The analysis of the resulting ontology
assures that the resulting ontology has enough quality to be
made available and (re)used.

References
[Amaya, 1998] M. Dolores Rojas Amaya. Ontologia de

Iones Monoat´omicos en Variables Fisicas del Medio Am-
biente. Proyecto Fin de Carrera, Fac. de Inform´atica,
UPM, 1998.

[Arpirez-Vegaet al., 1998] J. Arpirez-Vega, A. Gomez-
Perez, A. Lozano-Tello, and H. Sofia Pinto.
(ONTO)2Agent: An Ontology-Based WWW Broker

15Correctness –lexically and syntactically–, completeness, con-
ciseness, consistency, expandability, sensitiveness and robustness.

to Select Ontologies. InProceedings of ECAI98’s Work-
shop on Application of Ontologies and Problem Solving
Methods, pages 16–24, 1998.

[Arpirez-Vegaet al., 2000] J. Arpirez-Vega, A. Gomez-
Perez, A. Lozano-Tello, and H. Sofia Pinto. Reference On-
tology and (ONTO)2Agent: the Ontology Yellow Pages.
Knowledge and Information Systems, 2(4):387–412, 2000.

[Benjamins and Fensel, 1998] Richard Benjamins and Di-
eter Fensel. The Ontological Engineering Initiative (KA)2.
In Nicola Guarino, editor,Formal Ontology in Information
Systems, pages 287–301. IOS Press, 1998.

[Benjaminset al., 1999] Richard Benjamins, Dieter Fensel,
Stefan Decker, and Asunci´on Gómez-Pérez. (KA)2:
Building Ontologies for the Internet, a Mid Term Re-
port. International Journal of Human Computer Studies,
51:687–712, 1999.

[Blázquezet al., 1998] M. Blázquez, Mariano Fern´andez,
J. M. Garc´ıa-Pinar, and Asunci´on Goméz-Pérez. Building
Ontologies at the Knowledge Level Using the Ontology
Design Environment. InProceedings of the Knowledge
Acquisition Workshop, KAW98, 1998.

[Borst, 1997] Pim Borst. Construction of Engineering On-
tologies for Knowledge Sharing and Reuse. PhD thesis,
Tweente University, 1997.

[Chandrasekaranet al., 1999] B. Chandrasekaran, J.R.
Josephson, and V. Richard Benjamins. Ontologies: What
are they? Why do we need them?IEEE Expert (Intelligent
Systems and Their Applications), 14(1):20–26, 1999.

[Farquharet al., 1996] Adam Farquhar, Richard Fikes, and
James Rice. The Ontolingua Server: A Tool for Collabora-
tive Ontology Construction. InProceedings of the Knowl-
edge Acquisition Workshop, KAW96, 1996.

[Farquharet al., 1997] Adam Farquhar, Richard Fikes, and
James Rice. Tools for Assembling Modular Ontologies
in Ontolingua. InAAAI97 Proceedings, pages 436–441.
AAAI Press, 1997.

[Fernándezet al., 1997] Mariano Fern´andez, Asunci´on
Gómez-Pérez, and N. Juristo. METHONTOLOGY:
From Ontological Art Towards Ontological Engineering.
In Proceedings of AAAI97 Spring Symposium Series,
Workshop on Ontological Engineering, pages 33–40,
1997.

[Fernándezet al., 1999] Mariano Fern´andez, Asunci´on
Gómez-Pérez, Alexandro Pazos Sierra, and Juan Pazos
Sierra. Building a Chemical Ontology Using METHON-
TOLOGY and the Ontology Design Environment.IEEE
Expert (Intelligent Systems and Their Applications),
14(1):37–46, 1999.

[Gangemiet al., 1998] Aldo Gangemi, Domenico M.
Pisanelli, and Geri Steve. Ontology Integration: Expe-
riences with Medical Terminologies. In Nicola Guarino,
editor, Formal Ontology in Information Systems, pages
163–178. IOS Press, 1998.

Heiner Stuckenschmidt
79

[Gómez-Pérez and Rojas-Amaya, 1999] Asunción Gómez-
Pérez and Dolores Rojas-Amaya. Ontological Reengineer-
ing for Reuse. In D. Fensel and R. Studer, editors,Pro-
ceedings of the European Knowledge Acquisition Work-
shop, EKAW99. Springer Verlag, 1999.

[Gómez-Pérezet al., 1995] A. Gómez-Pérez, N. Juristo, and
J. Pazos. Evaluation and Assessment of the Knowledge
Sharing Technology. In N.J.I. Mars, editor,Towards Very
Large Knowledge Bases, pages 289–296. IOS Press, 1995.

[Gómez-Pérezet al., 1996] Asunción Gómez-Pérez, Mari-
ano Fern´andez, and Ant´onio J. de Vicente. Towards a
Method to Conceptualize Domain Ontologies. InProceed-
ings of ECAI96’s Workshop on Ontological Engineering,
pages 41–52, 1996.

[Gómez-Pérez, 1996] Asunción Gómez-Pérez. Towards a
Framework to Verify Knowledge Sharing Technology.Ex-
pert Systems with Applications, 11(4):519–529, 1996.

[Gómez-Pérez, 1999] Asunción Gómez-Pérez. Evaluation
of Taxonomic Knowledge in Ontologies and Knowledge
Bases. InProceedingsof the Knowledge Acquisition Work-
shop, KAW99, 1999.

[Gruber and Olsen, 1994] Thomas Gruber and G. R. Olsen.
An Ontology for Engineering Mathematics. In J. Doyle,
E. Sandewall, and P. Torasso, editors,KR94 Proceedings,
pages 258–269. Morgan Kaufmann, 1994.

[Gruber, 1995] Thomas Gruber. Towards Principles for the
Design of Ontologies for Knowledge Sharing.Interna-
tional Journal of Human Computer Studies, 43(5/6):907–
928, 1995.

[Gruninger, 1996] Michael Gruninger. Designing and Eval-
uating Generic Ontologies. InProceedings of ECAI96’s
Workshop on Ontological Engineering, pages 53–64,
1996.

[MacGregor, 1990a] Robert MacGregor. LOOM User Man-
ual. Technical Report ISI/WP-22, USC/Information Sci-
ences Institute, 1990.

[MacGregor, 1990b] Robert MacGregor. The Evolving
Technology of Classification-Based Representation Sys-
tems. In John Sowa, editor,Principles of Semantic Net-
works: Explorations in the Representation of Knowledge,
pages 385–400. Morgan Kaufman, 1990.

[McGuinesset al., 2000] Deborah L. McGuiness, Richard
Fikes, James Rice, and Steve Wilder. An Environment for
Merging and Testing Large Ontologies. In Anthony Cohn,
Fausto Giunchiglia, and Bart Selman, editors,KR2000
Proceedings, pages 483–493. Morgan Kaufmann, 2000.

[Newell, 1982] A. Newell. The Knowledge Level.Artificial
Intelligence, 18(1):87–127, 1982.

[Noy and Musen, 1999] Natalya Fridman Noy and Mark A.
Musen. An Algorithm for Merging and Aligning Ontolo-
gies: Automation and Tool Support. InProceedings of
AAAI99’s Workshop on Ontology Management, WS-99-13,
pages 17–27. AAAI Press, 1999.

[Noy and Musen, 2000] Natalya Fridman Noy and Mark A.
Musen. PROMPT: Algorithm and Tool for Automated On-
tology Merging and Alignment. InAAAI2000 Proceed-
ings, pages 450–455. AAAI Press, 2000.

[Pinto and Martins, 2000] H. Sofia Pinto and J.P. Martins.
Reusing Ontologies. InProceedings of AAAI 2000 Spring
Symposium Series, Workshop on Bringing Knowledge to
Business Processes, SS-00-03, pages 77–84. AAAI Press,
2000.

[Pintoet al., 1999] H. Sofia Pinto, A. G´omez-Pérez, and
J. P. Martins. Some Issues on Ontology Integration. In
Proceedings of IJCAI99’s Workshop on Ontologies and
Problem Solving Methods: Lessons Learned and Future
Trends, pages 7.1–7.12, 1999.

[Pinto, 1999a] H. Sofia Pinto. Towards Ontology Reuse. In
Proceedings of AAAI99’s Workshop on Ontology Manage-
ment, WS-99-13, pages 67–73. AAAI Press, 1999.

[Pinto, 1999b] H. Sofia Pinto. Towards operations to ontol-
ogy integration. Technical Report GIA 99/02, Grupo de
Inteligência Artificial do Instituto Superior T´ecnico, April
1999.

[Russet al., 1999] Thomas Russ, Andre Valente, Robert
MacGregor, and William Swartout. Practical Experiences
in Trading Off Ontology Usability and Reusability. InPro-
ceedings of the Knowledge Acquisition Workshop, KAW99,
1999.

[Sowa, 2000] John Sowa. Knowledge Representation:
logical, philosophical and computational foundations.
Brooks/Cole, 2000.

[Swartoutet al., 1997] Bill Swartout, Ramesh Patil, Kevin
Knight, and Tom Russ. Toward Distributed Use of Large-
Scale Ontologies. InProceedings of AAAI97 Spring Sym-
posium Series, Workshop on Ontological Engineering,
pages 138–148, 1997.

[Uschold and Gruninger, 1996] Mike Uschold and Michael
Gruninger. Ontologies: Principles, Methods and Applica-
tions. Knowledge Engineering Review, 11(2), June 1996.

[Uschold and King, 1995] Mike Uschold and Martin King.
Towards a Methodology for Building Ontologies. InPro-
ceedings of IJCAI95’s Workshop on Basic Ontological Is-
sues in Knowledge Sharing, 1995.

[Uscholdet al., 1998] Mike Uschold, Mike Healy, Keith
Williamson, Peter Clark, and Steven Woods. Ontology
Reuse and Application. In Nicola Guarino, editor,For-
mal Ontology in Information Systems, pages 179–192. IOS
Press, 1998.

[Wiederhold, 1994] Gio Wiederhold. Interoperation, Medi-
ation and Ontologies. InProceedings of the International
Symposium on the Fifth Generation Computer Systems,
Workshop on Heterogeneous Cooperative Knowledge-
Bases, volume W3, pages 33–48, 1994.

Heiner Stuckenschmidt
80

Building a Reason-able Bioinformatics Ontology Using OIL

Robert Stevens, Ian Horrocks, Carole Goble and Sean Bechhofer
Department of Computer Science

University of Manchester
Oxford Road

Manchester, M13 9PL
United Kingdom

robert.stevens@cs.man.ac.uk

Abstract
Ontologies will play an important role in bioinfor-
matics, as they do in other disciplines, where they
will provide a source of precisely defined terms that
can be communicated across people and applica-
tions.
The Ontology Inference Layer (OIL), is an ontol-
ogy language that has an easy to use frame feel,
yet at the same time allows users to exploit the full
power of an expressive description logic. OilEd, an
editor for OIL, uses reasoning to support ontology
design, facilitating the development of ontologies
that are both more detailed and more accurate.
This paper presents a bioinformatics ontology
building case study using OilEd to highlight the
features of the combination of a frame representa-
tion and an expressive description logic.

1 Introduction
Ontologies have become an increasingly important research
topic. This is chiefly a result of their usefulness in a range
of application domains [van Heijst etal., 1997; McGuinness,
1998; Uschold and Grüninger, 1996] including bioinformat-
ics [Stevens etal., 2001].

Biologists have long had a culture of recording and sharing
information. This information has traditionally been stored
in natural language form and latterly in natural language an-
notated databases. There has been a recognition that if these
information resources are to continue to play their central role
in bioinformatics, they have to become machine understand-
able.

The automation of tasks depends on elevating the status of
the information in resources from machine-readable to some-
thing we might call machine-understandable. The natural lan-
guage annotation of a bioinformatics resource can be pro-
cessed computationally, but using the knowledge contained
in the natural language annotation is difficult. The key idea
is to have data in these resources defined and linked in such
a way that its meaning is explicitly interpretable by software
processes rather than just being implicitly interpretable by hu-
mans.

To realise this goal, it will be necessary to annotate bioin-
formatics resources with metadata(i.e., data describing their

content/functionality). Ontologies are a useful mechanism to
provide metadata for various resources. However, such anno-
tations will be of limited value to automated processes unless
they share a common understanding as to their meaning. On-
tologies, can help to meet this requirement by providing a
“representation of a shared conceptualisation of a particular
domain” that can be communicated across people and appli-
cations [Gruber, 1993].

There have been several attempts to develop bioinformatics
ontologies to exploit this biological information. The Gene
Ontology (GO) [The Gene Ontology Consortium, 2000] is
a controlled vocabulary for annotating gene products for
molecular functions, the biological processes in which it is
involved and the cellular locations in which it is found. Eco-
Cyc [Karp etal., 2000] has used an ontology to specify a data-
base schema for the E. coli. metabolism, signal trandsduction
etc. RiboWeb [Altman et al., 1999] also uses an ontology to
describe its data, but also guide its users through analysis of
their data. Finally, TAMBIS (Transparent Access to Multiple
bioinformatics Information Sources) [Baker etal., 1998] uses
an ontology to allow users to query bioinformatics databases.
Each of these uses a different knowledge representation sys-
tem from phrases in GO; to frame based systems in EcoCyc
and RiboWeb to a description logic in TAMBIS.

Phrase based vocabularies have the advantage of being eas-
ily accessible, but suffer from difficulties in consistency and
maintenance. It is common for mistakes to be made in phrase
based vocabularies, especially in the maintenance of multi-
ple hierarchies. Frame-based systems have the advantage of
an easily accessible and intuitive modelling style, reminisient
of an object view of the world (a frame is a class and the
slots are attributes. The frame encapsulates the properties of
the instances). Such systems, like phrase based vocabularies,
are esentially hand-crafted and can suffer from inconsisten-
cies and logical mistakes. The well defined semantics and
reasoning support of DLs allow logically consistent ontolo-
gies to be maintained. Concepts can be defined in terms of
their properties and the reasoning used to classify the con-
cepts based upon those descriptions. When an concept ex-
pression is unsatisfyable in terms of the rest of the model, the
reasoning support can inform the modeller of his or her mis-
take. Description logic based ontologies avoid the problems
of the hand-crafted ontologies, but suffer from the complexity
of the modelling style.

Heiner Stuckenschmidt
81

These considerations have led to the development of
OIL [Fensel et al., 2000], an ontology language that extends
a frame-based like view with a much richer set of modelling
primitives1. OIL has a frame-like syntax, which facilitates
tool building, yet can be mapped onto an expressive descrip-
tion logic (DL), which facilitates the provision of reasoning
services. Thus a modeller is offered the best of both worlds in
both development and deployment of an ontology. OilEd is
an ontology editing tool for OIL (and DAML+OIL) that ex-
ploits both these features in order to provide a familiar and in-
tuitive style of user interface with the added benefit of reason-
ing support. Its main novelty lies in the extension of the frame
editor paradigm to deal with a very expressive language, and
the use of a highly optimised DL reasoning engine to provide
sound and complete, yet still empirically tractable reasoning
services.

Reasoning with terms from deployed ontologies will be
valuable in many bioinformatics applications. The most obvi-
ous is in formulating, processing and answering queries over
bioinformatics databases. There is also a great potential in
using reasoning during analysis of novel biological entities.

The reasoning support offered by OIL is also extremely
valuable at the ontology design phase, where it can be used to
detect logically inconsistent classes and to discover implicit
subclass relations. This encourages a more descriptive ap-
proach to ontology design, with the reasoner being used to
infer part of the subsumption lattice (see the case study pre-
sented in Section 4); the resulting ontologies contain fewer
errors of consistency, yet provide more detailed descriptions
that can be exploited by automated processes in the deployed
ontologies. Finally, reasoning is of particular benefit when
ontologies are large and/or multiply authored, and also facili-
tates ontology sharing, merging and integration [McGuinness
et al., 2000]; considerations that will be particularly impor-
tant in the distributed bioinformatics environment.

The modeller, however, is not forced to use reasoning sup-
port OilEd can be used to construct hierarchies of terms un-
adorned by descriptions of properties. In fact, the ontology
development described in Section 4, uses a cyclic, two stage
approach to ontology development. For a given portion of the
ontology, a simple hierarchy of terms is hand-crafted. In the
next stage, properties are described for the necessary and suf-
ficient conditions to be a member of that class or concept. The
reasoner can then be used to check the descriptions for logical
consistency and offer any inferred knowledge (unknown sub-
sumptions) that have been found. The cycle is then repeated
for this and other portions of the ontology.

This paper concentrates on this ontology design use of
OIL, rather than the use of reasoning in the deployed ontolo-
gies. A case study taken from the domain of bioinformatics
will be used to highlight the development and management
facilities

afforded by the combination of the frame-like syntax of
OIL with the expressive power of description logics. First,

1A similar ontology language called DAML has been developed
as part of the DARPA DAML project [Hendler and McGuinness,
2001]. These two languages are soon to be merged under the name
DAML+OIL.

the
principal features of the language (Section 2) and its asso-

ciated editor
(Section 3) will be described. Section 4 describes the de-

velopment of an ontology of molecular biology and bioinfor-
matics using OilEd.

2 Oil and DAML+OIL
The development of OIL resulted from efforts to combine the
best features of frame and DL based knowledge representa-
tion systems, while at the same time maximising compatibil-
ity with emerging web standards. These standards, such as
RDFS [Brickley and Guha, 2000], make it easier to use on-
tologies consistently across the web. The intention was to
design a language that was intuitive to human users, and yet
provided adequate expressive power for realistic applications
(many early DLs failed on this second count—see [Doyle and
Patil, 1991]).

The resulting language combines a familiar frame like
syntax (derived in part from the OKBC-lite knowledge
model [Chaudhri etal., 1998]), with the power and flexibility
of a DL (i.e., boolean connectives, unlimited nesting of class
elements, transitive and inverse slots, general axioms, etc.).
The language is defined as an extension of RDFS, thereby
making OIL ontologies (partially) accessible to any “RDFS-
aware” application.

The frame syntax is less daunting to ontologists/domain
experts than a DL style syntax, and it facilitates a mod-
elling style in which ontologies can start out simple (in
terms of their descriptive content) and are gradually ex-
tended, both as the design itself is refined and as users be-
come more familiar with the language’s advanced features
(see Section 4). The frame paradigm also facilitates the
construction and adaptation of tools, e.g., the OntoEdit and
Protégé editors and the Chimaera integration tool are all being
adapted to use OIL/DAML+OIL [Staab and Maedche, 2000;
Grosso etal., 1999; McGuinness etal., 2000].

On the other hand, basing the language on an underlying
mapping to a very expressive DL (SHIQ) provides a well de-
fined semantics and a clear understanding of its formal prop-
erties, in particular that the class subsumption/satisfiability
problem is decidable and has worst case ExpTime complex-
ity [Horrocks et al., 1999]. The mapping also provides a
mechanism for the provision of practical reasoning services
by exploiting implemented DL systems, e.g., the FaCT sys-
tem [Horrocks, 2000].

OIL extends standard frame languages in a number of di-
rections. One of the key ideas is that an anonymous class
description, or even boolean combinations of class descrip-
tions, can occur anywhere that a class name would ordinar-
ily be used, e.g., in slot constraints and in the list of super-
classes. For example, in Figure 1 (which uses OIL’s “human
readable” presentation syntax, rather than the more verbose
RDFS serialisation), a herbivore is described as an animal
that eats only plants or part-of plants. Points to note
are that universally quantified (value-type) and existentially
quantified (has-value) slot constraints are clearly differenti-
ated, and that the constraint on the eats slot is a disjunction,

Heiner Stuckenschmidt
82

one of whose components is an anonymous class description
(in this case, just a single slot constraint). In addition, it is
asserted that the part-of slot is transitive, and that its inverse
is the slot has-part. Further details of the language will be
given in Section 3, and a complete specification can be found
in [Fensel etal., 2000].

slot-def part-of
subslot-of structural-relation
inverse has-part
properties transitive

class-def defined herbivore
subclass-of animal
slot-constraint eats

value-type plant or
slot-constraint part-of has-value plant

Figure 1: OIL language example

3 OilEd
OilEd is a simple ontology editor that supports the construc-
tion of OIL-based ontologies. The basic design has been
heavily influenced by similar tools such as Protégé [Grosso et
al., 1999] and OntoEdit [Staab and Maedche, 2000], but
OilEd extends these approaches in a number of ways, notably
through an extension of expressive power and the use of a
reasoner.

3.1 OilEd Functionality
Basic functionality allows the definition and description of
classes, slots, individuals and axioms within an ontology.

In general, editing functions are provided through graph-
ical means—mouse driven drop down menus, toolbars and
buttons. We will not provide a detailed description of the
graphical user interface here, as it is relatively standard (see
Figure 2, which provides a screen shot of the editors class def-
inition panel). Instead, we will discuss the novel functionality
offered by the tool.

Frame DescriptionsThe central component used throughout
OilEd is the notion of a framedescription. This consists of a
collection of superclasses along with a list of slot constraints.
For example, a class called hydrolase has constraints includ-
ing catalyses hydrolysis, describing one of the properties of
a hydrolase to be the promotion of the reaction called hydrol-
ysis. This is similar to other frame systems. Where OilEd dif-
fers, however, is that wherever a class name can appear, a re-
cursively defined, anonymous frame description can be used.
For example, a gene is has-name gene-name or part-of
gene-name – indicating that a gene may be found using its
name or part of its name. In addition, arbitrary boolean com-
binations of frames or classes (using and, or and not) can
also appear. This is in contrast to conventional frame sys-
tems, where in general, slot constraints and superclasses must
be class names.

As well as being able to assert individuals as slot fillers,
several types of constraints on slot fillers can be asserted

Figure 2: OilEd Class Panel

(these kinds of constraint are sometimes called facets).
These include value-type restrictions (all fillers must be
of a particular class), has-valuerestrictions (there must be
at least one filler of a particular class), and explicit car-
dinality restrictions (e.g., at most three fillers of a given
class). For instance, it is possible to exactly describe
that a G-protein coupled receptor has to have seven and
only seven transmembrane regions – otherwise it is not a
G-protein coupled receptor. Each constraint has a clearly
defined meaning, removing the confusion present in some
frame systems, where, for example, it is not always clear
whether the semantics of a slot-constraint should be inter-
preted as a universal or existential quantification.

ClassDefinitions A class definition specifies the class name,
along with an optional frame description (see above) and
a specification of whether the class is definedor primitive.
If defined, the class is taken to be equivalent to the given
description (necessary and sufficient conditions). If prim-
itive, the class is taken to be an explicit subclass of the
given description (necessary conditions). In the specifica-
tion of the OIL language, classes can have multiple defini-
tions. In OilEd, this is not allowed—classes must have a sin-
gle definition—but the same effect can be achieved through
the use of equivalenceaxioms as discussed below.

Slot Definitions A slot definition gives the name of the slot
and allows additional properties of the slot to be asserted, e.g.,
the names of any superslotsor inverses. If r is a superslot of
s, then any two objects related via s must also be related via
r (i.e., s(a, b) → r(a, b)); if r is an inverse of s, then a is re-
lated to b via s iff b is related to a via r (i.e., s(a, b) ↔ r(b, a)).
Domain and range restrictions on a slot can also be specified.
For example, we can constrain the relationship parent to have
both domain and range person, asserting that only persons
can have, and be, parents. As with class descriptions, the
domain and range restrictions can be arbitrary class expres-
sions such as anonymous frames or boolean combinations of
classes or frames, again extending the expressivity of tradi-
tional frame editors. Note that in this context, the domain and
range restrictions are global, and apply to every occurrence
of the slot, whether explicit or implicit.

A slot r can also be asserted to be transitive (i.e., r(a, b) and

Heiner Stuckenschmidt
83

r(b, c) → r(a, c)), functional (i.e., r(a, b) and r(a, c) → b =
c) or symmetric (i.e., r(a, b) → r(b, a)).

All assertions made about slots are used by the reasoner,
and may induce hierarchical relationships between classes,
e.g., as a result of domain and range restrictions (see Sec-
tion 4).

Axioms Another area where the expressive power
of OIL/OilEd exceeds that of traditional frame lan-
guages/editors is in the kinds of axiom that can be used to
assert facts about classes and their relationships. As well as
standard class definitions (which are really a restricted form
of subsumption/equivalence axiom), OilEd axioms can also
be used to assert the disjointnessor equivalenceof classes
(with the expected semantics) along with coverings. A
covering asserts that every instance of the covered class must
also be an instance of at least one of the covering classes. In
addition, coverings can be said to be disjoint, in which case
every instance of the covered class must be an instance of
exactly one of the covering classes.

Again, these axioms are not restricted to class names, but
can involve arbitrary class expressions (anonymous frames
or boolean combinations). This is a very powerful feature,
and is one of the main reasons for the high complexity of the
underlying decision problem. These axioms, especially the
disjointness axiom, are quite heavily used in the case study
ontology. It is useful to state explicitly that, for instance,
something cannot be both an element and a compound.

Indi viduals Limited functionality is provided to support the
introduction and description of individuals—the intention
within OilEd is that such individuals are for use within class
descriptions, rather than supporting the production of large
existential knowledge bases (it is supposed that RDF/RDFS
will be used directly for this purpose). As a (non-biological)
example, we may wish to define the class of Italians as being
all those Persons who were born in Italy, where Italy is not
a class but an individual. The example ontology in Section 4
does not use any individuals. It might, however, be possi-
ble to use them to describe individual chemicals within the
ontology.

Concrete Datatypes Concrete datatypes (string and inte-
gers), along with expressions concerning concrete datatypes
(such as min, max or ranges) can also be used within class
descriptions. However, the FaCT reasoner does not sup-
port reasoning over concrete datatypes, and at present OilEd
simply ignores concrete datatype restrictions when reasoning
about ontologies. The theory underlying concrete datatypes
is, however, well understood [Baader and Hanschke, 1991],
and work is in progress to extend the FaCT reasoner with
support for concrete datatypes. These data types are used in
the description of atom in the example ontology (Section 4).

3.2 Reasoning
The editor can be requested to verify an ontology using the
FaCT reasoner. When verification is requested, the ontol-
ogy is translated into an equivalent SHIQ (or SHF) knowl-
edge base and sent to the reasoner for classification [Decker et
al., 2000]. OilEd then queries the classified knowledge base,
checking for inconsistent classes and implicit subsumption

Figure 3: Hierarchy pre-classification

Figure 4: Hierarchy post-classification

relationships. The results are reported to the user by high-
lighting inconsistent classes and rearranging the class hierar-
chy display to reflect any changes discovered. FaCT/OilEd
does not provide any explanation of its inferences, although
this would clearly be useful in ontology design [McGuinness
and Borgida, 1995].

Figures 3 and 4 show the effects of classification on (part
of) the hierarchy derived from the TAMBIS ontology (see
Section 4). When verifying the ontology, a number of new
subsumption relationships are discovered (due to the class
definitions in the model).

In particular we can see that, after verification,
holoenzyme is not only an enzyme, but also a holoprotein,
and that metal-ion and small-molecule are both subclasses
of cofactor. Note that if the reasoning is not employed, and
if the extended expressiveness and advanced features are not
used, OilEd will still function as a simple frame editor.

4 Case Study: the TAMBIS Ontology
The role of ontologies in bioinformatics has become promi-
nent in the last few years. Much of biology works by applying
prior knowledge to an unknown entity. The complex biolog-

Heiner Stuckenschmidt
84

top

physical_structure chemical reaction cofactor modifier mental_structure expressed_sequence_tag

accession_number

label

name ec_number

deoxynucleotide

nucleotide

ribonucleotide species

organism_classification

dna_structure

chromosome plasmid

chemical_bond

complement_dna

macromolecule

ribozyme enzyme nucleic_acid hydrolase peptidase single_stranded_dna protein holoprotein holoenzyme dna rna lyase nad_requiring_oxidoreductase coenzyme_requiring_enzyme double_stranded_dna genomic_dna messenger_rna oxidoreductase

classificationsmall_molecule

amino_acid carbohydrate

ion atom

carbon_nitrogen_bond

covalent_bond

metal_ion

metal

peptide_bond_hydrolysis lysis oxidation_reduction hydrolysis ligation coenzyme

coenzyme_A

prosthetic_group

electrostatic_bond

selector

fad nad haemnon_metal

protein_name

Figure 5: Definitions pre-classification

ical data stored in bioinformatics databases requires knowl-
edge to specify and constrain values held in that database.
Ontologies are also used as a mechanism for expressing and
sharing community knowledge, to define common vocabu-
laries (e.g., for database annotations), and to support intel-
ligent querying over multiple databases [Baker et al., 1999;
Stevens etal., 2001].

TAMBIS (Transparent Access to Multiple Bioinformatics
Information Sources) is a mediation system that uses an on-
tology to enable biologists to ask questions over multiple ex-
ternal databases using a common query interface. The ontol-
ogy is central to the TAMBIS system: it provides a model
over which queries can be formed, it drives the query for-
mulation interface, it indexes the middleware wrappers of the
component sources, and it supports the query rewriting pro-
cess [Goble et al., 2001]. The TAMBIS ontology (TaO) cov-
ers the principal concepts of molecular biology and bioinfor-
matics: macromolecules; their motifs, their structure, func-
tion, cellular location and the processes in which they act.
It is an ontology intended for retrieval purposes rather than
hypothesis generation, so it is broad and shallow rather than
deep and narrow [Baker etal., 1999].

The TaO was originally modelled in the GRAIL DL [Rec-
tor etal., 1997]. It was subsequently migrated to OIL in order
to (a) exploit OIL’s high expressivity, maintaining a better fi-
delity with biological knowledge as it is currently perceived;
(b) use reasoning support when building and evolving com-
plex ontologies where the knowledge is dynamic and shifting;
and (c) be able to deliver the TaO as a conventional frame on-
tology (with all subsumptions made explicit), thus making it
accessible to a wider range of (legacy) applications and col-
laborators.

The approach to developing the ontology was directly in-
fluenced by the range of expressivity that OIL affords, and
the capabilities of OilEd itself, particularly its reasoning fa-
cilities. The modelling philosophy was to be descriptive, i.e.,
to model properties and allow as much as possible of the sub-
sumption lattice to be inferred by the reasoner.

The design methodology was to first construct a basic
framework of primitive foundation classes and slots, working
both top down and bottom up, mainly using explicitly stated
superclasses. This was a cyclic activity, with portions of the
TaO being described primitively, then in the more descriptive
fashion.

In each cycle, the reasoner is used to classify the ontol-
ogy. The classification can then be viewed (with and with-
out inferred subsumptions) to check the classification against
the ontologist’s knowledge. The editor allows concepts to
be found by name, so recently constructed concepts can be

viewed in their context. Logically inconsistent concept ex-
pressions (those equivalent to bottom) are higlighted for easy
identification of badly formed expressions.

The initial model was very “tree-like”, i.e., there were very
few classes with multiple superclasses. The primitive por-
tions of the ontology were then incrementally extended and
refined by adding new classes, elaborating slot fillers and con-
straints, and “upgrading” to defined classes wherever pos-
sible, so that class specifications became steadily more de-
tailed and faithful to the application. This process was guided
by subsumption reasoning—when elaborating or changing
classes, the reasoner could be used to check consistency and
to show the impact on the class hierarchy.

As each cycle of extension of concept definitions ends, the
modeller is able to view the use of primitive and defined con-
cepts across the ontology. This view ‘zooms’ out from the on-
tology, showing the lattice as dots and arcs, with the dots dif-
ferentiated according to their being defined or primitive. This
enables the modeller to see areas of definition and where def-
inition is lacking. Building-block concepts, that are not cen-
tral to the use of the ontology, will in all likelyhood remain
primitive, but it is useful to spot where definition is lacking;
as definition increases the fidelity and justification for the on-
tology. For instance, the macromolecules within the TaO are
highly defined, but the properties, used in the definition of
more central concepts remain primitive.

top

physical_structure reaction chemical modifier mental_structure

accession_number

label

nameec_number

deoxynucleotide

nucleotide

ribonucleotide

species

organism_classification

dna_structure

chromosomeplasmid

chemical_bond

complement_dna

single_stranded_dna

expressed_sequence_tag

classification

ribozyme

rna

messenger_rna

enzyme

lyaseholoenzyme oxidoreductase coenzyme_requiring_enzyme

protein

holoprotein

small_molecule

amino_acidprosthetic_group carbohydrate

cofactor

metal_ion

coenzyme nucleic_acid

dna

macromolecule

carbon_nitrogen_bond

covalent_bond metal

ion

hydrolase

peptidase

lysis oxidation_reduction ligation

coenzyme_A

atom

electrostatic_bond

double_stranded_dna

selector

peptide_bond_hydrolysis

hydrolysis

nad_requiring_oxidoreductase

fad nadhaem

non_metal

protein_name

genomic_dna

Figure 6: Definitions post-classification

Figures 5 and 6 illustrate this (using a subset of the com-
plete ontology). Figure 5 shows the distrubution of defined
concepts throughout the hierarchy before classification2. De-
fined concepts are signified using a darker colour, and we can
see that the hierarchy has a very flat structure. In Figure 6,

2The hierarchies are generated using OilEd’s export functional-
ity, which produces graphs for rendering by AT&T’s Graphviz soft-
ware

Heiner Stuckenschmidt
85

we see the situation after classification. The defined concepts
have now been organised into a subsumption hierarchy based
on their definitions.

Figure 7 shows a (greatly simplified) fragment of the TaO
(using OIL’s presentation syntax) that we will use to illustrate
this methodology.3

class-def protein
class-def defined holoprotein

subclass-of protein
slot-constraint binds

has-value prosthetic-group
class-def defined enzyme

subclass-of protein
slot-constraint catalyses

has-value reaction
class-def defined holoenzyme

subclass-of enzyme
slot-constraint binds has-value prosthetic-group

class-def defined cofactor
subclass-of (metal-ion or small-molecule)

disjoint metal-ion small-molecule

Figure 7: Simplified fragment of TAMBIS ontology

Bioinformatics is the study and analysis of molecular bi-
ology – the functions and processes of the products of an
organism’s genes. The knowledge about molecular biology
is contained within numerous data banks and analysis tools.
An ontology of bioinformatics therefore needs to support two
domains: First, the domain of molecular biology – the chem-
icals and higher-order chemical structures within a cell and
second, to reflect the nature and content of bioinformatics re-
sources.

The TaO was built with both a top-down and bottom-up
strategy. A general domain framework was provided into
which more detailed molecular biological and bioinformatics
concepts could be fitted. As well as this approach, a solid con-
ceptual foundation about chemicals and their structure and
behaviour was built. Basic chemicals and their properties are
used to describe the more complex biological molecules of
interest to bioinformatics, so this is an appropriate approach
both from a straightforward content, as well as a modelling,
point of view. This involved the description of the differ-
ent kinds of chemicals (ions, atoms and molecules etc.); their
structure, reactions, function and processes in which they act.
This general foundation was then used to give the subsequent
detailed description of the salient molecular biological con-
cepts that form the bottom-up placement of defined concepts.

The core of the TaO is a description of basic chemical con-
cepts. The various kinds of chemical are defined as children
of the concept chemical. These include:
atom The building block of all chemicals. A chemical’s be-

haviour is defined by the number of protons it contains,
i.e., its atomic number. Therefore, atom is defined as:

3The complete ontology can be found at http://img.cs.
man.ac.uk/stevens/tambis-oil.html

class-def defined atom
subclass-of chemical
slot-constraint atomic-number

cardinality 1
value-type integer
has-value (min 1)

So, atoms may only have one atomic number,
which must be an integer greater than or equal to
1. The concepts metal-atom, nonmetal-atom and
metalloid-atom are defined to be atoms with the
physicochemicalproperty of either metal nonmetal
or metalloid respectively.
The concept of carbon has been defined as a kind of
atom with atomic number six and the physicochemical
property of non-metal. This description of the concept
carbon enables it to be automatically placed as a kind
of nonmetal-atom. Several other, biologically relevant,
atom types have been included in the TaO.

ion An ion is simply a chemical with an electrical charge. It
is defined as:

class-def defined ion
subclass-of chemical
slot-constraint has-charge

has-value (not 0)

The slot constraint describes that an ion must have an
electrical charge and it can only be an electrical charge.
It also describes that the value for this charge can be a
positive or negative number, but not zero. it would be
possible to capture chemical reality further by specifying
a minimum cardinality of one – that is, a chemical must
have at least one charge to be an ion, but may have more
than one charge (a molecule could, for instance, contain
both a positive and negative charge).
the chemical ion has two asserted children: cation and
anion. Defining cation as a chemical with charge
greater-than 0 enables the classifier to place it correctly
as a kind of ion. An equivalence axiom can be used to
state that cation is a synonym of positive-ion.
Now,divalent-cation (a chemical with two positive
charges) can be defined by adding further properties to
this slot constraint: That
the filler for has-charge is equal 2, that is, has positive
two charges on the chemical.

element An element is a kind of chemical containing only
one kind of atom. OIL has the expressive power to
constrain the slot atom-type to be equal to only one.
Adding the slot constraint atom-type with the value one
to atom would also classify atom as an element.

compound A compound is a chemical containing more
than one kind of atom. The slot constraint used for
element (above) is altered so that the constraint indi-
cates that at least two kinds of atom must be present in
this kind of chemical.

Heiner Stuckenschmidt
86

molecule A molecule is a kind of chemical con-
taining atoms linked by covalent bonds. The
concept covalent-bond was described as a kind
of chemical-structure and used to fill the slot
contains-bond, with the has-value restriction. So, there
must be a covalent bond present for it to be classed as a
molecule, but other kinds of bond may be present – ex-
actly capturing what we understand of basic chemicals.

Two principal features of the ontology development arise
from this chemical core:

1. The need for a framework of primitive concepts, such
as metal and properties such as has-charge. These
can be used to develop the core of defined concepts at
the centre of the TaO. Primitive concepts, as well as
those such as chemical itself, are placed within a sim-
ple upper level ontology containing physical, mental,
substance, structure, function and process. These
are extended by their obvious conjunctive forms, e.g.,
physical-structure.

2. The ability to rapidly extend this chemicals core to an-
other layer of defined chemical concepts, all of which
used the previously defined concepts.

The next “layer” of chemical descriptions included:

molecular-compound A chemical containing covalent
bonds and more than one type of atom.

elemental-molecule A chemical, such as oxygen (O2),
that contains covalent bonds and only one kind of atom.

metal-ion A kind of atom with an electrical charge.

ionic-compound A kind of chemical containing more than
one kind of atom and has an electrical charge.

All these and more were simply defined to be the conjunc-
tion of two concepts. For example:

class-def defined metal-ion
subclass-of metal, ion

class-def defined divalent-cation
subclass-of chemical
slot-constraint has-charge

has-value (equal 2)

A concept divalent-zinc-cation can then simply be de-
fined as:

class-def defined divalent-zinc-cation
subclass-of zinc

slot-constraint has-charge
has-value (equal 2)

These descriptions of chemicals can be reinforced with the
use of axioms. It is not possible to be both an element and
a compound, so these two concepts are described as disjoint.
This means that if a concept were to be defined with proper-
ties of both an element and a compound, it would be found
to be inconsistent by the reasoner. Such strict definitions help

maintain the consistency and biological thoroughness of the
ontology.

An organic-molecular-compound is a molecular com-
pound that contains at least one carbon atom. This, however,
is not sufficient to define an organic molecular compound.
Carbon dioxide (CO2) is a molecular compound containing
carbon, but is not organic. Thus the property of containing
carbon is only a necessary condition for being an organic
molecular compound. Again, the ability to be exact with con-
cept descriptions allows the ontology to match chemical and
biological knowledge closely and prevent conceptualisations
being made that contradict domain knowledge.

Bioinformatics is mainly concerned with organic
macromolecular-compounds. Thus, organic molec-
ular compound was split into the biologically use-
ful distinctions of macromolecular-compound and
small-molecular-compound. the distinction is one of
size and a protein, for example, of over 100 Daltons is
usually said to be a macromolecule. Unfortunately the
boundary is more complex, a smaller molecule can still
be “macro”, depending on its context. For this reason,
sufficiency conditions were not used in the definition. Useful
small organic molecules were simply asserted as primitive
concepts underneath small-organic-molecular-compound.
These include nucleotide, amino-acid and others useful in
describing the properties of biological concepts.

For the purposes of the TaO,
macromolecular-compounds are polymers of
small-organic-molecular-compounds and are defined as
such. Thus, protein is defined as a polymer of amino-acid;
nucleic-acid as a polymer of nucleotide and polysaccaride
as a polymer of saccaride. A macromolecule can only be
a polymer of one kind of small molecule, so the value-type
restriction is used in the slot constraint. It is only possible to
be one of these molecules, so the disjoint axiom is used on
these macromolecules.

As most of bioinformatics concentrates on the analysis and
description of nucleic acids and proteins, much of the TaO’s
description concentrates in this area. DNA and RNA are both
nucleic acids formed from different kinds of nucleotide.

Describing DNA slot-constraint value-type has-value
deoxy-nucleotide, allows the classifier to correctly place it
as a kind of nucleic-acid and capture that DNA can only be
a polymer of the deoxy- form of a nucleotide and some of
the nucleotide have to be present. The various different kinds
of DNA and RNA are distinguished by their function and/or
cellular location. Again, as before, other parts of the TaO
are used to describe these properties of biological concepts.
For example, genomic-dna is dna that is found on a nuclear
chromosome, chloroplast chromosome, or mitochondrial
chromosome. The slot constraint uses or in the filler class
expression to describe this:

slot-constraint part-of
cardinality 1
value-type

(nuclear-chromosome or
mitochondrial-chromosome or
chloroplast-chromosome)).

Heiner Stuckenschmidt
87

The TaO contains a rich partonomy. The cellular struc-
tures, in particular, use the part-of slot and its transi-
tive property to build up this partonomy. For instance,
nuclear-chromosome is part-of the nucleus, which itself
is part-of the cell. Thus, a nuclear-chromosome is part-of
the cell.

These biological-structures and associated partonomy are
part of the TaO. Not only are they used in building some of
the descriptions of bio-concepts, but are also part of the de-
scription of the content of bioinformatics resources.

In the initial description of kinds of protein, holoprotein,
enzyme and holoenzyme were originally primitive classes,
with no slot constraints, and an explicitly asserted class hier-
archy: holoprotein and enzyme were subclasses of protein,
and holoenzyme was a subclass of enzyme.

During the extension and refinement phase, the properties
of the various classes were described in more detail: it was
asserted that a holoprotein binds a prosthetic-group, that
an enzyme catalyses a reaction, and that a holoenzyme
binds a prosthetic-group. Several of the classes were also
upgraded to being defined when their description constituted
both necessary and sufficient conditions for class member-
ship, e.g., a protein is a holoprotein if and only if it binds a
prosthetic-group.

Enzyme was removed from the superclass list and re-
placed with protein; then holoenzyme’s properties were de-
scribed in more detail using slot constraints—in particular, it
was asserted that a holoenzyme catalyses a reaction and
binds a prosthetic-group. This allows the reasoner to infer
not only the subclass relationship w.r.t. enzyme, but also ad-
ditional subclass relationships w.r.t. holoprotein, and in par-
ticular that holoenzyme is a subclass of holoprotein. This
latter relationship could have been missed if the ontology had
been hand crafted.

The extension and refinement phase also included the addi-
tion of axioms asserting disjointness, equality and covering,
further enhancing the accuracy of the model. Referring again
to Figure 7, our biologist initially asserted that cofactor was a
subclass of both metal-ion and small-molecule (a common
confusion over the semantics of ‘and’ and ‘or’) rather than
being either a metal-ion or a small-molecule. Subsequently,
when it was asserted that metal-ion and small-molecule are
disjoint, the reasoner inferred that cofactor was logically in-
consistent, and the mistake was rectified. Modelling mistakes
such as these litter bioontologies crafted by hand.

There are two kinds of cofactor – coenzyme and
prosthetic-group. A coenzyme can be either a small
molecule or metal ion and binds loosely to a protein. A pros-
thetic group, on the other hand, is a kind of cofactor that binds
tightly to a protein, but can only be a small molecule. Again,
OIL is expressive enough to capture these distinctions accu-
rately.

class-def defined prosthetic-group
subclass-of cofactor and (not metal-ion)
slot-constraint binds-tightly

has-value protein

The slot hierarchy was also used to induce the classifica-
tion of types of enzyme. For example, reaction (used in the
definition of enzyme) has a child lysis. Lysis is the breaking
of a covalent bond and hydrolysis is breaking of a covalent
bond with water. These two reactions are defined using the
following slot definitions:

slot-def lysis-of
domain reaction
range covalent-bond

slot-def hydrolysis-of
subslot-of lysis-of

class-def defined lysis
subclass-of reaction
slot-constraint lysis-of

has-value covalent-bond
value-type covalent-bond

class-def defined hydrolysis
subclass-of reaction
slot-constraint hydrolysis-of

has-value covalent-bond
value-type covalent-bond

class-def defined lyase
subclass-of protein
slot-constraint catalyses

has-value lysis
value-type lysis

class-def defined hydrolase
subclass-of protein
slot-constraint catalyses

has-value hydrolysis
value-type hydrolysis

A lyase is a protein that catalyses lysis. A hydrolase is
a protein that catalyses hydrolysis. As the slot hierarchy de-
scribes hydrolysis-of being a subslot of lysis-of, hydrolysis
is a child of lysis and consequently, hydrolase is a child of
lyase.

Other advantages derived from the use of OilEd included:

• The frame-like look and feel of OilEd, and the frame
approach of the OIL language, made ontology develop-
ment much less daunting to our biologist than writing
SHIQ logic expressions would have been.

• Clipboard facilities provided by OilEd allowed
(parts of) frames to be copied and pasted, mak-
ing it easy to experiment with new definitions and
to maintain a consistent modelling style. E.g.,
coenzymeA-requiring-oxidoreductase was built by
copying nad-requiring-oxidoreductase and chang-
ing the constraint on the binds slot from nad to
coenzymeA. The reasoner then automatically migrated
the class from being a subclass of holoenzyme to being
a subclass of coenzyme-requiring-enzyme.

• Class definitions can be as simple as possible yet as com-
plex as necessary. Parts of the TaO are simply primitive
frames and slots; other parts are very elaborate and ex-
ploit the full expressive power of the OIL language.

Heiner Stuckenschmidt
88

• In TAMBIS, the ontology is managed by an ontology
server that makes full use of the class definitions, e.g.,
to classify user generated query classes. However, being
able to deliver a static “snapshot” of the ontology in the
form of an RDFS taxonomy has proved extremely con-
venient when working with collaborators who are build-
ing ontologies that are in fact simple taxonomies, such
as the GeneOntology [Ashburner etal., 2000].

5 Conclusion
Ontologies are useful in a range of applications, where they
provide a source of precisely defined terms that can be com-
municated across people and applications. We have used as
an example, the initial development of a molecular biology
and bioinformatics ontology. Examples from this case study
have been used to demonstrate the utility of OIL’s integration
of features from frame and DL languages. It can be seen from
the case study that OIL can support a cyclical ontology devel-
opment, where incremental moves are made from a primitive,
asserted taxonomy to one where concepts are rich with prop-
erties. These properties can be used to add richness to the
ontology (from inferred knowledge), as well as ensuring the
logical consistency and satisfiability of the ontology. Thus,
the use of reasoning can be seen to be important for the design
and management of ontologies during their development.

OilEd is a prototype development environment for OIL, de-
signed to test and demonstrate novel ideas, and it still lacks
many features that would be required of a fully-fledged on-
tology development environment, e.g., it provides no support
for versioning, or for working with multiple ontologies. It is
likely that during the development of the TaO that other, or
fragments of other, ontologies will be imported into the TaO.
Moreover, the reasoning support provided by the FaCT sys-
tem is incomplete for OIL extended with concrete datatypes
and individuals, and does not include additional services such
as explanation. Thus, the definitions used for atom and the
charge on ions is not used in constructing the classification.
Explanation has potential use in both the development and
use of a bio-ontology. During development, it will obviously
be useful to have explanations of why a concept was unsatis-
fiable according to the current model. It is a goal for a bio-
ontology, such as TaO, to be used in the analysis of novel
biological macromolecules. Certain bioinformatics analyses
can describe the properties of such molecules. If these could
be cast in terms of the TaO, novel concepts generated by such
analyses could be classified in the TaO. the use of explanation
could significantly guide the use of such analyses.

During this case study, we have presented OIL and OilEd,
an ontology editor that has an easy to use frame interface, yet
at the same time allows users to exploit the full power of an
expressive ontology language (OIL/DAML+OIL). We have
also shown how OilEd uses reasoning to support ontology de-
sign and maintenance, and presented a case study illustrating
how this facility can be used to develop ontologies that de-
scribe their domains in more detail and with greater fidelity.

Acknowledgements:Robert Stevens is supported by BB-
SRC/EPSRC grant 4/B1012090 and Sean Bechhofer is sup-
ported by EPSRC grant GR/M75426.

References
[Altman etal., 1999] R. Altman, M. Bada, X.J. Chai,

M. Whirl Carillo, R.O. Chen, and N.F. Abernethy. Ri-
boWeb: An Ontology-Based System for Collaborative
Molecular Biology. IEEE Intelligent Systems, 14(5):68–
76, 1999.

[Ashburner etal., 2000] M. Ashburner et al. Gene ontol-
ogy: Tool for the unification of biology. Nature Genetics,
25:25–29, 2000.

[Baader and Hanschke, 1991] F. Baader and P. Hanschke. A
scheme for integrating concrete domains into concept lan-
guages. In Proc.of IJCAI-91, pages 452–457, 1991.

[Baker etal., 1998] P.G. Baker, A. Brass, S. Bechhofer,
C. Goble, N. Paton, and R. Stevens. TAMBIS: Transparent
Access to Multiple Bioinformatics Information Sources.
An Overview. In Proceedingsof the Sixth International
Conferenceon IntelligentSystemsfor MolecularBiology,
pages 25–34. AAAI Press, June 28-July 1, 1998 1998.

[Baker etal., 1999] P. Baker etal. An ontology for bioinfor-
matics applications. Bioinformatics, 15(6):510–520, 1999.

[Brickley and Guha, 2000] D. Brickley and V.R. Guha. Re-
source description framework schema specification 1.0.
W3C Candidate Recommendation, 2000. http://www.
w3.org/TR/rdf-schema.

[Chaudhri etal., 1998] V. K. Chaudhri et al. OKBC: A pro-
grammatic foundation for knowledge base interoperability.
In Proc.of AAAI-98, 1998.

[Decker etal., 2000] S. Decker etal. Knowledge representa-
tion on the web. In Proc.of DL 2000, pages 89–98, 2000.

[Doyle and Patil, 1991] J. Doyle and R. Patil. Two theses of
knowledge representation. Artificial Intelligence, 48:261–
297, 1991.

[Fensel etal., 2000] D. Fensel et al. OIL in a nutshell. In
Proc.of EKAW-2000, LNAI, 2000.

[Goble etal., 2001] C. Goble et al. Transparent access to
multiple bioinformatics information sources. IBM Systems
Journal, 40(2), 2001.

[Grosso etal., 1999] W. E. Grosso et al. Knowledge model-
ing at the millennium (the design and evolution of protégé-
2000). In Proc.of KAW99, 1999.

[Gruber, 1993] T. R. Gruber. Towards principles for the de-
sign of ontologies used for knowledge sharing. In Proc.of
Int. WorkshoponFormalOntology, 1993.

[Hendler and McGuinness, 2001] J. Hendler and D. L.
McGuinness. The DARPA agent markup language. IEEE
IntelligentSystems, jan 2001.

[Horrocks etal., 1999] I. Horrocks, U. Sattler, and S. Tobies.
Practical reasoning for expressive description logics. In
Proc.of LPAR’99, pages 161–180, 1999.

[Horrocks, 2000] I. Horrocks. Benchmark analysis with fact.
In Proc.TABLEAUX 2000, pages 62–66, 2000.

[Karp etal., 2000] P.D. Karp, M. Riley, M. Saier, I.T.
Paulsen, S.M. Paley, and A. Pellegrini-Toole. The EcoCyc

Heiner Stuckenschmidt
89

and MetaCyc Databases. NucleicAcidsResearch, 28:56–
59, 2000.

[McGuinness and Borgida, 1995] D. McGuinness and
A. Borgida. Explaining subsumption in description logics.
In Proc.of IJCAI-95, pages 816–821, 1995.

[McGuinness etal., 2000] D. L. McGuinness, R. Fikes,
J. Rice, and S. Wilder. An environment for merging and
testing large ontologies. In Proc.of KR-00, 2000.

[McGuinness, 1998] D. L. McGuinness. Ontological issues
for knowledge-enhanced search. In Proc. of FOIS-98,
1998.

[Rector etal., 1997] A. Rector et al. The GRAIL concept
modelling language for medical terminology. Artificial In-
telligencein Medicine, 9:139–171, 1997.

[Staab and Maedche, 2000] S. Staab and A. Maedche. On-
tology engineering beyond the modeling of concepts and
relations. In Proc. of theECAI’2000Workshopon Appli-
cationof OntologiesandProblem-SolvingMethods, 2000.

[Stevens etal., 2001] R. Stevens, C. A. Goble, and S. Bech-
hofer. Ontology-based knowledge representation for
bioinformatics. Briefingsin Bioinformatics, 2001.

[The Gene Ontology Consortium, 2000] The Gene Ontol-
ogy Consortium. Gene Ontology: Tool for the Unification
of Biology. NatureGenetics, 25:25–29, 2000.

[Uschold and Grüninger, 1996] M. Uschold and
M. Grüninger. Ontologies: Principles, methods and
applications. K. Eng. Review, 11(2):93–136, 1996.

[van Heijst etal., 1997] G. van Heijst, A. Schreiber, and
B. Wielinga. Using explicit ontologies in KBS develop-
ment. Int. J. of Human-ComputerStudies, 46(2/3):183–
292, 1997.

Heiner Stuckenschmidt
90

Ontology Merging for Federated Ontologies on the Semantic Web

Gerd Stumme Alexander Maedche

Institute for Applied Computer Science and
Formal Description Methods (AIFB)

University of Karlsruhe
D-76128 Karlsruhe, Germany

www.aifb.uni-karlsruhe.de/WBS/gst

FZI Research Center
for Information Technologies
Haid-und-Neu-Strasse 10-14

D–76131 Karlsruhe, Germany
www.fzi.de/wim

Abstract

One of the core challenges for the Semantic Web is
the aspect of decentralization. Local structures can
be modeled by ontologies. However, in order to
support global communication and knowledge ex-
change, mechanisms have to be developed for inte-
grating the local systems. We adopt the database
approach of autonomous federated database sys-
tems and consider an architecture for federated on-
tologies for the Semantic Web as starting point of
our work.
We identify the need for merging specific on-
tologies for developing federated, but still au-
tonomous web systems. We present the method
FCA–MERGE for merging ontologies following a
bottom-up approach which offers a structural de-
scription of the merging process. The method
is guided by application-specific instances of the
given source ontologies that are to be merged. We
apply techniques from natural language processing
and formal concept analysis to derive a lattice of
concepts as a structural result ofFCA–MERGE.
The generated result is then explored and trans-
formed into the merged ontology with human in-
teraction.

1 Introduction
The current WWW is a great success with respect to the
amount of stored documents and the number of users. One of
the main reasons for the success of the current WWW is the
principle ofdecentralization[Berners-Lee, 1999]. Currently
the Semantic Web, developed as a “metaweb” for the WWW,
is being established by standards for syntax (e. g. XML)
and semantics (RDF(S), DAML+OIL, etc.). Ontologies have
been established for knowledge sharing and are widely used
as a means for conceptually structuring domains of interest.
One of the core challenges for the Semantic Web is the aspect
of decentralization.1 Local structures can be modeled by on-
tologies. However, in order to support global communication
and knowledge exchange, mechanisms have to be developed
for integrating the local systems.

1cf. http://www.w3.org/DesignIssues/Principles.html

A number of proposals are available from the database
community for developing multi-database systems and, more
specific, federated database systems, that resemble the decen-
tralized structures required in the Semantic Web. We adopt
the database approach of federated databases and consider an
architecture for federated ontologies on the Semantic Web as
motivation and starting point of our work.

A bottleneck for federated ontologies in the Semantic Web
is the process of integrating or merging specific ontologies.
The process ofontology mergingtakes as input two (or more)
source ontologies and returns a merged ontology based on
the given source ontologies. Manual ontology merging us-
ing conventional editing tools without support is difficult,
labor intensive and error prone. Therefore, several sys-
tems and frameworks for supporting the knowledge engi-
neer in the ontology merging task have recently been pro-
posed[Hovy, 1998; Chalupsky, 2000; Noy and Musen, 2000;
McGuinnesset al, 2000]. The approaches rely on syntac-
tic and semantic matching heuristics which are derived from
the behavior of ontology engineers when confronted with the
task of merging ontologies, i. e. human behaviour is simu-
lated. Although some of them locally use different kinds of
logics for comparisons, these approaches do not offer a struc-
tural description of the global merging process.

We propose the new methodFCA–MERGE for merging
ontologies following a bottom-up approach which offers a
global structural description of the merging process. For the
source ontologies, it extracts instances from a given set of
domain-specific text documents by applying natural language
processing techniques. Based on the extracted instances we
apply mathematically founded techniques taken fromFormal
Concept Analysis[Wille, 1982; Ganter and Wille, 1999] to
derive a lattice of concepts as a structural result ofFCA–
MERGE. The produced result is explored and transformed to
the merged ontology by the ontology engineer. The extrac-
tion of instances from text documents circumvents the prob-
lem that in most applications there are no objects which are
simultaneously instances of the source ontologies, and which
could be used as a basis for identifying similar concepts.

The remainder of the paper is as follows. We start our pa-
per introducing a generic architecture for federating ontolo-
gies for the Semantic Web in Section 2. There we also iden-
tify the need for merging specific ontologies for developing
federated, autonomous systems.

Heiner Stuckenschmidt
91

We briefly introduce some basic definitions concentrating
on a formal definition of what an ontology is and recall the ba-
sics of Formal Concept Analysis in Section 3. In Sections 4 to
6, we present our methodFCA–MERGEfor merging ontolo-
gies following a bottom-up approach which offers a global
structural description of the merging process. We present our
generic method for ontology merging in Section 4. Section 5
provides a detailed description ofFCA–MERGE. Section 6
gives an overview over related work, and Section 7 summa-
rizes the paper and concludes with an outlook on future work.

2 An Architecture for Federated Ontologies
in the Semantic Web

Figure 1 depicts the 5–layer architecture of federated ontolo-
gies on the Semantic Web. It adopts the approach of[Sheth
& Larsen, 1990] for federated databases.

App. 1 (view on

merged ontology)

App. N (view on

merged ontology)

Export

ontology
Export

ontology

Ontology + Metadata

Repository

OntologyOntology Merged

Ontology

Local

ontology
Local

ontology

Normalized

ontology
Normalized

ontology

Ontology + Metadata

Repository

Figure 1: Architecture for Federated Ontologies

The architecture extends the standardized 3–layer schema
architecture ANSI/SPARC with two additional layers. The
adopted architecture mainly consists of:

1. local ontologies (the conceptual models of the au-
tonomous systems), each of them with its specific un-
derlying ontology/metadata repository or database,

2. normalized ontologies (transformation of the local on-
tologies into a common data model),

3. export ontologies (view on the normalized ontology that
describes the relevant parts of the ontology for the fed-
eration),

4. one merged ontology (global ontology derived from the
combination of the two export schemas), and

5. different applications in the upper layer (external
schema layer), which use the merged ontology with their
specific views on it.

In the following we will not go into further details of the
organizational and architectural structure. As already men-
tioned, the following sections and the rest of this paper are
dedicated to the task of generating a merged ontology from
the two (or more) given export ontologies of the autonomous
web systems.

3 Ontologies and Formal Concept Analysis
In this section, we briefly introduce some basic definitions.
We thereby concentrate on a formal definition of what an on-
tology is and recall the basics of Formal Concept Analysis.

3.1 Ontologies
There is no common formal definition of what an ontology is.
However, most approaches share a few core items: concepts,
a hierarchical IS-A-relation, and further relations. For sake
of generality, we do not discuss more specific features like
constraints, functions, or axioms here. We formalize the core
in the following way.

Definition: A (core) ontology is a tuple O :=
(C; is a;R; �), whereC is a set whose elements are called
concepts, is a is a partial order onC (i. e., a binary rela-
tion is a � C � C which is reflexive, transitive, and anti-
symmetric),R is a set whose elements are calledrelation
names(or relationsfor short), and�:R ! C+ is a function
which assigns to each relation name its arity.

As said above, the definition considers the core elements of
most languages for ontology representation only. It is possi-
ble to map the definition to most types of ontology represen-
tation languages. Our implementation, for instance, is based
on Frame Logic[Kifer et al, 1995]. Frame Logic has a well-
founded semantics, but we do not refer to it in this paper.

3.2 Formal Concept Analysis
We recall the basics of Formal Concept Analysis (FCA) as far
as they are needed for this paper. A more extensive overview
is given in[Ganter and Wille, 1999]. To allow a mathematical
description of concepts as being composed of extensions and
intensions, FCA starts with aformal contextdefined as a triple
K := (G;M; I), whereG is a set ofobjects, M is a set of
attributes, andI is a binary relation betweenG andM (i. e.
I � G�M). (g;m) 2 I is read “objectg has attributem”.

Definition: ForA � G, we defineA0 := fm 2 M j 8g 2
A: (g;m) 2 Ig and, forB � M , we defineB 0 := fg 2 G j
8m 2 B: (g;m) 2 Ig.

A formal conceptof a formal context(G;M; I) is defined
as a pair(A;B) with A � G, B �M ,A0 = B andB0 = A.
The setsA andB are called theextentand theintent of the
formal concept(A;B). Thesubconcept–superconcept rela-
tion is formalized by(A1; B1) � (A2; B2) :() A1�A2

(() B1 � B2): The set of all formal concepts of a con-
textK together with the partial order� is always a complete
lattice,2 called theconcept latticeof K and denoted byB(K).

2I. e., for each set of formal concepts, there is always a greatest
common subconcept and a least common superconcept.

Heiner Stuckenschmidt
92

A possible confusion might arise from the double use of
the word ‘concept’ in FCA and in ontologies. This comes
from the fact that FCA and ontologies are two models for
the concept of ‘concept’ which arose independently. In order
to distinguish both notions,we will always refer to the FCA
concepts as ‘formal concepts’. The concepts in ontologies
are referred to just as ‘concepts’ or as ‘ontology concepts’.
There is no direct counter-part of formal concepts in ontolo-
gies. Ontology concepts are best compared to FCA attributes,
as both can be considered as unary predicates on the set of ob-
jects.

4 Bottom-Up Ontology Merging
As said above, we propose a bottom-up approach for ontol-
ogy merging. Our mechanism is based on application-specific
instances of the two given ontologiesO1 andO2 that are to
be merged. The overall process of merging two3 ontologies
is depicted in Figure 2 and consists of three steps, namely(i)
instance extraction and computing of two formal contextsK 1

andK 2 , (ii) the FCA-MERGE core algorithm that derives a
common context and computes a concept lattice, and(iii) the
generation of the final merged ontology based on the concept
lattice.

1

2

Linguistic

Processing

new

2

1

11

22

FCA-

Merge

Lattice

Exploration
Linguistic

Processing

Figure 2: Ontology Merging Method

Our method takes as input data the two ontologies and a
setD of natural language documents. The documents have to
be relevant to both ontologies, so that the documents are de-
scribed by the concepts contained in the ontology. The doc-
uments may be taken from the target application which re-
quires the final merged ontology. From the documents inD,
we extract instances. The mechanism for instance extraction
is further described in Subsection 5.1. This automatic knowl-
edge acquisition step returns, for each ontology, a formal con-
text indicating which ontology concepts appear in which doc-
uments.

The extraction of the instances from documents is neces-
sary because there are usually no instances which are already
classified by both ontologies. However, if this situation is
given, one can skip the first step and use the classification of
the instances directly as input for the two formal contexts.

The second step of our ontology merging approach com-
prises theFCA–MERGEcore algorithm. The core algorithm
merges the two contexts and computes a concept lattice from
the merged context using FCA techniques. More precisely, it

3The approach can easily be extended for mergingn instead of
two ontologies simultaneously.

computes apruned concept latticewhich has the same degree
of detail as the two source ontologies. The techniques ap-
plied for generating the pruned concept lattice are described
in Subsection 5.2 in more detail.

Instance extraction and theFCA–MERGE core algorithm
are fully automatic. The final step ofderiving the merged
ontologyfrom the concept lattice requires human interaction.
Based on the pruned concept lattice and the sets of relation
namesR1 andR2, the ontology engineer creates the con-
cepts and relations of the target ontology. We offer graphical
means of the ontology engineering environment OntoEdit for
supporting this process.

For obtaining good results, a few assumptions have to be
met by the input data: Firstly, the documents have to be rel-
evant to each of the source ontologies. A document from
which no instance is extracted for each source ontology can
be neglected for our task. Secondly, the documents have
to cover all concepts from the source ontologies. Concepts
which are not covered have to be treated manually after our
merging procedure (or the set of documents has to be ex-
panded). And last but not least, the documents must sepa-
rate the concepts well enough. If two concepts which are
considered as different always appear in the same documents,
FCA-MERGEwill map them to the same concept in the target
ontology (unless this decision is overruled by the knowledge
engineer). When this situation appears too often, the knowl-
edge engineer might want to add more documents which fur-
ther separate the concepts.

5 The FCA–MERGE Method
In this section, we discuss the three steps ofFCA–MERGEin
more detail. We illustrateFCA–MERGEwith a small exam-
ple taken from the tourism domain, where we have built sev-
eral specific ontology-based information systems. Our gen-
eral experiments are based on tourism ontologies that have
been modeled in an ontology engineering seminar. Differ-
ent ontologies have been modeled for a given text corpus on
the web, which is provided by a WWW provider for tourist
information.4 The corpus describes actual objects, like loca-
tions, accommodations, furnishings of accommodations, ad-
ministrative information, and cultural events. For the scenario
described here, we have selected two ontologies: The first on-
tology contains 67 concepts and 31 relations, and the second
ontology contains 51 concepts and 22 relations. The under-
lying text corpus consists of 233 natural language documents
taken from the WWW provider described above. For demon-
stration purposes, we restrict ourselves first to two very small
subsetsO1 andO2 of the two ontologies described above;
and to 14 out of the 233 documents. These examples will
be translated in English. In Subsection 5.3, we provide some
examples from the merging of the larger ontologies.

5.1 Linguistic Analysis and Context Generation
The aim of this first step is to generate, for each ontology
Oi; i2f1; 2g, a formal contextK i := (Gi;Mi; Ii). The set
of documentsD is taken as object set (Gi := D), and the set
of concepts is taken as attribute set (Mi := Ci). While these

4URL: http://www.all-in-all.com

Heiner Stuckenschmidt
93

I1

V
a
c
a
t
i
o
n

H
o
t
e
l

E
v
e
n
t

C
o
n
c
e
r
t

R
o
o
t

doc1 � � � � �

doc2 � � � � �

doc3 � � � �

doc4 � � � � �

doc5 � � �

doc6 � � � �

doc7 � �

doc8 � � � � �

doc9 � � � �

doc10 � � � �

doc11 � � � � �

doc12 � �

doc13 � � � �

doc14 � � � �

I2

H
o
t
e
l

A
c
c
o
m
m
o
d
a
t
i
o
n

M
u
s
i
c
a
l

R
o
o
t

doc1 � � � �

doc2 � � �

doc3 � � � �

doc4 � � � �

doc5 � �

doc6 � � � �

doc7 � � �

doc8 � � � �

doc9 � � �

doc10 � � �

doc11 � � � �

doc12 � � �

doc13 � � � �

doc14 � � �

Figure 3: The contextsK 1 andK 2 as result of the first step

sets come for free, the difficult step is generating the binary
relation Ii. The relation(g;m) 2 Ii shall hold whenever
documentg contains an instance ofm.

The computation uses linguistic techniques as described
in the sequel. We conceive an information extraction-based
approach for ontology-based extraction, which has been im-
plemented on top of SMES (Saarbr¨ucken Message Extrac-
tion System), a shallow text processor for German (cf.[Neu-
mannet al, 1997]). The architecture of SMES comprises
a tokenizerbased on regular expressions, alexical analysis
component including aword and a domain lexicon, and a
chunk parser. The tokenizer scans the text in order to identify
boundaries of words and complex expressions like “$20.00”
or “Mecklenburg–Vorpommern”,5 and to expand abbrevia-
tions.

The lexicon contains more than 120,000 stem entries and
more than 12,000 subcategorization frames describing infor-
mation used for lexical analysis and chunk parsing. Further-
more, the domain-specific part of the lexicon contains lexical
entries that express natural language representations of con-
cepts and relations. Lexical entries may refer to several con-
cepts or relations, and one concept or relation may be referred
to by several lexical entries.

Lexical analysisuses the lexicon to perform(1) morpho-
logical analysis, i. e. the identification of the canonical com-
mon stem of a set of related word forms and the analysis
of compounds,(2) recognition of named entities,(3) part-of-
speech tagging, and(4) retrieval of domain-specific informa-
tion. While steps (1), (2), and (3) can be viewed as standard
for information extraction approaches, step (4) is of specific
interest for our instance extraction mechanism. This step as-
sociates single words or complex expressions with a concept
from the ontology if a corresponding entry in the domain-
specific part of the lexicon exists. For instance, the expression
“Hotel Schwarzer Adler” is associated with the conceptHo-
tel. If the conceptHotel is in ontologyO1 and document
g contains the expression “Hotel Schwarzer Adler”, then the
relation (g,Hotel)2I1 holds.

Finally, the transitivity of theis a-relation is compiled
into the formal context, i. e.(g;m)2I andm is a n im-

5a region in the north east of Germany

Hotel_1
Hotel_2

Accommodation_2

Root_1
Root_2

Vacation_1

Event_1

Concert_1
Musical_2

Figure 4: The pruned concept lattice

plies (g; n)2I . This means that if (g,Hotel)2I1 holds
and Hotel is a Accommodation, then the document
also describes an instance of the conceptAccommodation:
(g,Accommodation)2I1.

Figure 3 depicts the contextsK 1 andK 2 that have been
generated from the documents for the small example ontolo-
gies. E. g., documentdoc5 contains instances of the con-
ceptsEvent, Concert, andRoot of ontologyO1, and
Musical andRoot of ontologyO2. All other documents
contain some information on hotels, as they contain instances
of the conceptHotel both inO1 and inO2.

5.2 Generating the Pruned Concept Lattice
The second step takes as input the two formal contextsK 1

andK 2 which were generated in the last step, and returns
a pruned concept lattice(see below), which will be used as
input in the next step.

First we merge the two formal contexts into a new formal
contextK , from which we will derive the pruned concept lat-
tice. Before merging the two formal contexts, we have to
disambiguate the attribute sets, sinceC1 and C2 may con-
tain the same concepts: LetfMi := f(m; i) j m 2 Mig,
for i2f1; 2g. The indexation of the concepts allows the pos-
sibility that the same concept exists in both ontologies, but
is treated differently. For instance, aCampground may be
considered as anAccommodation in the first ontology, but
not in the second one. Then the merged formal context is ob-
tained byK := (G;M; I) with G := D, M := fM1 [fM2,
and(g; (m; i)) 2 I :, (g;m) 2 Ii .

We will not compute the whole concept lattice ofK , as it
would provide too many too specific concepts. We restrict
the computation to those formal concepts which are above
at least one formal concept generated by an (ontology) con-
cept of the source ontologies. This assures that we remain
within the range of specificity of the source ontologies. More
precisely, thepruned concept latticeis given byBp (K) :=

f(A;B)2B(K) j 9m2M : (fmg0; fmg00) � (A;B)g (with �0

as defined in Section 3.2).
For our example, the pruned concept lattice is shown in

Figure 4. It consists of six formal concepts. Two formal con-

Heiner Stuckenschmidt
94

cepts of the total concept lattice are pruned since they are too
specific compared to the two source ontologies. In the di-
agram, each formal concept is represented by a node. The
empty nodes are the pruned concepts and are usually hidden
from the user. A concept is a subconcept of another one if
and only if it can be reached by a descending path. The in-
tent of a formal concept consists of all attributes (i. e., in our
application, the ontology concepts) which are attached to the
formal concept or to one of its superconcepts. As we are not
interested in the document names, the extents of the contexts
are not visualized in this diagram.

The computation of the pruned concept lattice is done with
the algorithm TITANIC [Stummeet al, 2000]. It is modified
to allow the pruning. The modified algorithm is described
below.

Compared to other algorithms for computing concept lat-
tices, TITANIC has — for our purpose — the advantage that
it computes the formal concepts via theirkey sets(or minimal
generators). A key set is a minimal description of a formal
concept:

Definition 1 K � M is a key set for the formal concept
(A;B) if and only if (K 0;K 00) = (A;B) and (X 0; X 00) 6=
(A;B) for all X � K withX 6= K.6

In our application, key sets serve two purposes. Firstly,
they indicate if the generated formal concept gives rise to a
new concept in the target ontology or not. A concept is new
if and only if it has no key sets of cardinality one. Secondly,
the key sets of cardinality two or more can be used as generic
names for new concepts and they indicate the arity of new
relations.

The TITANIC Algorithm. We recall the algorithm TI-
TANIC and discuss how it is modified to compute the pruned
concept lattice. In the following, we will use the composed
function �00:P(M) ! P(M) which is a closure operator
on M (i. e., it is extensive, monotonous, and idempotent).
The related closure system (i. e., the set of allB � M with
B00 = B) is exactly the set of the intents of all concepts of
the context. The structure of the concept lattice is already
determined by this closure system. Hence we restrict our-
selves to the computation of all concept intents in the sequel.
The computation makes extensive use of the followingsup-
port function:

Definition 2 ThesupportofX �M is defined by

s(X) :=
jX 0j

jGj
:

We follow a pruning strategy given in[Agrawal and
Srikant, 1994]. Originally this strategy was presented as a
heuristic for determining all frequent sets only (i. e., all sets
with supports above a user-defined threshold). The algorithm
traverses the powerset ofM in a level-wise manner. At the
kth iteration, all subsets ofM with cardinalityk (calledk-
sets) are considered, unless we know in advance that they
cannot be key sets.

6In other words:K generates the formal concept(A;B).

The pseudo-code of the modified TITANIC algorithm is
given in Algorithm 1. A list of notations is provided in Ta-
ble 1.

Algorithm 1 TITANIC

1) ;:s 1;
2) K0 f;g;
3) k 1;
4) forall m 2M do fmg:p s 1;
5) C ffmg j m 2Mg;
6) loop begin
7) COUNT(C);
8) Kk fX 2 C j X:s 6= X:p s and

(k = 1 or 9m 2M :X � m:closure)g;
9) forall X 2 Kk do X:closure CLOSURE(X);

10) if Kk = ; then exit loop ;
11) k ++;
12) C TITANIC -GEN(Kk�1);
13) end loop ;
14) return

Sk�1

i=0 fX:closurej X 2 Kig.

Table 1: Notations used in TITANIC

k is the counter which indicates the current iteration.
In thekth iteration, all keyk-sets are determined.

Kk contains after thekth iteration all keyk-setsK
together with their weightK:s and their closure
K:closure.

C stores the candidatek-sets C together with a
counterC:p s which stores the minimum of the
weights of all(k � 1)-subsets ofC. The counter
is used in step 8 to prune all non-key sets.

The algorithm starts with stating that the empty set is always
a key set, and that its support is always equal to 1 (steps 1+2).
Then all 1-sets are candidate sets by definition (steps 4+5).
In later iterations, the candidatek-sets are determined by the
function TITANIC -GEN (step 12/Algorithm 2) which is (ex-
cept step 5) equivalent to the generating function of Apriori.
(The result of step 5 will be used in step 8 of Algorithm 1 for
pruning the non-key sets.)

Once the candidatek-sets are determined, the function
COUNT(X) is called to compute, for eachX 2 X , the sup-
port ofX . It is stored in the variableX:s (step 7).

In step 8 of Algorithm 1, the second condition prunes all
candidatek-sets which are out of the range of the two source
ontologies. I. e., it implements the condition of the defini-
tion of the pruned concept latticeBp (K). This additional
condition makes the difference to the algorithm presented in
[Stummeet al, 2000]. The first condition in step 8 prunes all
candidatek-sets which are not key sets according to Proposi-
tion 1.
Proposition 1 ([Stumme et al, 2000]) X �M is a key set if
and only ifs(X) 6= minm2X(s(X n fmg)).

For the remaining sets (which are now known to be key
sets) their closures are computed (step 9). The CLOSURE

Heiner Stuckenschmidt
95

Algorithm 2 TITANIC -GEN

We assume that there is a total order> onM .

Input:Kk�1, the set of key(k � 1)-setsK with their support
K:s.

Output:C, the set of candidatek-setsC
with the valuesC:p s := minfs(Cnfmg j m 2 Cg.

The variablesp s assigned to the setsfp1; : : : ; pkg which are
generated in step 1 are initialized byfp1; : : : ; pkg:p s 1.

1) C ffp1; : : : ; pkg j i < j) pi < pj ;
fp1; : : : ; pk�2; pk�1g;
fp1; : : : ; pk�2; pkg 2 Kk�1g;

2) forall X 2 C do begin
3) forall (k � 1)-subsetsS of X do begin
4) if S =2 Kk�1 then begin C C n fXg;

exit forall ; end;
5) X:p s min(X:p s; S:s);
6) end;
7) end;
8) return C.

Algorithm 3 CLOSURE(X) for X 2 Kk�1
1) Y X ;
2) forall m 2 X do Y Y [(X n fmg):closure;
3) forall m 2M n Y do begin
4) if X [fmg 2 C then s (X [fmg):s
5) else s minfK:s j K 2 K; K � X [fmgg;
6) if s = X:s then Y Y [fmg
7) end;
8) return Y .

function (Algorithm 3) is a straight-forward implementation
of Proposition 2 (beside an additional optimization (step 2)).

Proposition 2 ([Stumme et al, 2000])

1. LetX �M . Then

h(X) = X [fm 2M nX j s(X) = s(X [fmg)g :

2. If X is not a key set, then

s(X) = minfs(K) j K 2 K;K � Xg

whereK is the set of all key sets.

Algorithm 1 terminates, if there are no keyk-sets left (step
10+14). Otherwise the next iteration begins (steps 11+12).

5.3 Generating the new Ontology from the
Concept Lattice

While the previous steps (instance extraction, context deriva-
tion, context merging, and TITANIC) are fully automatic, the
derivation of the merged ontology from the concept lattice
requires human interaction, since it heavily relies on back-
ground knowledge of the domain expert.

The result from the last step is a pruned concept lattice.
From it we have to derive the target ontology. Each of the

formal concepts of the pruned concept lattice is a candidate
for a concept, a relation, or a new subsumption in the target
ontology. There is a number of queries which may be used to
focus on the most relevant parts of the pruned concept lattice.
We discuss these queries after the description of the general
strategy — which follows now. Of course, most of the tech-
nical details are hidden from the user.

As the documents are not needed for the generation of the
target ontology, we restrict our attention to the intents of the
formal concepts, which are sets of (ontology) concepts of the
source ontologies. For each formal concept of the pruned
concept lattice, we analyze the related key sets. For each for-
mal concept, the following cases can be distinguished:

1. It has exactly one key set of cardinality 1.
2. It has two or more key sets of cardinality 1.
3. It has no key sets of cardinality 0 or 1.
4. It has the empty set as key set.7

The generation of the target ontology starts with all concepts
being in one of the two first situations. The first case is the
easiest: The formal concept is generated by exactly one on-
tology concept from one of the source ontologies. It can
be included in the target ontology without interaction of the
knowledge engineer. In our example, these are the two formal
concepts labeled byVacation 1 and byEvent 1.

In the second case, two or more concepts of the source on-
tologies generate the same formal concept. This indicates
that the concepts should be merged into one concept in the
target ontology. The user is asked which of the names to
retain. In the example, this is the case for two formal con-
cepts: The key setsfConcert 1g andfMusical 2g gen-
erate the same formal concept, and are thus suggested to
be merged; and the key setsfHotel 1g, fHotel 2g, and
fAccommodation 2g also generate the same formal con-
cept.8 The latter case is interesting, since it includes two con-
cepts of the same ontology. This means that the set of docu-
ments does not provide enough details to separate these two
concepts. Either the knowledge engineer decides to merge
the concepts (for instance because he observes that the dis-
tinction is of no importance in the target application), or he
adds them as separate concepts to the target ontology. If there
are too many suggestions to merge concepts which should be
distinguished, this is an indication that the set of documents
was not large enough. In such a case, the user might want to
re-launchFCA–MERGEwith a larger set of documents.

When all formal concepts in the first two cases are dealt
with, then all concepts from the source ontologies are in-
cluded in the target ontology. Now, all relations from the two
source ontologies are copied into the target ontology. Possi-
ble conflicts and duplicates have to be resolved by the ontol-
ogy engineer.

In the next step, we deal with all formal concepts covered
by the third case. They are all generated by at least two con-
cepts from the source ontologies, and are candidates for new

7This implies (by the definition of key sets) that the formal con-
cept does not have another key set.

8fRoot 1g andfRoot 2g are no key sets, as each of them has
a subset (namely the empty set) generating the same formal concept.

Heiner Stuckenschmidt
96

ontology concepts or relations in the target ontology. The de-
cision whether to add a concept or a relation to the target on-
tology (or to discard the suggestion) is a modeling decision,
and is left to the user. The key sets provide suggestions either
for the name of the new concept, or for the concepts which
should be linked with the new relation. Only those key sets
with minimal cardinality are considered, as they provide the
shortest names for new concepts and minimal arities for new
relations, resp.

For instance, the formal concept in the middle of Fig-
ure 4 hasfHotel 2, Event 1g, fHotel 1, Event 1g,
andfAccommodation 2, Event 1g as key sets. The user
can now decide if to create a new concept with the default
nameHotelEvent (which is unlikely in this situation), or
to create a new relation with arity (Hotel,Event), e. g., the
relationorganizesEvent.

Key sets of cardinality 2 serve yet another purpose:
fm1;m2g being a key set implies that neitherm1is am2

norm2is am1 currently hold. Thus when the user does not
use a key set of cardinality 2 for generating a new concept or
relation, she should check if it is reasonable to add one of the
two subsumptions to the target ontology. This case does not
show up in our small example. An example from the large
ontologies is given at the end of the section.

There is exactly one formal concept in the fourth case (as
the empty set is always a key set). This formal concept gives
rise to a new largest concept in the target ontology, theRoot
concept. It is up to the knowledge engineer to accept or to
reject this concept. Many ontology tools require the existence
of such a largest concept. In our example, this is the formal
concept labeled byRoot 1 andRoot 2.

Finally, the isa order on the concepts of the target ontology
can be derived automatically from the pruned concept lattice:
If the conceptsc1 andc2 are derived from the formal concepts
(A1; B1) and(A2; B2), resp., thenc1is a c2 if and only if
B1 � B2 (or if explicitly modeled by the user based on a key
set of cardinality 2).

Querying the pruned concept lattice. In order to support the
knowledge engineer in the different steps, there is a number
of queries for focusing his attention to the significant parts of
the pruned concept lattice.

Two queries support the handling of the second case (in
which different ontology concepts generate the same formal
concept). The first is a list of all pairs(m1;m2) 2 C1 � C2
with fm1g0 = fm2g0. It indicates which concepts from the
different source ontologies should be merged.

In our small example, this list contains for instance the pair
(Concert 1,Musical 2). In the larger application (which
is based on the German language), pairs like (Zoo 1, Tier-
park 2) and (Zoo 1, Tiergarten 2) are listed. We de-
cided to mergeZoo [engl.: zoo] andTierpark [zoo], but
notZoo andTiergarten [zoological garden].

The second query returns, for ontologyO i with i 2 f1; 2g,
the list of pairs(mi; ni) 2 Ci � Ci with fmig0 = fnig0. It
helps checking which concepts out of a single ontology might
be subject to merge. The user might either conclude that some
of these concept pairs can be merged because their differen-
tiation is not necessary in the target application; or he might

decide that the set of documents must be extended because it
does not differentiate the concepts enough.

In the small example, the list forO1 contains only the pair
(Hotel 1, Accommodation 1). In the larger application,
we had additionally pairs like (Räumliches,Gebiet) and
(Auto, Fortbewegungsmittel). For the target applica-
tion, we mergedRäumliches [spatial thing] andGebiet
[region], but notAuto [car] andFortbewegungsmittel
[means of travel].

The number of suggestions provided for the third situation
can be quite high. There are three queries which present only
the most significant formal concepts out of the pruned con-
cepts. These queries can also be combined.

Firstly, one can fix an upper bound for the cardinality of the
key sets. The lower the bound is, the fewer new concepts are
presented. A typical value is 2, which allows to retain all con-
cepts from the two source ontologies (as they are generated
by key sets of cardinality 1), and to discover new binary rela-
tions between concepts from the different source ontologies,
but no relations of higher arity. If one is interested in having
exactly the old concepts and relations in the target ontology,
and no suggestions for new concepts and relations, then the
upper bound for the key set size is set to 1.

Secondly, one can fix a minimum support. This prunes all
formal concepts where the cardinality of the extent is too low
(compared to the overall number of documents). In Algo-
rithm 1, this is achieved by adding the condition “[. . .] and
X:s � minsupp” to step 8. The default is no pruning, i. e.,
with a minimum support of 0 %. It is also possible to fix dif-
ferent minimum supports for different cardinalities of the key
sets. The typical case is to set the minimum support to 0 % for
key sets of cardinality 1, and to a higher percentage for key
sets of higher cardinality. This way we retain all concepts
from the source ontologies, and generate new concepts and
relations only if they have a certain (statistical) significance.

Thirdly, one can consider only those key sets of cardinal-
ity 2 in which the two concepts come from one ontology each.
This way, only those formal concepts are presented which
give rise to concepts or relations linking the two source on-
tologies. This restriction is useful whenever the quality of
each source ontologyper seis known to be high, i. e., when
there is no need to extend each of the source ontologies alone.

In the small example, there are no key sets with cardinal-
ity 3 or higher. The three key sets with cardinality 2 (as
given above) all have a support of11

14
� 78:6%. In the

larger application, we fixed 2 as upper bound for the cardinal-
ity of the key sets. We obtained key sets like (Telefon 1
[telephone],Öffentliche Einrichtung 2 [public in-
stitution]) (support = 24.5 %), (Unterkunft 1 [accom-
modation],Fortbewegungsmittel 2 [means of travel])
(1.7 %), (Schloß 1 [castle], Bauwerk 2 [building])
(2.1 %), and (Zimmer 1 [room],Bibliothek 2 [library])
(2.1 %). The first gave rise to a new conceptTele-
fonzelle [public phone], the second to a new binary rela-
tion hatVerkehrsanbindung [hasPublicTransportCon-
nection], the third to a new subsumptionSchloß is a

Bauwerk, and the fourth was discarded as meaningless.

Heiner Stuckenschmidt
97

6 Related Work

A first approach for supporting the merging of ontologies is
described in[Hovy, 1998]. There, several heuristics are de-
scribed for identifying corresponding concepts in different
ontologies, e. g. comparing the names and the natural lan-
guage definitions of two concepts, and checking the closeness
of two concepts in the concept hierarchy.

The OntoMorph system[Chalupsky, 2000] offers two
kinds of mechanisms for translating and merging ontologies:
syntactic rewriting supports the translation between two dif-
ferent knowledge representation languages, semantic rewrit-
ing offers means for inference-based transformations. It ex-
plicitly allows to violate the preservation of semantics in
trade-off for a more flexible transformation mechanism.

In [McGuinnesset al, 2000] the Chimaera system is de-
scribed. It provides support for merging of ontological terms
from different sources, for checking the coverage and correct-
ness of ontologies and for maintaining ontologies over time.
Chimaera offers a broad collection of functions, but the un-
derlying assumptions about structural properties of the on-
tologies at hand are not made explicit.

Prompt[Noy and Musen, 2000] is an algorithm for ontol-
ogy merging and alignment embedded in Prot´egé 2000. It
starts with the identification of matching class names. Based
on this initial step an iterative approach is carried out for per-
forming automatic updates, finding resulting conflicts, and
making suggestions to remove these conflicts.

The tools described above offer extensive merging func-
tionalities, most of them based on syntactic and semantic
matching heuristics, which are derived from the behaviour of
ontology engineers when confronted with the task of merg-
ing ontologies. OntoMorph and Chimarea use a descrip-
tion logics based approach that influences the merging pro-
cess locally, e. g. checking subsumption relationships be-
tween terms. None of these approaches offers a structural de-
scription of the global merging process.FCA–MERGE can
be regarded as complementary to existing work, offering a
structural description of the overall merging process with an
underlying mathematical framework.

There is also much related work in the database commu-
nity, especially in the area of federated database systems. The
work closest to our approach is described in[Schmitt and
Saake, 1998] and[Conrad, 1997]. They apply Formal Con-
cept Analysis to a related problem, namely database schema
integration. As in our approach, a knowledge engineer has to
interpret the results in order to make modeling decisions. Our
technique differs in two points: There is no need of knowl-
edge acquisition from a domain expert in the preprocessing
phase; and it additionally suggests new concepts and relations
for the target ontology.

7 Conclusion and Future Work

We have motivated our work with the issue of decentraliza-
tion, one of the main challenges for the Semantic Web. We
have adopted the database point of view and consider an ar-
chitecture for federating ontologies in the Semantic Web as
motivation of our work. We discussed especially the process

of integrating or merging specific ontologies which is a bot-
tleneck for federated ontologies in the Semantic Web.

In this paper we have presentedFCA–MERGE, a bottom-
up technique for merging ontologies based on a set of docu-
ments. We have described the three steps of the technique: the
linguistic analysis of the texts which returns two formal con-
texts; the merging of the two contexts and the computation of
the pruned concept lattice; and the semi-automatic ontology
creation phase which supports the user in modeling the target
ontology. The paper described the underlying assumptions
and discussed the methodology.

Future work includes the closer integration of theFCA–
MERGE method in the ontology engineering environment
ONTOEDIT. In particular, we will offer views on the pruned
concept lattice based on the queries described in Subsec-
tion 5.3. It is also planned to further refine our information-
extraction based mechanism for extracting instances. This re-
finement goes hand in hand with further improvements con-
cerning the connection between ontologies and natural lan-
guage (cf.[Maedcheet al, 2001]).

The evaluation of ontology merging is an open issue[Noy
and Musen, 2000]. We plan to useFCA–MERGEto generate
independently a set of merged ontologies (based on two given
source ontologies). Comparing these merged ontologies us-
ing the standard information retrieval measures as proposed
in [Noy and Musen, 2000] will allow us to evaluate the per-
formance ofFCA–MERGE.

On the theoretical side, an interesting open question is the
extension of the formalism to features of specific ontology
languages, like for instance functions or axioms. The ques-
tion is (i) how they can be exploited for the merging process,
and (ii) how new functions and axioms describing the inter-
play between the source ontologies can be generated for the
target ontology.

Future work also includes the implementation of the frame-
work of federated ontologies as introduced in Section 2. We
refer the interested reader to the recently started EU-IST
funded project OntoLogging9, where the development and
management of federated web systems consisting of multiple
ontologies and associated knowledge bases will be studied
and implemented.

Acknowledgements
This research was partially supported by DFG and BMBF.

References
[Agrawal and Srikant, 1994] R. Agrawal and R. Srikant. Fast algo-

rithms for mining association rules.Proc. VLDB Conf., 1994,
478–499 (Expanded version in IBM Report RJ9839)

[Chalupsky, 2000] H. Chalupsky: OntoMorph: A translation sys-
tem for symbolic knowledge.Proc. KR ’00, Breckenridge,
CO, USA,471–482.

[Conrad, 1997] S. Conrad: Föderierte Datenbanksysteme:
Konzepte der Datenintegration. Informatik-Lehrbuch,
Springer, Berlin–Heidelberg 1997

[Ganter and Wille, 1999] B. Ganter, R. Wille: Formal Concept
Analysis: mathematical foundations. Springer.

9http://www.ontologging.com

Heiner Stuckenschmidt
98

[Berners-Lee, 1999] T. Berners-Lee:Weaving the Web. Harper.
[Hovy, 1998] E. Hovy: Combining and standardizing large-scale,

practical ontologies for machine translation and other uses.
Proc. 1st Intl. Conf. on Language Resources and Evaluation,
Granada.

[Kifer et al, 1995] M. Kifer, G. Lausen, J. Wu: Logical foundations
of object-oriented and frame-based languages.Journal of the
ACM 42(4), 741–843.

[Maedcheet al, 2001] A. Maedche, S. Staab, N. Stojanovic,
R. Studer, and Y. Sure.SEmantic PortAL - The SEAL ap-
proach. to appear: In Creating the Semantic Web. D. Fensel,
J. Hendler, H. Lieberman, W. Wahlster (eds.) MIT Press, MA,
Cambridge, 2001.

[McGuinnesset al, 2000] D. L. McGuinness, R. Fikes, J. Rice, and
S. Wilder: An environment for merging and testing large Oon-
tologies.Proc. KR ’00, 483–493.

[Neumannet al, 1997] G. Neumann, R. Backofen, J. Baur,
M. Becker, C. Braun: An information extraction core system
for real world German text processing.Proc. ANLP-97,
Washington.

[Noy and Musen, 2000] N. Fridman Noy, M. A. Musen: PROMPT:
algorithm and tool for automated ontology merging and align-
ment.Proc. AAAI ’00, 450–455

[Schmitt and Saake, 1998] I. Schmitt, G. Saake: Merging inheri-
tance hierarchies for database integration.Proc. CoopIS’98,
IEEE Computer Science Press, 322–331.

[Stummeet al, 2000] G. Stumme, R. Taouil, Y. Bastide, N.
Pasquier, L. Lakhal: Fast computation of concept lat-
tices using data mining techniques.Proc. KRDB ´00,
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-
WS/, 129–139.

[Sheth & Larsen, 1990] Sheth, A. & Larsen, J. (1990). Federated
database systems for managing distributed, heterogeneous and
autonomous databases.ACM Computing Surveys, 22(3).

[Wille, 1982] R. Wille: Restructuring lattice theory: an approach
based on hierarchies of concepts. In: I. Rival (ed.):Ordered
sets. Reidel, Dordrecht, 445–470.

Heiner Stuckenschmidt
99

A knowledge model to support inconsistency management when reasoning with
shared knowledge

Valentina A.M. Tamma & Trevor J.M. Bench-Capon
Department of Computer Science

University of Liverpool
Chadwick Building

Peach Street
L69 7ZF Liverpool UK

Abstract

This paper presents and motivates an extended on-
tology knowledge model which represents explic-
itly semantic information about concepts. This
knowledge model results from enriching the usual
conceptual model with semantic information which
precisely characterises the concept's properties and
expected ambiguities, including which properties
are prototypical of a concept and which are excep-
tional, the behaviour of properties over time and
the degree of applicability of properties to subcon-
cepts. This enriched conceptual model permits a
precise characterisation of what is represented by
class membership mechanisms and helps a knowl-
edge engineer to determine, in a straightforward
manner, the meta-properties holding for a concept.
Meta-properties are recognised to be the main tool
for a formal ontological analysis that allows build-
ing ontologies with a clean and untangled taxo-
nomic structure. This enriched semantics can prove
useful to describe what is known by agents in a
multi-agent systems, as it facilitates the use of rea-
soning mechanisms on the knowledge that instan-
tiate the ontology. These mechanisms can be used
to solve ambiguities that can arise when heteroge-
neous agents have to interoperate in order to per-
form a task.

1 Introduction

In the last decade ontologies have moved out of the re-
search environment and have become widely used in many
expert system applications not only to support the representa-
tion of knowledge but also complex inferences and retrieval.
[McGuinness, 2000]. The extensive application of ontologies
to broader areas has affected the notion of what ontologies
are: they now range from light-weight ontologies, that is tax-
onomies of non-faceted concepts to more sophisticated ones
where not only concepts but also their properties and relation-
ships are represented.
The size of ontologies has also increased dramatically, and it
is not so unusual to have ontologies with thousands of con-
cepts. Such huge ontologies are sometimes the efforts of

many domain experts and are designed and maintained in dis-
tributed environments. For this reasons research efforts are
now devoted to merging and integrating diverse ontologies
[Pintoet al., 1999].
Lastly, the growing use of ontologies in expert systems re-
quires that ontologies provide a ground for the application of
reasoning techniques that result in sophisticated inferences
such as those used to check and maintain consistency in
knowledge bases.
The interest in designing ontologies that can be easily in-
tegrated and provide a base for applying reasoning mech-
anisms has stressed the importance of suitable conceptual
models for ontologies. Indeed, it has been made a point
that the sharing of ontologies depends heavily on a pre-
cise semantic representation of the concepts and their prop-
erties[Fridman Noy and Musen, 1999; McGuinness, 2000;
Tamma and Bench-Capon, 2000].
This paper presents and motivates a knowledge model for on-
tologies which extends the usual set of facets in the OKBC
frame-base model[Chaudhriet al., 1998] to encompass more
semantic information concerning the concept, which consists
of a precise characterisation of the concept's properties and
expected ambiguities, including which properties are proto-
typical of a concept and which are exceptional, the behaviour
of the property over time and the degree of applicability of
properties to subconcepts. This enriched knowledge model
aims to provide enough semantic information to deal with
problems of semantic inconsistency that arise when reason-
ing with integrated ontologies.
The paper is organised as follows: section 2 and subsections
presents the motivations for adding semantics to the concep-
tual model, section 3 presents the knowledge model apply-
ing the conceptual model while in section 4 the model with
respect to the motivations is discussed. Section 5 discusses
the representation of roles by using the knowledge model and
section 6 provides an example of concept description using
the knowledge model, �nally, in section 7 conclusions are
drawn and future research directions are illustrated in section
8.

Heiner Stuckenschmidt
100

2 Encompassing semantics in the conceptual
model

The motivation for enriching semantically the ontology con-
ceptual model draws on three distinct arguments that are anal-
ysed in the reminder of this section.

2.1 Nature of ontologies
The �rst argument is based on the nature of ontologies. It
has been argued that an ontology is”an explicit speci�ca-
tion of a conceptualisation”[Gruber, 1993]. In other words
an ontologyexplicitly de�nes the type of concepts used to
describe the abstract model of a phenomenon and the con-
straints on their use.[Studeret al., 1998]. An ontology is
an a priori account of the objects that are in a domain and
the relationships modelling the structure of the world seen
from a particular perspective. In order to provide such an
account one has to understand the concepts that are in the do-
main, and this involves a number of things. First it involves
knowing what can sensibly be said of a thing falling under a
concept. This can be represented by describing concepts in
terms of their properties, and by giving a full characterisation
of these properties. Thus, when describing the conceptBird
it is important to distinguish that some birds �y and others
do not. A full understanding of a concept involves more than
this, however: it is important to recognise which properties
areprototypical[Rosch, 1975] for the class membership and,
more importantly, which are the permitted exceptions. There
are, however differences in how con�dent we can be that an
arbitrary member of a class conforms to the prototype: it is
a very rare mammal that lays eggs, whereas many types of
well known birds do not �y. Understanding a concept also in-
volves understanding how and which properties change over
time. This dynamic behaviour also forms part of the domain
conceptualisation and can help to identify themeta-properties
holding for the concept.

2.2 Integrating diverse ontologies
The second argument concerns the integration of ontologies.
Integrating ontologies involves identifying overlapping con-
cepts and creating a new concept, usually by generalising the
overlapping ones, that has all the properties of the originals
and so can be easily mapped into each of them. Newly created
concepts inherit properties, usually in the form of attributes,
from each of the overlapping ones. That is, let us suppose
that the conceptC is present inn ontologiesO1, O2, · · · , On,
although described by different properties. That is each on-
tology Oi, i = 1, · · · , n de�nes a conceptCi, i = 1, · · · , n
such thatC1 ≈ C2 ≈ · · · ≈ Cn (where≈ denotes that the
concepts areoverlapping). Each conceptCi, i = 1, · · · , n is
described in terms of a set of propertiesPCi , i = 1, · · · , n.
The result of the integration of then ontologies is another
ontology de�ning the conceptCintegrated which is de�ned in

terms of
n⋃
i=1

PCi , where all thePCi have to be distinguished.

One of the key points for integrating diverse ontologies is
providing methodologies for building ontologies whose tax-
onomic structure is clean and untangled in order to facilitate
the understanding, comparison and integration of concepts.

Several efforts are focussing on providing engineering prin-
ciples to build ontologies, for example[Gómez-Ṕerez, 1998;
1999]. Another approach[Guarino and Welty, 2000a; 2000b]
concentrates on providing means to perform an ontological
analysis which gives prospects for better taxonomies. This
analysis is based on on a rigorous analysis of theontological
meta-propertiesof taxonomic nodes, which are based on the
philosophical notions ofunity, identity, rigidityand depen-
dence[Guarino and Welty, 2000c].
When the knowledge encompassed in ontologies built for dif-
ferent purposes needs to be integrated inconsistencies can
become evident. Many types of ontological inconsistencies
have been de�ned in the literature, for instance in[Visseret
al., 1998] and the ontology environments currently available
try to deal with these inconsistencies, such asSMART [Frid-
man Noy and Musen, 1999] andCHIMAERA [McGuinnesset
al., 2000]. Here we broadly classify inconsistencies in on-
tologies into two types: structural and semantic. We de�ne
structural inconsistencies as those that arise because of dif-
ferences in the properties that describe a concept. Structural
inconsistencies can be detected and resolved automatically
with limited intervention from the domain expert. For ex-
ample, a conceptC can be de�ned in two different ontologies
O1 andO2 in terms of an attributeA that is speci�ed as tak-
ing values in two different domainsD1 in O1 andD2 in O2,
whereD1 ⊆ D2. Structural inconsistencies can be detected
and resolved automatically with limited intervention from the
domain expert.
Semantic inconsistencies are caused by the knowledge con-
tent of diverse ontologies which differs both in semantics and
in level of granularity of the representation. They affect those
attributes that are actually representing concept features and
not relations with other concepts. Semantic inconsistencies
require a deeper knowledge on the domain. Examples of se-
mantic inconsistencies can be found in[McGuinnesset al.,
2000; Tamma and Bench-Capon, 2000]. Adding semantics
to the concept descriptions can be bene�cial in solving this
latter type of con�ict, because a richer concept description
provides more scope to resolve possible inconsistencies.

2.3 Reasoning with ontologies
The last argument to support the addition of semantics to on-
tology conceptual models turns on the need to reason with the
knowledge expressed in the ontologies. Indeed, when differ-
ent ontologies are integrated, new concepts are created from
the de�nitions of the existing ones. In such a case con�icts
can arise when con�icting information is inherited from two
or more general concepts and one tries to reason with these
concepts. Inheriting con�icting properties in ontologies is
not as problematic as inheriting con�icting rules in knowl-
edge bases, since an ontology is onlyproviding the means for
describing explicitly the conceptualisation behind the knowl-
edge represented in a knowledge base[Bernaraset al., 1996].
Thus, in a concept's description con�icting properties can co-
exist. However, when one needs to reason with the knowl-
edge in the ontology, con�icting properties can hinder the
reasoning process. Furthermore, if the ontologies one wants
to reason with have been developed in different moments and
for diverse purposes, it is likely that problem ofimplicit in-

Heiner Stuckenschmidt
101

consistenciesmight arise. This kind of problem is quite sim-
ilar to the semantic inconsistencies that have been de�ned in
previous section. Such a problem has been �rst identi�ed in
the inheritance literature[Morgenstern, 1998] where the au-
thor distinguishes betweenexplicit inconsistenciesfrom the
implict ones. Explicit inconsistencies arise when two con-
ceptsCi andCj are described in terms of explicitly con�ict-
ing properties that is in terms of the same attribute which is
associated with con�icting valuesV and¬V . Implicit incon-
sistencies arise when the properties are described by different
attributes but with opposite meanings. Morgenstern[Morgen-
stern, 1998] has modi�ed the (notorious) Touretzky's Nixon
diamond[Touretzky, 1986] to show an example of implicit
inconsistencies. Let us consider:

- Nixon → Republican ;

- Nixon → Quaker ;

- Quaker → Pacifist ;

- Republican → Hawk ;

The two conceptsQuaker andRepublican are described
by two attributesPaci�st andHawk that have different names
but are semantically related (one is the opposite of the other),
as they both describe someone's attitude towards going to
war. In this case extra semantic information on the proper-
ties, such as the extent to which the property applies to the
members of the class, can be used to derive which property is
more likely to apply to the situation at hand. Of course, such
sophisticated assumptions cannot be made automatically and
need to be at least validated by knowledge engineers.

3 Extended knowledge model

In this section we extend a frame-based[Minsky, 1992]
knowledge model. This is a result of the enriched conceptual
model where properties are characterised with respect to their
behaviour in the concept description. The knowledge model
is based onclasses, slots, andfacets. Classescorrespond to
concepts and are collections of objects sharing the same prop-
erties, hierarchically organised into a multiple inheritance hi-
erarchy, linked byIS-A links. Classes are described in terms
of slots, or attributes, that can either be sets or single values.
A slot is described by a name, a domain, a value type and by
a set of additional constraints, here calledfacets. Facets can
contain the documentation for a slot, constrain the value type
or the cardinality of a slot, and provide further information
concerning the slot and the way in which the slot is to be in-
herited by the subclasses. The set of facets has been extended
from that provided by OKBC[Chaudhriet al., 1998] in order
to encompass descriptions of the attribute and its behaviour
in the concept description and changes over time. The facets
we use are listed below and discussed in the next section:

• Value: It associates a valuev ∈ Domain with an at-
tribute in order to represent a property. However, when
the concept that is de�ned is very high in the hierarchy
(so high that any conclusion as to the attribute's value
is not possible), then eitherValue = Domain or Value =
Subdomain ⊂ Domain ;

• Type of value: The possible �llers for this facet arePro-
totypical, Inherited, Distinguishing. An attribute's value
is aPrototypicalone if the value is true for any prototyp-
ical instance of the concept, but exceptions are permitted
with a degree of softness expressed by the facetRank-
ing. An attribute's value can beInherited from some
super concept or it can be aDistinguishingvalue, that
is a value that differentiates among siblings. Note that
distinguishing values become inherited values for sub-
classes of the class;

• Exceptions: It can be either a single value or a subset of
the domain. It indicates those values that are permitted
in the concept description because in the domain, but
deemed exceptional from a common sense viewpoint.
The exceptional values are not only those which differ
from the prototypical ones but also any value which is
possible but highly unlikely;

• Ranking: An integer describing the degree of con�-
dence of the fact that the attribute takes the values peci-
�ed in the facetValue. It describe the class membership
condition. The possible values are 1:All, 2: Almost all,
3: Most, 4: Possible, 5: A Few, 6: Almost none, 7: None.
For example, in the description of the conceptBird the
slotAbility to Fly takes valueYeswith Ranking 3, since
not all birds �y;

• Change frequency: Its possible values are:Regular,
Once only, Volatile, Never. This facet describes how of-
ten an attribute's value changes. If the information is
set equal toRegularit means that the process is contin-
uous (see section below), for instance the age of a per-
son can be modelled as changing regularly; if set equal
to Once onlyit indicates that only one change is possi-
ble, for example a person's date of birth changes only
once. If the slot is set equal toNeverit means that the
value associated with the attribute cannot change, and
�nally Volatile indicates that the attribute's value can
change more than once, for example people can change
job more than once;

• Event: Describes conditions under which the value
changes. It is the set{((Ej , Sj , Vj), Rj)|j = 1, · · · ,m}
whereEj is an event,Sj is the state of the pair attribute-
value associated with a property,Vj de�nes the event
validity andRj denotes whether the change is reversible
or not. The semantics of this facet is explained in the
section below.

4 Relating the extended knowledge model to
the motivations

The knowledge model presented in the previous section is
motivated by the the problems described in section 2. It is
based on an enriched semantics that aims to provide a better
understanding of the concepts and their properties by charac-
terising their behaviour.
Concept properties are to be considered on three levels:in-
stance level, class-membership levelandmeta level. Proper-
ties atinstance levelare those exhibited by all the instances

Heiner Stuckenschmidt
102

of a concept. They might specialise properties atclass-
membership level, which instead describe properties holding
for the class. Properties atmeta levelhave been mainly de-
scribed in philosophy, such asidentity, unity, rigidityandde-
pendency. The proposed model permits the characterisation
of concepts on the three distinct property levels, thus also
considering the meta level which is the basis for the ontolog-
ical analysis illustrated in[Guarino and Welty, 2000b]. Such
an enriched model helps to characterise the meta properties
holding for the concepts, thus providing knowledge engineers
with an aid to perform the ontological analysis which is usu-
ally demanding to perform.
Furthermore, the enriched knowledge model forces knowl-
edge engineers to make ontological commitments explicit.
Indeed, real situations are information-rich complete events
whose context is so rich that, as it has been argued by Searle
[Searle, 1983], it can never be fully speci�ed. Many assump-
tions about meaning and context are usually made when deal-
ing with real situations[Rosch, 1999]. These assumptions are
rarely formalised when real situations are represented in nat-
ural language but they have to be formalised in an ontology
since they are part ontological commitments that have to be
made explicit. Enriching the semantics of the attribute de-
scriptions with things such as the behaviour of attributes over
time or how properties are shared by the subclasses makes
some of the more important assumptions explicit.
The enriched semantics is essential to solve the inconsisten-
cies that arise either while integrating diverse ontologies or
while reasoning with the integrated knowledge. By adding in-
formation on the attributes we are able to better measure the
similarity between concepts, to disambiguate between con-
cepts thatseemsimilar while they are not, and we have means
to infer which property is likely to hold for a concept that in-
herits inconsistent properties. The remainder of this section
describes the additional facets and relates them to the discus-
sion in section 2.

4.1 Behaviour over time
In the knowledge model the facetsChange frequency and
Event describe the behaviour of properties over time, which
models the changes in properties that are permitted in the con-
cept's description without changing the essence of the con-
cept. The behaviour over time is closely related to establish-
ing the identity of concept descriptions[Guarino and Welty,
2000b]. Describing the behaviour over time involves also dis-
tinguishing properties whose change isreversiblefrom those
whose change isirreversible.
Property changes over time are caused either by the natural
passing of time or are triggered by speci�c event occurrences.
We need, therefore, to use a suitable temporal framework that
permits us to reason with time and events. The model cho-
sen to accommodate the representation of the changes is the
Event Calculus[Kowalski and Sergot, 1986]. Event calculus
deals with local event and time periods and provides the abil-
ity to reason about change in properties caused by a speci�c
event and also the ability to reason with incomplete informa-
tion.
Changes of properties can be modelled asprocesses[Sowa,
2000]. Processes can be described in terms of their starting

and ending points and of the changes that happen in between.
We can distinguish betweencontinuousanddiscrete changes,
the former describing incremental changes that take place
continuously while the latter describe changes occurring in
discrete steps calledevents. Analogously we can de�necon-
tinuous propertiesthose changing regularly over time, such as
the age of a person, versusdiscrete propertieswhich are char-
acterised by an event which causes the property to change. If
the value associated with change frequency isRegular then
the process is continuous, if it isVolatile the process is dis-
crete and if it isOnce onlythe process is considered discrete
and the triggering event is set equal totime-point=T.
Any regular occurrence of time can be, however, expressed
in form of an event, since most of the forms of reason-
ing for continuous properties require discrete approximations.
Therefore in the knowledge model presented in the next sec-
tion, continuous properties are modelled as discrete proper-
ties where the event triggering the change in property is the
passing of time from the instantt to the instantt′. Each
change of property is represented by a set of quadruples
{((Ej , Sj , Vj), Rj)|j = 1, · · · ,m} whereEj is an event,
Sj is the state of the pair attribute-value associated with a
property, Vj de�nes the event validity whileRj indicates
whether the change in properties triggered by the eventEj
is reversible or not. The model used to accommodate this
representation of the changes adds reversibility toEvent Cal-
culus, where each triple(Ej , Sj , Vj) is interpreted either as
the concept is in the stateSj before the eventEj happensor
the concept is in the stateSj after the eventEj happensde-
pending on the value associated withVj . The interpretation
is obtained from the semantics of the event calculus, where
the former expression is represented asHold(before(Ej , Sj))
while the latter asHold(after(Ej , Sj)).
The idea of modelling the permitted changes for a property
is strictly related to the philosophical notion ofidentity. In
particular, the knowledge model addresses the problem of
modelling identity when time is involved, namelyidentity
through changes, which is based on the common sense notion
that an individual may remain the same while showing differ-
ent properties at different times[Guarino and Welty, 2000a].
The knowledge model we propose explicitly distinguishes the
properties that can change from those which cannot, and de-
scribes the changes in properties that an individual can be
subjected to, while still being recognised as an instance of a
certain concept.
The notion of changes through time is also important to es-
tablish whether a property isrigid. A rigid propertyis de�ned
in [Guarinoet al., 1994] as:

a property that is essential toall its instances, i.e.
∀xφ(x)→ 2φ(x).

The interpretation that is usually given torigidity is that if x
is an instance of a conceptC thanx has to be an instance ofC
in every possible world. Here we restrict ourselves to one of
these systems of possible worlds, that is time. By character-
ising the rigidity of a property in this speci�c world we aim
to provide knowledge engineers the means to reach a better
understanding on thenecessaryandsuf�cient conditions for
the class membership.

Heiner Stuckenschmidt
103

4.2 Ranking
Rankings are de�ned as[Goldszmidt and Pearl, 1996]:

Each world is ranked by a non-negative integer
representing the degree of surprise associated with
�nding such a world.

We have borrowed the term to denote the degree of surprise
in �nding a world where the propertyP holding for a concept
C does not hold for one of its subconceptsC ′. The additional
semantics encompassed in this facet is important to reason
with statements that have different degrees of truth. Indeed
there is a difference in asserting facts such as ”Mammals give
birth to live young” and ”Bird �y”, the former is generally
more believable than the latter, for which many more coun-
terexamples can be found. The ability to distinguish facts
whose truth holds with different degrees of strength is re-
lated to �nding facts that are true in every possible world and
therefore constitutenecessary truth. The concept of neces-
sary truth brings us back to establishing whether a property
is rigid or not, in fact it can be assumed that the value as-
sociated with theRanking facet together with the temporal
information on the changes permitted for the property lead us
to determine whether the property described by the slot is a
rigid one. Rigid properties have often been interpreted ases-
sentialproperties (i.e., a property holding for an individual in
every possible circumstance in which the individual exists),
however, we have to note that a property might be essential to
a member of a class without being essential for membership
in that class. For example, being odd is an essential property
of the number 5, but it is not essential for membership in the
class of prime numbers.
The ability to evaluate the degree of truth of a property in a
concept description is also related to the problem of reason-
ing with ontologies obtained by integration. In such a case,
as mentioned in section 2.3 inconsistencies can arise if a con-
cepts inherits con�icting properties. In order to be able to rea-
son with these con�icts some assumptions have to be made,
concerning on how likely it is that a certain property holds;
the facetRanking models this information by modelling a
qualitative evaluation of how subclasses inherit the property.
This estimate represents the common sense knowledge ex-
pressed by linguistic quanti�ers such asAll, Almost all, Few,
etc..
In case of con�icts the property's degree of truth can be used
to rank the possible alternatives following an approach simi-
lar to the non-monotonic reasoning one developed by[Gold-
szmidt and Pearl, 1996]: in case of more con�icting proper-
ties holding for a concept description, properties are ordered
according to the degree of truth, that is according to the the
�ller associated with theRanking facet weighted by theDe-
gree of strength. Therefore, a property holding for all the
subclasses is considered to have a higher rank than one hold-
ing for few of the concept subclasses, but this ordering is ad-
justed by the relevance, as perceived by the knowledge engi-
neer, of the property in the concept's description (Degree of
strength). For example, to reason about birds ability to �y,
the attributespeciesis more relevant than the attributefeather
colour. When reasoning with diverse ontologies, theDegree
of strength represents the weight associated with the inheri-

tance rule corresponding to the attribute.
This ordering of the con�icting properties needs to be val-
idated by the knowledge engineer, however, it re�ects the
common sense assumption that, when no speci�c informa-
tion is known, people assume that the most likely property
holds for a concept.

4.3 Prototypes and exceptions
In order to get a full understanding of a concept it is not suf-
�cient to list the set of properties generally recognised as
describing a typical instance of the concept but we need to
consider the expected exceptions. Here we partially take the
cognitive view of prototypes and graded structures, which is
also re�ected by the information modelled in the facetRank-
ing. In this view all cognitive categories show gradients of
membership which describe how well a particular subclass
�ts people's idea or image of the category to which the sub-
class belong[Rosch, 1975]. Prototypes are the subconcepts
which best represent a category, while exceptions are those
which are considered exceptional although still belong to the
category. In other words all the suf�cient conditions for class
membership hold for prototypes. For example, let us con-
sider the biological categorymammal: a monotreme(a mam-
mal who does not give birth to live young) is an example of
an exception with respect to this attribute. Prototypes depend
on the context; there is no universal prototype but there are
several prototypes depending on the context, therefore a pro-
totype for the categorymammalcould becat if the context
taken is that ofpetsbut it is lion if the assumed context iscir-
cus animal. Ontologies typically presuppose context and this
feature is a major source of dif�culty when merging them.
For the purpose of building ontologies, distinguishing the
prototypical properties from those describing exceptions in-
creases the expressive power of the description. Such distinc-
tions do not aim at establishing default values but rather to
guarantee the ability to reason with incomplete or con�icting
concept descriptions.
The ability to distinguish between prototypes and exceptions
helps to determine which properties are necessary and suf-
�cient conditions for concept membership. In fact a prop-
erty which is prototypical and that is also inherited by all
the subconcepts (that is it has the facetRanking set toAll)
becomes a natural candidate for a necessary condition. Pro-
totypes, therefore, describe the subconcepts that best �t the
cognitive category represented by the conceptin the speci�c
context given by the ontology. On the other hand, by describ-
ing which properties are exceptional, we provide a better de-
scription of the class membership criteria in that it permits to
determine what are the properties that, although rarely hold
for that concept, are still possible properties describing the
cognitive category. Here, the termexceptionalis used to in-
dicate something that differs from what is normally thought
to be a feature of the cognitive category and not only what
differs from the prototype.
Also the information on prototype and exceptions can prove
useful in dealing with inconsistencies arising from ontology
integration. When no speci�c information is made available
on a concept and it inherits con�icting properties, then we can
assume that the prototypical properties hold for it.

Heiner Stuckenschmidt
104

The inclusion of prototypes in the knowledge model provides
the grounds for the semi-automatic maintenance and evolu-
tion of ontologies by applying techniques developed in other
�elds such as machine learning.

5 Prospects for supporting roles
The notion ofrole is central to any modelling activities as
much as those ofobjectsand relations. A thorough discus-
sion of roles goes beyond the scope of this paper, and roles
are not supported yet in the knowledge model introduced in
section 3. However, the extended semantics provided by the
knowledge model presented above gives good prospects for
supporting roles. In this section we provide some prelimi-
nary consideration and relate the additional facets with the
main features of the role notion.
Despite its importance that has been highlighted in the liter-
ature[Guarino, 1992; Sowa, 1984], only few modelling lan-
guages permit the distinction between aconceptand theroles
it can play in the knowledge model. This dif�culty is partially
due to the lack of a single de�nition forrole.
A de�nition of role that makes use of the formal meta-
properties and includes also the de�nition given by Sowa
[Sowa, 1984] is provided by Guarino and Welty. In[Guar-
ino and Welty, 2000a] they de�ne a role as:

properties expressing thepart playedby one entity
in an event, often exemplifying a particular rela-
tionship between two or more entities. All roles are
anti-rigid anddependent... A propertyφ is said to
be anti-rigid if it is not essential toall its instances,
i.e. ∀xφ(x) → ¬2φ(x)... A propertyφ is (ex-
ternally) dependenton a propertyψ if, for all its
instancesx, necessarily some instance ofψ must
exist, which is not a part nor a constituent ofx, i.e.
∀x2(φ(x)→ ∃yψ(y) ∧ ¬P (y, x) ∧ ¬C(y, x)).

In other words a concept is a role if its individuals stand in
relation to other individuals, and they can enter or leave the
extent of the concept without losing their identity. From this
de�nition it emerges that the ability of recognising whether
rigidity holds for some propertyφ is essential in order to dis-
tinguish whetherφ is a role.
In [Steimann, 2000] the author presents a list of the features
that have been associated in the literature with roles. Some
of these features are con�icting and, as pointed out, no inte-
grating de�nition has been made available. However, from
the different de�nitions available it can be derived that the
notion of role is inherently temporal, indeed roles are ac-
quired and relinquished in dependence either of time or of
a speci�c event. For example the objectpersonacquires the
role teenagerif the person is between 11 and 19 years old,
whereas a person becomesstudentwhen they enroll for a de-
gree course. Moreover, from the list of features in[Steimann,
2000] it emerges that many of the characteristics of roles are
time or event related, such as: an object may acquire and
abandon roles dynamically, may play different roles simulta-
neously, or may play the same role several time, simultane-
ously, and the sequence in which roles may be acquired and
relinquished can be subjected to restrictions.
For the aforementioned reasons ways of representing roles

must be supported by some kind of time and event explicit
representation. We believe that the knowledge model we have
presented, although it does not encompass roles yet, provides
suf�cient semantics to model the dynamic features of roles,
thanks to the explicit representation of time intervals which
is used to model the attributes behaviour over time. Further-
more, the ability of modelling events, used to describe the
possible causes in the state of an attribute, can be used to
model the events that constrain the acquisition or the relin-
quishment of a role.

6 A modelling example

We now provide an example to illustrate how the previously
described knowledge model can be used for modelling a con-
cept in the ontology. The example is taken from the medical
domain and we have chosen to model the concept ofblood
pressure. Blood pressure is represented here as an ordered
pair (s, d) wheres is the value of thesystolic pressurewhile
d is the value of thediastolic pressure. In modelling the
concept of blood pressure we take into account that both the
systolic and diastolic pressure can range between a minimum
and a maximum value but that some values are more likely
to be registered than others. Within the likely values we
then distinguish theprototypical values, which are those
registered for a healthy individual whose age is over 18, and
the exceptionalones, which are those registered for people
with pathologies such as hypertension or hypotension. The
prototypical values are those considered normal, but they can
change and we describe also the permitted changes and what
events can trigger such changes. Prototypical pressure values
usually change with age, but they can be altered depending
on some speci�c events such as shock and haemorrhage
(causing hypotension) or thrombosis and embolism (causing
hypertension). Also conditions such as pregnancy can alter
the normal readings.
Classes are denoted by the labelc, slots by the labels and
facets by the labelf. Irreversible changes are denoted by I
while reversible property changes are denoted by R.

c: Circulatorysystem;
s: Bloodpressure
f: Domain : [(0,0)-(300,200)];
f: Value : [(90,60)-(130,85)];
f: Typeofvalue : prototypical;
f: Exceptions : [(0,0)-(89,59)]∪ [(131,86)-(300,200)];
f: Ranking : 3;
f: Changefrequency : Volatile;
f: Event : (Age=60,[(0,0)-(89,59)]∪

∪ [(131,86)-(300,200)],after, I);
f: Event : (haemorrhage,[(0,0)-(89,59)],after, R);
f: Event : (shock,[(0,0)-(89,59)],after, R);
f: Event : (thrombosis,[(131,86)-(300,200)],after,R);
f: Event : (embolism,[(131,86)-(300,200)],after,R);
f: Event : (pregnancy,[(0,0)-(89,59)]∪

∪ [(131,86)-(300,200)],after,R);

Heiner Stuckenschmidt
105

7 Conclusions
This paper has presented a knowledge model that extends the
usual ontology frame-based model such as OKBC by explic-
itly representing additional information on the slot proper-
ties. This knowledge model results from a conceptual model
which encompasses semantic information aiming to charac-
terise the behaviour of properties in the concept description.
We have motivated this enriched conceptual model by iden-
tifying three main categories of problems that require addi-
tional semantics in order to be solved.
The novelty of this extended knowledge model is that it ex-
plicitly represents the behaviour of attributes over time by de-
scribing the permitted changes in a property that are permit-
ted for members of the concept. It also explicitly represents
the class membership mechanism by associating with each
slot a qualitative quanti�er representing how properties are
inherited by subconcepts. Finally, the model does not only
describe the prototypical properties holding for a concept but
also the exceptional ones.
We have also related the extended knowledge model to the
formal ontological analysis by Guarino and Welty[Guarino
and Welty, 2000b] which permits to build ontologies that have
a cleaner taxonomic structure and so gives better prospects for
maintenance and integration. Such a formal ontological anal-
ysis is usually dif�cult to perform and we believe our knowl-
edge model can help knowledge engineers to determine the
meta-properties holding for the concept by forcing them to
make the ontological commitments explicit.
A possible drawback of this approach is the high number of
facets that need to �lled when building ontology. We realise
that this can make building an ontology from scratch even
more time consuming but we believe that the outcomes in
terms of better understanding of the concept and the role it
plays in a context together with the guidance in determining
the meta-properties at least balances the increased complexity
of the task.

8 Future work
The extension of the knowledge model with with additional
semantics opens several new research directions. Firstly, the
role representation needs to be formalised in the knowledge
model in order to represent also the roles hierarchical organi-
sation[Steimann, 2000].
We also plan to use the semantics encompassed in the knowl-
edge model to assist knowledge engineers in the tasks of
merging and reasoning with diverse ontologies. To reach this
goal we intent to introduce some form of temporal reasoning
based on the event logics that is used extend the facets.
The description of attributes in terms of prototypical values
gives us the possibility of exploring the application of ma-
chine learning techniques to ontologies, in order to extend
them dynamically by learning new concept descriptions and
placing them in the most appropriate position in the class hi-
erarchy.

Acknowledgement
The PhD research presented in this paper was funded by BT
plc. The authors are grateful to Ray Paton for providing the

example. The authors would also wish to thank Floriana
Grasso, Floriana Esposito and Donato Malerba for their in-
valuable comments on the paper.

References
[Bernaraset al., 1996] A. Bernaras, I. Laresgoiti, and J. Cor-

era. Building and reusing ontologies for electrical network
applications. InProceedings of the 12th European Con-
ference on Arti�cial Intelligence (ECAI), pages 298–302,
1996.

[Chaudhriet al., 1998] V.K. Chaudhri, A. Farquhar,
R. Fikes, P.D. Karp, and J.P. Rice. OKBC: A program-
matic foundation for knowledge base interoperability.
In Proceedings of the Fifteenth American Conference
on Arti�cial Intelligence (AAAI-98), pages 600–607,
Madison, Wisconsin, 1998. AAAI Press/The MIT Press.

[Fridman Noy and Musen, 1999] N. Fridman Noy and M.A.
Musen. SMART: Automated support for ontology merg-
ing and alignment. InProceedings of the 12th Workshop
on Knowledge Acquisition, Modeling and Management
(KAW), Banff, Canada, 1999.

[Goldszmidt and Pearl, 1996] M. Goldszmidt and J. Pearl.
Qualitative probabilistic for default reasoning, belief re-
vision, and causal modelling.Arti�cial Intelligence, 84(1-
2):57–112, 1996.

[Gómez-Ṕerez, 1998] A. Gómez-Ṕerez. Knowledge sharing
and reuse. In J. Liebowitz, editor,The Handbook of Ap-
plied Expert Systems. CRC Pres LLC, 1998.

[Gómez-Ṕerez, 1999] A. Gómez-Ṕerez. Ontological engi-
neering: A state of the art.Expert Update, 2(3):33–43,
Autumn 1999.

[Gruber, 1993] T. R. Gruber. A translation approach to
portable ontology speci�cations.Knowledge Acquisition,
5(2):199–220, 1993.

[Guarino and Welty, 2000a] N. Guarino and C. Welty. A for-
mal ontology of properties. In R. Dieng, editor,Proceed-
ings of the 12th EKAW Conference, volume LNAI 1937.
Springer Verlag, 2000.

[Guarino and Welty, 2000b] N. Guarino and C. Welty. Iden-
tity, unity and individuality: Towards a formal toolkit for
ontological analysis. In W. Horn, editor,Proceedings of
the 14th European Conference on Arti�cial Intelligence
(ECAI), Amsterdam, 2000. IOS Press.

[Guarino and Welty, 2000c] N. Guarino and C. Welty. To-
wards a methodology for ontology based model engineer-
ing. In Proceedings of the ECOOP 2000 workshop on
model engineering, 2000.

[Guarinoet al., 1994] N. Guarino, M. Carrara, and P. Gia-
retta. An ontology of meta-level-categories. InPrin-
ciples of Knowledge representation and reasoning: Pro-
ceedings of the fourth international conference (KR94).
Morgan Kaufmann, 1994.

[Guarino, 1992] N. Guarino. Concepts, attributes and ari-
trary relations.Data and Knowledge Engineering, 8:249–
261, 1992.

Heiner Stuckenschmidt
106

[Kowalski and Sergot, 1986] R. Kowalski and M. Sergot. A
logic-based calculus of events.New Generation Comput-
ing, 4:67–95, 1986.

[McGuinnesset al., 2000] D.L. McGuinness, R.E. Fikes,
J. Rice, and S. Wilder. An environment for merging
and testing large ontologies. InProceedings of KR-2000.
Principles of Knowledge Representation and Reasoning.
Morgan-Kaufman, 2000.

[McGuinness, 2000] D.L. McGuinness. Conceptual mod-
elling for distributed ontology environments. InProceed-
ings of the Eighth International Conference on Conceptual
Structures Logical, Linguistic, and Computational Issues
(ICCS 2000), 2000.

[Minsky, 1992] M. Minsky. A framework for representing
knowledge. In A. Collins and E.H. Smith, editors,Cogni-
tive Science, pages 191–215. Morgan Kaufmann, Los Al-
tos, CA, 1992.

[Morgenstern, 1998] L. Morgenstern. Inheritance comes of
age: Applying nonmonotonic techniques to problems in
industry.Arti�cial Intelligence, 103:1–34, 1998.

[Pintoet al., 1999] H.S. Pinto, A. Ǵomez-Ṕerez, and J.P.
Martins. Some issues on ontology integration. In V.R.
Benjamins, editor,Proceedings of the IJCAI'99 Work-
shop on Ontology and Problem-Solving Methods: Lesson
learned and Future Trends, volume 18, pages 7.1–7.11,
Amsterdam, 1999. CEUR Publications.

[Rosch, 1975] E.H. Rosch. Cognitive representations of se-
mantic categories.Journal of Experimental Psychology:
General, 104:192–233, 1975.

[Rosch, 1999] E.H. Rosch. Reclaiming concepts.Journal of
Consciousness Studies, 6(11-12):61–77, 1999.

[Searle, 1983] J.R. Searle.Intentionality. Cambridge Uni-
versity Press, Cambridge, 1983.

[Sowa, 1984] J.F. Sowa.Conceptual Structures: Information
Processing in Mind and Machine. Addison-Wesley, 1984.

[Sowa, 2000] J.F. Sowa. Knowledge Representation: Log-
ical, Philosophical, and Computational Foundations.
Brooks Cole Publishing Co., Paci�c Grove, CA, 2000.

[Steimann, 2000] F. Steimann. On the representation of roles
in object-oriented and conceptual modelling.Data and
Knowledge Engineering, 35:83–106, 2000.

[Studeret al., 1998] R. Studer, V.R. Benjamins, and
D. Fensel. Knowledge engineering, principles and meth-
ods.Data and Knowledge Engineering, 25(1-2):161–197,
1998.

[Tamma and Bench-Capon, 2000] V.A.M. Tamma and T.J.M
Bench-Capon. Supporting inheritance mechanisms in on-
tology representation. In R. Dieng, editor,Proceedings
of the 12th EKAW Conference, volume LNAI 1937, pages
140–155. Springer Verlag, 2000.

[Touretzky, 1986] D.S. Touretzky. The Mayhematics of In-
heritance Systems. Morgan Kaufmann, 1986.

[Visseret al., 1998] P.R.S. Visser, D.M. Jones, T.J.M.
Bench-Capon, and M.J.R. Shave. Assessing heterogeneity

by classifying ontology mismatches. In N. Guarino, edi-
tor, Formal Ontology in Information Systems. Proceedings
FOIS'98, Trento, Italy, pages 148–182. IOS Press, 1998.

Heiner Stuckenschmidt
107

Ontology-Based Integration of Information —
A Survey of Existing Approaches

H. Wache, T. Vögele, U. Visser, H. Stuckenschmidt,
G. Schuster, H. Neumann and S. Ḧubner

Intelligent Systems Group, Center for Computing Technologies,
University of Bremen, P.O.B. 33 04 40, D-28334 Bremen, Germany

e-mail:{wache|vogele|visser|heiner|schuster|neumann|huebner}@tzi.de

Abstract

We review the use on ontologies for the integra-
tion of heterogeneous information sources. Based
on an in-depth evaluation of existing approaches to
this problem we discuss how ontologies are used
to support the integration task. We evaluate and
compare the languages used to represent the ontolo-
gies and the use of mappings between ontologies
as well as to connect ontologies with information
sources. We also enquire into ontology engineer-
ing methods and tools used to develop ontologies
for information integration. Based on the results of
our analysis we summarize the state-of-the-art in
ontology-based information integration and name
areas of further research activities.

1 Motivation
The so-called information society demands complete access
to available information, which is often heterogeneous and
distributed. In order to establish efficient information sharing,
many technical problems have to be solved. First, a suitable
information source must be located that might contain data
needed for a given task. Finding suitable information sources
is a problem addressed in the areas of information retrieval
and information filtering[Belkin and Croft, 1992]. Once the
information source has been found, access to the data therein
has to be provided. This means that each of the informa-
tion sources found in the first step have to work together with
the system that is querying the information. The problem of
bringing together heterogeous and distributed computer sys-
tems is known asinteroperability problem.

Interoperability has to be provided on a technical and on
an informational level. In short, information sharing not only
needs to provide full accessibility to the data, it also requires
that the accessed data may be processed and interpreted by
the remote system. Problems that might arise owing to het-
erogeneity of the data are already well-known within the dis-
tributed database systems community (e.g.[Kim and Seo,
1991], [Kashyap and Sheth, 1996a]): structural heterogeneity
(schematic heterogeneity) andsemantic heterogeneity(data
heterogeneity)[Kim and Seo, 1991]. Structural heterogene-
ity means that different information systems store their data

in different structures. Semantic heterogeneity considers the
contents of an information item and its intended meaning.

In order to achieve semantic interoperability in a hetero-
geneous information system, themeaningof the information
that is interchanged has to be understood across the systems.
Semantic conflicts occur whenever two contexts do not use
the same interpretation of the information. Goh identifies
three main causes for semantic heterogeneity[Goh, 1997]:
• Confounding conflictsoccur when information items

seem to have the same meaning, but differ in reality, e.g.
owing to different temporal contexts.

• Scaling conflictsoccur when different reference systems
are used to measure a value. Examples are different cur-
rencies.

• Naming conflictsoccur when naming schemes of infor-
mation differ significantly. A frequent phenomenon is
the presence of homonyms and synonyms.

The use of ontologies for the explication of implicit and
hidden knowledge is a possible approach to overcome the
problem of semantic heterogeneity. Uschold and Grüninger
mention interoperability as a key application of ontolo-
gies, and many ontology-based approaches[Uschold and
Grüniger, 1996] to information integration in order to achieve
interoperability have been developed.

In this paper we present a survey of existing solutions with
special focus on the use of ontologies in these approaches. We
analyzed about 25 approaches to intelligent information inte-
gration including SIMS, TSIMMIS, OBSERVER, CARNOT,
Infosleuth, KRAFT, PICSEL, DWQ, Ontobroker, SHOE and
others with respect to the role and use of ontologies. Most of
these systems use some notion of ontologies. We only con-
sider these approaches. A further criterion is the focus of the
approach on the integration of information sources. We there-
fore do not consider approaches to the integration of knowl-
edge bases. We evaluate the remaining approaches according
to four main criteria:
Use of Ontologies:The role and the architecture of the on-

tologies influence heavily the representation formalism
of an ontology.

Ontology Representation: Depending on the use of the on-
tology, the representation capabilities differ from ap-
proach to approach.

Heiner Stuckenschmidt
108

Use of Mappings: In order to support the integration pro-
cess the ontologies have to be linked to actual informa-
tion. If several ontologies are used in an integration sys-
tem, mapping between the ontologies are also important.

Ontology Engineering: Before an integration of informa-
tion sources can begin the appropriate ontologies have
to be acquired or to be selected for reuse. How does the
integration approach support the acquisition or reuse of
ontologies?

In the following we discuss these points on the basis of our
experiences from the comparison of different systems. Doing
this we will not consider single approaches, but rather refer
to typical representatives. In section 2 we discuss the use
of ontologies in different approaches and common ontology
architectures. The use of different representations, i.e. differ-
ent ontology languages, is discussed in section 3. Mappings
used to connect ontologies to information sources and inter-
ontology mappings are the topic of section 4, while section 5
covers methodologies and tool-support for the ontology engi-
neering process. We conclude with a summary of the state-
of-the-art and the direction for further research in the area of
ontology-based information integration.

2 The Role of Ontologies
Initially, ontologies are introduced as an ”explicit specifica-
tion of a conceptualization”[Gruber, 1993]. Therefore, on-
tologies can be used in an integration task to describe the se-
mantics of the information sources and to make the contents
explicit (section 2.1). With respect to the integration of data
sources, they can be used for the identification and associa-
tion of semantically corresponding information concepts.

However, in several projects ontologies take over addi-
tional tasks. These tasks are discussed in section 2.2.

2.1 Content Explication
In nearly all ontology–based integration approaches ontolo-
gies are used for the explicit description of the information
source semantics. But there are different way of how to em-
ploy the ontologies. In general, three different directions can
be identified: single ontology approaches, multiple ontolo-
gies approachesandhybrid approaches. Figure 1 gives an
overview of the three main architectures.

The integration based on a single ontology seems to be the
simplest approach because it can be simulated by the other
approaches. Some approaches provide a general framework
where all three architectures can be implemented (e.g. DWQ
[Calvaneseet al., 2001]). The following paragraphs give a
brief overview of the three main ontology architectures.

Single Ontology approaches Single ontology approaches
use one global ontology providing a shared vocabulary for
the specification of the semantics (see fig. 1a). All informa-
tion sources are related to one global ontology. A prominent
approach of this kind of ontology integration is SIMS[Arens
et al., 1996]. SIMS model of the application domain includes
a hierarchical terminological knowledge base with nodes rep-
resenting objects, actions, and states. An independent model

global
ontology

local
ontology

local
ontology

local
ontology

single ontology approach multiple ontology approach

local
ontology

local
ontology

local
ontology

shared vocabulary

hybrid ontology approach

a) b)

c)

Figure 1: The three possible ways for using ontologies for
content explication

of each information source must be described for this system
by relating the objects of each source to the global domain
model. The relationships clarify the semantics of the source
objects and help to find semantically corresponding objects.

The global ontology can also be a combination of sev-
eral specialized ontologies. A reason for the combination of
several ontologies can be the modularization of a potentially
large monolithic ontology. The combination is supported by
ontology representation formalisms i.e. importing other on-
tology modules (cf. ONTOLINGUA[Gruber, 1993]).

Single ontology approaches can be applied to integration
problems where all information sources to be integrated pro-
vide nearly the same view on a domain. But if one informa-
tion source has a different view on a domain, e.g. by provid-
ing another level of granularity, finding the minimal ontology
commitment[Gruber, 1995] becomes a difficult task. For ex-
ample, if two information sources provide product specifica-
tions but refer to absolute heterogeneous product catalogues
which categorize the products, the development of a global
ontology which combines the different product catalogues be-
comes very difficult. Information sources with reference to
similar product catalogues are much easier to integrate. Also,
single ontology approaches are susceptible to changes in the
information sources which can affect the conceptualization
of the domain represented in the ontology. Depending on the
nature of the changes in one information source it can im-
ply changes in the global ontology and in the mappings to
the other information sources. These disadvantages led to the
development of multiple ontology approaches.

Multiple Ontologies In multiple ontology approaches,
each information source is described by its own ontology (fig.
1b). For example, in OBSERVER[Menaet al., 1996] the se-
mantics of an information source is described by a separate
ontology. In principle, the “source ontology” can be a com-
bination of several other ontologies but it can not be assumed

Heiner Stuckenschmidt
109

that the different “source ontologies” share the same vocabu-
lary.

At a first glance, the advantage of multiple ontology ap-
proaches seems to be that no common and minimal ontol-
ogy commitment[Gruber, 1995] about one global ontology
is needed. Each source ontology could be developed with-
out respect to other sources or their ontologies — no com-
mon ontology with the agreement of all sources are needed.
This ontology architecture can simplify the change, i.e. mod-
ifications in one information source or the adding and remov-
ing of sources. But in reality the lack of a common vocabu-
lary makes it extremely difficult to compare different source
ontologies. To overcome this problem, an additional repre-
sentation formalism defining the inter-ontology mapping is
provided (see 4.2). The inter-ontology mapping identifies
semantically corresponding terms of different source ontolo-
gies, e.g. which terms are semantically equal or similar. But
the mapping also has to consider different views on a domain
e.g. different aggregation and granularity of the ontology con-
cepts. We believe that in practice the inter-ontology mapping
is very difficult to define, because of the many semantic het-
erogeneity problems which may occur.

Hybrid Approaches To overcome the drawbacks of the
single or multiple ontology approaches, hybrid approaches
were developed (Fig. 1c). Similar to multiple ontology ap-
proaches the semantics of each source is described by its own
ontology. But in order to make the source ontologies com-
parable to each other they are built upon one global shared
vocabulary[Goh, 1997; Wacheet al., 1999]. The shared vo-
cabulary contains basic terms (the primitives) of a domain.
In order to build complex terms of a source ontologies the
primitives are combined by some operators. Because each
term of a source ontology is based on the primitives, the
terms become easier comparable than in multiple ontology
approaches. Sometimes the shared vocabulary is also an on-
tology [Stuckenschmidtet al., 2000b].

In hybrid approaches the interesting point is how the lo-
cal ontologies are described, i.e. how the terms of the source
ontology are described by the primitives of the shared vocab-
ulary. In COIN [Goh, 1997] the local description of an in-
formation, the so-called context, is simply an attribute value
vector. The terms for the context stems from the common
shared vocabulary and the data itself. In MECOTA[Wache
et al., 1999], each source information is annotated by a la-
bel which indicates the semantics of the information. The la-
bel combines the primitive terms from the shared vocabulary.
The combination operators are similar to the operators known
from the description logics, but are extended for the special
requirements resulting from integration of sources, e.g. by an
operator which indicates that an information aggregates sev-
eral different information items (e.g. a street name together
with number). In BUSTER[Stuckenschmidtet al., 2000b],
the shared vocabulary is a (general) ontology, which covers
all possible refinements. E.g. the general ontology defines
the attribute value ranges of its concepts. A source ontology
is one (partial) refinement of the general ontology, e.g. re-
stricts the value range of some attributes. Since the source

ontologies only use the vocabulary of the general ontology,
they remain comparable.

The advantage of a hybrid approach is that new sources can
easily be added without the need of modification in the map-
pings or in the shared vocabulary. It also supports the acqui-
sition and evolution of ontologies. The use of a shared vocab-
ulary makes the source ontologies comparable and avoids the
disadvantages of multiple ontology approaches. The draw-
back of hybrid approaches however, existing ontologies can-
not be reused easily, but have to be re-developed from scratch,
because all source ontologies have to refer to the shared vo-
cabulary.

The following table summarizes the benefits and draw-
backs of the different ontology approaches:

Single Multiple Hybrid
Ontology Ontology Ontology
Approaches Approaches Approaches

implementation straight- costly reasonable
effort forward
semantic similar supports supports
heterogeneity view of a heterogen- heterogen-

domain eous views eous views
adding/ need for providing a providing a
removing some adap- new source new source
of sources tion in the ontology; ontology;

global relating
ontology to other

ontologies
comparing — difficult simple
of multiple because of because
ontologies the lack of ontologies

a common use a
vocabulary common

vocabulary

Table 1: Benefits and drawbacks of the different ontology-
based integration approaches

2.2 Additional Roles of Ontologies
Some approaches use ontologies not only for content expli-
cation, but also either as a global query model or for the veri-
fication of the (user-defined or system-generated) integration
description. In the following, these additional roles of ontolo-
gies are considered in more detail.

Query Model Integrated information sources normally
provide an integrated global view. Some integration ap-
proaches use the ontology as the global query schema. For
example, in SIMS[Arens et al., 1996] the user formulates
a query in terms of the ontology. Then SIMS reformulates
the global query into sub-queries for each appropriate source,
collects and combines the query results, and returns the re-
sults.

Using an ontology as a query model has the advantage that
the structure of the query model should be more intuitive for
the user because it corresponds more to the user’s apprecia-
tion of the domain. But from a database point of view this
ontology only acts as a global query schema. If a user formu-
lates a query, he has to know the structure and the contents

Heiner Stuckenschmidt
110

of the ontology; he cannot formulate the query according to
a schema he would prefer personally. Therefore, it is ques-
tionable where the global ontology is an appropriate query
model.

Verification During the integration process several map-
pings must be specified from a global schema to the local
source schema. The correctness of such mappings can be
considered ably improved if these can be verified automati-
cally. A sub-query is correct with respect to a global query if
the local sub-query provides a part of the queried answers, i.e.
the sub-queries must be contained in the global query (query
containment)[Calvaneseet al., 2001; Goasdoúeet al., 1999].
Since an ontology contains a (complete) specification of the
conceptualization, the mappings can be validated with respect
to the ontologies. Query containment means that the ontology
concepts corresponding to the local sub-queries are contained
in the ontology concepts related to the global query.

In DWQ [Calvaneseet al., 2001] each source is assumed
to be a collection of relational tables. Each table is described
in terms of its ontology with the help of conjunctive queries.
A global query and the decomposed sub-queries can be un-
folded to their ontology concepts. The sub-queries are cor-
rect, i.e. are contained in the global query, if their ontology
concepts are subsumed by the global ontology concepts. The
PICSEL project[Goasdoúe et al., 1999] can also verify the
mapping but in contrast to DWQ it can also generate mapping
hypotheses automatically which are validated with respect to
a global ontology.

The quality of the verification task strongly depends on the
completeness of an ontology. If the ontology is incomplete,
the verification result can erroneously imagine a correct query
subsumption. Since in general the completeness can not be
measured, it is impossible to make any statements about the
quality of the verification.

3 Ontology Representations
A question that arises from the use of ontologies for different
purposes in the context of information integration is about
the nature of the ontologies used. Investigating this question
we mainly focus on the kind of languages used and the gen-
eral structures found. We do not discuss ontology contents,
because we think that the contents strongly depends on the
kind of information that has to be integrated. We further re-
strict the evaluation to an object-centered knowledge repre-
sentation system which in most systems forms the core of the
languages used.

The first thing we have to notice when we investigate dif-
ferent approaches to intelligent information integration based
on ontologies is the overwhelming dominance of systems us-
ing some variants of description logics in order to represent
ontologies. The most cited language is CLASSIC[Borgidaet
al., 1989] which is used by different systems including OB-
SERVER[Menaet al., 1996], SIMS[Arenset al., 1996] and
the work of Kashyap and Sheth[Kashyap and Sheth, 1996b].
Other terminological languages used are GRAIL[Rectoret
al., 1997] (the Tambis Approach[Stevenset al., 2000]),
LOOM [MacGregor, 1991] and OIL [Fenselet al., 2000]

which is used for terminology integration in the BUSTER ap-
proach[Stuckenschmidt and Wache, 2000].

Beside the purely terminological languages mentioned
above there are also approaches using extensions of descrip-
tion logics which include rule bases. Known uses of extended
languages are in the PICSEL system using CARIN, a descrip-
tion logic extended with function-free horn rules[Goasdoúe
et al., 1999] and the DWQ[Calvaneseet al., 2001] project.
In the latter approachAL − log a combination of a simple
description logics with Datalog is used[Donini et al., 1998].
[Calvaneseet al., 2001] use the LogicDLR a description
logic with n-ary relations for information integration in the
same project. The integration of description logics with rule-
based reasoning makes it necessary to restrict the expressive
power of the terminological part of the language in order to
remain decidable[Levy and Rousset, 1996].

The second main group of languages used in ontology-
based information integration systems are classical frame-
based representation languages. Examples for such systems
are COIN[Goh, 1997], KRAFT [Preeceet al., 1999], Infos-
leuth [Woelk and Tomlinson, 1994] and Infomaster[Gene-
serethet al., 1997]. Languages mentioned are Ontolingua
[Gruber, 1993] and OKBC[Chaudhriet al., 1998]. There are
also approaches that directly use F-Logic[Kifer et al., 1995]
with a self-defined syntax (Ontobroker[Fenselet al., 1998]
and COIN[Goh, 1997]). For an analysis of the expressive
power of these languages, we refer to Corcho and Gomez-
Perez[Corcho and Ǵomez-Ṕerez, 2000] who evaluated differ-
ent ontology languages including the ones mentioned above.

4 Use of Mappings
The task of integrating heterogeneous information sources
put ontologies in context. They cannot be perceived as stand-
alone models of the world but should rather be seen as the
glue that puts together information of various kinds. Conse-
quently, the relation of an ontology to its environment plays
an essential role in information integration. We use the term
mappings to refer to the connection of an ontology to other
parts of the application system. In the following, we discuss
the two most important uses of mappings required for infor-
mation integration: mappings between ontologies and the in-
formation they describe and mappings between different on-
tologies used in a system.

4.1 Connection to Information Sources
The first and most obvious application of mappings is to re-
late the ontologies to the actual contents of an information
source. Ontologies may relate to the database scheme but
also to single terms used in the database. Regardless of this
distinction, we can observe different general approaches used
to establish a connection between ontologies and information
sources. We briefly discuss these general approaches in the
sequel.

Structure Resemblance A straightforward approach to
connecting the ontology with the database scheme is to sim-
ply produce a one-to-one copy of the structure of the database
and encode it in a language that makes automated reasoning

Heiner Stuckenschmidt
111

possible. The integration is then performed on the copy of
the model and can easily be tracked back to the original data.
This approach is implemented in the SIMS mediator[Arens
et al., 1996] and also by the TSIMMIS system[Chawatheet
al., 1994].

Definition of Terms In order to make the semantics of
terms in a database schema clear it is not sufficient to pro-
duce a copy of the schema. There are approaches such as
BUSTER [Stuckenschmidt and Wache, 2000] that use the
ontology to further define terms from the database or the
database scheme. These definitions do not correspond to the
structure of the database, these are only linked to the infor-
mation by the term that is defined. The definition itself can
consist of a set of rules defining the term. However, in most
cases terms are described by concept definitions.

Structure Enrichment is the most common approach to
relating ontologies to information sources. It combines the
two previously mentioned approaches. A logical model is
built that resembles the structure of the information source
and contains additional definitions of concepts. A detailed
discussion of this kind of mapping is given in[Kashyap and
Sheth, 1996a]. Systems that use structure enrichment for in-
formation integration are OBSERVER[Menaet al., 1996],
KRAFT [Preeceet al., 1999], PICSEL [Goasdoúe et al.,
1999] and DWQ[Calvaneseet al., 2001]. While OBSERVER
uses description logics for both structure resemblance and ad-
ditional definitions, PICSEL and DWQ defines the structure
of the information by (typed) horn rules. Additional defini-
tions of concepts mentioned in these rules are done by a de-
scription logic model. KRAFT does not commit to a specific
definition scheme.

Meta-Annotation A rather new approach is the use of meta
annotations that add semantic information to an informa-
tion source. This approach is becoming prominent with the
need to integrate information present in the World Wide Web
where annotation is a natural way of adding semantics. Ap-
proaches which are developed to be used on the World Wide
Web are Ontobroker[Fenselet al., 1998] and SHOE[Heflin
and Hendler, 2000b]. We can further distinguish between
annotations resembling parts of the real information and ap-
proaches avoiding redundancy. SHOE is an example for the
former, Ontobroker for the latter case.

4.2 Inter-Ontology Mapping
Many of the existing information integration systems such as
[Menaet al., 1996] or [Preeceet al., 1999] use more than one
ontology to describe the information. The problem of map-
ping different ontologies is a well known problem in knowl-
edge engineering. We will not try to review all research that is
conducted in this area. We rather discuss general approaches
that are used in information integration systems.

Defined Mappings A common approach to the ontology
mapping problem is to provide the possibility to define map-
pings. This approach is taken in KRAFT[Preeceet al.,

1999], where translations between different ontologies are
done by special mediator agents which can be customized
to translate between different ontologies and even different
languages. Different kinds of mappings are distinguished in
this approach starting from simple one-to-one mappings be-
tween classes and values up to mappings between compound
expressions. This approach allows a great flexibility, but it
fails to ensure a preservation of semantics: the user is free to
define arbitrary mappings even if they do not make sense or
produce conflicts.

Lexical Relations An attempt to provide at least intuitive
semantics for mappings between concepts in different ontolo-
gies is made in the OBSERVER system[Menaet al., 1996].
The approaches extend a common description logic model
by quantified inter-ontology relationships borrowed from lin-
guistics. In OBSERVER, relationships used aresynonym,
hypernym, hyponym, overlap, coveringanddisjoint. While
these relations are similar to constructs used in description
logics they do not have a formal semantics. Consequently,
the subsumption algorithm is rather heuristic than formally
grounded.

Top-Level Grounding In order to avoid a loss of seman-
tics, one has to stay inside the formal representation language
when defining mappings between different ontologies (e.g.
DWQ [Calvaneseet al., 2001]). A straightforward way to
stay inside the formalism is to relate all ontologies used to a
single top-level ontology. This can be done by inheriting con-
cepts from a common top-level ontology. This approach can
be used to resolve conflicts and ambiguities (compare[Heflin
and Hendler, 2000b]). While this approach allows to estab-
lish connections between concepts from different ontologies
in terms of common superclasses, it does not establish a di-
rect correspondence. This might lead to problems when exact
matches are required.

Semantic Correspondences An approach that tries to
overcome the ambiguity that arises from an indirect map-
ping of concepts via a top-level grounding is the attempt
to identify well-founded semantic correspondences between
concepts from different ontologies. In order to avoid arbitrary
mappings between concepts, these approaches have to rely on
a common vocabulary for defining concepts across different
ontologies. Wache [1999] uses semantic labels in order to
compute correspondences between database fields. Stucken-
schmidt et. al. build a description logic model of terms from
different information sources and shows that subsumption
reasoning can be used to establish relations between differ-
ent terminologies. Approaches using formal concept analysis
(see above) also fall into this category, because they define
concepts on the basis of a common vocabulary to compute a
common concept lattice.

5 Ontological Engineering
The previous sections provided information about the use and
importance of ontologies. Hence, it is crucial to support the

Heiner Stuckenschmidt
112

development process of ontologies. In this section, we will
describe how the systems provide support for the ontologi-
cal engineering process. This section is divided into three
subsections: In the first subsection we give a brief overview
of development methodology. The second subsection is an
overview of supporting tools and the last subsection describes
what happens when ontologies change.

5.1 Development Methodology
Lately, several publications about ontological developments
have been published. Jones et al. [1998] provide an
excellent but short overview of existing approaches (e.g.
METHONTODOLOGY [Gómez-Ṕerez, 1998] or TOVE
[Fox and Gr̈uninger, 1998]). Uschold and Gr̈uninger [1996]
and Ǵomez-Ṕerez et al. [1996] propose methods with phases
that are independent of the domain of the ontology. These
methods are of good standards and can be used for compar-
isons. In this section, we focus on the proposed method from
Uschold and Gr̈uninger as a ’thread’ and discuss how the in-
tegrated systems evaluated in this paper are related to this ap-
proach.

Uschold and Gr̈uninger defined four main phases:

1. Identifying a purpose and scope: Specialization, in-
tended use, scenarios, set of terms including character-
istics and granularity

2. Building the ontology

(a) Ontology capture: Knowledge acquisition, a phase
interacting with requirements of phase 1.

(b) Ontology coding: Structuring of the domain knowl-
edge in a conceptual model.

(c) Integrating existing ontologies: Reuse of existing
ontologies to speed up the development process of
ontologies in the future.

3. Evaluation: Verification and Validation.

4. Guidelines for each phase.

In the following paragraphs we describe integration sys-
tems and their methods for building an ontology. Further, we
discuss systems without an explicit method where the user is
only provided with information in the direction in question.
The second type of systems can be distinguished from others
without any information about a methodology. This is due to
the fact that they assume that ontologies already exist.

Infosleuth: This system semi-automatically constructs on-
tologies from textual databases[Hwang, 1999]. The method-
ology is as follows: first, human experts provide a small num-
ber ofseed wordsto represent high-level concepts. This can
be seen as the identification of purpose and scope (phase 1).
The system then processes the incoming documents, extract-
ing phrases that involve seed words, generates correspond-
ing concept terms, and then classifies them into the ontol-
ogy. This can be seen as ontology capturing and part of cod-
ing (phases 2a and 2b). During this process the system also
collects seed word-candidates for the next round of process-
ing. This iteration can be completed for a predefined number
of rounds. A human expert verifies the classification after

each round (phase 3). As more documents arrive, the ontol-
ogy expands and the expert is confronted with the new con-
cepts. This is a significant feature of this system. Hwang calls
this ’discover-and-alert’ and indicates that this is a new fea-
ture of his methodology. This method is conceptually simple
and allows effective implementation. Prototype implementa-
tions have also shown that the method works well. However,
problems arise within the classification of concepts and dis-
tinguishing between concepts and non-concepts.

Infosleuth requires an expert for the evaluation process.
When we consider that experts are rare and their time is costly
this procedure is too expert-dependent. Furthermore, the in-
tegration of existing ontologies is not mentioned. However,
an automatic verification of this model by a reasoner would
be worthwhile considering.

KRAFT: offers two methods for building ontologies: the
building of shared ontologies[Jones, 1998] and extracting of
source ontologies[Pazzaglia and Embury, 1998].

Shared ontologies: The steps of the development of
shared ontologies are(a) ontology scoping, (b) domain anal-
ysis, (c) ontology formalization, (d) top-level-ontology. The
minimal scope is a set of terms that is necessary to support
the communication within the KRAFT network. The do-
main analysis is based on the idea that changes within ontolo-
gies are inevitable and the means to handle changes should
be provided. The authors pursue a domain-led strategy[Pa-
ton et al., 1991], where the shared ontology fully character-
izes the area of knowledge in which the problem is situated.
Within the ontology formalization phase the fully character-
ized knowledge is defined formally in classes, relations and
functions. The top-level-ontology is needed to introduce pre-
defined terms/primitives.

If we compare this to the method of Uschold and Grüninger
we can conclude that ontology scoping is weakly linked to
phase 1. It appears that ontology scoping is a set of terms
fundamental for the communication within the network and
therefore can be seen as a vocabulary. On the other hand, the
authors say that this is aminimalset of terms which implies
that more terms exist. The domain analysis refers to phases
1 and 2a whereas the ontology formalization refers to phase
2b. Existing ontologies are not considered.

Extracting ontologies: Pazzaglia and Embury [1998] in-
troduce a bottom-up approach to extract an ontology from
existing shared ontologies. This extraction process con-
sists of two steps. The first step is a syntactic translation
from the KRAFT exportable view (in a native language) of
the resource into the KRAFT-schema. The second step is
the ontological upgrade, a semi-automatic translation plus
knowledge-based enhancement, where local ontology adds
knowledge and further relationships between the entities in
the translated schema.

This approach can be compared to phase 2c, the integra-
tion of existing ontologies. In general, the KRAFT method-
ology lacks the evaluation of ontologies and the general pur-
pose scope.

Ontobroker: The authors provide information about phase
2, especially 2a and 2b. They distinguish between three

Heiner Stuckenschmidt
113

classes of web information sources (see also[Ashish and
Knoblock, 1997]): (a) Multiple-instance sourceswith the
same structure but different contents,(b) single-instance
sourceswith large amount of data in a structured format, and
(c) loosely structured pageswith little or no structure. On-
tobroker[Deckeret al., 1999] has two ways of formalizing
knowledge (this refers to phase 2b). First, sources from (a)
and (b) allow to implement wrappers that automatically ex-
tract factual knowledge from these sources. Second, sources
with little or no knowledge have to be formalized manually. A
supporting tool called OntoEdit[Staabet al., 2000] is an on-
tology editor embedded in the ontology server and can help
to annotate the knowledge. OntoEdit is described later in this
section.

Apart from the connection to phase 2 the Ontobroker sys-
tem provides no information about the scope, the integration
of existing ontologies, or the evaluation.

SIMS: An independent model of each information source
must be described for this system, along with a domain model
that must be be defined to describe objects and actions[Arens
et al., 1993]. SIMS model of the application domain includes
a hierarchical terminological knowledge base with nodes rep-
resenting objects, actions, and states. In addition, it includes
indications of all relationships between the nodes. Further,
the authors address the scalability and maintenance prob-
lems when a new information source is added or the domain
knowledge changes. As every information source is indepen-
dent and modeled separately, the addition of a new source
should be relatively straightforward. A graphical LOOM
knowledge base builder (LOOM-KB) can be used to support
this process. The domain model would have to be enlarged to
accommodate new information sources or simply new knowl-
edge (see also[MacGregor, 1990], [MacGregor, 1988]).

The SIMS model has no concrete methodology for building
ontologies. However, we see links referring to phase 2a ontol-
ogy capture (description of the independent model of infor-
mation sources) and 2b ontology coding (LOOM-KB). The
integration of existing ontologies and an evaluation phase are
not mentioned.

All the other systems discussed, such as Picsel, Observer,
the approach from Kayshap & Sheth, BUSTER and COIN
either have no methods or do not discuss them to create on-
tologies. After reading papers about these various systems it
becomes obvious that there is a lack of a ’real’ methodology
for the development of ontologies. We believe that the sys-
tematic development of the ontology is extremely important
and therefore the tools supporting this process become even
more significant.

5.2 Supporting tools
Some of the systems we discussed in this paper provide sup-
port with the annotation process of sources. This process is
mainly a semantic enrichment of the information therein. In
the following, we sketch the currently available tools.

• OntoEdit: This tool makes it possible to inspect, browse,
codify and modify ontologies and to use these features
to support the ontology development and maintenance

task [Staab and M̈adche, 2000]. Currently, OntoEdit
supports the representation languages(a) F-Logic in-
cluding an inference engine, (b) OIL, (c) Karlsruhe
RDF(S)extension, and(d) internal XML-based serializa-
tion of the ontology model using OXML.

• SHOE’s Knowledge Annotator: With the help of this
tool, the user can describe the contents of a web page
[Heflin and Hendler, 2000b]. The Knowledge Annota-
tor has an interface which displays instances, ontologies,
and claims (documents collected). The tool also pro-
vides integrity checks. With a second tool called Exposé
the annotated web pages can be parsed and the contents
will be stored in a repository. This SHOE-knowledge
is then stored in a Parka knowledge base[Stoffel et al.,
1997].

• DWQ: Further development within the DWQ project
leads to a tool called i·com [Franconi and Ng, 2000].
i·com is a supporting tool for the conceptual design
phase. This tool uses an extended entity relationship
conceptual (EER) data model and enriches it with ag-
gregations and inter-schema constraints. i·com does not
provide a methodology nor is it an annotation tool, it
serves mainly for intelligent conceptual modelling.

Annotation tools such as OntoEdit and the Knowledge An-
notator are relatively new on the market. Therefore, compre-
hensive tests to give a good evaluation have yet to be done.
However, we did the first steps with OntoEdit and came to
the conclusion that OntoEdit seems to be a powerful tool and
worthwhile considering. This is especially true when using
an integration system which does not support the develop-
ment process of an ontology. Also, OntoEdit allows to verify
an ontology. Tests with the Knowledge Annotator have yet to
be done.

5.3 Ontology Evolution
Almost every author describes the evolution of an ontology as
a very important task. An integration system — and the on-
tologies — must support adding and/or removing sources and
must be robust to changes in the information source. How-
ever, integration systems which take this into account are
rare. To our knowledge, SHOE is the only system that ac-
complishes this to-date.

SHOE: Once the SHOE-annotated web pages are uploaded
on the web, the Exposé tool has the task to update the repos-
itories with the knowledge from these pages. This includes a
list of pages to be visited and an identification of all hyper-
text links, category instances, and relation arguments within
the page. The tool then stores the new information in the
PARKA knowledge base. Heflin and Hendler [2000a] ana-
lyzed the problems associated with managing dynamic on-
tologies through the web. By adding revision marks to the
ontology, changes and revision become possible. The authors
illustrated that revisions which add categories and relations
will have no effect, and that revisions which modify rules may
change the answers to queries. When categories and relations
are removed, answers to queries may be eliminated.

Heiner Stuckenschmidt
114

In summary, most of the authors mention the importance of
a method for building ontologies. However, only few systems
really support the user with a genuine method. Infosleuth is
the only system which fulfills the requirements of a method-
ology. However, the majority of the systems only provide
support of the formalization phase (please refer to phases 2a
and 2b). KRAFT, SIMS, DWQ, and SHOE are representa-
tives of this group. The remaining systems do not include
a methodology. Some systems offer some support for the
annotation of information sources (e.g. SHOE). Other sys-
tems provide supporting tools for parts of ontology engineer-
ing (e.g. DWQ/i·com, OntoEdit). Only the SHOE system
may be considered as a system which takes ontology evolu-
tion into account.

6 Summary
In this paper we presented the results of an analysis of exist-
ing information integration systems from an ontology point of
view. The analysis was focused on systems and approaches
with ontologies as a main element. Important questions cov-
ered in the analysis are:
Role of the ontology: What is the purpose of the ontology

and how does it relate to other parts of the systems?

Ontology Representation: What are the features (expres-
siveness, reasoning capabilities) of the language used to
represent the ontology?

Use of Mappings: How is the connection of an ontology to
other parts of the system especially data-repositories and
other ontologies implemented?

Ontology Engineering: Does the approach contain a
methodology and tools that support the development
and the use of the ontology?

We evaluated different approaches with respect to these ques-
tions. At this point, we try to summarize the lessons learned
from the analysis by drawing a rough picture of the state-of-
the-art implied by the systems we analyzed. On the other
hand, we try to infer open problems and to define research
questions that have been put forward but reqire further inves-
tigation.

State of the Research
We tried to illustrate the state of the art by describing a ’typi-
cal’ information integration system that uses well-established
technologies: The typical information integration system uses
ontologies to explicate the contents of an information source,
mainly by describing the intended meaning of table and data-
field names. For this purpose, each information source is sup-
plemented by an ontology which resembles and extends the
structure of the information source. In a typical system, inte-
gration is done at the ontology level using either a common
ontology all source ontologies are related to or fixed map-
pings between different ontologies. The ontology language
of the typical system is based on description logics and sub-
sumption reasoning is used in order to compute relations be-
tween different information sources and sometimes to vali-
date the result of an integration. The process of building and
using ontologies in the typical system is supported by spe-
cialized tools in terms of editors.

Open Questions
The description of the typical integration system shows that
reasonable results have been achieved on the technical side of
using ontologies for intelligent information integration. Only
the use of mappings is an exception. It seems that most ap-
proaches still use ad-hoc or arbitrary mappings especially for
the connection of different ontologies. There are approaches
that try to provide well-founded mappings, but they either
rely on assumptions that cannot always be guaranteed or they
face technical problems. We conclude that there is a need to
investigate mappings on a theoretical and an empirical basis.

Beside the mapping problem, we found a striking lack of
sophisticated methodologies supporting the development and
use of ontologies. Most systems only provide tools. If there
is a methodology it often only covers the development of on-
tologies for a specific purpose which is prescribed by the in-
tegration system. The comparison of different approaches,
however, revealed that requirements concerning ontology lan-
guage and structure depends on the kind of information to be
integrated and the intended use of the ontology. We therefore
think that there is a need to develop a more general method-
ology that includes an analysis of the integration task and
supports the process of defining the role of ontologies with
respect to these requirements. We think that such a method-
ology has to be language-independent, because the language
should be selected based on the requirements of the applica-
tion and not the other way round. A good methodology also
has to cover the evaluation and verification of the decisions
made with respect to language and structure of the ontology.
The development of such a methodology will be a major step
in the work on ontology-based information integration be-
cause it will help to integrate results already achieved on the
technical side and to put these techniques to work in real-life
applications.

References
[Arenset al., 1993] Yigal Arens, Chin Y. Chee, Chun-Nan

Hsu, and Craig A. Knoblock. Retrieving and integrat-
ing data from multiple information sources.International
Journal of Intelligent and Cooperative Information Sys-
tems, 2(2):127–158, 1993.

[Arenset al., 1996] Yigal Arens, Chun-Nan Hsu, and
Craig A. Knoblock. Query processing in the sims informa-
tion mediator. InAdvanced Planning Technology. AAAI
Press, California, USA, 1996.

[Ashish and Knoblock, 1997] Naveen Ashish and Craig A.
Knoblock. Semi-automatic wrapper generation for inter-
net information sources. InSecond IFCIS International
Conference on Cooperative Information Systems, Kiawah
Island, SC, 1997.

[Belkin and Croft, 1992] N.J. Belkin and B.W. Croft. Infor-
mation filtering and information retrieval: Two sides of the
same coin?Communications of the ACM, 35(12):29–38,
December 1992.

[Borgidaet al., 1989] A. Borgida, Brachman a R. J., D. L.
McGuiness, and L. A. Resnick. Classic: A structural data

Heiner Stuckenschmidt
115

model for objects. InACM SIGMOID International Con-
ference on Management of Data, Portland, Oregon, USA,
1989.

[Calvaneseet al., 2001] Diego Calvanese, Giuseppe De Gi-
acomo, and Maurizio Lenzerini. Description logics for
information integration. InComputational Logic: From
Logic Programming into the Future (In honour of Bob
Kowalski), Lecture Notes in Computer Science. Springer-
Verlag, 2001. To appear.

[Chaudhriet al., 1998] Vinay K. Chaudhri, Adam Farquhar,
Richard Fikes, Peter D. Karp, and James P. Rice. Open
knowledge base connectivity (okbc) specification docu-
ment 2.0.3. Technical report, SRI International and Stan-
ford University (KSL), April 1998.

[Chawatheet al., 1994] S. Chawathe, H. Garcia-Molina,
J. Hammer, K. Ireland, Y. Papakonstantinou, J. Ullman,
and J. Widom. The tsimmis project: Integration of hetero-
geneous information sources. InConference of the Infor-
mation Processing Society Japan, pages 7–18, 1994.

[Corcho and Ǵomez-Ṕerez, 2000] Oscar Corcho and Asun-
cion Gómez-Ṕerez. Evaluating knowledge representation
and reasoning capabilities of ontology specification lan-
guages. InProceedings of the ECAI 2000 Workshop on
Applications of Ontologies and Problem-Solving Methods,
Berlin, 2000.

[Deckeret al., 1999] Stefan Decker, Michael Erdmann, Di-
eter Fensel, and Rudi Studer. Ontobroker: Ontology based
access to distributed and semi-structured information. In
R. Meersman et al., editor,Semantic Issues in Multime-
dia Systems. Proceedings of DS-8, pages 351–369. Kluwer
Academic Publisher, Boston, 1999.

[Donini et al., 1998] F. Donini, M. Lenzerini, D. Nardi, and
A. Schaerf. Al-log: Integrating datalog and description
logics. Journal of Intelligent Information Systems (JIIS),
27(1), 1998.

[Fenselet al., 1998] Dieter Fensel, Stefan Decker, M. Erd-
mann, and Rudi Studer. Ontobroker: The very high idea.
In 11. International Flairs Conference (FLAIRS-98), Sani-
bal Island, USA, 1998.

[Fenselet al., 2000] D. Fensel, I. Horrocks, F. Van Harme-
len, S. Decker, M. Erdmann, and M. Klein. Oil in a nut-
shell. In12th International Conference on Knowledge En-
gineering and Knowledge Management EKAW 2000, Juan-
les-Pins, France, 2000.

[Fox and Gr̈uninger, 1998] Mark S. Fox and Michael
Grüninger. Enterprise modelling, fall 1998, pp. 109-121.
AI Magazine, 19(3):109–121, 1998.

[Franconi and Ng, 2000] Enrico Franconi and Gary Ng. The
i.com tool for intelligent conceptual modelling. In7th Intl.
Workshop on Knowledge Representation meets Databases
(KRDB’00), Berlin, Germany, August 2000, 2000.

[Geneserethet al., 1997] Michael R. Genesereth, Arthur M.
Keller, and Oliver Duschka. Infomaster: An information
integration system. In1997 ACM SIGMOD Conference.,
1997.

[Gómez-Ṕerezet al., 1996] Ascuncion Ǵomez-Ṕerez,
M. Ferńandez, and A. de Vicente. Towards a method to
conceptualize domain ontologies. InWorkshop on Onto-
logical Engineering, ECAI ’96, pages 41–52, Budapest,
Hungary, 1996.

[Gómez-Ṕerez, 1998] A. Gómez-Ṕerez. Knowledge sharing
and reuse. In Liebowitz, editor,The handbook on Applied
Expert Systems. ED CRC Press, 1998.

[Goasdoúeet al., 1999] François Goasdoué, Véronique Lat-
tes, and Marie-Christine Rousset. The use of carin lan-
guage and algorithms for information integration: The pic-
sel project,.International Journal of Cooperative Informa-
tion Systems (IJCIS), 9(4):383 – 401, 1999.

[Goh, 1997] Cheng Hian Goh. Representing and Reason-
ing about Semantic Conflicts in Heterogeneous Informa-
tion Sources. Phd, MIT, 1997.

[Gruber, 1993] Tom Gruber. A translation approach to
portable ontology specifications.Knowledge Acquisition,
5(2):199–220, 1993.

[Gruber, 1995] Tom Gruber. Toward principles for the de-
sign of ontologies used for knowledge sharing, 1995.

[Heflin and Hendler, 2000a] Jeff Heflin and James Hendler.
Dynamic ontologies on the web. InProceedings of
American Association for Artificial Intelligence Confer-
ence (AAAI-2000), Menlo Park, CA, 2000. AAAI Press.

[Heflin and Hendler, 2000b] Jeff Heflin and James Hendler.
Semantic interoperability on the web. InExtreme Markup
Languages 2000, 2000.

[Hwang, 1999] Chung Hee Hwang. Incompletely and impre-
cisely speaking: Using dynamic ontologies for represent-
ing and retrieving information. Technical, Microelectron-
ics and Computer Technology Corporation (MCC), June
1999.

[Joneset al., 1998] D. M. Jones, T.J.M. Bench-Capon, and
P.R.S. Visser. Methodologies for ontology development.
In Proc. IT&KNOWS Conference of the 15th IFIP World
Computer Congress, Budapest, 1998. Chapman-Hall.

[Jones, 1998] D.M. Jones. Developing shared ontologies in
multi agent systems. Tutorial, 1998.

[Kashyap and Sheth, 1996a] V. Kashyap and A. Sheth.
Schematic and semantic semilarities between database ob-
jects: A context-based approach.The International Jour-
nal on Very Large Data Bases, 5(4):276–304, 1996.

[Kashyap and Sheth, 1996b] Vipul Kashyap and Amit Sheth.
Semantic heterogeneity in global information systems:
The role of metadata, context and ontologies. In M. Papa-
zoglou and G. Schlageter, editors,Cooperative Informa-
tion Systems: Current Trends and Applications. 1996.

[Kifer et al., 1995] M. Kifer, G. Lausen, and J. Wu. Logical
foundations of object-oriented and frame-based systems.
Journal of the ACM, 1995.

[Kim and Seo, 1991] Won Kim and Jungyun Seo. Classify-
ing schematic and data heterogeinity in multidatabase sys-
tems.IEEE Computer, 24(12):12–18, 1991. problem clas-
sification of semantic heterogeneity.

Heiner Stuckenschmidt
116

[Levy and Rousset, 1996] Alon Y. Levy and Marie-Christine
Rousset. Carin: A representation language combining
horn rules and description logics. InProceedings of the
12th European Conf. on Artificial Intelligence (ECAI-96),
pages 323–327, 1996.

[MacGregor, 1988] Robert M. MacGregor. A deductive pat-
tern matcher. InSeventh National Conference on Artificial
Intelligence, (AAAI 88), pages 403–408, 1988.

[MacGregor, 1990] Robert MacGregor. The evolving tech-
nology of classification-based knowledge representation
systems. In John Sowa, editor,Principles of Semantic Net-
works: Explorations in the Representation of Knowledge.
Morgan Kaufman, 1990.

[MacGregor, 1991] Robert M. MacGregor. Using a descrip-
tion classifier to enhance deductive inference. InProceed-
ings Seventh IEEE Conference on AI Applications, pages
141–147, 1991.

[Menaet al., 1996] E. Mena, V. Kashyap, A. Sheth, and
A. Illarramendi. Observer: An approach for query pro-
cessing in global information systems based on interop-
erability between pre-existing ontologies. InProceedings
1st IFCIS International Conference on Cooperative Infor-
mation Systems (CoopIS ’96). Brussels, 1996.

[Patonet al., 1991] R.C Paton, H.S. Nwana, M.J.R. Shave,
T.J.M. Bench-Capon, and S. Hughes. Foundations of a
structured approach to characterising domain knowledge.
Cognitive Systems, 3(2):139–161, 1991.

[Pazzaglia and Embury, 1998] J-C.R. Pazzaglia and S.M.
Embury. Bottom-up integration of ontologies in a database
context. InKRDB’98 Workshop on Innovative Application
Programming and Query Interfaces, Seattle, WA, USA,
1998.

[Preeceet al., 1999] A.D. Preece, K.-J. Hui, W.A. Gray,
P. Marti, T.J.M. Bench-Capon, D.M. Jones, and Z. Cui.
The kraft architecture for knowledge fusion and transfor-
mation. InProceedings of the 19th SGES International
Conference on Knowledge-Based Systems and Applied Ar-
tificial Intelligence (ES’99). Springer, 1999.

[Rectoret al., 1997] A.L. Rector, S. Bechofer, C.A. Goble,
I. Horrocks, W.A. Nowlan, and W.D. Solomon. The grail
concept modelling language for medical terminology.Ar-
tificial Intelligence in Medicine, 9:139 – 171, 1997.

[Staab and M̈adche, 2000] S. Staab and A. M̈adche. Ontol-
ogy engineering beyond the modeling of concepts and re-
lations. InECAI’2000 Workshop on on Applications of
Ontologies and Problem-Solving Methods, Berlin, 2000.

[Staabet al., 2000] S. Staab, M. Erdmann, and A. M̈adche.
An extensible approach for modeling ontologies in rdf(s).
In First ECDL’2000 Semantic Web Workshop, Lisbon, Por-
tugal, 2000.

[Stevenset al., 2000] R. Stevens, P. Baker, S. Bechhofer,
G. Ng, A. Jacoby, N.W. Paton, C.A. Goble, and A. Brass.
Tambis: Transparent access to multiple bioinformatics in-
formation sources.Bioinformatics, 16(2):184–186, 2000.

[Stoffelet al., 1997] Kilian Stoffel, Merwyn Taylor, and
James Hendler. Efficient management of very large ontolo-
gies. InAmerican Association for Artificial Intelligence
Conference (AAAI-97), pages 442–447, Menlo Park, CA,
1997. AAAI/MIT Press.

[Stuckenschmidt and Wache, 2000] Heiner Stuckenschmidt
and Holger Wache. Context modelling and transformation
for semantic interoperability. InKnowledge Representa-
tion Meets Databases (KRDB 2000). 2000.

[Stuckenschmidtet al., 2000a] H. Stuckenschmidt, Frank
van Harmelen, Dieter Fensel, Michel Klein, and Ian Hor-
rocks. Catalogue integration: A case study in ontology-
based semantic translation. Technical Report IR-474,
Computer Science Department, Vrije Universiteit Amster-
dam, 2000.

[Stuckenschmidtet al., 2000b] Heiner Stuckenschmidt, Hol-
ger Wache, Thomas V̈ogele, and Ubbo Visser. Enabling
technologies for interoperability. In Ubbo Visser and
Hardy Pundt, editors,Workshop on the 14th International
Symposium of Computer Science for Environmental Pro-
tection, pages 35–46, Bonn, Germany, 2000. TZI, Univer-
sity of Bremen.

[Uschold and Gr̈uniger, 1996] M. Uschold and M. Gr̈uniger.
Ontologies: Principles, methods and applications.Knowl-
edge Engineering Review, 11(2):93–155, 1996.

[Uschold and Gr̈uninger, 1996] Mike Uschold and Michael
Grüninger. Ontologies: Principles, methods and appli-
cations. Knowledge Engineering Review, 11(2):93–155,
1996.

[Wacheet al., 1999] H. Wache, Th. Scholz, H. Stieghahn,
and B. K̈onig-Ries. An integration method for the specifi-
cation of rule–oriented mediators. In Yahiko Kambayashi
and Hiroki Takakura, editors,Proceedings of the Inter-
national Symposium on Database Applications in Non-
Traditional Environments (DANTE’99), pages 109–112,
Kyoto, Japan, November, 28-30 1999.

[Wache, 1999] Holger Wache. Towards rule-based context
transformation in mediators. In S. Conrad, W. Hassel-
bring, and G. Saake, editors,International Workshop on
Engineering Federated Information Systems (EFIS 99),
Kühlungsborn, Germany, 1999. Infix-Verlag.

[Woelk and Tomlinson, 1994] Darrell Woelk and Christine
Tomlinson. The infosleuth project:intelligent search man-
agement via semantic agents. InSecond World Wide Web
Conference ’94: Mosaic and the Web, 1994.

Heiner Stuckenschmidt
117

Short Papers and
Statements

1

Experience in Ontology Engineering for a Multi-Agents Corporate Memory System

Fabien Gandon
ACACIA project - INRIA, 2004, route des Lucioles, B.P. 93

06902 Sophia Antipolis, France - Fabien.Gandon@sophia.inria.fr

Abstract

XML and multi-agents technologies offer a
number of assets for corporate memory
management. Since ontologies appear as a key
asset in the new generation of information
systems and also in the communication layer of
multi-agents systems, it comes with no surprise
that it stands out as a keystone of multi-agents
information systems. Here, we briefly describe
our approach and motivations and then focus on
the first elements of our return on experience in
building an ontology for such a system.

1 Introduction
In the last decade information systems became backbones of
organizations and the industrial interest in methodologies
and tools enabling capitalization and management of
corporate knowledge grew stronger. A corporate memory is
an explicit, disembodied and persistent representation of
knowledge and information in an organization, in order to
facilitate their access and reuse by members of the
organization, for their tasks [Rabarijaona et al., 2000]. The
stake in building a corporate memory management system is
the coherent integration of this dispersed knowledge in a
corporation with the objective to "promote knowledge
growth, promote knowledge communication and in general
preserve knowledge within an organization" [Steels, 1993].
ACACIA, our research team, is part of the CoMMA project
(IST-1999-12217) funded by the European Commission,
aiming at implementing a corporate memory management
framework based on several emerging technologies: agents,
ontologies, XML, information retrieval and machine
learning techniques [CoMMA, 2000]. These technical
choices are mainly motivated by three observations. (1) The
memory is, by nature, an heterogeneous and distributed
information landscape. The corporate memories are now
facing the same problem of precision and recall than the
Web. The initiative of a semantic Web is a promising
approach where the semantics of documents is made explicit
through metadata and annotations to guide the later
exploitation of these documents. XML enables us to build a
structure around the data, and RDF (Resource Description

Framework) allows resources to be semantically annotated.
(2) The tasks as a whole to be performed on the memory
are, by nature, distributed and heterogeneous. So we
envisaged a distributed and heterogeneous system to explore
and exploit this information landscape: a multi-agents
system (MAS). It allows the resources to remain localized
and heterogeneous while enabling to capitalize an integrated
and global view of the memory thanks to cooperating
software agents distributed over the network and having
different skills and roles to support the memory tasks. The
heterogeneity and distribution of the MAS is an answer to
the heterogeneity and the distribution of the corporate
memory. (3) The population of the users of the memory
is, by nature, heterogeneous and distributed in the
corporation. Agents will also be in charge of interfacing
users with the system. Adaptation and customization are a
keystone here and we are working on machine learning
techniques in order to make agents adaptive to the users and
the context. This goes from basic customization to user's
habits and preferences learning, up to push technologies
based on interest groups and collaborative filtering.

2 Approach Overview
Compared to the Web, a corporate memory has more
delimited and defined context, infrastructure and scope ; the
existence of a community of stakeholders means that an
ontological commitment is conceivable to a certain extend.
So far, the enterprise modeling field has been mainly
concerned with simulation and optimization of the design of
the corporate production system but last decade changes led
enterprises to become aware of the value of their memory
and the fact that enterprise models have a role to play in this
application too. The corporation has its own organization
and infrastructure ; this state of affair can be formally made
explicit to guide the corporate memory activities involved,
for instance, in the new employee integration and the
technology monitoring scenarios of CoMMA. This enables
the system to get insight into the organizational context and
environment and to intelligently exploit it in interactions
between agents and between agents and users. Likewise, the
users' profile captures all aspects of the user that were
identified as relevant for the system behavior. It contains
administrative information and directly explicited

Heiner Stuckenschmidt
119

2

preferences that go from interface customization to topic
interests. It also positions the user in the organization: role,
location and potential acquaintance network. In addition to
explicitly stated information, the system will derive
information from the usage made by the user. It will collect
the history of visited documents and possible feedback from
the user, as well as the user's recurrent queries, failed
queries, and from this it can learn some of the user's habits
and preferences. These derived criterions can then be used
for interface purposes or push technology. Finally the
profiles enable to compare users, to cluster them based on
similarities in their profiles and then use the similar profiles
to make suggestions.

The figure 1 gives the OSA modeling architecture use in
CoMMA. Our approach is : (1) to apply knowledge
engineering techniques to provide the conceptual
vocabulary needed by the scenarios and to formalize this
ontology in RDF using the RDF Schema (2) to describe the
organizational state of affair and users' profile in RDF
statements (3) to structure the corporate memory with RDF
annotations based on the ontology and referencing the state
of affair (4) to use the annotations, the state of affair and the
ontology through inferences in order to search, manage and
navigate into the memory. As shown in figure 1, the
ontology and the state of affair form the model ; the archive
annotations will depend on both. The state of affair and the
annotations are instances of the RDF schema : the ontology
is at the intensional level whereas the state of affair and the
annotations are at the extensional level. The ontology, the
state of affair and the annotations are tightly linked and will
evolve as a whole in a prototype life cycle style.

CoMMA is an heterogeneous Multi-Agents Information
System (MAIS) supporting information distribution. The
duality of the definition of the word 'distribution' reveals
two important problems to be addressed : (a) Distribution
means dispersion, that is the spatial property of being
scattered about, over an area or a volume ; the problem here
is to handle the naturally distributed data, information or
knowledge of the organization. (b) Distribution also means
the act of spreading or apportioning ; the problem then is to
make the relevant pieces of information go to the concerned
agent. In a MAS, distribution is handled through
cooperation so in our case, agents must be able to
communicate with the others to delegate tasks or solve
queries. The content of the exchanged messages relies on

the ontology. The agents play roles and are organized in
societies as described in [Gandon et al., 2000]. In order to
manipulate the ontology, the annotations, and infer from
them, the agents import modules from CORESE a prototype
of a search engine enabling inferences on RDF annotations
by translating the RDF triplets to Conceptual Graphs and
vice versa [Corby et al., 2000].

3 Engineering an ontology
Following Caroll [1997] we used scenarios to capture end-
users’ needs in their context. They enable us to focus on the
specific aspects of knowledge management involved in our
case, to capture the whole picture and a concrete set of
interaction sequences, and to view the system as a
component of a knowledge management solution for a
company. A scenario template was proposed, suggesting
key aspects to be considered when describing a scenario and
collecting data. This helps define the scope of our
intervention and thus the scope of the ontology. Scenario
analysis produced reports which are extremely rich story-
telling documents and therefore good candidates to be
included in the corpus of a terminological study.

Several techniques exist for data collection, we used
three of them: semi-structured interview, observation and
document analysis. Data collection also included the study
of existing ontologies: the Enterprise Ontology [Uschold et
al., 1998], the TOVE Ontology [TOVE, 2000], the Upper
Cyc Ontology [Cyc, 2000], the PME Ontology [Kassel et
al., 2000] and the CGKAT & WebKB Ontology [Martin
and Eklund, 2000 ; Martin, 1996]. The reuse of ontologies is
both seductive (saves time, efforts and favors
standardization) and difficult (commitments and
conceptualizations have to be aligned between the reused
ontologies and the needed one). These ontologies have not
been imported directly, the best way for us to use them was
to start from their informal version in natural language.
Natural language processing tools could help this analysis,
and translators between formal languages could ease reuse.
Reused sources have to be pruned ; scenarios capture the
scope of the intervention and a shared vision of the
stakeholders, they can be used to decide whether or not a
concept is relevant e.g.: the 'ownership' relation of the
Enterprise Ontology was not reused in our ontology because
this relation does not seem exploitable in our scenarios. We
also considered other informal sources: some very general
ones helped us structure upper parts of some branches e.g.:
the book 'Using Language' from H.H. Clark inspired the
branch on representation systems ; others very specific
enabled us to save time on enumerating some leaves of the
taxonomical tree e.g.: the MIME standard for electronic
format description. The systematic use of dictionaries or
available lexicons is good practice. In particular, the meta-
dictionaries have proved to be extremely useful. They
enable access to a lot of dictionaries and therefore one can
easily compare definitions and identify or build the one that
correspond to the notion one wants to introduce. We made
extensive use of [OneLook, 2000].

Ontology
State of affair
Annotations

Fig.1 O.S.A. Schema

Instantiation of the ontology
Referencing the state of affair
Interdependency prototype
life cycle

Heiner Stuckenschmidt
120

3

The candidate terms were collected in a set of informal
tables. The next step is to produce consensual definitions to
build the concepts defined 'in intension'. At this point,
labeling concepts with one term is both convenient and
dangerous. It is a major source of 'ambiguity relapse' where
people relapse in ambiguity using the label terms according
to the definition they associate to it and not the definition
actually associated to it during the semantic commitment.
The explicit representation and the existence of management
functionality for terminological aspects in tools assisting
ontologists are real needs. The obtained concepts were
organized in a taxonomy: we started regrouping concepts
firstly in an intuitive way, then iteratively organizing and
reviewing the structure. We studied several principles to
build the taxonomical tree: the extended Aristotelian
principles in [Bachimont, 2000], the semantic axis in
[Kassel et al., 2000], and the extensive work of Guarino and
Welty [Guarino, 1992; Guarino and Welty, 2000]. The main
problem is that, as far as we know, no tool is available to
help an ontologist apply these principles easily and
independently of a formalization language; it can become a
titanic work to apply these theories to large ontologies.

The way to design an ontology is still debated in the
knowledge engineering community. There is a tendency to
distinguish between three approaches: Bottom-Up, Top-
Down and Middle-Out. We are not convinced that there
exists such a thing as a purely top-down, bottom-up or
middle-out approach. They seem to be three complementary
perspectives of a complete methodology with concurrent
processes present and at work at different levels of depth
(bottom, middle or top) and different detail grains (concepts
or groups of concepts). We shall not deny that for a given
case, an approach can mainly rely on one perspective, but
we would not oppose them as different approaches: when
engineering an ontology, an ontologist should have the tasks
defined in these three perspectives on the go at one time. In
our case, some tasks were performed in parallel in the
different perspectives, e.g. : we studied existing top-
ontologies and upper parts of relevant ontologies to
structure our top part and reuse parts of existing taxonomies
(top-down approach); we studied different branches,
domains, micro-theories of existing ontologies as well as
core subjects identified during data collection to understand
what were the main areas we needed and group candidate
terms (middle-out approach); we exploited reports from
scenario analysis and data collection traces to list scenario
specific concepts and then started to regroup them by
generalization (bottom-up approach). The different buds
(top concepts, core concepts, specific concepts) opening out
in the different perspectives are the origins of partial sub-
taxonomies. The objective then is to ensure the joint of the
different approaches and an event in one perspective
triggers checks and tasks in others.

This approach resulted in a more or less three-layered
ontology: (1) A very general top (2) A very large middle
layer divided in two main branches: one generic for
corporate memory domain and one dedicated to the topics of
the application domain (3) An extension layer which tends

to be scenario and company specific with internal complex
concepts. We obtained three semi-informal tables (concepts,
relations and attributes) with the following columns: (1) the
label of the concepts / relations / attributes, (2) the concepts
linked by the relation or the concept and the basic type
linked by the attribute, (3) the closet core concept or the
thematic fields linked by the relation, (4) the inheritance
links, (5) synonymous terms for the label, (6) a natural
language definition to try to capture the intension, and (7)
the collection source. This last column introduces the
principle of traceability and it is interesting for the purpose
of abstracting a methodology from the work done. It enables
to know what sort of contribution influenced a given part of
the ontology and to trace the effectiveness of reuse.
However this is by far not enough and the complete design
rationale of the ontology should be captured in order to help
people understand and may be commit to or adapt it.

The final formal degree of the ontology depends on its
intended use. The goal of the formalization task is not to
take an informal ontology and translate it into a rigorously
formal ontology, but to develop the formal counterpart of
interesting and relevant semantic aspects of the informal
ontology in order to obtain a documented (informal
description possibly augmented by navigation capabilities
from the formal description) operational ontology (formal
description of the relevant semantic attributes needed for the
envisioned system). The formal form of an ontology must
include the natural language definitions, comments,
remarks, that will be exploited by humans trying to
appropriate the ontology. This also plays an important role
for documenting the ontology and therefore for ontology
reuse, reengineering and reverse-engineering.

In our case, the last step of formalization was the
translation of semi-informal tables in RDF. Thanks to the
XML technology we managed to keep the informal view
through XLST style sheets: (a) a style sheet recreates the
table of concepts (b) a second one recreates the table of
relations and attributes (c) a last one proposes a new view as
a tree of concepts with their attached definition as a popup
window following the mouse pointer. This pop-up is a first
attempt to investigate how to proactively disambiguate
navigation or querying: before the user clicks on a concept,
the system displays the natural language definition inviting
the user to check his personal definition upon the definition
used by the system so as to avoid misunderstandings. The
second interesting point of that view is that if the user clicks
on a concept he obtains all the instances of this concept and
its sub-concepts, so this view is a link between the
intensional level and the extensional one.

The design of an ontology is an iterative maturation
process, it follows a prototype life-cycle [Fernandez et al.,
1997]. As an example, one of the problems spotted when
reviewing the ontology was the redundancy ; for instance
we found that annotating a document as multi-modal is
redundant with the fact that we annotated it with the
different modes it uses. So we decided that the multi-modal
was not a basic annotation concept and that it should be a
defined concept derived from other existing concepts where

Heiner Stuckenschmidt
121

4

possible. However the notion of defined concept, does not
exist in RDFS, and we will have to extend the schema as
proposed in [Delteil et al., 2001].

The first draft of the ontology was a good step for
feasibility study and first prototypes, but it comes with no
surprise that the prototype life-cycle is time consuming.
Moreover the ontology is a living object the maintenance of
which has consequences beyond its own life-cycle : what
happens to the annotations written thanks to this conceptual
vocabulary when a change occurs in the ontology? Deletion
and modification obviously raise the crucial problem of
coherence and correction of the annotation base. But an
apparently innocuous addition of a concept also raises the
question of the annotations using a parent concept of the
new concept and that could have been more precise if the
concept had existed when they were formulated: should we
review them or not ? These problems are obviously even
more complex in the context of a distributed system.
Finally, an ergonomic representation interface is a critical
factor for the adoption of the ontology by the users; if the
user is overloaded with details or lost in the meanderings of
the taxonomy he will never use the system and the life-cycle
of the ontology will never complete a loop. We are
investigating that point, and the terminological level seems
very important here too.

4 Conclusion
Ontologies are a keystone of multi-agent systems and play
an important role in the new generation of information
systems, therefore they will clearly become a central
component of MAIS and they surely do in CoMMA. Our
experience gave rise to several expectations and to be able
to manage, share and discuss the growing ontology, we
would definitively need an integrated environment with: (a)
improved interfaces for representation, navigation and
manipulation of ontologies (b) natural language processing
tools to semi-automate the analysis of the extensive part of
the resources that are textual (c) facilities for applying the
results from theoretical foundations of Ontology and help
ontologists check their ontologies (d) tools to manage the
versioning of the ontology and all that has been built upon it
(annotations, models, inferences...) and to capture the design
rationale. Finally work is needed to help make explicit and
preserve the intensional semantic structure of the
computational level. If the new generation of AI agents is to
be based on an explicit conceptualization, this must not be
limited to the knowledge exchanged currently, it must
include the action performed on it with both their intension
and intention.

Acknowledgements
I warmly thank my colleagues Rose Dieng, Olivier Corby
and Alain Giboin, the CoMMA consortium and the
European Commission funding the CoMMA project.

References
 [Bachimont, 2000] Bachimont, Engagement sémantique et

engagement ontologique: conception et réalisation
d'ontologies en ingénierie des connaissances, In J. Charlet
et al., Ingénierie des connaissances Evolutions récentes et
nouveaux défis, Eyrolles

[Caroll, 1997] Caroll, Scenario-Based Design, In Helander
et al. Handbook of Human-Computer Interaction., Chap.
17, Elsevier Science B.V.

[CoMMA, 2000] CoMMA, Corporate Memory
Management through Agents, In Proc. E-Work E-
Business

[Corby et al., 2000] Corby, Dieng, Hébert. A Conceptual
Graph Model for W3C Resource Description Framework.
In Proc. ICCS'2000

[Cyc, 2000] www.cyc.com/cyc-2-1/cover.html
[Delteil et al., 2001] Delteil, Faron, Dieng, Extension of

RDFS based on the CG formalism, In Proc. ICCS'01
[Fernandez et al., 1997] Fernandez, Gomez-Perez, Juristo.

METHONTOLOGY: From Ontological Arts Towards
Ontological Engineering. In Proc. AAAI97 Symposium
Ontological Engineering

[Gandon et al., 2000] Gandon, Dieng, Corby, Giboin, A
Multi-Agents System to Support Exploiting an XML-
based Corporate Memory, In Proc. PAKM'00

[Guarino and Welty, 2000] Guarino, Welty, Towards a
methodology for ontology-based model engineering. In
Proc. ECOOP-2000 Workshop Model Engineering.

[Guarino, 1992] Guarino, Concepts, Attributes, and
Arbitrary Relations: Some Linguistic and Ontological
Criteria for Structuring Knowledge Bases. In Data and
Knowledge Engineering 8

[Kassel et al., 2000] Kassel, Abel, Barry, Boulitreau,
Irastorza, Perpette, Construction et exploitation d'une
ontologie pour la gestion des connaissances d'une équipe
de recherche. In Proc. IC'00

 [Martin and Eklund, 2000] Martin, Eklund, Knowledge
Indexation and Retrieval and the Word Wide Web. IEEE
Intelligent Systems special issue Knowledge Management
over the Internet.

[Martin, 1996] Martin, Ph.D. Thesis Exploitation de
Graphes Conceptuels et de documents structurés et
Hypertextes pour l'acquisition de connaissances et la
recherche d'informations, University of Nice Sophia
Antipolis

[OneLook, 2000] www.onelook.com/
[Rabarijaona et al., 2000] Rabarijaona, Dieng, Corby,

Ouaddari, Building and searching a XML-based
Corporate Memory, IEEE Intelligent Systems Special
Issue Knowledge Management and Internet 56-64

[Steels, 1993] Steels, Corporate Knowledge Management.
In Barthès ed., Proc. ISMICK'93

[TOVE, 2000] www.eil.utoronto.ca/tove/ontoTOC.html
[Uschold et al., 1998] Uschold, King, Moralee, Zorgios,

The Enterprise Ontology. In Uschold and Tate The
Knowledge Engineering Review Special Issue on Putting
Ontologies to Use, Vol. 13

Heiner Stuckenschmidt
122

Statement of Interest: Towards Ontology Language Customization

Heiner Stuckenschmidt
Center for Computing Technologies

University of Bremen

1 Motivation

It has been argued that intelligent applications benefit from
the use of ontologies encoding background knowledge about
the structure of a domain and the meaning of terms occurring
therein. Prominent examples can be found in the following
application areas:

Systems Engineering: The use of ontologies for the de-
scription of information and systems has many benefits. The
ontology can be used to identify requirements as well as in-
consistencies in a chosen design. It can help to acquire or
search for available information. Once a systems component
has been implemented its specification can be used for main-
tenance and extension purposes.

Information Integration: An important application area of
ontologies is the integration of existing systems. The ability
to exchange information at run time, also known as interop-
erability, is an important topic. In order to enable machines
to understand each other we also have to explicate the vocab-
ulary of each system in terms of an ontology.

Information Retrieval: Common information-retrieval
techniques either rely on a specific encoding of available in-
formation (e.g. fixed classification codes) or simple full-text
analysis. Both approaches suffer from severe shortcomings.
Using an ontology in order to explicate the vocabulary
can help overcome some of these problems. When used
for the description of available information as well as for
query formulation an ontology serves as a common basis for
matching queries against potential results on a semantic level.

These application areas come with completely different re-
quirements concerning the modeling and reasoning abilities
of the ontology language used. In turn, existing ontology
languages are rather generic, because they aim at providing
modeling facilities independent of a concrete application. In
principle, being generic is an advantage, because a generic
language covers broader range of applications. However, the
use of generic languages turns out to produce problems in
real-life applications. These problems include the following:

• Natural distinctions of an application domain are not
supported by the language:In the design of knowledge-
based systems the distinction between tasks and methods
(and their ontologies) is an important one.

• The use of modeling constructs in a concrete application
is not obvious:A re-occurring discussion in ontologi-
cal modeling is whether to represent a domain item as a
class or an instance.

• Small languages are not used, because implicitly repre-
sentable constructs are overlooked:The concept of dis-
jointness of a set of classes can be modeled by negation
and Implication.

• Unused language features lead to unnecessary complex-
ity of the language:Transitive slots are a modeling con-
struct not used too often that is hard to handle with re-
spect to inference.

We argue that ontology language can gain practical rele-
vance if they would address these problems. A promising
way is to provide a framework that allows to customize an
ontology language with respect to a given application. A cus-
tomized language should cover the natural distinctions of a
domain and provide guidance for the use of language con-
structs. Further it should be designed as an optimal trade off
between reasoning expressiveness and reasoning complexity.

2 The Representation-Reasoning Trade-Off of
Ontology Languages

We exemplify the representation-reasoning trade-off of on-
tology languages and its impact on the application of the lan-
guage using ontology languages that are based on description
logics. The rational for this choice is:

• The expressiveness and complexity of these languages
has been studied thoroughly and well-founded results
are available[Donini et al., 1991]

• It has been shown that description logics provide a unify-
ing framework for many class-based representation for-
malisms[Calvaneseet al., 1999].

• Description logic-based languages have become of inter-
est in connection with the semantic web. the languages
OIL [Fenselet al., 2000] and DAML-ONT [McGuin-
nesset al., 2000] are good examples.

Heiner Stuckenschmidt
123

We compared three description logic languages that have
been used to build ontologies, i.e. CLASSIC, LOOM and
OIL. The results of the comparison are depicted in figure 1.

CLASSIC OIL LOOM
Logical Operators

conjunction × × ×
disjunction × ×
negation × ×

Slot-Constraints
slot values × ×
type restriction × × ×
range restriction × × ×
existential restriction × × ×
cardinalities × × ×

Assertions
entities × (×) ×
relation-instances × (×) ×

Figure 1: Expressiveness of some description logic based on-
tology languages

The comparison reveals an emphasis on highly expressive
concept definitions. The languages compared are capable of
almost all common concept forming operators. An exception
is CLASSIC that does not allow the use of disjunction and
negation in concept definitions. The reason for this shortcom-
ing is the existence of a sound and complete subsumption
algorithm that support A-box reasoning[Borgida and
Patel-Schneider, 1994]. LOOM on the other hand is a very
expressive language containing all language constructs used
in the comparison. The price for this high expressiveness is
a loss in reasoning support: Soundness and completeness of
the subsumption algorithms cannot be guaranteed[Horrocks,
1995].

The OIL approach is a first attempt to overcome the prob-
lems that arise from the representation-reasoning trade-off by
defining a family of languages of different complexity. While
the purpose of the smallest language of the OIL family (Core
OIL) is to define a well-founded semantics for schemas of the
emerging web standard RDF. This language is rather small
and therefore allows efficient reasoning. The main language
Standard OILis tailored to have efficient reasoning support
for consistency checking and for automatic construction of in-
heritance hierarchies for an extremely expressive logic. How-
ever this language does not include assertional language, be-
cause this would disable the reasoning support. For applica-
tions where instances are required, the OIL defines the lan-
guageInstance-OILthat includes instances, but has no rea-
soning support.

3 The Design Space of Ontology Languages
The OIL framework allows a user to select between lan-
guages of different expressive power, however it does not
address the problem of tailoring a language to a given ap-
plication. Our main objective is that the current architecture
of the OIL framework does only allow for strict extensions

excluding the possibility to define alternative language that
only partially overlap.

In order to allow more flexible variations we have to in-
vestigate the design space of ontology languages. There
are many options to be taken into account. We could
rely on previous work on comparing frame-based and ter-
minological knowledge representation systems[Karp, 1993;
Heinsohnet al., 1994]. As our concerns are rather applica-
tion driven than of a theoretical nature, we have to abstract
from the technical details of the languages that are mainly
concerned in the work mentioned above. We therefore con-
centrate on the following questions:

• What kinds of knowledge have to be modeled ?

• Which reasoning tasks have to be performed ?

• Which level of complexity is acceptable ?

The answers to these questions depend on the purpose of the
language. They constitute dimensions of the design space:
Different types of knowledge can be used for different kind
of reasoning tasks. Further different kinds of reasoning meth-
ods result in different levels of reasoning complexity. In order
to customize a language, we have to locate it with respect to
each of these dimensions. Possible locations are further re-
stricted by the needs and possibilities of the application envi-
ronment. Examples for further design constraints are:

• The conceptualization of the application domain as well
as pre-existing models implies the existence of certain
knowledge types. The designed language must at least
implicitly support these knowledge types.

• The role of the ontology in the overall application im-
plies a certain task type. The design space is therefore
restricted to variations of this task type.

• The availability of reasoners for the given task does not
only have impact on the reasoning complexity, but also
on the types of knowledge that can be used to define the
ontology.

These restrictions have to be taken into account when the
design space is explored. The situation becomes complicated,
because the dimensions are not independent of each other.
We already mentioned the interrelation of modeling primi-
tives and reasoning support. In order to resolve such conflicts
an engineering method is needed to guide the search process
and validate the result.

4 A Pattern-Based Approach
We propose an engineering approach for customizing on-
tology languages that is based on the notion of ontology
patterns. A pattern denote a language construct with special
properties with respect to structure, semantics and inference
capabilities. In a related approach Staab an colleagues
propose the use ofsemantic patternsto support ontology
engineering and propose a set of such patterns[Staab and
Maedche, 2000]. The idea of providing a set of simple
patterns that can be combined to form more complex patterns
on which languages can be based is essential, because
it makes different customized languages comparable and

Heiner Stuckenschmidt
124

provides a basis for translations across these languages. As
already mentioned, we restrict ourselves to description-logic
based languages. Therefore, our set of modeling primitives
to start with are the concept forming operators of these kinds
of languages.

Relying on description logics we already get a notion of
more complex patterns in terms of special logics. These log-
ics result from the combination of operators. The name of
the language and therefore the pattern is a combination of
the identifiers of the operators included. One of the most
well known patterns isALC the description logic containing
Boolean operations on class expressions as well as universal
and existential restrictions on slot fillers. The pattern used
to resemble different class-based representation formalisms
in [Calvaneseet al., 1999] is ALUNI which contains the
corresponding operators: conjunction, disjunction, negation,
universal restrictions on slot fillers, quantified number restric-
tions and inverse slots.SHIQ, the logic underlying OIL also
contains existential restrictions, transitive slots and conjunc-
tion of slot definitions. Theoretical results from the field of
description logics provide us with the knowledge about de-
cidable combinations of modeling primitives and their com-
plexity with respect to subsumption reasoning. Consequently,
every decidable combination of operators is a potential pat-
tern that can be used to build the ontology for a certain appli-
cation. In the course of the engineering process we have to
handle different patterns:

Reasoner Patternsdescribe the language a certain reasoner
is able to handle.

Reuse Patternsdescribe the language a useful, already ex-
isting ontology in encoded in.

Acquisition Patterns describe the language needed to en-
code acquired knowledge.

The Goal Pattern describes the language that will be de-
signed.

In order to find the goal pattern, we have to find an optimal
trade-off between the other patterns involved. For this pur-
pose we invent the notion of coverage for ontology patterns.
A PatternP1 is said to cover a patternP2, if all modeling
primitives fromP2 are also contained inP21 or can be simu-
lated by a combination of modeling primitives fromP1. We
denote the fact thatP1 coversP2 as P2 ≺ P1. Using the
notion of coverage we can now define the customization task.

Definition: Customization Task. A customization task is
defined by a three tuple〈R,U ,A〉 whereR is a set of rea-
soner patterns,U a set of reuse patterns andA a set of acquisi-
tion patterns. The patternG is a solution of the customization
task if it is the minimal pattern that is covered by a reasoner
pattern and covers all reuse and acquisition patterns, or for-
mally:
Suitability of the goal pattern:

suitable(G) ⇐⇒ ∃R ∈ R(G ≺ R)∧∀P ∈ U∪A(P ≺ G)

Minimality of the goal pattern:
minimal(G) ⇐⇒ ¬∃G′(suitable(G′) ∧G′ ≺ G)

Solution:

solution(G) ⇐⇒ suitable(G) ∧minimal(G)

This definition provides us with an idea of the result of the
customization process. However there are still many tech-
nical and methodological problems. We have to investigate
the nature of the covering predicate and develop an algorithm
for deciding whether one pattern covers the other. Further,
the customization process has to be implemented. It is quite
likely that the acquisition pattern will not be completely avail-
able in the beginning. Therefore we have to incorporate user
interaction and revisions of previous decisions. Finally, re-
sults have to be generalized beyond the scope of description
logics which will be difficult, because there are less theoreti-
cal results to build upon.

References
[Borgida and Patel-Schneider, 1994] A. Borgida and P.F.

Patel-Schneider. A semantics and complete algorithm for
subsumption in the classic description logic.Journal of
Artificial Intelligence Research, 1(2):277–308, 1994.

[Calvaneseet al., 1999] Diego Calvanese, Maurizio Lenz-
erini, and Daniele Nardi. Unifying class-based represen-
tation formalisms. Journal of Artificial Intelligence Re-
search, 11:1999–240, 1999.

[Donini et al., 1991] F.M. Donini, M. Lenzerini, D. Nardi,
and W. Nutt. The complexity of concept languages. In
J. Allen Sandewall, R. Fikes, and E., editors,2nd Interna-
tional Conference on Knowledge Representation and Rea-
soning, KR-91. Morgan Kaufmann, 1991.

[Fenselet al., 2000] D. Fensel, I. Horrocks, F. Van Harme-
len, S. Decker, M. Erdmann, and M. Klein. Oil in a nut-
shell. In12th International Conference on Knowledge En-
gineering and Knowledge Management EKAW 2000, Juan-
les-Pins, France, 2000.

[Heinsohnet al., 1994] J. Heinsohn, D. Kudenko, B. Nebel,
and H.-J. Profitlich. An empirical analysis of termi-
nological representation systems.Artificial Intelligence,
68(2):367–397, 1994.

[Horrocks, 1995] Ian Horrocks. A Comparison of Two Ter-
minological Knowledge Representation Systems. Master’s
thesis, University of Manchester, 1995.

[Karp, 1993] Peter D. Karp. The design space of frame
knowledge representation systems. Technical Note 520,
AI Center SRI International, May 5 1993.

[McGuinnesset al., 2000] D. McGuinness, R. Fikes,
D. Connolly, and L.A. Stein. Daml-ont: An ontology
language for the semantic web.IEEE Intelligent Systems,
2000. Submitted to Special Issue on Semantic Web
Technologies.

[Staab and Maedche, 2000] Steffen Staab and Alexander
Maedche. Ontology engineering beyond the modeling of
concepts and relations. InProceedings of he ECAI’2000
Workshop on Applications of Ontologies and Problem-
Solving Methods, Berlin, Germany, 2000.

Heiner Stuckenschmidt
125

A Modest Proposal: Reasoning Beyond the Limits of Ontologies

Wolfgang Wohner
Bavarian Research Center for Knowledge Based Systems

Orleansstraße 34, 81667 Munich, Germany
wohner@forwiss.de

Abstract

We will present an approach that extends the formal
model of ontologies by application semantics. The
novel notion of laws governing these semantics is
motivated and introduced.

1 Introduction

In this short paper we want to stress the need for a
framework that models the inference semantics of onto-
logies. An ontology provides a formalization of the concepts
of an application area and their semantics, indicated e.g. by
relations or axioms, but it is lacking a description of how
this knowledge may be used for automated reasoning. We
suggest to regard ontologies as static formal models that
require additional information, i.e. metadata on ontologies,
in order to be processed correctly. For explanatory purposes
we will consider an exemplary ontology used for intelligent
searching in semi-structured documents. An extended
example in section 2 will motivate considerations about the
semantics the ontology has to cover. Section 3 discusses
how this knowledge may be applied when processing user
queries and argues that an explicit modeling of the
underlying patterns and rules is necessary.

2 Seeking Wisdom

Suppose a computer scientist expert is looking for some
specific information, say, about the nature of knowledge. As
this is a very complex question she might want to consult a
local philosopher. The only philosopher living nearby she
has heard of is a Mr. Smith but, unfortunately, he is not
listed in the phone book. Now, she is looking for his address
and so it is only reasonable that she will try to find Web
documents containing this information.

Most probably she will first use one or more keyword-based
search engines such as Google or AltaVista. The computer
scientist’s task consists of finding adequate keywords to
formulate her query. Although her actual interest lies in
getting in touch with a (any) philosopher living nearby she
cannot express this fact using keywords. Generally,

drawbacks of the keyword-based approach concern (i) the
limited expressiveness of the query languages and (ii) the
insufficient treatment of semantic text properties such as
linguistic diversity or contextual semantics.

The computer science expert might therefore turn to
information retrieval (IR) techniques like text mining and
information extraction using wrappers. Although text mining
techniques have been proven to yield acceptable results in
certain application areas they are still very limited as they
are predominantly concerned with exploiting linguistic
features and not with the actual semantics of the text itself.
Existing semantic analysis methods are less advanced and
computationally too expensive to be used for exhaustive
searching in large text corpora [Tan, 1999]. Wrappers on the
other hand are used for selectively extracting textual
components. But wrappers are highly specialized and will
return useless results from pages (even valid ones) not
complying to their templates, they focus on syntactic
structure, not content and, consequently, wrappers know no
mechanisms for adapting to different document structures as
it is the patterns of these very structures (and not the
associated concepts) they are looking for.

In summary, all approaches mentioned so far are lacking:
� a semantic notion of the components of a query (e.g.

that ‘Smith’ is a name)
� a semantic notion of what the query expects as a return

value (e.g. an address)
� a technique for adequately processing queries (e.g.

adaptively, by semantic query rewriting)
� a general means for extracting the required information

from heterogeneous text sources

Common to all of these requirements is the basic need for a
sound and explicit modeling of background knowledge. A
promising approach can be found in the context of database
system design. The information stored in a database is
highly structured according to its schema, an elaborate
abstraction of some application area that has been
formalized using e.g. entity/relationship (E/R) techniques.
Each data unit of a database is strictly typed, e.g. (using
relational syntax) the name ‘Smith’ might be a string value

Heiner Stuckenschmidt
126

of an attribute surname that appears in a relation called
philosophers. An according database schema then allows for
queries like (supposing the philosophers relation also
contains an attribute address):

SELECT address
FROM philosophers
WHERE surname = ‘Smith’

Thus the internal structure of a database as depicted by its
schema offers powerful querying possibilities: concepts like
surname can be addressed directly and their semantics are
known from the database system design. Nevertheless, there
remains a remarkable gap between the homogeneous and
well-structured data inside a database system and the
heterogeneous, at best semi-structured sources of infor-
mation found elsewhere, which renders integrating their
semantics a complicated and complex task.

Heterogeneity, here, refers to differences in both, internal
structure and vocabulary of the documents containing
information. Ultimately, the gap between syntax and
semantics has to be bridged. This can be facilitated
significantly by taking advantage of the properties of
markup languages (HTML, XML, SGML) that are used to
describe metadata which is structuring and commenting on
the textual content of documents. Metadata by itself cannot
be directly identified with semantics (after all metadata is
still data) but (i) it conforms to a predefined vocabulary and
(ii) exhibits structural properties (e.g. nested structures) and
these characteristics can be exploited to derive semantics.

The foundations for processing factual knowledge are
addressed in the field of ontology engineering. Ontologies
comprise an abstract knowledge representation of a certain
domain. Modeling primitives are concepts, relations,
functions, axioms and instances [Gruber, 1993] which are
used to formalize the static aspects of the respective domain.
There are two general approaches to combine ontologies and
markup languages: (i) defining new markup which is
directly related to the ontology or (ii) translating foreign
markup into native concepts of the local ontology. The first
approach has been propagated by SHOE [Luke and Heflin,
2000] and Ontobroker [Fensel et al., 1998] but its drawback is
obvious. Since their markup methods did not evolve to
become widely accepted standards, only a small portion of
Web documents comply with them. For this reason current
research, e.g. [Fensel et al., 2000], [Farquhar, 1996],
[Stuckenschmidt and Wache, 2000], is focused on establishing
a direct linking between domain knowledge and various
ways to express it because this provides the basis for
reasoning on information which is distributed over a
heterogeneous environment such as the semi-structured
document space of the Web. The remainder of this paper

will motivate a framework that is aimed at providing a
formal basis for such reasoning processes which, eventually,
could help the computer science expert find the
philosopher’s address.

3 Paving the Path

In this section we will examine dynamic aspects of ontology
processing. An exemplary system used for providing access
to heterogeneous semi-structured data sources will illustrate
our approach. Basic assumptions about the system are:
� The system possesses a global ontology that comprises

formalized knowledge about a domain.
� There is a set of heterogeneous semi-structured

documents (e.g. XML documents) covering topics of
that domain.

� There exists a mapping between markup tags of the
documents and the concepts of the ontology, i.e. the
ontology can ‘understand’ markup semantics in a sense
that the concepts involved are part of its formal model.

The system’s main purpose is to answer user queries about
the contents of the documents. Return values can be
document fractions (e.g. concepts, their values or combina-
tions thereof) or complete documents. In order to retrieve
valid results the system first has to understand the semantics
of the query and then make use of the ontology’s domain
knowledge for exploring the syntactic structures of the
documents. The general task is to derive information
(semantics) from semi-structured data (data conforming to
syntax). There are some properties of semi-structured data
the system may take advantage of. We will illustrate this by
referring to XML syntax:
� Syntax definition: the syntax definition of markup

elements used within an XML document is known via
its DTD, so the system is aware of all element names,
their attributes and subelements.

� Concepts: the semantics of the structuring elements
(tags) are known to the system because of the mapping
between elements and ontology concepts.

� Context: markup elements are organized hierarchically
thus establishing contexts (e.g. by nesting tags like
<Name> and <Address> into <Person>) which can be
interpreted semantically.

� Types: in a weak sense each markup element represents
a type of its own but it is also possible to introduce
primitive or derived element datatypes using e.g. XML
Schema.

This syntax information can be utilized when processing
queries that work on semi-structured documents. Existing
systems, like On2broker [Fensel et al., 2000], that provide
access to semi-structured information sources are dealing

Heiner Stuckenschmidt
127

with this task but the inference mechanisms and heuristics
applied here are usually hidden within their software
components. We want to stress the importance of
uncovering the underlying semantics and integrating them
into the ontology structure. This is not just a matter of
rendering implicit processes explicit but of providing a
formal semantic model about the usage of the semantics an
ontology provides on its part. Thus, such a formalization
defines metadata about the ontology, foremost semantic
processing rules we call laws. Again, laws have to be
understood and executed by software components but the
invaluable benefit they could provide is a homogeneous
formal description of the semantic and syntactic
implications of such processes.

Laws may be regarded as function templates that accept
cases (e.g. a query) and contain formalized descriptions how
to solve them. Our framework is aimed at defining a
theoretical basis for such ontology laws and their impact on
other elements of the ontology. For the remainder of this
section we will stress various aspects of laws by referring to
the illustrative example of the previous section.

� Laws address inference semantics.

The original query, ‘Find the address of a philosopher living
nearby’, contains an inexact, or vague, concept: nearby. The
meaning of nearby depends on the context of the query, as
there are different notions of closeness in the context of
houses and, say, atoms. In such cases techniques are needed
to establish context which requires laws that describe how
the desired information can be deduced. These techniques
may vary for different semantic classes, or categories, of
concepts, such as precise and vague ones, i.e.

� Laws can be general or attributed to single concepts or
concept categories.

It is of major importance to identify such categories in order
to establish a formal basis for reasoning processes. Once the
category of a concept is known all laws attributed to that
category can be directly applied to this concept as well.

� Laws state the limits of ontologies.

Some knowledge cannot be deduced because of incomplete
knowledge. Although the context of nearby may be
correctly inferred the point of reference (e.g. the computer
scientist’s own address) remains unknown. This indicates
incomplete knowledge about the defining constituents of the
query, i.e. at least one input factor of the respective law is
missing and there is no other law describing how to compute
it. Similarly, the ontology itself might be lacking concepts as
well, e.g. a notion for closeness within the context of

addresses might not be included. Generally, laws address
representational limits, i.e. what can be expressed by an
ontology, and inferential limits about what can be deduced
from these representations.

� Laws control semantic query rewriting.

Automated semantic query rewriting is a promising
technique for improving query return values. Using ontology
knowledge an original query may be transformed into a set
of refined queries. The excerpt of an XML document shown
below does not contain an <Address> tag, so a query
restricted to searching addresses would omit this document:

<Person>
 <Name> Smith </Name>
 <Phone> (222) 333-4444 </Phone>
 <Profession> philosopher </Profession>
</Person>

By contrast, laws provide rules for extending the scope of
the query from addresses to e.g. phone numbers, street
names and other address components known to the
ontology. This would yield Mr. Smith’s phone number,
valuable information that the original query could not have
produced.

� Laws manage uncertainty.

Uncertainty may play an important role in the context of
iterative document querying, i.e. reasoning on grounds of
intermediate results extracted from texts. From the XML
example shown above it can be inferred that ‘philosopher’ is
an instance of the concept profession. The value
‘philosopher’ can now be interpreted as a concept as well.
But as this information has been derived from the textual
content of a document it must be regarded as uncertain
knowledge. Markup elements, on the other hand, can be
mapped to concepts directly and therefore establish reliable
knowledge. Uncertain knowledge is an omnipresent factor in
intelligent information management and we will intensify
our research efforts in that direction.

4 Conclusions and Future Work

We have motivated the importance of a framework for
classifying and representing ontology laws and discussed
some possible applications. Our future work will consist of
elaborating this approach by providing a sound formal
foundation of such a framework and incorporating a basic
set of laws into the ontology of the intelligent information
management system we are currently developing.

Heiner Stuckenschmidt
128

5 References

[Farquhar, 1996] A. Farquhar, R. Fikes, J. Rice. The
Ontolingua Server: A tool for Collaborative Ontology
Construction. Proceedings of KAW96. Banff, Canada,
1996.

[Fensel et al., 1998] D. Fensel, S. Decker, M. Erdmann, R.
Studer. Ontobroker: The Very High Idea. In Proceedings
of the 11th International Flairs Conference (FLAIRS-98),
Sanibel Island, Florida, USA, pp. 131-135, May 1998.

[Fensel et al., 2000] D. Fensel, J. Angele, S. Decker, M.
Erdmann, H.-P. Schnurr, S. Staab, R. Studer, A. Witt.
On2broker: Semantic Access to Information Sources at
the WWW. In Proceedings of IJCAI-99 Workshop on
Intelligent Information Integration, Stockholm, 31 July
1999.

[Gruber, 1993] R. Gruber. A translation approach to
portable ontology specification. Knowledge Acquisition
#5, pp. 199-200, 1993.

[Luke and Heflin, 2000] Luke, S., Heflin J. SHOE 1.01.
Proposed Specification. SHOE Project. February 2000.
http://www.cs.umd.edu/projects/plus/SHOE/spec1.01.htm

[Stuckenschmidt and Wache, 2000] Context Modeling and
Transformation for Semantic Interoperability. In
Proceedings of the 7th International Workshop on
Knowledge Representation meets Databases (KRDB
2000), Berlin, Germany, August 21, 2000.

 [Tan, 1999] A.-H. Tan. Text Mining: The state of the art
and the challenges. In Proceedings of the PAKDD’99
workshop on Knowledge Discovery from Advanced
Databases, Beijing, pp. 65-70, April 1999.

Heiner Stuckenschmidt
129

Joint Session with IJCAI-01
Workshop on e-Business and

the Intelligent Web

Solving integration problems of e-commerce standards and initiatives through
ontological mappings

Oscar Corcho, Asunción Gómez-Pérez
Facultad de Informática, Universidad Politécnica de Madrid.

Campus de Montegancedo s/n. Boadilla del Monte, 28660. Madrid. Spain.
{ocorcho, asun}@fi.upm.es

Abstract
The proliferation of different standards and joint
initiatives for the classification of products and
services (UNSPSC, e-cl@ss, RosettaNet, NAICS,
SCTG, etc.) reveals that B2B markets have not
reached a consensus on coding systems, level of
detail of their descriptions, granularity, etc. This
paper shows how these standards and initiatives,
which are built to cover different needs and
functionalities, can be integrated using a common
multi-layered knowledge architecture through
ontological mappings. This multi-layered ontology
will provide a shared understanding of the domain for
applications of e-commerce, allowing information
sharing and interoperation between heterogeneous
systems. We will present a tool called WebPicker and
a method for integrating these standards and
initiatives, enriching them and obtaining the results in
different formats using the WebODE platform. As an
illustration, we show a case study on the computer
domain, presenting the ontological mappings
between UNSPSC, e-cl@ss, RosettaNet and an
electronic catalogue from an e-commerce platform.

1 Introduction
The popularity of Internet and the huge growth of new
Internet technologies have led in the last years to the
creation of a great amount of e-commerce applications
([McGuinness, 99] [Fensel, 00] [Berners-Lee, 99]).
However, technology is not the unique key factor for the
development of current e-applications. The context of e-
commerce, and especially the context of B2B (Business to
Business) applications, requires that an effective
communication between machines is possible. In other
words, semantic interoperability between the information
systems involved in the communication is crucial.

Two extremely important factors contribute to this
effective non-human communication: (1) a common
language in which the resources implied in the
communication can be specified, and (2) a shared
knowledge model and vocabulary between the different
systems that are present in the whole process. We will call
them the syntactic and semantic dimensions.

The first dimension has led to the creation of varied
representation languages for the specification of web
resources (XOL, SHOE, OML, RDF, RDF Schema, OIL
and DAML+OIL). A comparative study of the
expressiveness and reasoning mechanisms of these
languages can be found in [Corcho et al, 00].

The semantic dimension is related with the knowledge
model and vocabulary used by the systems involved in the
communication. In that sense, the use of a shared and
common knowledge model and vocabulary increases the
interoperability among existing and future information
systems. This problem can be solved by ontologies. In fact,
ontologies can be defined as "formal1 and explicit
specifications of a shared conceptualization" [Studer et al,
98]. If we compare this definition with the one given for the
Semantic Web in [Berners-Lee, 99] ("the conceptual
structuring of the Web in an explicit machine-readable
way"), we can foresee that ontologies will play a key role in
its development, and hence they will be applied to the key
areas of the Semantic Web: e-commerce among others.

Large and consensuated knowledge models for e-
commerce applications are difficult and expensive to build.
Several standards and initiatives (UNSPSC, RosettaNet, e-
cl@ss, NAICS, SCTG, etc2) came up in the previous years
to ease the information exchange between customers and
suppliers, and between different suppliers, by providing
frameworks to identify products and services in global
markets. However, the proliferation of standards and
initiatives reveals that B2B markets have not reached a
consensus on coding systems, level of detail, granularity,
etc., which is an obstacle for the interoperability of
applications following different standards. For instance, an
application that uses the UNSPSC code cannot interoperate
with an application that follows the e-cl@ss coding system.
Consequently, we claim that with the current state of affairs
it is more suitable to establish ontological mappings
between existing standards and initiatives than to pretend to
build the unified knowledge model from scratch.

1 Formal must be understood as machine-readable.
2 UNSPSC(http://www.unspsc.org), e-cl@ss(http://www.eclass.de)

RosettaNet (http://www.rosettanet.org/),
NAICS (http://www.census.gov/epcd/www/naics.html),
SCTG (http://www.bts.gov/programs/cfs/sctg/welcome.htm).

Heiner Stuckenschmidt
131

Several architectures for the Semantic Web have arisen
recently. Examples can be found in [Ambroszkiewicz, 00],
for solving semantic interoperability to assure a meaningful
interaction between heterogeneous agents, [Melnik et al,
00], where a layered architecture is proposed to solve the
interoperability of different Web information models and
[Benslimane et al, 00], where a multi-layered ontology
definition framework is presented in a urban management
application.

1.1 Aim of this paper
In this paper, we will focus on the semi-automatic
integration of existing standards and initiatives in a multi-
layered knowledge model for e-commerce applications
through ontological mappings. We import semi-
automatically standards and joint initiatives into the
WebODE platform [Arpírez et al, 01] using the tool
WebPicker, we integrate3 them by means of ontological
mappings, and enrich the unified knowledge model using
WebODE. The resulting multi-layered knowledge
architecture can be exported partially or completely into
different representation languages (XML, RDF(S) and OIL).

The final multi-layered knowledge model will allow the
intra-operability of vertical markets in specialized domains
and also the inter-operability between different vertical
markets (also known as horizontal markets).

The logical organization of the contents of the paper is as
follows: Section 2 outlines the main steps of the proposed
method, providing a global view of the whole process.
Section 3 describes the standards and initiatives that we
have selected as sources of information, as well as a product
catalogue from an e-commerce platform. Section 4
describes the WebODE platform, which gives support for
our method. In section 5, we describe briefly the tool
WebPicker and the process of semi-automatic extraction of
knowledge from the different sources of information.
Section 6 deals with the final knowledge architecture that
integrates the different proposals, paying special attention to
the mappings between different layers of ontologies. Section
7 presents the main guidelines we have followed for
ontology integration and enrichment. Section 8 deals with
the automatic implementation in different languages from
partial or global views of the ontologies. Finally, sections 9
and 10 will present the main conclusions that can be
extracted from the work performed and future lines of work.

2 A method for reusing standards and
initiatives to create e-commerce ontologies

In this section, we will explain the main steps of the method
we propose for building e-commerce ontologies from
standards and initiatives:

3 We talk about integration of ontologies instead of merge because
we do not pretend to build a single knowledge model out from
the existing ones, but preserve them in a common architecture.

1. Selection of standards, joint initiatives, laws, etc., of
classification of products and services. In this step,
we select the sources of information that we consider
relevant for our domain, from existing global or more
specific agreements on classifications of products and
services. They usually provide a commonly agreed
taxonomy of products and/or services, which usually
offers from 2 to 5 levels of depth.

2. Knowledge models extraction. This step semi-
automates the process of knowledge acquisition from
the sources of information previously selected and
adapts them to the WebODE’s knowledge model, which
can be expressed in XML. This activity is performed
using the tool WebPicker. Finally, the import service of
WebODE is used to upload them into the platform.

3. Design of a multi-layered knowledge architecture.
Taking into account features of the selected sources of
information (covering, globality, specificity, etc), the
aim of this step is the identification of relationships
between components in the different taxonomies.

4. Integration of knowledge models. Knowledge models
that have been automatically imported into the
WebODE platform are integrated in the layered
architecture, using the ontological mappings identified
at the design phase.

5. Enrichment of the integrated ontology. Current
standards do not include attributes for products,
relations between products, disjoints nor exhaustive
knowledge, functions, axioms, etc. Most of them just
represent taxonomies of concepts, and other ones just
include some attributes for them. Hence, they can be
enriched with extra information when possible.

6. Ontology exportation. The whole ontology or specific
parts of the ontology can be exported into different
kinds of languages, so that they can be tractable by the
systems that are using it for any application.

The following sections will describe this method and will
apply it to a case study in the computers domain.

3 E-commerce standards as knowledge models
Standards, joint initiatives, laws, etc., are good sources for
ontology building, since they are pieces of information that
have been agreed by consensus or are followed by a
community.

In this section, we present three proposals for the
classifications of products that have arisen in the context of
e-commerce: UNSPSC, RosettaNet and e-cl@ss. These
initiatives are being developed to ease the information
exchange between customers and suppliers, and between
suppliers, by providing consistent, standardised frameworks
to identify products and services in a global market.

Other similar approaches exist and are available (NAICS,
for US, Canada and Mexico, SCTG for transporting goods,
etc). We have just selected the ones enumerated before to
show the adequacy of our work in this context.

Heiner Stuckenschmidt
132

Finally, we present an electronic catalogue from an e-
commerce platform, which fits in the ontology architecture.

3.1 UNSPSC (Universal Standard Products and
Services Classification Code)

UNSPSC is a non-profit organisation composed of partners
such as 3M, AOL, Arthur Andersen, BT, Castrol and others.

Its coding system is organised as a five-level taxonomy of
products, each level containing a two-character numerical
value and a textual description. These levels are defined as
follows:
� Segment. The logical aggregation of families for

analytical purposes.
� Family. A commonly recognised group of inter-related

commodity categories.
� Class. A group of commodities sharing a common use

or function.
� Commodity. A group of substitutable products or

services.
� Business Function. The function performed by an

organisation in support of the commodity. This level is
seldom used.

The current version of the UNSPSC classification contains
around 12000 products organized in 54 segments. Segment
43, which deals with computer equipment, peripherals and
components, contains around 300 kinds of products.

Figure 1 shows a small part of the UNSPSC classification,
related to computer equipment (segment 43 of the UNSPSC
classification).

The main drawbacks of UNSPSC are: (a) the lack of
vertical cover of the products and services which appear in
the classification; (b) the lack of attributes attached to the
concepts that appear in the taxonomy4; (c) the design of the
classification without taking into account the inheritance
between the products that are described; (d) the non-
providing different views of the classification, taking into
account cultural and social differences, where classifications
could be made in different ways than the ones presented in
this standard.

3.2 RosettaNet Technical Dictionary
RosettaNet is a self-funded, non-profit consortium
composed of several information technology and electronic
components companies. Therefore, this classification is just
focused on electronic equipment.

RosettaNet classification does not use a numbering
system, as UNSPSC does, but it is just based on the names
of the products it defines. This classification is related to the
UNSPSC classification by providing the UNSPSC code for
each product defined in it.

4 Initiatives such as UCEC (Universal Content Extended
Classification) are trying to solve this problem by adding
attributes to the concepts in the last level of the taxonomy.
However, they are not freely available.

Figure 1. A snapshot of the classification of UNSPSC for computer equipment.

Figure 2. A snapshot of the classification of video products of the RosettaNet taxonomy.

Heiner Stuckenschmidt
133

RosettaNet has just two levels in its taxonomy of
concepts:
� RN Category. Group of products (i.e., Video Products)
� RN Product. Specific product (i.e., Television Card,

Radio Card, etc.).
The RosettaNet Technical Dictionary classification

consists of 14 categories and around 150 products. It must
be taken into account (in relationship with UNSPSC) that
RosettaNet just deals with the electronic equipment domain,
which is more specific than the UNSPSC classification.

Figure 2 shows part of the RosettaNet classification,
related to video products for computer equipment.

The main drawback of this taxonomy is that there are only
two levels of classification, which implies that the structure
of the taxonomy is very simple. This classification also
shares some of the problems of UNSPSC, namely, lack of
attributes and design without taking into account inheritance
in the taxonomy of concepts.

The problem of using this classification in a vertical
market is partially solved, as it is focused on the specific
domain of electronic equipment, although it just offers a low
level of detail in this domain.

3.3 E-cl@ss
E-cl@ss is a German initiative to create a standard
classification of material and services for information
exchange between suppliers and their customers. In fact, it
is similar to the UNSPSC initiative, and will be used by
companies like BASF, Bayer, Volkswagen-Audi, SAP, etc.

The e-cl@ss classification consists of four levels of
concepts (called material classes), with a numbering code
similar to the ones of UNSPSC (each level has two digits
that distinguish it from the other concepts). These levels are:
Segment, Main group, Group and Commodity Class.

e-cl@ss levels are equivalent to the first four ones
provided in UNSPSC; hence, they are not described any
further. Finally, inside the same commodity class we may
find several products (in this sense, several products can
share the same code, and this could lead to a fifth level with
all of them, as it can be seen in figure 3).

It also contains around 12000 products organized in 21
segments. Segment 27, which deals with Electrical
Engineering, contains around 2000 products. Finally, the
main group 27-23, which deals with Process Control
Systems, together with the main groups 24-01 to 24-04,
which deal with Hardware, Software, Memory and other
computer devices, contain around 400 concepts.

This classification suffers from the same drawbacks as
UNSPSC. In fact, it is a similar approach, although within a
smaller social environment, as it will be used by German
companies. Additionally, terms and their descriptions are
written both in English and German.

3.4 E-commerce platform catalogue
We have selected a catalogue of products from an existing
e-commerce platform that deals with computer equipment,
so that we have found a common domain to show a whole
case study in this paper.

This catalogue is structured in two kinds of elements,
called categories and items (very similar to the RosettaNet
structure). Catalogue items are actual products sold by the e-
commerce platform. Attributes are defined on them with the
main characteristics of each product. Categories are groups
of products (items) or groups of other categories. They are
created with the aim of grouping products taking into
account factors such as marketing, common uses, etc. They
do not have attributes defined on them.

The selected catalogue contains around 400 items, with
2/3 levels of depth in the hierarchy of categories. Figure 4

Figure 3. A snapshot of the classification of e-cl@ss for electrical engineering products (in German and English).

Heiner Stuckenschmidt
134

shows some elements in the catalogue.

Figure 4. A snapshot of some elements in the catalogue.

In contrast with the classifications presented before,
catalogues cannot be considered themselves as good sources
of information for building ontologies, as they are not
shared by a community nor represent any consensus. They
are designed instead as classifications of products and
services from the market point of view.

However, catalogues play an important role in the whole
e-business process: they present the set of products offered
by an e-commerce application and they are the front-end in
the exchange of products in B2C and B2B environments.

4 WebODE
WebODE [Arpírez et al, 01] is an ontological engineering
platform that allows the collaborative edition of ontologies
at the conceptual level, providing means for their automatic
exportation and importation in XML and their translation
into and from varied ontology specification languages.

WebODE’s conceptual model is based on the intermediate
representations of METHONTOLOGY [Fernández et al,
99], allowing for the representation of concepts and their
attributes (both class and instance attributes), taxonomies of
concepts, disjoint and exhaustive knowledge, ad-hoc
relations between concepts, constants, axioms and instances.

The conceptualization phase of ontologies is aided by both
a HTML form-based and a graphical user interfaces, a user-
defined-views manager, a consistency checker for the
components defined in the ontology, an inference engine
implemented in Prolog to perform inferences with the
information provided, an axiom builder to assist the creation
of these components and a the documentation service.

The platform is built upon an application server, which
provides high extensibility by allowing the addition of new
services and the common use of services provided by the
platform. Examples of these services are the catalogue
manager, the taxonomy merger and WebPicker, which is
presented in the next section.

5 WebPicker: obtaining knowledge models
from structured information

The classifications described in the previous section are
represented using different representation formats. UNSPSC
is available in HTML (taxonomies are presented visually);
RosettaNet is in HTML, XML and Microsoft Excel, and e-
cl@ss is available in Microsoft Excel; finally, the catalogue
is available in XML.

If we want to work with all this information together, we
should use a common representation format for it, so that
the treatment of this information can be performed
homogeneously, no matter what its origin is. We have
decided to use the WebODE knowledge model [Arpírez et
al, 01] as the reference model where all the information will
be translated to.

In [Corcho et al, 01], we present in detail WebPicker and
the different processes we have followed to translate the
contents of the different sources of information into X-
WebODE, the XML syntax of WebODE, so that we have
been able to import them into the platform. As an
illustration, we present figure 5, which shows a summary of
the process of importing UNSPSC5 into WebODE.

The figure shows that UNSPSC information is available in
several HTML pages, one per UNSPSC segment. Once
identified the valuable information in each page, it was
extracted with WebPicker, which converted it into XML,
and finally, all the XML documents were included in a
single XML document that followed the grammar defined in
the WebODE DTD [Arpírez et al, 01].

The classification was uploaded into the WebODE
platform using its XML import facility.

The processes applied for RosettaNet, e-cl@ss and the
catalogue were very similar.

6 Multi-layered ontology architecture design
Before describing our contribution to ontology architectures,
we will revise briefly some important pieces of the state of
the art in the classification of ontologies.

Till now, many different types of ontologies have been
identified and classified. [Mizoguchi et al, 95] distinguish
between domain ontologies, common-sense ontologies,
meta-ontologies and task ontologies. [Van Heijst et al, 97]
classify ontologies using two dimensions: the amount and
type of structure and the subject of the conceptualization.
Terminological, information and knowledge modeling
ontologies usually have a richer internal structure, and they
belong to the first dimension. In the second dimension, they
distinguish application, domain, generic and representation
ontologies. A common framework for understanding both
classifications in a unified manner is shown in figure 6.

5 UNSPSC transformation allowed us to detect missing pieces of
information in the HTML pages and errors on the numbering of
some products that were reported to the UNSPSC responsible.

Heiner Stuckenschmidt
135

Figure 6 also shows that ontologies are usually built on
top of other ones (application domain ontologies on top of
domain ontologies, domain ontologies on top of generic
domain ontologies, and so on). This layered approach for
the building of ontologies makes it easier their development,
taking into account the following design criteria:
� Maximum monotonic extensibility [Swartout et al, 97]

[Gruber, 93], as new general or specialized terms can
be included in the ontology in such a way that it does
not require the revision of existing definitions.

� Clarity [Gruber, 93], as the structure of terms implies
the separation between non similar terms (common-
sense terms vs. specialized domain ontologies).

6.1 A proposal for a multi-layered architecture of
e-commerce ontologies

Our approach consists of structuring our ontologies in
several layers, following the criteria presented above. This
architecture will be illustrated with examples taken from the
sources of information presented in section 3.

Figure 7 shows the ontological mappings that can be
established between ontologies present in the architecture.

In this sense, we propose a common upper level ontology,
which defines the common terms used in the
communication between systems, providing a unified upper-
level vocabulary for all the systems accessing the ontology.

Generic e-commerce ontologies provide broad, coarse-

grained classifications of products and services in the e-
commerce domain.

More specialized ontologies (regional e-commerce
ontologies) can be created for the different domains that will
be handled by the different systems (electronic equipment,
tourism, vehicles, etc). The concepts of these ontologies will
be mapped to the concepts in the generic e-commerce
ontologies, so that they share a common root for all the
concepts. These ontologies can be organized in as many
layers as the ontology developers consider necessary.

Optionally, very specialized local e-commerce ontologies
could be created for each one of the systems that access to
the whole structure of the knowledge (electronic equipment
companies, tourism companies, vehicle manufacturers, etc).

Finally, the lowest level (below local e-commerce
ontologies) will contain the catalogues, with their products
(items) and groups of products (categories) linked to one or
more concepts at any level of the whole ontology
(preferably the most specific ones).

As set out before, this layered approach will allow the
intra-operability of vertical markets in specialized domains
and also the inter-operability between different vertical
markets (also known as horizontal markets).

6.2 A case study in the computers domain
Considering the main features of the standards and
initiatives that we have selected for this study and imported

Figure 6. Libraries of ontologies.

Figure 5. The process of importing UNSPSC into WebODE.

Heiner Stuckenschmidt
136

into WebODE, we can try to fit them in the proposed
architecture, with the following roles for each of them6:

UNSPSC can act as a generic e-commerce ontology,
where a coarse-grained classification of products and
services is offered. Hence, it can provide the roots for all the
products and services that will be inserted in the different
regional and local ontologies that use it, and could be also
interesting to use it for allowing the interoperability between
different vertical markets (because of its wide covering of
products and services).

The same applies to e-cl@ss, whose development is being
performed following a similar set of criteria. In this sense,
both classifications share most of the products and services,
although they are classified in different ways.

Finally, RosettaNet will play the role of a regional
ontology in the domain of electronic equipment, focusing on
this particular business area, although not presenting too
much detail on the components that can be
sold/bought/exchanged.

More regional ontologies could be created below
RosettaNet (for instance, regional ontologies for computer
manufacturers, hi-fi equipment, electrical device
manufacturers, etc.), and local ontologies could be also
created: for instance, one local ontology for each specific
company in each of the business sectors identified above
(IBM, HP, Sun, etc.).

Finally, we have to take into consideration the role of the
catalogue presented in section 3.4. Its items and categories
are mapped to concepts in the ontology. Using these
mappings, we will be able to access the attributes of any
product through the taxonomy of concepts of the ontology,
we will be able to perform reasoning with the information

6 There are no strict rules for the decision of the role of each
classification in the overall architecture. It usually depends on its
degree of generality and granularity

represented in the ontology, we will facilitate searches of
products from many different points of view, etc.

Figure 8 summarizes the ontological mappings between
the standards and between the standards and catalogues in
the context of the architecture proposed in this paper.

Please note that we present two generic e-commerce
ontologies in our example. This fact enforces the idea of
facilitating searches of products using different points of
view, as products will commonly be classified with respect
to the different standards and initiatives, and ontological
mappings between both of them will be also established.
Communication between systems using the ontologies in
this architecture is still good, though providing much richer
information on products that are placed in its lowest levels.

An additional remark must be made on the flexibility of
this architecture. In case we want to include another
classification in it, we shall study its characteristics and
decide the level it should be placed in. The structure we
present in figure 8 is adapted for this case study, but new
ontologies could appear above our current generic e-
commerce ontologies and additional intermediate levels in
the regional or local ontologies area could also appear.

7 Ontology integration and enrichment
7.1 Ontology integration
Once sketched the similarities and differences between the
standards described and the role of each of them in the
multi-layered architecture proposed, we will make a detailed
analysis of the relationships that can be established between
their terminology.
1. We will start with the ontological mappings between
ontologies, be them placed at the same level in the
architecture or at different levels:
Equivalence mappings. They occur when a concept in the
ontology is equivalent (or the most similar) to other concept

Figure 7. General ontological mappings between ontologies, and between ontologies and catalogues.

Heiner Stuckenschmidt
137

or concepts in another ontology.
This ontological mapping is especially interesting between
ontologies at the same level, as it allows interaction between
systems using different standards or initiatives. It also
provides several means of classifying products. For
instance, concept Diskette in e-cl@ss (24-03-03-00) and
Floppy diskettes in UNSPSC (43180601) are equivalent.

There are also equivalence mappings between concepts
from ontologies in different layers, as it is shown in figure
9. For instance, concept Monitor in RosettaNet is equivalent
to concept Monitors in UNSPSC (43172401).

As RosettaNet has already predefined the equivalence
mappings between its concepts and concepts in UNSPSC,
this task has been performed automatically with WebPicker.
However, some of these equivalence mappings have been
transformed into subclass-of ones after a detailed analysis of
both standards, as it is shown in figure 9 with concepts
Video chip in RosettaNet and Hybrid Integrated Circuits in
UNSPSC (321017).
Subclass-of mappings. They occur when a concept in an
ontology is a subclass of other concept or concepts in
another ontology.

For instance, concept Dot Matrix Printers in UNSPSC
(43172503) is subclass of concepts Printer (PCS) and
Printer (proc. comp.) in the e-cl@ss classification (27-23-
02-12 and 27-23-02-34).

This mapping can be also established between concepts in
ontologies from different layers. For instance, concept Laser
Printer in RosettaNet is also a subclass of Printer (PCS) and
Printer (proc comp) in e-cl@ss classification (27-23-02-12
and 27-23-02-34).

An important remark must be made at this point. Brother
concepts in an ontology do not have to share the same
parent concepts in another ontology: classification criteria
may be different in both ontologies.

Union-of mappings. They occur when a concept in an
ontology is equivalent to the union of two or more concepts
in another ontology.

For instance, concept Monitors in UNSPSC (code
42172401) is equivalent to the union-of concepts Monitor
(PCS) and Monitor (codes 27-23-02-03 and 24-01-06-00,
respectively) in e-cl@ss.
2. The second kind of ontological mappings that we have
studied deal with catalogues and ontologies.

We have just considered maps between items (and
categories) in the catalogue and concepts in the ontology: an
item/category in the catalogue can be mapped to one or
more concepts in the ontology (be it the local ontology, any
of the regional ontologies or the generic e-commerce
ontologies), stating that the item/category is defined by the
concept(s) in the ontology to which it is linked.

The previous remark about subclass-of mappings between
concepts in ontologies can also be applied to this case.
Taking into consideration design issues of catalogues, it will
be common to find items under the same category linked to
very distant concepts in the ontology. For instance, let’s
suppose items in the catalogue that are grouped together
because of their use: laser printers and toners. They will be
probably mapped to very distant concepts in the ontology.

Other works on ontology integration have proposed their
sets of inter-ontology relationships. For instance, the
OBSERVER [Mena et al, 2000] system proposes synonym,
hyponym, hypernym, overlap, disjoint and covering
relationships between concepts in the same and different
ontologies. DWQ [Calvanese et al, 98] proposes intermodel
assertions such as subsetting, definition, completeness,
synonym and homonym relationships.

Although terminology used in different projects is
different, the meaning of these relationships is very similar
to each other. In our work, we propose the equivalence
relationship (which is named synonym in both projects), the

Figure 8. Ontological mappings between UNSPSC, e-cl@ss, RosettaNet and the catalogue.

Heiner Stuckenschmidt
138

subclass-of relationship (which is named hyponym and
subsetting, respectively) and union-of (which is named
covering and completeness). The rest of relationships are
not important for our domain.

7.2 Ontology enrichment
Once all the classifications have been integrated in
WebODE, the next phase consists of enriching them with
new attributes for concepts, disjoints and exhaustiveness
knowledge, relations, functions and axioms. This will make
the resulting ontologies richer and will allow performing
reasoning with the knowledge contained in them.

We are currently working on the enrichment of these
classifications. First, we have focused on properties, taking
into account several sources of information for creating
them: properties for defining products that are provided by
the RosettaNet IT and EC Technical Dictionaries; properties
that we have found in several actual e-commerce catalogues
from different companies and other common-sense
properties that we consider interesting from both KR and
marketing points of view. Unfortunately, we have not been
able to use attributes from the UCEC classification for
UNSPSC, because this information is not publicly available.

Work on taxonomies is also being performed. We are
trying to identify and specify disjoint and exhaustive
partitions between concepts, with the aim of making more
robust taxonomies of concepts, as well as providing better
search mechanisms for applications using these ontologies.

We will also focus on the most useful relations between
concepts for e-commerce purposes, such as "concept X uses
concept Y", "concept X and concept Y are used together",
"concept X and concept Y have the same functionality",
etc., as well as functions or axioms.

8 Ontology exportation
The last step of the method proposed in section 2 deals with
the exportation of global or partial views of the ontologies

to implementation code. This step is important, as it will
generate the ontology in a format/code that is tractable for
the systems involved in the application that justifies its use.

This exportation step is automatically performed using the
translators provided by the WebODE platform (currently,
XML, RDF(S) and OIL). These translators transform the
ontologies conceptualized using the knowledge model of
WebODE into the knowledge model of the target
implementation language.

We may also choose whether exporting all the
components in the ontologies or exporting just restricted
sets of components, which the user can specify explicitly.

9 Conclusions
E-business applications are adopting standards and
initiatives for allowing interoperation and interchange of
information between information systems. Ontologies aim
to provide a shared machine-readable view of domain
knowledge, allowing information sharing for heterogeneous
systems. In this paper, we have put together both areas,
proposing a method for reusing and improving existing
standards and initiatives for classification of products and
services in the e-business domain creating of a multi-layered
ontology that integrates them into a single architecture.

This paper shows how these standards and joint initiatives
can be processed, transformed into knowledge models,
integrated in a multi-layered architecture, enriched with new
information and transformed again into implementation
code suitable for its use by different systems.

From the e-business point of view, this approach offers the
following advantages:
� Existing standards and initiatives are enriched with

additional information that can be used for offering
better services in e-business applications: deducting new
information about products and customers, allowing a
better search for products and services, etc.

Figure 9. Some predefined mapping relationships between RosettaNet and UNSPSC.

Heiner Stuckenschmidt
139

� Multiple criteria for classificating a product or service.
� E-commerce catalogues can be integrated in the whole

knowledge architecture, allowing a clear distinction
between KR and marketing decisions.

� E-commerce catalogues are not necessarily built from
scratch, as they can be built from the existing ontology
and adapted later because of marketing decisions.

From the ontological engineering point of view, this
approach offers the following advantages:
� Ontologies are not built from scratch. Their skeleton is

built extracting relevant information from distributed
sources that contain consensus knowledge. Hence, there
is a great time reduction for knowledge acquisition and
reaching consensus, ameliorating the KA bottleneck.

� Multiple views are allowed for any component in the
ontology, in the sense that different generic ontologies
can be selected, which will offer different sets of criteria
for the classification of products and services.

� A knowledge architecture suitable for representing
ontologies shared by e-commerce applications. It is
based on a layered approach, which distinguishes
global/widely-shared concepts, more domain specific
ones and a final place for e-commerce catalogues.

From a technological point of view, we present WebODE
as an ontological engineering platform that allows:
� Processing HTML pages, Excel documents, etc., and

transform them into the WebODE knowledge model,
using its specialized service WebPicker.

� Creating a multi-layered ontology through ontological
mappings.

� Enriching ontologies with attributes, disjoints and
exhaustive knowledge, relations, axioms, etc.

� Exporting the whole ontology or user-defined views into
implementation code, suitable for other systems.

10 Future work
UPM participates in the EU-project MKBEEM (IST-1999-
10589), which is building a mediation system for enabling
online access to products and services in the customer’s
native language [Leger et al, 00]. The multi-layered
knowledge architecture presented in this paper is used in
this project for the representation of products and services
offered in the catalogues of a B2B company.

Experience obtained in this project helped us identify the
ontological mappings presented in section 7, and will help
us identify more useful mappings between components in
the same and different layers of the architecture. The use of
this architecture will also aid the definition of many services
that ontology servers must provide for applications in the
Semantic Web (especially in the e-commerce domain).

Acknowledgements
This work is supported by a FPI grant funded by UPM and
partially supported by the project “ContentWeb”, funded by
Ministerio de Educación y Ciencia. We also thank Alberto

Cabezas for implementing WebPicker, and Julio C. Arpírez,
for the design and implementation of the WebODE platform.

References
[Ambroszkiewicz, 00] Ambroszkiewicz, S. Semantic

Interoperability in Agentspace. Workshop on Semantic Web:
Models, Architecture and Management. Lisbon. Sept. 2000.

[Arpírez et al, 01] Arpírez, J. WebODE User Manual. Technical
Report. February, 2001.

[Benslimane et al, 00] Benslimane, D., Leclercq, E., Savonnet, M.,
Terrasse, M. N., Yétongnon, K. On the definition of generic
multi-layered ontologies for urban applications. Computers,
Environment and Urban Systems. #24. pp: 191-214. 2000.

[Berners-Lee, 99] Berners-Lee, T., Fischetti, M. Weaving the Web:
The Original Design and Ultimate Destiny of the World Wide
Web by its Inventor. Harper. San Francisco. 1999.

[Calvanese et al, 98] Calvanese, D., De Giacomo, G., Lenzerini,
M., Nardi, D., Rosati, R. Description Logic Framework for
Information Integration. 6th Intl. Conf. on the Principles of
Knowledge Representation and Reasoning (KR'98). 1998.

[Corcho et al, 00] Corcho, O., Gómez-Pérez, A. A RoadMap to
Ontology Specification Languages. EKAW'00. October, 2000.

[Corcho et al, 01] Corcho, O., Gómez-Pérez, A. Ontology
acquisition and Integration from Web Environments using
WebPicker. 6th Intl. Workshop on Applications of Natural
Language for Information Systems. Madrid. June, 2001.

[Fensel, 00] Fensel, D. Ontologies: silver bullet for Knowledge
Management and Electronic Commerce. Springer-Verlag. 2000.

[Fernández et al, 99] Fernández, M.; Gómez-Pérez, A.; Pazos, J.;
Pazos, A. Building a Chemical Ontology using Methontology
and the Ontology Design Environment. IEEE Intelligent
Systems and their applications. #4 (1):37-45. 1999.

[Gruber, 93] Gruber, R. A translation approach to portable
ontology specification. Knowledge Acquisition. #5: 1993.

[Leger et al, 00] Leger, A. and others. Ontology domain modeling
support for multi-lingual services in E-Commerce: MKBEEM.
ECAI'00 Workshop on Applications of Ontologies and PSMs.
Berlin. Germany. August, 2000.

[McGuinness, 99]] McGuinness, D. Ontologies for Electronic
Commerce. AAAI '99 Artificial Intelligence for Electronic
Commerce Workshop, Orlando, Florida, July, 1999.

[Melnik et al, 00] Melnik, S., Decker, S. A Layered Approach to
Information Modeling and Interoperability on the Web.
Workshop on Semantic Web: Models, Architecture and
Management. Lisbon. September, 2000.

[Mena et al, 00] Mena, E., Illarramendi, A., Kashyap, V., Sheth, A.
OBSERVER: An Approach for Query Processing in Global
Information Systems based on Interoperation across Pre-
existing Ontologies. International Journal Distributed and
Parallel Databases (DAPD), 8(2), pp. 223-271, April 2000.

[Mizoguchi et al, 95] Mizoguchi, R.; Vanwelkenhuysen, J.; Ikeda,
M. Task Ontology for reuse of problem solving knowledge. In
N.J.I. Mars “Towards Very Large Knowledge Bases:
Knowledge Building & Knowledge Sharing.”. IOS Press. 1995.

[Studer et al, 98] Studer, R., Benjamins, R., Fensel, D. Knowledge
Engineering: Principles and Methods. DKE 25(1-2).. 1998

[Swartout et al, 97] Swartout, B., Patil, R., Knight, K., Russ, T.
Toward Distributed Use of Large-Scale Ontologies. Spring
Symposium Series. 1997.

[Van Heijst et al, 97] Van Heist G., Schreiber A. Th., Wielinga B.
J., Using explicit ontologies in KBS development. International
Journal of Human-Computer Studies, 45, pp. 183-292, 1997.

Heiner Stuckenschmidt
140

I ssues in Ontology-based I nfor mation I ntegration
Zhan Cui, Dean Jones and Paul O’Brien

Intelligent Business Systems Research Group
Intelligent Systems Lab

BTexact Technology

Abstract
Solving queries to support e-commerce
transactions can involve retrieving and
integrating information from multiple
information resources. Often, users don’ t care
which resources are used to answer their query.
In such situations, the ideal solution would be to
hide from the user the details of the resources
involved in solving a particular query. An
example would be providing seamless access to a
set of heterogeneous electronic product
catalogues. There are many problems that must
be addressed before such a solution can be
provided. In this paper, we discuss a number of
these problems, indicate how we have addressed
these and go on to describe the proof-of-concept
demonstration system we have developed.

1. Introduction
There are a number of obstacles to completely open e-
commerce over the Internet. One of the major problems is
the vast amount of information that is available and our
ability to make sense of it. For example, how do we identify
whom to do business with? How do we know that a
supplier’s products are what we are looking for? It is only
once we know what people are saying that we can start to
identify who is worth talking to. In this article, we will
discuss a number of related issues and describe the way we
have begun to address some of them.

The problems of interoperability between interacting
computer systems have been well documented. A good
classification of the different kinds of interoperability
problems can be found in [Sheth, 98] who identifies the
system, syntactic, structural and semantic levels of
heterogeneity. The system level includes incompatible
hardware and operating systems; the syntactic level refers to
different languages and data representations; the structural
level includes different data models and the semantic level
refers to the meaning of terms using in the interchange. A
good example of semantic heterogeneity is the use of
synonyms, where different terms are used to refer to the

same concept. There are many more types of semantic
heterogeneity and they have been classified in [Visser et al.,
1998]

Many technologies have been developed to tackle these
types of heterogeneity. The first three categories have been
addressed using technologies such as CORBA, DCOM and
various middleware products. Recently XML has gained
acceptance as a way of providing a common syntax for
exchanging heterogeneous information. A number of
schema-level specifications (usually as a Document Type
Definition or an XML Schema) have recently been proposed
as standards for use in e-commerce, including ebXML,
BizTalk and RosettaNet. Although such schema-level
specifications can successfully be used to specify an agreed
set of labels with which to exchange product information, it
is wrong to assume that these solutions also solve the
problems of semantic heterogeneity. Firstly, there are many
such schema-level specifications and it cannot be assumed
that they will all be based on consistent use of terminology.
Secondly, it does not ensure consistent use of terminology
in the data contained in different files that use the same set
of labels. The problem of semantic heterogeneity will still
exist in a world where all data is exchanged using XML
structured according to standard schema-level
specifications.

A solution to the problems of semantic heterogeneity
should equip heterogeneous and autonomous software
systems with the ability to share and exchange information
in a semantically consistent way. This can of course be
achieved in many ways, each of which might be the most
appropriate given some set of circumstances. One solution is
for developers to write code which translates between the
terminologies of pairs of systems. Where the requirement is
for a small number of systems to interoperate, this may be a
useful solution. However, this solution does not scale as the
development costs increase as more systems are added and
the degree of semantic heterogeneity increases.

Our solution to the problem of semantic heterogeneity is
to formally specify the meaning of the terminology of each
system and to define a translation between each system
terminologies and an intermediate terminology. We specify
the system and intermediate terminologies using formal

Heiner Stuckenschmidt
141

ontologies and we specify the translation between them
using ontology mappings. A formal ontology consists of
definitions of terms. It usually includes concepts with
associated attributes, relationships and constraints defined
between the concepts and entities that are instances of
concepts.

We provide software support for the definition and
validation of formal ontologies and ontology mappings,
allowing us to resolve semantic mismatches between
terminologies according to the current context (e.g. such as
the application.) In the next section we discuss a number of
issues relating to the use of ontologies in enabling semantic
interoperability. We then describe how we have addressed
some of these issues using a system called DOME (Domain
Ontology Management Environment) which includes a set
of tools for creating and mapping between ontologies, for
browsing and customising ontologies and for constructing
concept-based queries.

2. Issues in Resolving Semantic Heterogeneity
In this section we describe some of the problems involved in
achieving semantic interoperability between heterogeneous
systems.

2.1 Developing ontologies
In any reasonably realistic e-commerce scenario involving
interoperability between systems, semantic heterogeneity is
a significant problem and will continue to be so in the
future. A solution to this problem based on the use of formal
ontologies will need to accommodate different types of
ontologies for different purposes. For example, we may
have resource ontologies, which define the terminology
used by specific information resources. We may also have
personal ontologies, which define the terminology of a user
or some group of users. Another type is shared ontologies,
which are used as the common terminology between a
number of different systems.

The problem of developing ontologies has been well-
studied and a number of methodologies have been proposed.
A comparative analysis of these can be found in [Jones et
al., 1998].) One of the major conclusions of this study was
that the best approach to take in developing an ontology is
usually determined by the eventual purpose of the ontology.
For example, if we wish to specify a resource ontology, it is
probably best to adopt a bottom-up approach, defining the
actual terms used by the resource and then generalising from
these. However, in developing a shared ontology it will be
extremely difficult to adopt a bottom-up approach starting
with each system, especially where there are a large number
of such systems. Here, it is most effective to adopt a top-
down approach, defining the most general concepts in the
domain first.

2.2 Mapping Between Ontologies
In order to resolve the problems of semantic mismatches
discussed above, we will often need to translate between

different terminologies. While it would be ideal to be able to
automatically infer the mappings required to perform such
translations, this is not always possible. While the formal
definitions in an ontology are the best specification of the
meaning of terms that we currently have available, they
cannot capture the full meaning. Therefore, there must be
some human intervention in the process of identifying
correspondences between different ontologies. Although
machines are unlikely to derive mappings, it is possible for
them to make useful suggestions for possible
correspondences and to validate human-specified
correspondences.

Creating mappings is a major engineering work where
re-use is desirable. Declaratively-specifying mappings
allows the ontology engineer to modify and reuse mappings.
Such mappings require a mediator system that is capable of
interpreting them in order to translate between different
ontologies. It would also be useful to include a library of
mappings and conversion functions as there are many
standard transformations which could be reused e.g.
converting kilos to pounds, etc.

Mapping between ontologies is not an exact science.
Certain semantic mismatches cannot be resolved exactly but
may involve some loss of information e.g. when translating
from a colour system based on RGB values to one which
uses terms such as ‘red’, ‘blue’ , etc. Whether or not the loss
of information is an issue varies between applications. In
some domains, precision of information is more important
than in others. For example, in e-commerce, imperfect
information is generally unacceptable, whereas it is widely
accepted that internet search engines will return many
irrelevant results.

2.3 Ontologies and Resource I nformation
It is generally acknowledged that we have more information
than we know what to do with. This proliferation of data
means that often, for any information query we might have,
there are a variety of resources available that store data
about the same domain and which are of varying quality. A
distributed query engine needs to decide which of the many
available resources to use in finding the solution to a query.
In addition to finding the resources that have the required
information, it may also be necessary to decide between
different resources that have the same information available.
In order for a distributed query engine to understand what
information is available, the resources need to make
descriptions of their contents available in a meaningful way.
If the terms using in such a description are formally defined
in an ontology, the query engine has access to the meaning
of the terms in the description. This allows the query engine
to make fully informed decisions about which resources are
relevant to resolving a particular query.

There are a number of pragmatic issues in locating the
resources that will be used to answer a query. For example,
a particular user may - for whatever reason - prefer one
resource over another as the source of some information.

Heiner Stuckenschmidt
142

Such personal preferences can be taken into account by the
distributed query engine if a personal profile of a user’s
preferences is maintained. The query engine can make better
informed decisions if the definitions of the terms used in
such a profile are available to it in the form of a user
ontology, which defines the terminology of a user or user-
group.

2.4 Ontologies and Database Schemas
Ontologies and database schemas are closely related and
people often have trouble deciding which is which. There is
often no tangible difference, no way of identifying which
representation is a schema and which is an ontology. This is
especially true for schemas represented using a semantic
data model. The main difference is one of purpose. An
ontology is developed in order to define the meaning of the
terms used in some domain whereas a schema is developed
in order to model some data. Although there is often some
correspondence between a data model and the meaning of
the terms used, this is not necessarily the case. Both
schemas and ontologies play key roles in heterogeneous
information integration because both semantics and data
structures are important.

For example, the terminology used in schemas is often
not the best way to describe the content of a resource to
people or machines. If we use the terms defined in a
resource ontology to describe the contents of a resource,
queries that are sent to the resource will also use these
terms. In order to answer such queries, there needs to be a
relationship defined between the ontology and the resource
schema. Again, declarative mappings that can be interpreted
by some mediator system are useful here. The structural
information provided by schemas will enable the
construction of executable queries such as SQL queries.

This is related to the discussion earlier about XML,
where a database schema is analogous to an XML schema
or DTD. As pointed out above, using XML is insufficient
for determining the semantics of resources. A schema,
whether specified using XML or some database schema
language, needs an associated formal ontology in order to
make the semantics of the resource clear. When the meaning
of data and schemas is made explicit using an ontology,
programs can be designed that exploit those semantics.

2.5 Entity Correspondence
Ontologies are used in e-commerce environments where
data is scattered across heterogeneous distributed systems.
In order for the consumer to have access to the maximum
amount of available information, we want to be able to
retrieve information from various systems and to integrate
it. For example, we might want to integrate information
from a supplier’s product catalogue with customer reviews
produced independently.

To gather all the information relevant to an entities, the
correspondence between entities across resources must be
established. For example, the academic records and criminal

records of a person are likely to be stored in separated data
resources. However, the way in which different resources
identify individuals varies. For example, in relational
databases entities are identified using key attributes. There
is no guarantee that different relational databases use the
same key attributes. Even when the same key attribute is
used, different terms may be used to denote the attributes.
How our systems can determine whether entities from
different resources are the same or not is crucial to fusing
information. Standard schemas do not provide a full
solution here since many systems (e.g. KBSs, object-
oriented databases) often do not have key attributes at all.

3. DOM E Overview
The DOME project has been researching and developing
ontology-based techniques to support the building of a “one-
stop knowledge shop” for corporate information. We have
developed a methodology, a set of tools and an architecture
to enable enterprise-wide information management for data
re-use and knowledge sharing. The system retrieves
information from multiple resources to answer user queries
and presents the results in a consistent way that is
meaningful to the user. This section gives an overview of
the DOME prototype system and some implementation
details. Further details of DOME can be found in [Cui et al.,
2001]. Figure 1 shows the architecture of the DOME
prototype.

The DOME prototype consists of a number of
interacting components: an ontology server which is
responsible for managing the definitions of terms, a
mapping server which manages the relationships between
ontologies, an engineering client with tools for developing
and administrating a DOME system, a user client to support
querying the knowledge shop, and a query engine for
decomposing queries fusing the results to sub-queries. The
prototype is implemented as an Enterprise JavaBean which
provides two APIs - one for developers and one for users
and applications.

3.1 Engineer ing client
A developer who wishes to set up a DOME system interacts
with an engineering client which provides support in the
development of the knowledge shop. This includes tools for
the semi-automated extraction of ontologies from legacy
systems [Yang et al., 1999], for defining ontologies, for
defining mappings between ontologies and between
resource ontologies and database schemas.

We have developed a methodology that combines top-
down and bottom-up ontology development approaches.
This allows the engineer to select the best approach to take
in developing an ontology. The top-down process starts with
domain analysis to identify key concepts by consulting
corporate data standards, information models, or generic
ontologies such as Cyc or WordNet. Following that, the
engineer defines competency questions [Gruninger and Fox,
1995.] The top down process results in the shared ontologies

Heiner Stuckenschmidt
143

mentioned above. The bottom-up process starts with the
underlying data sources. The extraction tool is applied to
database schemas and application programs to produce
initial ontologies which are further refined to become
resource ontologies. We also provide for the development of
application ontologies, which define the terminology of a
user-group or client application. Application ontologies are
defined by specialising the definitions in a shared ontology.
Once the ontologies have been defined, they are stored in
the ontology server.

The engineer also needs to define mappings between the
resource ontologies and the shared ontology for a particular
application. The rest of the ontology engineering task is to
define mappings between the resource and shared ontologies
using ontology mappings. Although we do not infer the
mappings automatically, we can utilise ontologies to check
the mappings for consistency. The engineer also needs to
define mappings between the database schemas and the
resource ontologies.

3.2 Ontology server
The ontology server stores the ontologies that are defined
using the engineering client and allows access to the three
kinds of ontologies in a DOME network: shared, resource
and application ontologies. Shared ontologies contain
definitions of general terms that are common across and
between enterprises. A resource ontology contains
definitions of terms used by a particular resource. These
ontologies are stored in the DOME ontology server which
implements ontologies using the description logic CLASSIC

[Brachman et al., 1992]. CLASSIC is used to both store
ontologies and to make inferences. Access to the ontology
server is through Open Knowledge Base Connectivity
(OKBC) interface, which is a de facto standard for
accessing knowledge bases [Chaudhri et al., 1998].

3.3 User client
We provide users with tools to access the knowledge shop.
We have defined a simple API that allows a user client or an
application to querying the distributed information space.
The user client also provides facilities for loading and
browsing specific ontologies in the knowledge shop to view
what is available in the whole information space. Queries
are passed to DOME as strings which conform to an XML
schema which defines the syntax of the DOME query
language. This is similar to SQL but doesn’ t require that we
specify on which attributes to make joins between concepts
since this will be identified automatically by the query
engine. Queries are formed using the terminology defined in
an application ontology and the results which are returned
are represented using the same terminology, hence hiding
the details of the different systems, their distribution,
structure, syntax or semantics from the user.

3.4 Mapping Server
The mapping server stores the mappings between ontologies
which are defined by the engineer in setting up a DOME
network. The mapping server also stores generic conversion
functions which can be utilised by the engineer when
defining a mapping from one ontology to another. These

Figure 1: The DOME architecture

DB DB DB

Query
Engine

Ontology
Server

Mapping
Server

Resource
Directory

Wrappers and
ontology extraction

Engineering
client

User
GUI

Application

Heiner Stuckenschmidt
144

mappings are specified using a declarative syntax, which
allows the mappings to be straightforwardly modified and
reused. The query engine queries the mapping server when
it needs to translate between ontologies in solving a query.

3.5 Wrappers
Most interaction between a resource and the DOME
network occurs via wrappers. A wrapper performs
translations of queries expressed in the DOME query syntax
and terminology of the resource ontology to queries
expressed in the syntax of the resource query language and
the terminology of the resource schema. They also perform
any translations required to put the results into the
terminology of the resource ontology. Although they are
configured for particular resources, DOME wrappers are
generic across resources of the same type e.g. wrappers of
SQL databases utilise the same code.

3.6 Resource Directory
When a resource is connected to a DOME network, its
wrapper will inform the DOME directory about its existence
and pass to the resource directory a description of the
contents of the resource, expressed in terms of the relevant
resource ontology. This ensures that the query engine is able
to identify what information is available without having to
access the schema of the resource. When a wrapper is - for
whatever reason - no longer able to provide information
from a resource, it will inform the resource directory which
is then able to discount that resource from any future query
solving.

3.7 Query engine
Upon receiving a query, the DOME query engine first needs
to decide which resources are relevant to that query. It
obtains a list of currently available and relevant resources by
consulting the directory. Based on this information, the
query engine decomposes the query into sub-queries. The
query engine ensures that the decomposition is performed in
such a way that the results to the sub-queries, once they are
received from the resources, can then be integrated. It then
translates queries from the ontology of the query to that of
the relevant resource and will send the sub-queries to the
resources. Once the results are received, the query engine
will integrate the results.

4. DOM E Demonstrator
We have developed a demonstrator for the DOME prototype
based on a database marketing scenario. Database marketing
involves targeting marketing information from customer
information stored in databases. Typically, queries are ad
hoc, that is, it is difficult to pre-define a set of typical
queries. Also, customer information is necessarily split
across many different databases e.g. a customer may have
multiple products, the records for which are stored in
different databases. This requires that queries often need to
join information from a wide variety of databases. As the

databases we used are developed independently and serve
different applications, DOME has to search for resources
which hold data about customers that it is possible to
integrate. The resources that are used varies from query to
query. The databases also have different levels of data
quality - there are incorrect entries, missing records, etc. As
DOME allows mappings to be specified between the shared
and resource ontologies, we have some control over which
resources are utilised for data that is available from multiple
databases. By only defining mappings between the shared
ontology and the parts of the resource ontology for which
the resource is a trusted sources of information, we can limit
the parts of a resource that is used to solve queries.

5. Conclusions
Semantic interoperation is one of the main obstacles to free
and full electronic commerce. Understanding what is
available is a necessary prerequisite to a successful business
transaction. We have described a number of issues involved
in supporting the interoperation of computer systems at the
semantic level. We have also described the architecture of
the DOME system that we have developed to illustrate our
approach to overcoming some of these problems. We
believe that the proof-of-concept demonstrator we have
developed supports the utility of ontologies in integrating
heterogeneous information resources for applications such
as e-commerce. DOME provides functionality to (i) support
a system engineer in providing an integrated view of
networked heterogeneous databases, (ii) allow a user to
select and browse definitions of terminologies and to pose
queries in their chosen vocabulary and (iii) answer user
queries based on the information available. This work is
ongoing and there are a number of areas currently being
explored. For example, an increasing number of resources
that use some form of XML technology are becoming
available and we are currently developing components that
will allow data retrieved from such resources to be
integrated with data retrieved from other kinds of resources
such as relational databases. We believe strongly that even
in a world where there are many such resources, there will
still be a role for formal ontologies in enabling semantic
interoperability.

References
[Brachman et al., 1992] R.J. Brachman, A. Borgida, D.L.
McGuinness, P.F. Patel-Schneider and L. Alperin Resnick.
The CLASSIC Knowledge Representation System, or KL-
ONE: The Next Generation. Proceedings of the 1992
International Conference on Fifth Generation Computer
Systems, Tokyo, Japan, June 1992.
[Chaudhri et al., 1998] V.K. Chaudhri, A. Farquhar, R.
Fikes, P.D. Karp, and J.P. Rice. OKBC: A Programmatic
Foundation for Knowledge Base Interoperability.
Proceedings of AAAI-98, pages 600-607, Madison, WI,
1998

Heiner Stuckenschmidt
145

[Cui et al., 2001] Z. Cui, M.D.J. Cox and D.M. Jones. An
Environment for Managing Enterprise Domain Ontologies.
M. Rossi and K. Siau (eds.) Information Modelling in the
New Millennium, Idea Group Publishing, London.
[Gruninger and Fox, 1995] M. Gruninger, and M.S. Fox.
Methodology for the Design and Evaluation of Ontologies.
IJCAI’95 Workshop on Basic Ontological Issues in
Knowledge Sharing, Montreal, 1995
[Jones et al., 1998] D.M. Jones, T.J.M. Bench-Capon and
P.R.S. Visser. Methodologies for Ontology Development.
Proceedings IT&KNOWS Conference of the 15th IFIP
World Computer Congress, Budapest, Chapman-Hall.
[Sheth, 1998] A.P. Sheth. Changing Focus on
Interoperability in Information Systems: From System,
Syntax, Structure to Semantics. M. F. Goodchild, M. J.
Egenhofer, R. Fegeas, and C. A. Kottman (eds.)
Interoperating Geographic Information Systems, Kluwer.
[Visser et al., 1998] P.R.S. Visser, D.M. Jones, T.J.M.
Bench-Capon and M.J.R. Shave. Assessing Heterogeneity
by Classifying Ontology Mismatches. Proceedings
International Conference on Formal Ontology in
Information Systems - FOIS'98, IOS Press.
[Yang et al., 1999] H. Yang, Z. Cui and P.D. O’Brien.
Extracting Ontologies from Legacy Systems for
Understanding and Re-engineering. Proceedings of 23rd
IEEE International Conference on Computer Software and
Applications, Pheonix, AZ, October 1999.

Heiner Stuckenschmidt
146

���������
	��
�
��������������������� ��!"���#�$�%��&('%)�'%�(*����+,�
�������-!"�('%)�./�
!$��)0�1	��%�

2436587:9:;�<%=>5@?A583CBD58EC36F$G�9HBDI�58=>EJ;�5@K�9$=>L:;1M
NPO�QSRT5S=
ACACIA project, INRIA, 2004, route des Lucioles, B.P. 93, 06902 Sophia Antipolis, France

{Alexandre.Delteil, Catherine.Faron}@sophia.inria.fr

2VU�WXB-=Y9:QYB

RDF(S) is the emerging standard for knowledge
representation on the Web. In the European IST
project CoMMA dedicated to ontology guided
information retrieval in a corporate memory, the
semantic annotations describing the Intranet
documents are represented in RDF(S). In this
context, the RDF(S) expressivity appears to be
too much limited. Compared to object-oriented
representation languages, description logics, or
conceptual graphs, RDF(S) does not enable to
define classes or properties nor represent axioms
inside an ontology. In this paper, we propose an
extension of RDF(S) to express this kind of
definitional knowledge, and more generally
contextual knowledge on the Semantic Web. We
hope that DRDF(S) will contribute to the ongoing
work of the W3C committee for improving
RDFS and meet the needs of the e-business
community.

Z [;\B-=YL:<�O�QYBDE6L:;
The need of a Semantic Web is now well recognized and
always more emphasized [Berners Lee, 1999]. The huge
amount of information available on the web has become
overwhelming, and knowledge based reasoning now is the
key to lead the Web to its full potential. In the last few
years, a new generation of knowledge based search engines
has arisen, among which the most famous are]�^
_1` [LukeacbSd>egf , 1997] and _"h bji�k�l
i�mcaXl [Fensel aDbnd>eof , 1998]. They rely
on extensions of HTML to annotate Web documents with
semantic metadata, thus enabling semantic content guided
search. For interoperability on the Web, the importance of
widely accepted standards is emphasized. p aXq0i>r�l0sDat aDq
sDl
u v:bwuji hyx l0d�z�aD{1i�l|m (RDF) is the emerging standard
proposed by the W3C for the representation and exchange
of metadata on the Semantic Web [RDF, 1999]; it has an
XML syntax. p t x}] sD~8aDz�d (RDFS) is the standard
dedicated to the representation of ontological knowledge
used in RDF statements [RDFS, 2000].
In the context of the ‘CoMMA’ European IST project,
RDFS is the knowledge representation language used to

annotate the Intranet documents of an organization. These
annotations are exploited for knowledge based information
retrieval on the Intranet by using the inference engine� _$p1`1]c` implemented in our team [Corby a,b�d>eof , 2000].
However the expressivity of RDF(S) appears too much
limited to represent the ontological knowledge of the
corporate memory. Inference rules representing domain
axioms, class and property definitions are crucial for
intelligent information retrieval on the Web. The need for
inference rules is well-known since the first information
retrieval systems on the Semantic Web. Axiomatic
knowledge, algebraic properties of relations, or domain
axioms are the key to discover implicit knowledge in Web
page annotations so that information retrieval be
independent of the point of view adopted when annotating
[Heflin a,b8d>eof , 1998]. [Martin a,bnd�ejf , 2000] claim the need for
additional features and conventions in RDF.
When compared to object-oriented knowledge
representation languages, description logics, or conceptual
graphs, RDF(S) does not enable to define classes or
properties nor represent axioms [DAML, 2001; OIL, 2000].
In this paper, we propose an extension of RDF(S) with
class, property and axiom definitions. We call it DRDF(S)
for
t a���u h a,� p aXq0iYr�l0sXa t aXq0sXl0u v:bjuji h�x l0d�z�aD{1i�l|m . DRDFS

more generally enables to express contextual knowledge on
the Web. The RDF philosophy consists in letting anybody
free to declare anything about any resource. Therefore the
knowledge of who and in which context a special annotation
has been stated is crucial. DRDF(S) enables to assign a
context to any cluster of annotations, in particular for
definitional contexts. We hope that DRDF(S) will contribute
to the ongoing work of the W3C committee for improving
RDFS and meet the needs of the e-business community.
In the next section, we present the RDF(S) model. Section 3
is dedicated to the comparison of RDF(S) and the
Conceptual Graphs model. Section 4 presents an extension
of RDF(S) with contexts, and section 5 an extension of
existential quantification handling. The RDF extensions for
defining classes, properties and axioms are presented in
sections 6, 7 and 8. The metamodel of DRDF(S) is
described in section 9. Section 10 is dedicated to a
comparison between DRDF(S) and other Web languages.

Heiner Stuckenschmidt
147

� � I�5�� ?�K����	��
�L:<�5Y3

��
������������	���������

RDF is the emerging Web standard for annotating resources,
such as images or documents, with semantic metadata
[RDF, 1999]. These Web resources are identified by their
URIs. In addition, anonymous resources provide a limited
way of existential quantification. An RDF description
consists in a set of statements; each one specifying a value
of a property of a resource. A statement is thus a triple
(resource, property, value), a value being either a resource
or a literal. The RDF data model is close to semantic nets. A
set of statements is viewed as a directed labeled graph: a
vertex is either a resource or a literal; an arc between two
vertices is labeled by a property. RDF is provided with an
XML syntax.

Figure 1 presents an example of RDF graph and its XML
serialization. It is the annotation of the Web page of T-Nova
which is a subdivision of Deutsche Telekom. The examples
highlighting our paper are all based on the CoMMA
ontology.

�! #"%$�&�')(+*
 An example of RDF annotation.

RDF Schema (RDFS) is dedicated to the specification of
schemas representing the ontological knowledge used in
RDF statements [RDFS, 2000]. A schema consists in a set
of declarations of classes and properties. Multi-inheritance
is allowed for both classes and properties. A property is
declared with a signature allowing several domains and one
single range: the domains of a property constraint the
classes this property can be applied to, and its range the
class the value of this property belongs to.

The RDFS metamodel is presented in Figure 2. This
definition is recursive: the terms of RDFS are themselves
defined in the RDFS model. More precisely, the RDFS
metamodel itself is defined as a set of statements by using
the two core RDFS properties: subclassOf and type which
denote respectively the subsumption relation between
classes and the instantiation relation between an instance
and a class.

�! #"%$�&�'-,.*
 The RDFS metamodel and an RDFS schema.

To represent domain specific knowledge, a schema is
defined by refining the core RDFS. As shown in Figure 2,
domain specific classes are declared as instances of the
“Class” resource and domain specific properties are
declared as instances of the “Property” resource. The
“subclassOf” and “subPropertyOf” properties enable to
define class hierarchies and property hierarchies.
/�01/!�����32�4�564879�:7;4#<=�?>
@BA &9 DC=ED'-FHG.IJ'+EK*

 The RDF data model is a triple model: an
RDF statement is a triple (resource, property, value). When
asserted, RDF triples are clustered inside annotations. An
annotation can thus be viewed as a graph, subgraph of the
great RDF graph representing the whole set of annotations
on the Web. However, “there is no distinction between the
statements made in a single sentence and the statements
made in separate sentences” [RDF, 1999]. Let us consider
two different annotations relative to two different research
projects which the employee 46 of T-Nova participates to:

- {(employee-46, worksIn, T-Nova), (employee-46,
project, CoMMA), (employee-46, activity, endUser)}

- {(employee-46, worksIn, T-Nova), (employee-46,
project, projectX), (employee-46, activity, developer)}.

The whole RDF graph does not distinguish between these
two clusters of statements. Employee 46 is both endUser
and developer: the knowledge of which activity inside of a
project he is implicated in is lost.

www.T-Nova.de

Telecomwww.Deutsche Telekom.de

subdivisionOf
activity

<rdf:Description about=’www.T-Nova.de’>
<subdivisionOf rdf:resource=’www.DeutscheTelekom.de’>

<activity rdf:resource=’#Telecom’ />
</subdivisionOf>

</rdf:Description>

Resource

Class

Property

subClassOf

range

Literal

O
nt

ol
og

y

CompanyCountry

Person employs

nationalityactivity

domain

type

Inanimate Entity

range

domain

R
D

F
an

no
ta

tio
n

type

R
D

FS
 m

et
am

od
el

subdivisionOf

www.T-Nova.de

www.DeutscheTelekom.de

subdivisionOf

activity
Telecom

subPropertyOf

subclassOf

Heiner Stuckenschmidt
148

���-���-'% �� �����	 KG�
�*
 The RDF model is provided with a

reification mechanism dedicated to higher order statements
about statements. A statement (r, p, v) is reified into a
resource s described by the four following properties: the��
���������� property identifies the resource r, the ��� ��������� �!�
property identifies the original property p, the " ���������
property identifies the property value v, the � # � � property
describes the type of s; all reified statements are instances of$ �!� ����%&��' � . Figure 3 presents the following reification:
‘Observer-3002 says that the rating of Newsletter-425 is
seminal’.

�! #"%$�&�'�(.*
An example of reification.

Let us consider now the reification of a set of statements. It
requires the use of a container to refer to the collection of
the resources reifying these statements. This leads to quite
complicate graphs (see Figure 10 in [RDF, 1999]).
Moreover a statement containing an anonymous resource
can not always be reified: the values of the properties��
���������� and " �!������� must have an identifier.

)+* �,-	 '.
/	 �� E10 $2�3
4	 5� !����	 KG�
�*
The RDF model focuses on the

description of identified resources but allows a limited form
of existential quantification through the anonymous
resource feature. Let us consider the following RDF
statements describing an anonymous resource:

�! #"%$�& '�6 *
 An example of anonymous resource.

This existential quantification is handled by automatically
generating an ID for the anonymous resource. However,
such a handling of existential knowledge through constants
is a limited solution and a graph containing a cycle with
more than one anonymous resource can not be represented
in RDF (Figure 5).

�! #"%$�& '�7 *
An RDF graph without XML serialization

8 E�� ,9, '�,:�3
�I CJ&�G C�' &;	 '�, *
 An RDF Schema is made of

atomic classes and properties. The RDFS model does not
enable the definition of classes or properties. More
generally, inferences cannot be represented in the model.

< =?>+@BADCFE&G�H1IKJ�LNMPOFQRLTSU@4VKW�X+JZYK[]\�JRV+>+^`_aQRM+@�Yb^
cNdfeNg�hZi?j?k2l1m�i nZo�p1q/rtsDu�q4n1hRvxwyk{z�i�r
Conceptual Graphs [Sowa, 1984; Sowa, 1999] is a
knowledge representation model descending from
Existential Graphs [Pierce, 1932] and Semantic Networks.
A conceptual graph is a bipartite (not necessarily connected)
graph composed of concept nodes, and relation nodes
describing relations between these concepts.

Each concept node | of a graph } is labeled by a couple~1� ���R� � |f����� ����� � ���U�-� |f� >, where � �5��� � ��� �-� |f� is either the
generic marker * corresponding to the existential
quantification or an individual marker corresponding to an
identifier; � is the set of all the individual markers. Each
relation node � of a graph } is labeled by a relation type� �.�R��� ��� ; each relation type is associated with a signature
expressing constraints on the types of the concepts that may
be linked to its arcs in a graph.

Concept types (respectively relation types of same arity)
build up a set �4� (resp. �4�) partially ordered by a
generalization/specialization relation � c (resp. � r). (� � ,. � � ,�

) defines the ���9� �1�3��� upon which conceptual graphs are
constructed. A support thus represents a domain ontology.
The semantics of the Conceptual Graphs model relies on the
translation of a graph � into a first order logic formula
thanks to a operator as defined in [Sowa, 1984]: ���2� is
the conjunction of unary predicates translating the concept
nodes of � and n-ary predicates translating the n-ary
relation nodes of G; an existential quantification is
introduced for each generic concept.

Conceptual graphs are provided with a
generalization/specialization relation � G corresponding to
the logical implication: ���T ¡F�£¢ iff ����� �¥¤K¦ ���T¢ � . The
fundamental operation called �����f§.¨�©��!ª���« enables to
determine the generalization relation between two graphs:
� � ¡ � ¢ iff there exists a projection from � ¢ to � �-¬ ­�®K¯
graph morphism such that the label of a node «/� of ��� is a
specialization of the label of a node «�¢ of �T¢ with «U�{¤ �°«�¢ � .
Reasoning with conceptual graphs is based on the
projection, which is sound and complete with respect to
logical deduction.
±N²�³R´yµ4¶R¶¸·�¹Rº¼»{½�¾�¿ZÀÂÁÄÃÆÅ+ÇÉÈRÊ+µ4¹1Ë¥Ì?ÍÏÎÐ»ZËZÀ Ñ�Ò
The RDFS and CG models share many common features
and a mapping can easily be established between RDFS and
a large subset of the CG model. An in-depth comparison of
both models is studied in [Corby ¨��{Ó�Ô!Õ , 2000].

Observer-3002

Newsletter 425 rating seminal

says

subject

Statement

predicate
objecttype

CoMMAwww.T-Nova.de
worksIn project

<rdf:Description>
<worksIn rdf:resource=’www.T-Nova.de’/>
<project rdf:resource=’#CoMMA’/>

</rdf:Description>

P3

P1

P2

Heiner Stuckenschmidt
149

• Both models distinguish between ontological
knowledge and assertional knowledge. First the class
(resp. property) hierarchy in a RDF Schema
corresponds to the concept (resp. relation) type
hierarchy in a CG support; this distinction is common
to most knowledge representation languages. Second,
and more important, RDFS properties are declared as
first class entities like RDFS classes, in just the same
way that relation types are declared independently of
concept types. This is this common handling of
properties that makes relevant the mapping of RDFS
and CG models. In particular, it can be opposed to
object-oriented approaches, where properties are
defined inside of classes.

• In both models, the assertional knowledge is positive,
conjunctive and existential.

• Both models allow a way of reification.

• In both models, the assertional knowledge is
represented by directed labeled graphs. An RDF graph
G may be translated into a conceptual graph CG as
follows:

- Each arc labeled with a property p in G is translated
into a relation node of type p in CG.

- Each node labeled with an identified resource in G is
translated into an individual concept in CG whose
marker is the resource identifier. Its type
corresponds to the class the identified resource is
linked to by a �������!� ���R¨ property in G.

- Each node labeled with an anonymous resource in G
is translated into a generic concept in CG. Its type
corresponds to the class the anonymous resource is
linked to by a �������!� ���R¨ property in G.

Regarding the handling of classes and properties, the
RDF(S) and CG models differ on several points. However
these differences can be quite easily handled when mapping
RDF and CG models.

• RDF binary properties versus CG n-ary relation types:
the RDF data model intrinsically only supports binary
relations, whereas the CG model authorizes n-ary
relations. However it is possible to express n-ary
relations with binary properties by using an
intermediate resource with additional properties of this
resource giving the remaining relations [RDF, 1999].

• RDF multi-instantiation versus CG mono-instantiation:
the RDF data model supports multi-instantiation
whereas the CG model does not. However the
declaration of a resource as instance of several classes

in RDF can be translated in the CG model by
generating the concept type corresponding to the most
general specialization of the concept types translating
these classes.

• Property and relation type signatures: in the RDF data
model, a property may have several domains whereas in
the CG model, a relation type is constrained by a single
domain. However the multiple domains of an RDF
property may be translated into a single domain of a CG
relation type by generating the concept type
corresponding to the most general specialization of the
concept types translating the domains of the property.

±N²�±�� ËRË�·5¾;·�»{¹1µ4ÑZÀ
	{¶��3À Ò�Ò;·�
t·�¾��Ð»2½R¾;¿NÀ?Ì?ÍÏÎÐ»{Ë�À�Ñ
In addition to the features the CG model shares with
RDF(S), it is provided with additional features insuring a
greater expressivity. Regarding the existing mapping
between both models, these features will be the key to an
extension of RDF(S) based on the CG model [Delteil ¨��RÓ Ô�Õ ,
2001].

�����������������
 "!
A conceptual graph represents a piece of knowledge
separate from the other conceptual graphs of the base it
belongs to. Let us consider again the two projects of T-Nova
which Employee-46 participates in. The statements relative
to one project are clustered in one conceptual graph and
then separated from the statements relative to the other
projects.
The two conceptual graphs are the following:

- [Project : CoMMA] <--(project)<-- [T : Employee-46]
-->(activity)--> [EndUser: *].

- [Project : projectX] <--(project)<-- [T : Employee-46]
-->(activity)--> [Developer : *].

A CG base is a set of conceptual graphs that cannot be
decomposed in smaller pieces of knowledge without loss of
information.

"$ %&$(')�"*�$(�
+
A conceptual graph g is reified into a marker whose value is
g.
Let us consider again the following reification: ‘Observer-
3002 says that the rating of Newsletter-425 is seminal’. It is
represented by the following conceptual graph:

[T : Observer-3002] ---> (says) ---> [Proposition :
 [T : Newsletter-425] ---> (rating) ---> [T : seminal]].

In the RDF model, the reification of a set of statements
requires the use of a container to refer to the collection of
the resources reifying these statements. In the CG model,
since the notion of graph is intrinsic to the model, the

Heiner Stuckenschmidt
150

equivalent reification remains based on the initial basic
mechanism.

��� $�� *� +�*�$ �
!������
+&*�$ %&$(')�"*�$(�
+
The CG model allows to represent every existential, positive
and conjunctive proposition without any restriction.

	�
 �� �
 % $ +�$ *($(�
+�� �
+�� � � $(� �
�
In the CG model, concept type and relation type are either
atomic or defined [Leclere, 1997]. Graph rules allow the
representation of inference rules [Salvat and Mugnier,
1996].

Starting from the correspondence between RDF(S) and the
conceptual graph model, we propose an extension of
RDF(S) based on the CG model to provide the former with
an expressivity equivalent to the one of the latter. We call
this extension DRDFS.

� �
�������������������� "!$#��%��&('�)*�+���,�-��.
The RDF model provides no way of expressing independent
pieces of knowledge. We propose to extend RDF with a
notion of context to express the clustering of statements
much more easily than RDF containers. A context identifies
a sub-graph of the whole RDF graph, so that a triple can be
stated inside of a special context. This extension is based on
the similarities between the RDF and CG models: a context
is just the translation of a conceptual graph. The CG model
provides a direct way of expressing independent pieces of
knowledge through graphs: a conceptual graph implicitly
defines a context. The representation of contexts for various
applications (quotations, viewpoint, …) is direct in the CG
model. Conceptual graphs are particularly useful as
definitional contexts enabling the definition of concepts or
axioms. By introducing contexts in RDF, we propose a very
general mechanism that will be the keystone of further
extensions, like class or rule definitions.

To extend RDFS with contexts, we introduce the following
new RDF primitives:/10�2436587:9:5<;>=

 A context is a resource of type ?A@4BDCFEHG4CFIJ?A@:BDCFEKG,C
is a subclass of LHMON:P�Q>?+RFS4PTP ./VUOWT0�243�587:9:5KXZY<;>=

 A resource is linked by a [�P�?�@4B�C\EHG4CO],N
property to the context it belongs to./1^_7_Y�7`^�7a3�5H;>=

 An anonymous resource is linked by a LHE\N:E�LHE�BbC
property to the identified resource it refers to.

The rules for constructing RDF contexts are based on the
translation of conceptual graphs into RDF:
- An individual concept [C: r] of a conceptual graph G

is represented by three RDF triples (c∅, type, C), (c∅,
referent, r), (G, isContextOf, c∅), where c∅ is an

anonymous resource (whose ID is automatically
generated by RDF parsers).

- A generic concept [C: *] of a conceptual graph G is
represented by two RDF triples (c∅, type, C), (G,
isContextOf, c∅).

- A generic concept [C: *x] of a graph G is represented
by three RDF triples (c∅, type, C), (c∅, referent, x),
(G, isContextOf, c∅), where x is an instance of the
class c�S4L<[FS,dbR\E (this class will be further described in
next section).

- A relation R between two concepts [C1: r1] and [C2: r2

] of a conceptual graph G is represented by an RDF
property P between the two anonymous resources c∅1

and c∅2.
- The resource G is an instance of the class Context; this

is represented by the triple (G, type, Context).

Note that to represent a context, it could be sufficient to link
a single anonymous resource of it to the resource G
representing it by the [\P�?+@:BDCFEKG,CO]4N property.

Let us consider again the two projects of T-Nova which
Employee-46 participates in. As shown in Figure 6, the
statements relative to one project can now be clustered in a
context and then separated from the statements relative to
the other projects.

e UOf:g-^_7ihbj
 Two contexts about the resource Employee-46.

The rules for extracting the set S of the triples belonging to
a context from the whole RDF graph are the following:

www.T-Nova.de

type

isCtxtOf

project

Employee

worksIn

Ctxt2

ContextEmployee-46

type

isCtxtOf

worksIn

Ctxt1

referent

referent

project

type

type

CoMMA

referent

ProjectX

referent

isCtxtOf

isCtxtOf

referent

referent

isCtxtOf

isCtxtOf

Heiner Stuckenschmidt
151

- Select a resource G of type Context; S <-- {(G, type,
Context)}.

- Select all the anonymous resources c∅i for which the
value of the [�P�?�@ BDC\EHG4CO],N property is G; for each i, S <--
S ∪ {(G, isContextOf, c∅i)}.

- Select all the identified resources rj values of a L<E N4E_LKE�B�C
property of a resource c∅i; S <-- S ∪ {(c∅i, referent,
rj)}.

- Select all the properties pik between two resources c∅i

and c∅k; S <-- S ∪ {(c∅i, pik, c∅k)}.

Regarding the whole RDF graph, a context defines, just like
a conceptual graph, a piece of knowledge, i.e. an
independent clustering of statements. A context is defined
from a resource G of type Context as the largest subgraph of
the whole RDF graph whose all internal nodes excepted G
are anonymous resources c∅i. A context is thus an
abstraction that enables to talk about representations of
resources (through anonymous resources) rather than
directly about resources. For instance, in Figure 6, the
resource Empoyee-46 is referred to by two distinct
anonymous resources in two different contexts. Anonymous
resources are “externally identified” by the LHE\N:E�LHE�BbC
property.
This general notion of context will appear of particular
interest for expressing definitional contexts.

� �
��������.:�>)*�)�� ��� ��_!�� #��%��& �,�J�>._�����+���	��

�
� �*�+�����<�>'������>)*�
The RDF model allows a limited form of existential
quantification through the anonymous resource feature. The
introduction of the L<E�NaE_L<E_BbC property provides the RDF
model with a general mechanism for existential
quantification handling.

To extend RDFS with existential quantification, we
introduce the following new RDF primitives:/����,^�U������F7,;�=

 A variable is a resource of type c�S L<[FSbd,RVE .
c�S4LH[VS,dbRFE is a subclass of L<MON:P�Q�?+RFS PKP ./����b^���� 7�5 7a^ ;�=

 A variable is linked by a ��S4L<S�� E:CFE�L property
to the context it belongs to.

An existential quantification is represented by an
anonymous resource described by a L<E�N4E�LHEHBDC property whose
value is an instance of c�S4LH[VS,dbRFE . The scope of a variable is
the context it belongs to, just like in first-order logic, where
the scope of a variable is the formula it belongs to.

In an RDF graph, an anonymous resource can be duplicated
into several anonymous resources coreferencing a same
variable; the new graph remains semantically equivalent to
the initial one. This enables the XML serialization of RDF
graphs embedding a cycle with anonymous resources.
Figure 7 presents one DRDF graph semantically equivalent
to the RDF graph of Figure 5 that could not be serialized in

the XML syntax. The cycle is resolved by introducing a
second anonymous resource and two L<E�N`E_L<E_BbC properties
sharing the same value:

e UOf:g-^_7� 4j
 An example of existential quantification.

! �
�����D��������� ��� "! #��%��&('"
#�*.:."���"�<�>���O���>)*�
DRDF(S) class definition is descended from type definition
in the CG model. A class definition is a monadic
abstraction, i.e. a context whose one resource of type
Variable is considered as formal parameter.

To extend RDFS with class definitions, we introduce the
following new RDF primitives:/%$i7�Y UF3�7'& 0
���bWTWH;>=

A defined class is of type ("E\N4[�BDE_MD?+RFS4PTP .
("E�N`[�BbE:MD?�RFS4PTP is a subclass of LHMON:P�Q>?+RFS4PTP ./%)*�bW+$i7�Y UF3�U�5�UF243*;�=

A defined class is linked by a, S P-("E�N4[BD[FC�[V@ B property to its definitional context./�Y82b^.�/���102�b^���� 7�5 7`^ ;>=
 The variable linked to the definitional

context by a 3+@4L4� SbR65+S4LHS�� E�CFE_L property corresponds to the
formal parameter of a monadic lambda abstraction.

Figure 8 describes the definition of the ‘WebPage’ class, as
a document having HTML for representation system. The
XML serialization of this graph is provided in appendix 2.

e UOf:g-^�787,j
 Definition of the ‘WebPage’ class.

9 �
�����D��������� ��� "! #��%��&;:
<,)=:���<4�4> ���"�H�����%����)*�
DRDF(S) property definition is descended from type
definition in the CG model. A property definition is a diadic
abstraction, i.e. a context whose two resources of type
Variable are considered as formal parameters.

P3

x
referent

referentVariable

type P2

P1

Context

xDocument

hasForRepresentationSystem

type

WebPageDefinedClass
type

hasDefinition

referent
HTML

referenttype

isContextOf isContextOf

RepresentationSystem

FormalParameter

type

Heiner Stuckenschmidt
152

To extend RDFS with property definitions, we introduce the
following new RDF primitives:/�$i7_Y UV3 7'&"0 ^_2���74^H5���;>=

 A defined property is of type
("E\N4[�BbE:M 5�L<@4� E_LKC � . (ZE\N4[BDE:M 5�L<@4�*E�LHC � is a subclass of
L<M%N Q15�L<@4� E_L<C � ./\Y UO^aW85 e 2b^.� ���102�b^���� 7�5 7a^ ; �T3�& /1W 7��:243*& e 2b^.� ���102�b^���� 7�5 74^4;>=
The variables linked to the definitional context by these
properties correspond to the formal parameters of a diadic
lambda abstraction.

Figure 9 describes the definition of the ‘colleague’ property,
as a relation between two persons working in the same
institute.

e UOf:g-^_7��bj
 Definition of the ‘colleague’ property.

� �
�������������������� "!$#��%��&;���*��)	� .
DRDF(S) axiom definition is descended from graph rules in
the CG model. An axiom is a couple of lambda abstractions,
i.e. two contexts representing the hypothesis and the
conclusion.

To extend RDFS with axiom definitions, we introduce the
following new RDF primitives:/�
 94UF2"��;>=

An axiom is a resource of type � G,[F@�� . ��G,[\@�� is a
subclass of ?A@4BDCFEKG,C ./VU�YH;�=

An axiom is linked by an [N property to the context
defining its hypothesis./\5)�7:3*;>=

 An axiom is linked by a C , E�B property to the context
defining its conclusion.

The variables linked by a N4@4L4� SbR65+S4LHS��iEaCFE_L property to the
resource of type ��Gb[F@�� correspond to the formal parameters
common to the two lambda abstractions.
Figure 10 describes the definition of the axiom “If x is
colleague of y, then y is colleague of x”.

e UOf:g-^_7�
��4j
 Definition of an axiom.

� �
&�� � �"�<�>����� � ��.:) � <,'D� � ��.4' <,�#:A���>)*�
 �<"�	� �4#)�<�� ! '�&����;� �K� ��� "!��
���������������! #"%$&�('*)�$,+.-/�10
The extensions introduced in previous sections are a
refinement of the core RDFS and remain totally compliant
with the RDF triple model. We call Defined Resource
Description Framework Schema (DRDFS) the set of RDFS
primitives augmented with the ones we introduce. The
namespace prefix ‘drdfs’ is used to differentiate these new
elements from the standard RDFS ones. For readability, we
respect the RDFS convention that the first letter of class
names is capital while the first letter of property names is
small.
The metamodel of DRDFS is presented in Figure 11; its
XML serialization is provided in Appendix 1.

2	35476�8:9�;<;>=
 The DRDFS metamodel.

y Context
formalParameter

x

referent

type

Axiom

then

colleague

isContextOf
type

referent

isContextOf

formalParameter

if type

referent

colleague

isContextOf

referent

isContextOf

colleague
type

Context

hasDefinitiontype

DefinedRelation

worksInreferent

type

y

Person

isContextOf

Institute

First-fpSecond-fp

type

worksIn

type

referent

x

isContextOf

isContextOf

Resource

DefinedClass

if

referent

isContextOf

Variable

first-formal-parameter

Axiom

Class

Property
Context

parameter

subclassOf

thenDefinedProperty

second-formal-parameter

hasDefinition

type

Heiner Stuckenschmidt
153

����� "	� $)���'����	��+�
 � ��� "
The semantics of DRDFS relies on its translation into the
CG formalism. Conceptual graphs are themselves translated
into first order logic formulae thanks to the Φ operator
defined in [Sowa, 1984].
�����	���<)��>+
����������� ' � �����! #"
The RDF model is dedicated to knowledge representation
and interoperability on the Web. It does not address the
problem of reasoning with the formalized knowledge; the
only inference mechanisms it provides are the subsumption
relations between classes and properties. Regarding the
mapping established between the RDF and CG models in
[Corby �����	��� , 2000], CG engines are good candidates for
reasoning on the Semantic Web: the CORESE system
developed in our team is a first step in this direction.
Algorithms will be implemented in CORESE for reasoning
with type definitions. They will be based on [Leclere, 1997]
and will enable reasoning with the full DRDFS.

���! #"%$�&(')"�*,+.-�/�0

Several languages for ontology representation and exchange
are existing [Corcho and Gomez-Perez, 2000], among which
RDF(S), OIL [Fensel 1325476�8 , 2000] and DAML [DAML,
2001] are dedicated to the Semantic Web. Like DRDF(S),
OIL and DAML are tentatives of improvement of RDF(S);
they are defined as an RDF Schema.

OIL enables to define classes and restrict property ranges
and domains through boolean combinations of classes. In
particular, it enables negation in class definitions, which is
not provided in DRDFS. OIL is based on a DL. When
compared to it, what DRDFS provides with its CG’s
expressivity is the possibility to express any positive,
conjunctive and existential graph in a definition. The
absence of variables in DLs does not enable to express RDF
graphs embedding cycles; the class definitions in OIL are
then limited to ‘serializable’ graphs. Contrary to OIL,
DRDFS stays in the spirit of RDF(S), namely the
representation of positive, conjunctive and existential
knowledge. In our opinion, this better meets the needs of the
Semantic Web.

DAML provides primitives to express relations between
classes (disjonction, intersection, union, complementarity,
...) and enrich properties (minimal and maximal cardinality,
transitivity, inverse, ...). DAML is provided with OOL
features. It provides no mechanism for class or property
definitions. It is therefore orthogonal to both OIL and
DRDFS. As the merge of DAML and OIL led to
DAML+OIL, it should be interesting to integrate the DAML
features into DRDF(S).

In addition, DRDFS addresses the problem of the
representation of contextual knowledge on the semantic
web. This is of special interest to identify the origin of an
annotation on the Web.

9�9;:<-�=?>7$A@CB�DA-�=

DRDF(S) is an extension of RDF(S) dedicated to ontology
representation on the Semantic Web. It enables the
representation of axioms, class and property definitions in
ontologies. More generally, it provides a way to represent
contextual knowledge on the Web.
In the framework of the CoMMA project, DRDF(S) should
enable the representation of rich domain ontologies for
intelligent IR in a company’s Intranet. Since DRDF(S) is an
RDF Schema, it is compliant with existing RDF parsers.
However the semantics of the primitives specific to
DRDF(S) can not be understood by them. We are currently
working on a DRDF(S) interpreter for the existing platform
CORESE.
The grounds of DRDF(S) rely on the existing mapping
between RDF(S) and CGs; it is an extension of RDF(S)
guided by the CG features. Regarding the similarities the
RDF(S) and CG models share, the latter could contribute to
the elaboration of a standard language for knowledge
representation, interoperability and reasoning on the
Semantic Web. We hope that DRDF(S) will contribute to
the ongoing work of the W3C committee for improving
RDFS and meet the needs of the e-business community.

 #"%EF"�/�"G=?>G"�B

[Berners Lee, 1999]. T. Berners Lee. Weaving the Web,
Harper San Francisco.

[Chein and Mugnier, 1997] M. Chein, M.L. Mugnier.
Positive Nested Conceptual Graphs. In proc. of the 5th

International Conference on Conceptual Structures
(ICCS’97), Seattle, WA, USA, Lukose D., Delugach,
Keeler M. Searle L. and Sowa J. eds, Lecture Notes in
Artificial Intelligence, LNIA 1257, Springer Verlag, p. 95-
109, 1997.

[Corby 1�2H4	6�8 , 2000] O. Corby, R. Dieng, C. Hebert. A
conceptual graph model for W3C Resource Description
Framework. In proc. of the 8th International Conference on
Conceptual Structures (ICCS’00), Darmstadt, Germany,
Lecture Notes in Artificial Intelligence, LNCS 1867,
Springer Verlag, 2000.

[Corcho and Gomez-Perez, 2000] O. Corcho, A. Gomez-
Perez. A Roadmap to Ontology Specification Languages.
In proc. of the 12th EKAW 2000, Juan-Les-Pins, France,
LNAI 1937, Springer Verlag, p. 80-96, 2000.

[DAML, 2001] Darpa Agent Markup Language.
http://www.daml.org.

[Delteil 1�2I476�8 , 2001] A. Delteil, C. Faron-Zucker and R.
Dieng. Extensions of RDFS Based on the Conceptual
Graph Model. To appear in proc. of ICCS’2001.

[Fensel 1)2J476 ., 2000] D. Fensel, I. Horrocks, F. Van
Harmelen, S. Decker, M. Erdmann and M. Klein. OIL in a
nutshell. In proc of the 12th EKAW, Juan-Les-Pins,
France, LNAI 1937, Springer Verlag, p. 1-16, 2000.

[Fensel 1)2�476 ., 1998] D. Fensel, S. Decker, M. Erdmann, R.
Studer. Ontobroker: Or How to Enable Intelligent Access
to the WWW. In proc. of the 11th International Workshop

Heiner Stuckenschmidt
154

on Knowledge Acquisition, Modeling and Management
(KAW 1998), Banff, Canada, 1998.

[Heflin 132 4%6 8 , 1998] J. Heflin, J. Hendler, S. Luke. Reading
between the Lines: Using SHOE to Discover Implicit
Knowledge from the Web. In proc. of the AAAI
Workshop on Artificial Intelligence and Information
Integration. WS-98-14. AAAI Press, p. 51-57, 1998.

[Leclere, 1997] M. Leclere. Reasoning with type definitions.
In proc. of the 5th International Conference on Conceptual
Structures (ICCS’97), Seattle, WA, USA, Lukose D.,
Delugach, Keeler M. Searle L. and Sowa J. eds, Lecture
Notes in Artificial Intelligence, LNIA 1257, Springer
Verlag, p. 401-415, 1997.

[Luke 132<4%6 8 , 1997] S. Luke, L. Spector, D. Rager, J.
Hendler. Ontology based Web agents, In proc. of the 1st

International Conference on Autonomous Agent, 1997.
[Martin and Eklund, 2000] P. Martin, P. Eklund.

Conventions for Knowledge Representation via RDF, In
proc. of WebNet 2000, San Antonio, Texas, ACCE press,
p. 378-383, 2000.

[OIL, 2000] Ontology Inference Layer.
http://www.ontoknowledge.org/oil.

[Pierce, 1932] C.S. Pierce. Collected Papers of Charles
Sanders Pierce. In HARTSHORNE C. & WEISS P. eds.
Harvard University Press, Cambridge, MA, 1932.

[RDF, 1999] Resource Description Framework Model and
Syntax Specification, 1999. W3C Recommendation.

[RDFS, 2000] Resource Description Framework Schema
Specification, 2000. W3C Candidate Recommendation.

[Salvat and Mugnier, 1996] E. Salvat, M.L. Mugnier. Sound
and complete forward and backward chainings of graph
rules, In proc. of the 4th International Conference on
Conceptual Structures (ICCS’96), Sydney, Australia,
Lecture Notes in Artificial Intelligence, LNCS 1115,
Springer Verlag, p. 248-262, 1996.

[Sowa, 1984] J.F. Sowa. Conceptual structures: information
processing in mind and machine. Addison-Wesley,
Reading, Massachusetts, 1984.

[Sowa, 1999] J.F. Sowa. Conceptual Graphs: DpANS.
http://concept.cs.uah.edu/CG/Standard.html 1999.

9��������?"G=?*CD	�

��
�
�������������
�������� �!
��"$#&%�'(�������(�

<rdf:RDF xml:lang=’en’
xmlns:rdf=’http://www.w3.org/1999/02/22-rdf-syntax-ns#’
xmlns:rdfs=’http://www.w3.org/2000/01/rdf-schema#’
xmlns:drdfs=’http://www.inria.fr/acacia/drdfs-schema#’ >

<rdfs:Class rdf:ID=’DefinedClass’>
<rdfs:subclassOf rdf: resource=

’http://www.w3.org/2000/01/rdf-schema#Class’ />
</drdfs:DefinedClass>

<rdfs:Class rdf:ID=’DefinedProperty’>
<rdfs:subclassOf

resource=’http://www.w3.org/1999/02/22-rdf-syntax-
ns#Property’ />
</drdfs:DefinedClass>

<rdfs:Class rdf:ID=’Context’>
<rdfs:subclassOf

resource=’http://www.w3.org/2000/01/rdf-
schema#Resource’ />
</rdfs:Class>

<rdfs:Class rdf:ID=’Axiom’>
<rdfs:subclassOf resource=’#Context’ />

</rdfs:Class>

<rdfs:Class rdf:ID=’Variable’>
<rdfs:subclassOf

rdf:resource=’http://www.w3.org/2000/01/rdf-
schema#Resource’ />
</rdfs:Class>

<rdf:Property ID=’hasDefinition’>
<rdfs:domain rdf:resource=’#DefinedRelation’ />

<rdfs:domain rdf:resource=’#DefinedConcept’ />
<rdfs:range rdf:resource=’#Context’ />

</rdf:Property>

<rdf:Property ID=’referent’>
<rdfs:domain

rdf:resource=’http://www.w3.org/2000/01/rdf-
schema#Resource’ />

<rdfs:range
rdf:resource=’http://www.w3.org/2000/01/rdf-
schema#Resource’ />
</rdf:Property>

<rdf:Property ID=’isContextOf’>
<rdfs:domain rdf:resource=’#Context’ />
<rdfs:range

rdf:resource=’http://www.w3.org/2000/01/rdf-
schema#Resource’ />
</rdf:Property>

<rdf:Property ID=’parameter’>
<rdfs:domain rdf:resource=’#Context’ />
<rdfs:range rdf:resource=’#Variable’ />

</rdf:Property>

<rdf:Property ID=’formalParameter’>
<rdfs:domain rdf:resource=’#Context’ />
<rdfs:range rdf:resource=’#Variable’ />

</rdf:Property>

<rdf:Property ID=’firstFormalParameter’>
<rdfs:domain rdf:resource=’#Context’ />
<rdfs:range rdf:resource=’#Variable’ />

</rdf:Property>

<rdf:Property ID=’secondFormalParameter’>
<rdfs:domain rdf:resource=’#Context’ />
<rdfs:range rdf:resource=’#Variable’ />

</rdf:Property>

<rdf:Property ID=’if’>
<rdfs:domain rdf:resource=’#Axiom’ />
<rdfs:range rdf:resource=’#Context’ />

</rdf:Property>

<rdf:Property ID=’if’>

Heiner Stuckenschmidt
155

<rdfs:domain rdf:resource=’#Axiom’ />
<rdfs:range rdf:resource=’#Context’ />

</rdf:Property>

</rdf:RDF>

��
�
����������� �
��� ' � � ��� � % � %�'���� �	��
 #
� ��� � � �������(�

<drdfs:DefinedClass rdf:ID=’WebPage’>
<rdfs:subclassOf rdf:resource=’http://…#Document’ />
<drdfs:hasDefinition>

<drdfs:Context>
<drdfs:formalParameter rdf:resource=’#x’ />
<drdfs:parameter rdf:resource=’#y’ />
<drdfs:isContextOf>

<Document>
<drdfs:referent rdf:resource=’#x’ />
<hasForRepresentationSystem>

<Format>
<drdfs:referent rdf:resource=’#y’ />
</Format>

</hasForRepresentationSystem>
</Document>

</drdfs:isContextOf>
<drdfs:isContextOf>

<rdf:Description>
<drdfs:referent rdf:resource=’#y’/>

</rdf:Description>
</drdfs:isContextOf>

</drdfs:Context>
</drdfs:hasDefinition>

</drdfs:DefinedClass>

��
�
����������� �
��� ' � � ��� � % � %�'�� %������ #����
��� � � �������(�

<drdfs:DefinedRelation rdf:ID=’colleague’ >
<drdfs:hasDefinition>

<drdfs:Context>
<drdfs:formalParameter rdf:resource=’#x’ />
<drdfs:formalParameter rdf:resource=’#y’ />
<drdfs:parameter rdf:resource=’#z’ />
<drdfs:isContextOf>

<Person>
<drdfs:referent rdf:resource=’#x’/>
<worksIn>

<Institute>
<drdfs:referent rdf:resource=’#z’/>

</Institute>
</worksIn>

</Person>
</drdfs:isContextOf>
<drdfs:isContextOf>

<Person>
<drdfs:referent rdf:resource=’#y’/>
<worksIn>

<Institute
<drdfs:referent rdf:resource=’#z’/>

</Institute>

</worksIn>
</Person>

</drdfs:isContextOf>
<drdfs:isContextOf>

<rdf:Description>
<drdfs:referent rdf:resource=’#z’/>

</rdf:Description>
</drdfs:isContextOf>

</drdfs:Context>
</drdfs:hasDefinition>

</drdfs:DefinedRelation>

��
�
�����������
�(������� ��� ����� #�� ��% � %�'���� ' � ��� # %���� � # ���
� %�'�!#"
� !
� ��!���� #� �%��$��� #����
��%�'(��� ��� �������(�

<drdfs:Axiom>
<drdfs:formalParameter rdf:resource=’#x’ />

: <drdfs:if>
<drdfs:Context>

<drdfs:isContextOf>
<rdf:Description>
<drdfs:referent rdf:resource=’#x’/>
<colleague>

<rdf:Description>
<drdfs:referent rdf:resource=’#y’/>

</rdf:Description>
</colleague>

</rdf:Description>
</drdfs:isContextOf>
<drdfs:isContextOf>

<rdf:Description>
<drdfs:referent rdf:resource=’#y’/>

</rdf:Description>
</drdfs:isContextOf>

</drdfs:Context>
: </drdfs:if>
: <drdfs:then>

<drdfs:Context>
<drdfs:isContextOf>

<rdf:Description>
<drdfs:referent rdf:resource=’#y’/>
<colleague>

<rdf:Description>
<drdfs:referent rdf:resource=’#x’/>

</rdf:Description>
</colleague>

</rdf:Description>
</drdfs:isContextOf>
<drdfs:isContextOf>

<rdf:Description>
<drdfs:referent rdf:resource=’#x’/>

</rdf:Description>
</drdfs:isContextOf>

</drdfs:Context>
</drdfs:then>

</drdfs:Axiom>

Heiner Stuckenschmidt
156

 1

Abstract

This paper highlights SemanticEdge’s use of
ontologies within their much broader conversational e-
commerce system. After sketching some of the
problems in e-commerce and e-business, we introduce
the conversational paradigm as applied to e-
commerce. This paradigm requires the use of
ontologies in many areas, and we go on to outline the
major issues we face in applying ontologies, both
from a technical and a methodological aspect. We then
go on to outline more general issues facing ontologies
which we believe will be crucial to ontology
technology’s acceptance within modern enterprise-
standard information technology systems.

Keywords: Ontologies, e-business, e-commerce

1 Introduction
The aim of this paper is to provide a pragmatic
perspective on the emerging information technology
of ontologies; how it can help solve various
information integration problems in electronic
business, and how successfully it is being introduced
into a leading-edge e-business company’s business
processes. How successfully this technology can be
fostered from the research environment to becoming a
useable commercial information technology is of the
utmost importance for the development of network-
based information access; that ontologies, in the form
which we will discuss them here, have been studied in
various esoteric fields within computer science,
principally artificial intelligence, should alert the
interested information technology professional to the
potential weakness of such technology: namely lack of
accepted standards, lack of methodological guidance
and support, and lack of enterprise-standard
environments and tools. These are, arguably, the
crucial issues which govern the take up of any new
technology. The fact that the technology works, or has
a sound, well reasoned, argument for its existence and
usage, is assumed as a given. Having been convinced
of its usefulness, the interested information

technology professional then starts asking the
“mundane” questions which typically overlap little
with research-oriented academia: How do I apply this
to my business?; Are there existing standards?; Is
there methodological support?; Is there a unified
common accepted methodology?: Is the technology of
a standard that I can trust in my enterprise information
systems?; Are there people trained in these
methodologies and technologies? Whilst the last issue
is, admittedly, outside most people’s control,
especially in an emerging technology phase, the other
issues are ones that should be addressed by parties
interested in the successful fostering any new
technology to maturity. These are the issues which we
address in this paper. We seek to highlight those
issues which we believe will affect the usability of
ontology technology within enterprises (both at the
technology level and business process level), and we
make some suggestions as to what potential solutions
might be. There are certainly more issues than those
we highlight here which will affect the successful
uptake of ontology technology (e.g., alternative
technology, the current trials and tribulations of e-
commerce business models), yet we believe those
which we do expose are outstanding open issues for
the field to address.

The outline of the papers is as follows. In Section
Two, we outline some of the problems that e-business
faces. In Section Three, we go on to introduce the
conversational paradigm for e-business, and how
ontologies help provide some of the functionality
required by that it; ontologies are also introduced
here. In Section Four we cover some problems of
ontology technology and methodology we see as
important, suggesting some solutions we believe may
be beneficial. Section Six concludes our paper.

2 An introduction to e-business and its problems
People communicate imprecisely; computers take you
literally. Language is rich and thoughts are
multidimensional; computers have no room for
variability or implied meanings. While this situation is

Enterprise-standard ontology environments for intelligent e-business

Alan Flett
Alan.Flett@SemanticEdge.com

Mike Brown
Mike.Brown@SemanticEdge.com

SemanticEdge
www.SemanticEdge.com

Kaiserin Augusta Allee 10-11
Berlin, Germany

mailto:Alan.Flett@SemanticEdge.com
mailto:Mike.Brown@SemanticEdge.com
http://www.semanticedge.com/
Heiner Stuckenschmidt
157

 2

tolerated in a research environment, it is intolerable
and even disastrous in commerce or in real life. For
this reason, the socially adept computer has become
the holy grail of e-commerce, and, in fact, of human-
computer interactions in general. This kind of
computer must be mindful of who it is talking to,
remembering what was already stated and who said it.
It must react appropriately within the context of a
situation, remaining flexible and self-adjusting, and
understanding of changes in intention or direction. It
must be flexible in detecting and offering appropriate
alternatives if a specific question can’t be answered
precisely. It must accept alternative forms of
statements and be conversationally comfortable to talk
to, offering multiple modes of input and output, with
an easy conversational style. It must be skilled at
negotiating, eliciting goals, offering alternatives in
price, size, style, and be informative by offering
suggestions to the user based on its understanding of
available alternatives and the context of the
conversation. Above all, it must be socially adept—a
social detective capable of interpreting intentions,
background, level of user-need from how queries are
phrased. It must match a social model to the
appropriate conversation script. It must be able to
infer a user’s level of frustration and respond
appropriately and be able to query and respond
appropriately within the context of a given situation.

That is an ambitious vision for e–commerce to
realise. At present, there are various problems
impeding the realisation of such a vision. These
impediments break down into what may be called
information integration problems and human-
computer interaction problems. Issues from both
categories will now be outlined.

Query rather than search
E-marketplaces are more confusing than their real
world counterparts. Not only must products from
several vendors be collected in the right place, but
these products must be matched to the requirements or
queries of the end user. Simple search systems can
answer direct questions and match products to those
questions when the terminology of both the product
description and the query match. That is, most search
techniques are keyword-based (including the most
WWW search engines). This kind of search paradigm
not only retrieves information which merely has the
same terminology, but it also misses information
which uses different terminology.

Static product search
However, search is just the beginning of a broader
negotiation process in purchasing products (or, in the
generic sense, of retrieving pertinent information). In
a real marketplace, the buyers and the sellers come to
an accommodation; buyers enter with a set of

requirements, including price; so do vendors. These
requirements are rarely met by any product; the price
may be too high, the features of the product may be
missing some of the initial requirements, or there may
be no one product that proves a good match. At this
point, both the buyer and the seller must decide what
they are prepared to negotiate: Can the buyer pay a
slightly higher price?; Could the vendor add an
additional feature affordably?

Unstructured text
In addition, most e-marketplace technologies rely on
structured databases to store and retrieve data.
However, structured databases do not have the
capability to handle the unstructured, unpredictable
and complex documents that are typical of both
product descriptions and other related information
such as product reviews. The issues then become those
of extracting the salient information from such
unstructured text sources, or of structuring such
documents with meaningful, machine-processable,
annotation—all complex problems.

Heterogeneously modelled data
In the web environment, users are further confounded
by their lack of knowledge about how any system is
structured. Interactions must be forgiving—capable of
handling any form of query and responding with good
matches to vague questions. Whilst most of today’s e-
marketplaces stop at search, some of the more
advanced also categorise their product offerings so
that roughly similar products are retrieved together.
While categorisation improves the chances that the
right product will be retrieved, it is seldom an easy
process to automate. In reality, most categorised
systems are a cobbled together collection of automatic
features and manual labour. Semantically mapping
between and among catalogues is a complex process;
each vendor describes his wares in different terms.
Equivalent products must be determined, and judging
equivalence is usually beyond most automatic
systems. Also, manual systems are not scalable; it is
not possible to keep constantly changing systems up to
date in a timely manner using manual labour.

Cultural and individual personalisation
Today’s increasingly global market, especially as it is
manifested in the Web, demands support for
multilingual communication, information access and
transactions. It is expected that the demographics of
the Web will dramatically shift away from the US and
away from English over the next few years. An e-
commerce application that can only converse in
English, is of no use to a native Spanish speaker.
Multilingual support can be important to employees
and business partners as well as potential customers.
So, too, for someone searching a catalogue for a

Heiner Stuckenschmidt
158

 3

product or service to purchase. But language is only
the “tip of the iceberg”; these systems must also be
localised to the modes of data presentation (e.g.,
currency, dimensions), product and business
regulations, business practices and cultural norms of
the user’s own country.

Telecoms infrastructure media
E-marketplaces also need to meet the needs of an
increasingly mobile user population. The mobile user
wants to purchase products on the run. This means
that a wireless device such as a PDA or WAP
telephone is the interaction venue of choice. Large
text files or graphics are useless in this environment.
Voice input and output would greatly enhance such
mobile and wireless transactions. Speech recognition
and speech generation are, however, only functionally
useful in very limited ways. One of these limitations is
the lack of strategic interactive knowledge, that is, the
ability to hold dialogs with users interested in
fulfilling some goal, be it access to information or to
exercise a transaction for some desired product.

All these problems with current e-commerce/-
business require solutions. One of the most talked
about solutions to many of the information search and
integration issues is ontologies. Ontologies promise a
lot; a shared and common understanding of some
domain between application systems, and between
them and people. In terms of human-computer
integration, conversational systems are also being
talked about as the ideal way automatic e-business
should be executed. It is to these conversational
systems, and how ontologies will aid in providing
these systems with various functionalities, which we
turn our attention to next.

3 An introduction to an e-business solution:
ontologies meet conversational systems

3.1 The requirements
All business transactions consist of a complex set of
interactions among vendors, buyers, and the
information that exists surrounding the product or
service—evaluations of products, notions of
reliability, stylishness, appropriate price, service, etc.
The marketplace is heavily dependent on such
information, and is, in fact, a specialised information
system. It matches vendors’ offerings with buyers’
needs. It informs the consumer so that he understands
his options. This process is ideally carried out through
a dialogue that helps both sides adjust their offerings
and requirements. That is, the technology has to be an
adaptive system based on natural language
understanding. It has to be able to discern the
meaning and even the underlying intent of a question.
It also has to adapt during the course of a negotiation

with a customer, as the customer’s requirements
narrow or change in reaction to the availability or
suitability of products in the marketplace. It has to
have multilingual input and output as well as the
capability for speech recognition and generation to
make it appealing in an increasingly global
marketplace.

Furthermore, any such system must be integrated
and robust enough to sit on top of the complex
functions that constitute modern information-mediated
transactions, that is: context-dependent search;
multilingual; product retrieval across multiple
suppliers, each with different descriptions of
analogous products; continuous updating of products,
prices and other information; tracking of orders;
feedback to suppliers on successful/unsuccessful
products and the products that are requested but are
unavailable; fast response time: fast updating; sticky
features to keep people on the site; and an
improvement on current systems, both in quality of
service and in cost savings.

3.2 The solution
SemanticEdge has developed a state of the art
multilingual natural language (text and voice) dialog
system capable of handling dialogs with humans
wanting to access information, for example, to
purchase products and services. The technology
extends naturally to Customer Relations Management
(CRM) and other e-business functions. This
technology depends on several distinct technology
areas within Artificial Intelligence: natural language
processing, including deep language processing and
statistical analyses; machine learning, including
inductive learning; speech recognition; automated
dialog generation, both user and content specific; and
knowledge representation and ontologies.

The system mediates between humans and
information. That is, it mediates between an
information space and a human’s conceptualisation of
that information space; for example, between a
product space and a customer’s conceptualisation of
that product space, and how they will consequently go
about searching and querying that product space.
Users hold negotiations with the system, which is
mediating access to the product spaces, and it will ask
questions of them. This requires the system to have
the ability to guide those dialogs according to a
representation of that product space. This ability to a
large extent is supported by ontologies. Not only does
the technology model products objectively, as might
be done with a sophisticated database system, but we
also model subjective quality judgements that
consumers tend to use when conceptualising the
product space before them. These subjective, ad hoc,
categories gives the system the ability to communicate

Heiner Stuckenschmidt
159

 4

to the consumer in a human friendly way, in a way
that is, in terms of the ontological commitments made
by the system, similar to those of the typical customer
or user. These human-oriented aspects are further
enhanced by other technologies within the system,
such as user models of consumer reaction to the dialog
process as it happens.

3.3 Ontologies’ role in the solution
As noted, many of these information search,
integration, and modelling, functionalities are
supported by ontologies. SemanticEdge uses both
cutting-edge ontology editors and environments from
third parties and its own ontology technology to build
both domain and user ontologies. By domain ontology
we mean both objective and subjective ontologies.
Objective ontologies model the standard product
descriptions typically released by product
manufactures. These include attributes such as weight,
price, product features, and so on. By subjective
ontologies we mean those attributes of a product
which are somehow generated by consumers’
(common) conceptualisation of the product, such as a
“fast”, “noisy”, “family” printer, and so on. These
subjective quality attributes and ad hoc categories are
typically the main communication vocabulary that
people use to conceptualise the product/information
space and consequently the terminology they use in
dialogs. Also, user ontologies play the role of
modelling different types of user and mapping those
different consumers, and their attendant different
requirements, to different dialog strategies and
ultimately to different products and services. Since
these knowledge bases are concept based, they are
language independent—an important feature in a
multilingual system that must retrieve in any
language; new languages need only to be mapped to
concepts, not translated term by term.

This ontology building effort is large in scale and
complexity and its management is non-trivial. It
requires extensive automation and support from
intelligent tools. It is our experience that at present,
whilst competent inference engines and editors are
available from third parties, large parts of what might
be called a comprehensive ontology engineering
workbench or environment are missing; worse, it is
those parts which would allow for the efficient
application of ontology technology in enterprises
which are missing. Consequently, SemanticEdge has
developed its own set of ontology building
technologies. These technologies allow for the capture
of large amounts of instance level information from
unstructured through to highly structured sources; that
is, to populate an already existing intentional
structure. SemanticEdge is also developing ontology
learning technology which will help in the burden of
building the intentional structure; that is, acquiring the

concepts and conceptual relations (e.g., subclass
relations) from free text as well as from more
structured sources. The technology being developed
uses a mixture of adaptive pattern recognition,
inductive learning, several machine learning
technologies, and an extensive set of heuristics.
SemanticEdge is also currently involved in several
academic projects, such as OntoWeb [4], and industry
consortia all with the common goal of working to
develop more advanced shared ontology technologies,
to allow for their efficient and efficacious application
in enterprises.

What are ontologies anyway?
The standard working definition to which most
ontologists refer to is that of Gruber [1]. Others have
defined ontologies in largely similar ways [2]. The
common characteristics an ontology is supposed to
have are that it should be a formal, explicit
specification of a shared conceptualisation. That is,
ontologies (in the sense propagated here, and the one
recognised in artificial intelligence) should be a
conceptualisation of some phenomena. How complex
this conceptualisation is up to the conceptualisor, and
with regard to the formal specification, also depends
on how expressive the specification language is
(humans having very expressive specification
languages being able to have very complex ontologies
of their world). Formality means that that we may be
able to automatically map and reason with our
specification, typically with the aim of having
machines reason with the various ontological
knowledge. The notion of the ontology being shared
means that the specifications made are to some extent
common throughout some group of members. This
conceptualisation may have been arrived at by
common consent or not, but the members of the group
are said to have committed themselves to the ontology.

The elements of ontologies
Ontology languages are the formalising structure
which represent the domain/universe of discourse or
world we are interested in. To accomplish this, editors
are typically used which bypass many of the textual
characteristics of specification languages and provide
more perspicuous and efficient means for developing,
maintaining, and modifying ontologies. Taking the
ontology editor metaphor to another higher level, we
end up with an ontology environment metaphor, where
various potentially time saving and quality increasing
features are to be had (e.g., modularisation,
versioning, and reuse mechanisms in general,
verification and validation). Once the ontology has
been developed, we can think of performing reasoning
with the ontology, requiring inference engines; which
may also be part of the development environment,
thereby supporting intelligent editing, and perhaps
enabling debugging and tuning of the ontology from

Heiner Stuckenschmidt
160

 5

reasoning efficiency and competency viewpoints. The
interested reader might want to read [2] for a detailed
exposition of ontology technology.

This brief overview of how ontology technology
fits into SemanticEdge’s conversational system
motivates some important issues in the application of
ontology technology and methodology. One of the
most important is that it requires the ability to manage
large ontologies. This scalability requirement
motivates several other ontology engineering issues,
including: acquisition; visualisation; modularization
and versioning; reasoning transparency; multitasking;
competency; and methodology. In the remainder of
this paper, we will explore all of these issues more
fully.

4 Issues in enterprise-standard ontology
environments

Many of the above elements are now discussed, but
some are not. Notably, languages are not discussed, as
these are, arguably, where academia can be and has
been of greatest input; these languages are complex,
the semantics issues complex, and not many people
outside academia are competent to go around
designing semantically well designed ontology
languages. The other elements are largely those of
engineering application; they require manpower,
capital, and management.

4.1 Acquisition
The acquisition of ontological knowledge and the
instantiation of such ontologies is a prime issue in the
building of large ontologies. There are several distinct
knowledge acquisition phases in ontology building.
There is the initial acquisition phase, where the
structure and terms of the domain are acquired and
represented; this is also part of the conceptualisation
phase mentioned before. There is then the acquisition
of rules and axioms of the domain; this is also part of
conceptualisation. Lastly there is the acquisition of
instances, the instantiation of the ontology with facts
to be reasoned with. The aim in all these phases of
acquisition should be to acquire what needs to be
acquired quickly, efficiently, correctly, and with as
little effort as possible.

The different phases impose different
requirements, and the goal of making them automatic
are more realisable in certain phases than in others.
The least amenable to our wishes are the first and
second, that of acquiring conceptual knowledge of the
terms, structure, rules and axioms, of the domain; that

is, the conceptualisation of a domain is a skilled
process. It is in the last phase, the acquisition of
instances, that most can be accomplished, though this
a non-trivial task when the source data is informal,
such as text in web pages.

The automated acquisition of such instances is
something to which SemanticEdge has invested
considerable resources in. Proprietary information
extraction technology has been developed to support
the acquisition of information from unstructured to
more structured sources. A screenshot of the GUI can
be seen in Figure 1. SemanticEdge is among a
growing number of companies that offer specialised
technology for carrying out this information extraction
task. A number of trainable and self-learning Artificial
Intelligence (AI) technologies are encapsulated inside
a single Information Extraction Engine. These AI
technologies can be configured to map any number of
different product catalogue formats onto a single
intermediate, predefined product schema. From this
schema, information can be exported into one or more
formalised representations (including ontology
languages).

Export involves two basic steps:

• Normalisation: This can simply involve mapping
one of a number of synonyms for a given piece of
product information onto a single predefined
symbol. It can also involve more complex
normalisation rules such as converting numeric
attribute values that can be given in one of a
number of units onto a single standard unit.

• Generation of Export Syntax: Through the
attachment of formatting rules to the intermediate
product schema, high flexibility in the export
format can be achieved, and as noted, the
information can be output to ontology languages,
such as, for example, F-logic.

One further requirement is that the acquisition
technology should be useable by non-knowledge
engineers. This again is a distinguishing feature
between the three phases, with again, the first two
being more knowledge engineer heavy, whereas the
third, if done properly, can be accomplished by non-
experts in conceptual modelling. Of course, there is
more to acquisition, especially when considering the
first two phases where the process is more one
conceptualisation. Here the progressing
conceptualisation and formalisation would be partly
helped by perspicuous visualisation, and it is that
which we will now look at in more detail.

Heiner Stuckenschmidt
161

Figure 1: SemanticEdge has developed the sePDC to enable the acquisition of product instances. This extensional
information has to conform to the imported ontology, and a number of ontology formats, including F-logic, can be
accommodated. Here we are capturing some new instances of the Country concept from the CIA World Fact-book.

4.2 Visualisation
Visualisation has dogged conceptual modelling for
years, with the taxonomic metaphor often blinding all

to any other conceptualisation of how ontological
knowledge might be presented. While a high quality
implementation of a taxonomic presentation is both

Heiner Stuckenschmidt
162

 7

important and useful, it is not the whole story.
Certainly, for acquiring taxonomic subclass relations,
it is probably a fine paradigm to use. The issue
become more complex when one considers that the
visualisation should somehow convey other, more
complex, aspects of the conceptualisation. This
visualisation of a conceptualisation has to include not
only the terms but also the axioms in relation to the
terms they relate to, and so on; although the
visualisation of axioms themselves is a tricky issue.
Further, editors which somehow support the user in
defining axioms must be welcomed.

Visualisation should aid in the conceptualisation
of the domain, as well as being some kind of first-pass
validation of the ontology’s commitments.

4.3 Modularization and versioning
One issue which we have noted as being of
importance to the ontology engineering issue is a very
important lesson learnt in software engineering, that
is, of reuse and modularization. The benefits of reuse
and modularization have been often repeated, and we
will do so here again in the light of ontologies.

Reuse is a good thing. It reduces effort through
not requiring basic (or, nowadays, more complex)
components to be built from scratch, increases quality
through the reuse of quality components, and thereby
reduces effort and costs. But reuse also brings
problems of its own making such as building the most
reusable components possible and finding and
integrating the most up to date versions of these
components into a working and consistent whole. In
the ontology world, the merging, alignment, version
control, and so on, of ontologies, is only now
beginning to make it into tools, and has a long way to
go. These are, however, going to be crucial issues
which will become very important in years to come, as
more and more ontologies are built and available on
the WWW, where different components might be
inconsistent with each other, and out of date versions
abound. We can imagine a time when we will be able
to select from a library of well designed, up to date,
mutually consistent components which can be easily,
even automatically, integrated, all done in some kind
of developer studio environment.

4.4 Reasoning transparency
The are several issues regarding reasoning which
require close attention. Reasoning in the small and in
the large are totally different propositions. Issues such
as inference profiling, debugging, inference efficiency
concerns, how the modelling affects the reasoning to
be performed, what the competency of the ontology
implies for the completeness of the reasoning,
logically erroneous axioms causing problems (circular
axioms), and so on, all require attention, especially

when the ontology is scaled up. For instance, let us
assume we have a slow query. Is this slowness an
implementation problem such as a bug in the reasoner,
is it a problem of having too complex a model, is the
model okay but the reasoner is providing us with too
much reasoning, for which we have no use as regards
the competency we have decided the ontology should
support, is the reasoner sound and complete but not up
to the job?, or is it simply a slow machine on which
we are running our system? To answer these questions
requires the ability to observe the reasoner in action
and to have access to some kind of statistics and
summary information. This aspect of ontologies is
crucial, as the model-axiom-reasoner interaction is a
non-trivial one and the space of possible interactions
is immense and totally unpredictable in terms of the
efficiency of the concerted artefact. This is something,
that, for instance, databases do not suffer from to
anything like the same extent. Indeed, this issue goes
to the heart of much knowledge representation
research in that it encompasses completeness,
soundness, tractability, and so on.

It is our opinion that reasoners cannot be black
boxes in to which no one may look. For the
engineering of large ontologies, it is necessary to be
able to at least appreciate the problems and to try and
solve them however we can or is allowed by the
reasoner paradigm in question. Altering the
completeness and soundness characteristics is
probably an extreme way of solving any potential
problem, but at the very least, one should be aware of
what inferences are being computed and why, so that,
for example, over burdensome axioms may be
modified if the competency specification allows it.
These issues of reasoning efficiency become even
more important when considering that these reasoners
may very well be on-line knowledge servers to which
multiple users (e.g., hundreds) may be accessing. It is
to the issue of multitasking and multiuser access that
we turn to next.

4.5 Multitasking
If ontologies, the models and reasoners, are to become
trusted on-line servers of knowledge, then they must
have certain features developed over the years in the
database community. For example, the capability to
handle multiuser access would seem to be the
minimum. Multiuser access may be querying,
browsing, or editing. There is much demand for all at
SemanticEdge, where ontological tools and the
conceptual models they support are required to be
browsed by several people, who have to keep their
work somehow consistent with the ontological
commitments already made. And, indeed, many
people have concepts which they might want to add, if
suitably qualified to do so. And there are other issues,
such as stability and reliability. This implies some

Heiner Stuckenschmidt
163

 8

professional engineering support and development to
take ontologies to the next level of enterprise
integration.

4.6 Competency
The notion of competency is one of the most
important issues in conceptual modelling. It is
important in that when we model a domain, we expect
the resultant concerted artefact of model, axioms and
inference engine to be competent with regards to the
queries we should wish to ask of it. It is in the
interaction of the these three components of any
ontology that the complexity arises, and we require
someway of assessing whether or not we have been
successful in building the ontology artefact which
satisfies our requirements. For example large amounts
of global terminological assertions such as partitions
and so on can have quite large effects on the kind of
deductions possible (as well as reasoning efficiency,
see earlier section on reasoning transparency).

Deciding when an ontology should be declared
competent is not easy. One solution is to have a test
harness where several representative and/or complex
queries can be entered and run on the ontology. If
these cases give satisfactory responses then one might
conclude that the ontology is competent and leave it at
that. Alternatively, one could have a comprehensive
set of queries somehow automatically generated which
comprehensively exercises the ontology’s competency
(one may even want such functionality so as to cache
the results of our ontology if we decide that its
performance is not good enough to have as part of an
online, live, system). The returned answers would then
have to be somehow assessed and a judgement made
on the ontology’s competency.

4.7 Methodology and Ontology
One of the most challenging aspects of ontology work
is developing new ontology structures, capable of
representing what is intended. This is typically not
easy when one wanders, even slightly, from the well-
trodden path of EER modelling commonly practised in
the database (and OO software engineering) world.
Representing other kinds of world phenomena, well
axiomatised, is not a trivial task. Upper level
ontologies, where a solid, well thought out, conceptual
structure, offers the benefits of providing
methodological support for modelling and Ontology.
For example, part-whole knowledge is one of the most
common ontological structures humans use to think of
the world, and it is also one of the more complex
representation and reasoning paradigms to get right.
Methodological support in this area, as well as the
definition of various well-conceptualised upper-level
concepts, is crucial for the development of ontologies
that will talk to each other. Without such support, it is
quite possible that ontologies unable to be integrated

will find their way into various resources, and
significantly harm the information integration dream
that many believe ontologies offer. After all, the word
Ontology, as per our working definition given earlier,
apparently for many people has a notion of a common
and shared meaning of terms, and it therefore seems
fairly reasonable to hope for at least a common
methodological upper level Ontology which people
can use and extend.

5 Conclusion
E-marketplaces accentuate several dimensions of the
product buying process. They bring incomprehensible
scale, and thus the consequent problem of enabling a
customer to, indeed, comprehend and interact with
this space. This large space brings problems of
heterogeneity (how to find all similar products),
search (how to find your products amongst the
hundreds or thousands available), choice (is there too
much choice now available for the average customer),
and optimality (is the customers choice the optimal
one in the space of his product options). These
problems of scale are not the only problems in
allowing human customers to interface optimally with
their chosen product space; there are conceptual
problems independent of scale. These problems lie in
allowing a human customer to conceptualise and
communicate in as natural a way as possible with the
buying process. This consequently means depending
on complex natural-language and knowledge-based
systems (including ontologies) supporting a dialog or
negotiation. SemanticEdge is currently developing
such cutting-edge technology (including ontology
technology) which will allow it to so facilitate this
natural transactional process between consumers and
the products they wish to buy.

However, it is our opinion that ontology
engineering has a long way to go before becoming
truly enterprise-standard. It must embrace many of the
engineering paradigms of object-oriented (OO)
software engineering and database engineering that
have become de facto over the last few years. Owing
to the added complexity of ontologies in that they
have inference engines, knowledge models, axioms
and rules, all interacting in a non-trivial way, there are
extra problems and complexity to be managed. At
present, this additional complexity is not managed at
all and is largely hidden from the user. Only
symptoms such as slow queries, strange deductions,
hanging inference engines and incompetent answers
surface to alert the ontology engineer to problems. For
the successful engineering of ontologies, it is essential
that this complexity be better managed and
thoughtfully exposed, so that when problems do occur
there are recourses to take and information to be
examined. This along with the substantial beefing-up
of ontology environments will allow them to become

Heiner Stuckenschmidt
164

 9

the next essential components in future distributed
ontology-enabled information systems (e.g., resources
on the WWW). Such information environments are
beginning to be seriously discussed by many as the
next stage in the evolution of, for example, the
WWW—the Semantic Web—with such initiatives as
DAML [3], where ontology languages such as
DAML+OIL are being designed to support this,
reinforcing this belief.

6 Acknowledgements
We acknowledge that part of this paper was based on
the SemanticEdge white paper as written by Susan
Feldman of IDC.

7 References
[1] T. R. Gruber: A Translation Approach to
Portable Ontology Specifications, Knowledge
Acquisition, 5:199—220, 1993.

[2] D. Fensel: Ontologies: Silver Bullet for
Knowledge Management and Electronic
Commerce, Springer-Verlag, Berlin, 2001.

[3] DAML: http://www.daml.org

[4] OntoWeb: http://www.ontoweb.org

http://www.daml.org/
http://www.ontoweb.org/
Heiner Stuckenschmidt
165

Building BusinessApplications By Integrating Heterogeneous
RepositoriesBasedon Ontologies

Noriaki Izumi and Takahira Yamaguchi
Dept.ComputerScience,ShizuokaUniversity

3–5–1JohokuHamamatsuShizuoka432-8011JAPAN�
izumi, yamaguti� @shizuoka.ac.jp

Abstract

This reportproposesanintegratedsupportmethod-
ology for constructingbusinessmodelsincluding
employingnew business models,transplanting
existing businessactivities to computers,and de-
cision makingsupportin employingnew environ-
mentof computers.In order to modelenterprises
and businessactivities and to implementthem as
softwareapplications,heterogeneousrepositories
in differentgranularitiesof businessmodelsarein-
tegratedbasedon ontologies.By devisinga frame-
work, which picks the main conceptsof reposito-
riesup andmakecorrespondenceamongthem,our
framework achieves the unified reuseof existing
repositoriesof businessactivities andsoftwareli-
braries. We have implementedthe prototypesys-
tem by JAVA andconfirmedthat it supportsus in
variousphasesof businessapplicationdevelopment
including businessmodel manifestation,detailed
businessmodeldefinitionandanimplementationof
businesssoftwareapplications.

1 Intr oduction
Dueto therapidchangeof businessenvironmentsintroducing
the Internet,it becomesvery importantto achieve the rapid
adaptationof thecorporatestructureby employinga variety
of heterogineusreusablecomponetssuchasbusinessmodels,
bestpractices,softwarelibraries,andsoon.

Becauseof theabove context, a lot of researchanddevel-
opmentprojects,whichconstructbusinessrepositoriesof var-
ious conceptsandideasrelating to businessactivities, have
beenactivated.

In the field of MS (ManagementScience),oneof the fa-
mousresultsis thee-businessProcessHandbookproject[MIT
ProcessHandbook Project] carried out by MIT. The e-
businessProcessHandbookis a substantialcontribution asa
businessrepository, whichcontainsapproximately4,600def-
initionsof businessactivities from abstractprocessesto the
specializedoneto thebusinessover the Internet. Its formal-
ity, however, is notstrict sincethemostpartof thedefinitions
aredescribedwith naturallanguage.

Fromtheviewpoint of theformality on theprocessspeci-
fication,thereis theenterpriseontology[Uscholdet.al.1998]

of Edinburgh University in thefield of artificial intelligence.
Its formality is verystrongandit contributesthereuseof busi-
nessmodelsneverthelessit covers only so generaland ab-
stractconceptsthatit is very hardto constructconcretebusi-
nessmodelswith operability.

Ontheotherhand,oneof thedevelopedlibrary for building
knowledge systemson the concretelevel is the inference
catalogueof CommonKADS methodology[Schreiberet.al.
1999;CommonKADS]. CommonKADS is utilizedfor anal-
ysis anddevelopmentof knowledgesystemsandoffers the
languageandprimitivesto clarify conceptualmodels.In late
years,specialmethodlibrary REPOSITis proposedfor the
implementationof inferenceprimitivesof CommonKADS,
but the methodologyof the applicationconstructioninclud-
ing requirementanalysisanddevelopmentis still examined.

Owing to the differenceof purposesamongthoserepos-
itories, whenwe try to build the real applicationsbasedon
the existing domain, the integratedsupportare hardly per-
formedin the whole processof the constructionandthe re-
engineeringof businessapplications.

So, in order to achieve the unified supportof the devel-
opment,thecomputingframework, which integratesthedif-
ferentsortsof repositories,supportsdynamic,shouldbe de-
velopedfor theconstructionof businessmodelsandapplica-
tions.

Fromabove-mentionedbackground,weproposethedevel-
opmentmethodologyof businessapplicationsbasedon on-
tologieswith reusablerepositoriessuchase-businessprocess
handbook,CommonKADS andREPOSIT.

In orderto constructthebusinessmodelsandto implement
thembasedon the existing domain,we rebuild the hetero-
geneousrepositoriesinto two repositorieson different-grain-
levels: the businessspecificationrepositoryon the level of
businessactivitiesandthebusinesssoftwarerepositoryonthe
level of softwareapplications.

It is themaincharacteristicof this work thatour proposed
framework enablesintegratedsupportof modelingbusiness
activitiesfrom businessdocuments,andconstructingbusiness
applicationfrom businessmodels,by developinga platform
to createthe relationshipsdynamicallybetweenthedescrip-
tions of the businessspecificationrepositoryand the busi-
nesssoftwarerepository. We have implementedthe proto-
type systemby JAVA and confirmedthat it supportsus in
variousphasesof businessapplicationdevelopmentincluding

Heiner Stuckenschmidt
166

Business Model

Business Specification Repository

Process Definitions

Input

Output

Reference

PH WordNet

Business Plan

Object Matched
Processes Matched

Object Extracted

CommonCADS

CommonCADS

Business Software Repository

Software Object
 Ontology

Implementation Methods

Input

Output

Reference

Data Structure Selected

Detailed Method Matched

Methodtype MathedBusiness Application

Business Object
 Ontology

Business Object
 Ontology

Software Libraries

JAT REPOSIT

Figure1: Overview of DevelopmentSupport

businessmodelmanifestation,detailedbusinessmodeldefini-
tion andanimplementationof businesssoftwareapplications.
Sinceourworkcanbeappliedto advancedmanagementjudg-
menton introducingnew businessmodels,re-engineeringof
existing businessprocesses,andemployingnew environment
for businesscomputing,we expecttherepercussioneffect on
themanagementactivities astheresultof theinformationin-
tegration.

2 Overview of ProposedDevelopment
Support

In orderto achieve theunifiedtreatmentof modelson differ-
ent levelssuchasmakingbusinessmodelsclear, implement-
ing thedetailedmodels,building softwareapplicationsandso
on, our researchaimsat theestablishmentof integratedsup-
port from theanalysislevel to theimplementationlevel. Our
standpointof the integrationandthe reuseof heterogeneous
repositoriesis to obtainthekey structureof eachrepositories,
which correspondsto nounconcepts,andto relatethemeach
otherto bridgethewholestructureof processesandactivities
includingverbconcepts.

The key idea to achieve our aim is how to extract the
verbandnounconceptsandtheir relationshipasthecommon
structureof informationfrom theheterogeneousrepositories.

Thetargetof developmentsupportis theconstructionof busi-
nessapplicationasa businessmodelsobtainedfrom business
documents,which containsthe facility suchascommunica-
tion with usersthroughnetworkvia E-mail or Web,andthe
file systemsharingwith theusersfor customerrelationships
anddatamanagement.Brief descriptionof businessapplica-
tion developmentthroughtherepositoriesintegrationby our
framework is asshown in Figure1.

At first, in orderto pick thekey conceptsup from business
documents,we constructthe businessspecificationreposi-
tory including ontologiesof nounandverb concepts.Noun
conceptsare extractedfrom the e-businessProcessHand-
book and classifiedinto the businessobject ontology ac-
cordingto WordNet[Fellbaum1998] as the generalconcept
ontology provided by PrincetonUniversity. Verb concepts
of e-businessProcessHandbookareclassifiedby usingco-
occurrenceinformationof nounconcepts.By makingrefer-
enceto the history databaseof the correspondencebetween
words of documentsand ontologiesof nounsand verbs, a
businessmodel is constructedby the businessspecification
repository.

Next, as a repositoryfor transplantationof the business
modelto abusinesssoftwareapplication,weprovidethebusi-
nesssoftwarerepositoryincludingmethodlibraries. In order
to correspondactivities of businessmodelsto softwaremod-

Heiner Stuckenschmidt
167

� � � � � � � � � 	

� � � �
 � � � � � 	 � 	 �
� � � � � � � � 	 	 � 	 �

� � � � � � � � � � � � �
 � � �
 � � � � � � �

� � � � � � � � � �

� � � � � � � � � � � � �
 � � � � � � � � �
 � �
 � � � 	

 � � � � � � �
 � � � �
� � � �
 � � � �
� � � � � � � � �
� � � � � � � � � � �
� � � � � �
� � � � �
 � � �
 � � � �
� � � � � � � 	 �
� � � � �
 �
 � � � � �

 � � � � 	

 � � � � � �
� � � � � � � � � �
� � � �
 � � � � � � 	
� � ! � � � � � � � 	 �
 � � � � � � �

� � � � � � � � �
� � � � � � � �

� � � � � � � � � � � � 	

 � � � �
 � � � �

� � ! � � � � � � � 	 �
 � � � � � � � � � �
� � � � � 	 �
� � � � � � � � � �
� � � �
 � � � � � � � " �

� � � � � � � � � �

� � � � � � � � � � �

� � # � � $ � � � � � � � � � 	

� � � %
 � � � � � � 	 &

� � � � � � � � � � � �
�
 � � � �
 � � � � � � � � � � � �

� � � � � �
 � � � � � %
 � � � �
� ' � � � � � � � � � � %
 � � � �
 � % � � �
 � � � � � � � &
 � � � � � � � 	

� � � � � �
 � � � � 	 � �

� � � �
 � � � � � � � � � 	

� � � � � � � �
 � � � � � � � � � � 	 �

 � � � � � � � # � �
 � � � � � �
 � � �
 � � 	
� � ' � �
� � � � � � � # � �
 � � � �

� � � � � � � �
 � � � � # � � � � � � �
 � � � � � $ � � # � �
� � � � � � � �
 � � � � �
 � � � (
� � � � � � � �
 � � � � � � � � � 	

� � � � %
 �
 � �
 � � � � � � � � � � � � � � � # � �
 � � � �
) � � � � � � � *
 � � �
 � � � � � � �
� � � # � � � �

� � � � � � � � 	 � � � + � � 	 � , � � �

 � � � � � � � � 	 + � � � , 	 � �

� � � � � � 	 � �
� � � � �
 � � � �

� � � � � � � 	 �
 � � � � �
� � � � $ � � � � 	
� � � � � � � � � �
� � � � � � � � �
� � � % � � � � � %
 � � � �
� � � # � �
� � � " � � � � � � � � �
 � � �

 � � � � � � �
 � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � �
 � � � � � � � � � � � � �

� � � � � � � � � & � � � + � � � � , � � �

� � � � �
 � � � � � � + & � & , � � �
� � � �
 � � � � � � � � �
� � � %
 � � � �
� � � � � � � � � � �
 � � � �
% � �
 � � � � �
# � � � � � � 	
� � � � � � � � � � � � � �

� � � � � �
 � � � � & � �

 � � � � � � �
 � � � � 	 � � (+ � � � 	 , � � � �

- . � % � /

� � � � � � � � 	 �

 � � � � � �
 � � �

Figure2: ObjectTreeStructureObtained(a partof it)

ules,we constructa library of typical patternsof the input-
outputrelationsandthemodulestructureof softwaresystems
basedon JAT (JAVA AgentTemplate)[Petrie1996] provided
by StanfordUniversity. Eachpatternis formalizedasa com-
binationof inferenceprimitivesof CommonKADS by intro-
ducingasoftwareobjectontologythatprovidestheclassifica-
tion of objectswith control anddatastructures.By consult-
ing the softwareobjectontologyandREPOSIT[Izumi et.al.
1999b] provided by ShizuokaUniversity asa library of the
implementationpatterns,thebusinessmodel,obtainedon the
previous stage,aresupplementedwith control structuresof
softwarecodes. According to the frequency andhistory of
correspondingamongthreelibrariesof JAT, CommonKADS
andREPOSIT, a detailedmodelof the softwareapplication
areobtainedbasedon thesoftwareobjectontology.

3 Construction of BusinessModels
In thiswork, we employthee-businessProcessHandbookof
MIT, calledProcessHandbookfor short,asa library classi-
fying businessactivities. In order to constructthe business

specificationrepositoryby extracting the requiredinforma-
tion, WordNet is alsoemployedasa generallexical reposi-
tory. First, the businessspecificationrepositoryis provided
asa key structurebridging thebusinessdocumentsandPro-
cessHandbook.Then,thewrapperframework is constructed
asanextract methodof requiredactivities from a repository
of ProcessHandbook.

3.1 Building BusinessObject Ontology

Whentheabstractiondegreeof abusinessplanis high,averb
conceptof anactivity in thebusinessplanis oftenvaguefor
specificationmakersdueto the differenceof viewpointson
thedefinitions. In contrast,a nounconceptof theactivity is
comparatively clearandappearsregularly in the document.
In orderto classifythenounconceptsextractedfrom Process
Handbook,we employ the WordNet as a generalontology
that containsover 17,000concepts.However, if we utilize
WordNetasit is, the numberof candidateexplodesbecause
of thevarietyof theword’smeaningandtheambiguityof the
word in thedocument.

Heiner Stuckenschmidt
168

0 1 1 2 34 5 6 5

7 8 9 7 3 : 64 5 6 5 ; 5 1 3
: < 8 : 8 1 5 =

0 9 > 8 < ? 5 6 0 8 9 7 8 ? ? 0 6 ? 3 9 6
< 3 @ 2 3 1 6

5 7 A 9 8 B = 3 4 C 3 ? 3 9 69 3 3 4 1> 8 < 3 7 5 1 6< 3 > 3 < < 5 =
5 4 D 3 < 6 0 1 3 ? 3 9 6

1 6 5 9 4 5 < 4 0 6 3 ?

7 2 1 6 8 ? 0 6 3 ?

1 3 < D 0 7 3
4 0 < 3 7 6 0 8 9
3 E 6 < 5 7 6 8 < 1 3 < D 0 7 37 2 1 6 8 ? 0 F 3 4 1 3 < D 0 7 3

0 6 3 ?: < 8 4 2 7 6

2 1 3 <

6 3 7 G 9 8 = 8 C H
3 ? : = 8 H 3 3> 0 9 5 9 7 0 5 = < 3 1 8 2 < 7 30 9 > 8 < ? 5 6 0 8 9 < 3 1 8 2 < 7 3G 2 ? 5 9 < 3 1 8 2 < 7 3: G H 1 0 7 5 = < 3 1 8 2 < 7 3: 3 < 1 8 98 < C 5 9 0 F 5 6 0 8 9
7 2 1 6 8 ? 3 <

< 3 1 8 2 < 7 3

I ; J 3 7 6 7 8 ? : 2 6 3 <: 8 1 6 5 C 3
; 8 8 A

4 8 = =1 8 > 6 B 5 < 3
6 < 5 D 3 = 1 3 < D 0 7 3

8 < 4 3 <

: < 3 K < 3 7 8 < 4 3 4 ? 2 1 0 77 8 2 : 8 9

: 3 < 1 8 9 8 < 8 < C 5 9 0 F 5 6 0 8 9

Figure3: BusinessObjectOntology(a partof it)

So,in orderto classifythenounconceptsappearingin Pro-
cessHandbook,wechoosethemajorconceptswith respectto
thedegreeof abstractionandfrequency by usingWordNetin
thefollowing way.

First, nounconceptsconsistingProcessHandbookareex-
tractedandrearrangedinto a similarstructureto theactivities
of ProcessHandbook.Then,the frequency of eachword is
countedandsumupwith respectto theinheritedstructure.A
structuredtreeof thewordswith theattribute of appearance
frequency is obtainedas shown in Figure 2. In the figure,
the numberof appearanceis given in the fractionalexpres-
sion wherethe numeratorcorrespondsthe frequency of ap-
pearanceasit is andthedenominatormeanstheinheritedfre-
quency of sub-concepts.The additionexpressionis a trace,
which indicatedtheword,appearsin thedifferentpositionof
thetreestructure.

As thecriteria to selecta majornounconcept,we pick the
conceptswith themorefrequency up andrebuilt into anup-
per ontology. Accordingto the WordNet’s structure,we re-
peatthe sameway describedabove anddefinethesubstruc-
ture of conceptsobtainedabove as an upperontology, pro-
vided that the priority of the meaningis given to business
domainover therelationof WordNet.Furthermore,whenwe
fix the top ontologyfor constructingbusinessdomainontol-
ogy, conceptdrift, thatis akind of semanticshift onaspecific
domain,oftenoccursandcausesinefficiency on building on-
tologies. Dueto reducethecostof construction,we employ
the methodologyfor resolvingthe conceptdrift [Yamaguchi
1999]. Figure 3 shows the structureof the businessobject

ontologyobtained.

3.2 Determining BusinessActivities

Whenobtainingthedefinition of thebusinessactivity corre-
spondingto a businessdocument,it is difficult to utilize the
hierarchicalstructureof theprocesshandbookbecauseof the
gapbetweenwordsof actualdocumentsandprocesshand-
book. On this account,we constructthebusinessobjecton-
tology, asa top ontology, which bridgesthevarietyof words
in documentsandnounsin ProcessHandbook. In order to
identify businessactivities from a sentencegiven by a user,
we deviseanextractionmechanismasa wrapperfor Process
Handbookbasedon thebusinessobjectontology.

Thewrappertool is composedof thedatabasesof the fol-
lowing information. First, the co-occurrenceinformationof
nounconceptsin the definition of a businessactivity is ob-
tainedandclassifiedwith respectto thestructureof thebusi-
nessobjectontology. Then,theinformationis madeaccessi-
ble asthe databaseof the co-occurrence.At the sametime,
the frequency information is alsoavailablein collectingthe
co-occurrenceone. By usingboth of the co-occurrenceand
frequency information,thewrappertool helpusto searchthe
definitionof activities in thespaceof ProcessHandbook.The
proto-typing tool is shown in Figure3.

Heiner Stuckenschmidt
169

Figure4: TheWrapperTool

4 Building BusinessApplications

4.1 Building Software Object Ontology for Reuse
of Libraries

In thesamewayof thebusinessobjectontology, thesoftware
objectontology(Figure5) is constructedasa domaininde-
pendentontologyfrom thelibrariesintendedto employ. The
softwareobjectontologygiveswordsfor expandingdomain
ontologiessuchasbuilding aset,picking upanatomof aset,
indicatinga calculationstage,datastructuresfor implemen-
tationdetailsandsoon.

On the purposeof the developing businessapplications
from the businessmodel obtainedabove, a detaileddefini-
tion of eachactivity of the model is required. In order to
give theactivities theoperationalinformationthatis usedfor
applicationdevelopment,we preparethelibrary of theappli-
cationtemplate,which definesthestructureof thepartof ap-
plicationin thefashionof theknowledgesystemdevelopment
with respectto thesoftwareobjectontology. By constructing
the businesssoftwarerepositorywith the reusabletemplate
of REPOSIT, CommonKADS, JAT andhistoricaldatabases,
thebusinessapplicationis obtained.

4.2 Model RefinementBasedon Application
Templates

We considerthe structureof businessapplicationsbasedon
the agentarchitectureto be composedby the inferenceen-
gine to attaina task,thesensorto get the informationof the
outsideandtheeffector to carryout their task.Thesensoris
characterizedby thefollowing threefunctions:

(1) the function thataccessesthe insideandtheoutsidere-
sourcesof theagent,

(2) thefunctionthatexaminestheplaceandthecontentsof
resources,

(3) a functionto acquirea messagefrom theuserandto in-
terpretthemessage.

Theeffector is definedby two of thenext:

(a) the functionto form andmodify the insideandtheout-
sideresourcesof theagent,

(b) a functionto makeandto sendamessageto theuser.

all

knowledge
equation
advice

data

list
atom

int
double

value

condition ideal_range
standard_point

relative_value
raw_data

constraint

truth_value

expressiondescription
sentence

string

name
index key

id

bad
good

current

next
last

initial

developed

final

middle

part_of
subset_of
all_

major
minor
main
detail

worst

(bs)

variable

universal

nonvariable

(gb)

(set)

(time)

(value)

modelstateworld
action

qualifier

out_of_range

significance
occupancy

contorollability
depth

necesity
weight

equationformula

best

a_piece_of

state_transition

entity
element
set

Figure5: Standarddatahierarchy

The framework of the combinationwith the above func-
tionsandtheinferenceengineis organizedasagenttemplates
by referringto JAT (JAVA Agent Template)of the Stanford
University. Furthermore,detailedtemplates,corresponding
to eight typesof communicationmodelsgiven by Common
KADS, areformedasinteractiontemplateswith theuserand
resources(Figure6).

4.3 Building ReusableTemplatesfor
Implementation of Applications

From the importanceof a unified languagefor the reflec-
tion of the changeon a businessmodel,we rebuild andex-
tendinferenceprimitivesof CommonKADS into “REPOSIT
(REusable Pieces Of Specification-ImplementationTem-
plates)”which combinesdeclarative semanticsemployedin
CommonKADS and proceduralsemanticslike Prolog. A
unit of a descriptionin REPOSIT, definedasa relationship
amonginput, output and referenceknowledge, is called a
“unit function”. A set of unit functions is rebuilt into the
methodontology by abstractingknowledgetypes of input,
outputandreference.

Furthermore,patternsof a combinationof unit functions,
which appearfrequently in the developmentprocess,are
gathered,sorted out and constructedas a method library
basedon thefollowing standpoint:

(1) providing refinementpolicies,

Heiner Stuckenschmidt
170

Figure6: Primitivesof ApplicationTemplates

(2) standardizinga way of the knowledge(data) manage-
ment,

(3) classifying the adding patternsof control structures
givento specifications.

In orderto keepa correspondencebetweendescriptionsof
specificationsandimplementations,REPOSITsupportsstep-
by-stepoperationalizationof anabstractdescriptioninto ade-
tailed implementationmodel,as the following way (Figure
7):

a. selectinga patternof the methodlibrary accordingto a
tasktypeof a knowledgesystem,

b. concretingknowledge type of input, output and refer-
enceby usingthe softwareobjectontologyandtheob-
tainedbusinessmodelastherequirementspecification,

c. addingacontrolstructureto thedescriptionwith theob-
tainedinformationof knowledgetype,

d. selectinga patternfor eachunit functionof thedescrip-
tion andcontinuingtheabove process.

Finally, we’ve provide 22 methodson theabstract-pattern
level, 92 methodsincludingprolog-build-in functionson the
program-codelevel, and69 methodson themiddle-level.

4.4 Experimental Study
In order to considerthe validnessandusability of proposed
framework, we’ve implementedthe above mechanismby
JAVA into theproto-typingtool andappliedit into casestud-
ies of constructingbusinessapplicationsfrom description
documents.

In eachcasestudy, somepatenttexts obtainedfrom the
Internetare usedas a businessdocument. We have com-
paredbetweenthemodelsof casestudiesprovidedby Process
Handbookandtheonesbuilt by theproto-typetool (Figure7).

Roughlyspeakingabouttheresult,approximately70% ac-
tivities of eachcasestudymodelaredeterminedfrom patent
texts, and,eachimplementationhasbeencompletedaround
18 hoursafter receiving thepatenttext of claimsanddetails
asspecifications.

The above meansthat the cost of the applicationdevel-
opmenthasbeenreducedmorethan50% ascomparedwith
by hand,that reuseof thesystemhasbeenperformedabout

LNMPO QSRSTVULNMPO QWRSTVXLNMPO QSRWTSYLZMPO QWRST\[
]_^S` acbcdfecg h icj kSj l

dcbc]_kSh mcecbfmc` bcg bcncl

o ` kSmcdfkSj dcefdckS` kSecafh ^Sj kSj pSacl

qsrut vxw vsysz { |u}~q��uqsz z vs� |

� r ys�u|uys� vxqsz { |u}~�u|��u��w vx��}uv
ysr qs�u�u{ |u}~yx��|uz � �uwSt z � �uyxz ��� v

�uru� vs�uvsqxz { |u}~� � ����qxr

Figure7: Overview of a DevelopmentProcess

Figure8: Executionof SupportingTool

thecommonstructureof businessapplications,andthatmain
businessstructurecould be reusedif we have stackedand
opensomeexperienceto the public at our library. Now, we
areanalyzingandinvestigatingaboutthedeeperexperimen-
tal studiesonthedevelopmentonheterogeneoussystemsand
theresultwill beopenuntil theconference.

5 Discussions
The above result of the experimentalstudy meansthat the
costof the applicationdevelopmenthasbeenreducedmore
than50%ascomparedwith by hand,thatreuseof thesystem
hasbeenperformedaboutthecommonstructureof business
applications,andthatmainbusinessstructurecouldbereused
if we have stackedandopensomeexperienceto thepublicat
our library. Now, we areanalyzingandinvestigatingabout
the deeperexperimentalstudieson the developmenton het-
erogeneoussystems.

Heiner Stuckenschmidt
171

� �����x�~�������~�x�N�����������

Send a message to
Recipient

Send messages
back to Originator

Reference of
common Ontology

User

Model

Originator_ES

Recipient_ES

Recipient_ES

Common Task
Ontology

Common Domain
Ontology

Convertion

Communication

Communication

Cooperation

Cooperation

Communication

Cooperation

Model

Model

Figure9: An Overview of INDIES

As comparisonwith relatedwork, there are three main
fieldsof researchareas:clarifying specifications,building an
applicationandreusingexisting libraries.

First,asdiscussedin Introduction,numbersof work onan-
alyzing businessspecificationhasbeendoneby MIT, Edin-
burgh University andso on. Their work arevery significant
asafundamentalresearch,however, mostof themarearound
abstractandgeneralframework. Recently, ProcessHandbook
is revisedinto e-BusinessProcessHandbookandprovidesa
hundredof specificationascasestudies. But mostof them
arejustdefinedby naturallanguagetext. So,ourwork canbe
regardedastheintegratedwork to utilize therelatedwork.

Second,a lot of worksarecarriedout on building applica-
tionsIncludingsoftwareengineeringfield[Code,et.al. 1997;
?], but they usethedifferenttypeof tool andlanguagesonthe
differentphasesof development.So,modelsandlanguages
shouldbeunifiedinto on framework aswe proposed.

Our framework is basedon a standpointthat it is difficult
to automatethewholebusiness,but possibleto do many part
of it. Recently, a few of the researchersconsiderthemodel-
ing methodologyof thewholeenterprisestructureasamulti-
agentsystem[Kendall1999]. It is worth payingattentionbut
still remainon theabstractstructuresof definingagentroles.

Finally, a lot of projectsconcentrateon reusinglibraries,
ontologiesandapplicationsandprovide a numberof repos-
itories. One of our previous works is on interoperationof
the heterogeneousexpert systems[Izumi et.al. 1999a]. Be-
causeeachexpert systemis modeledby its own vocabulary,
it needsa conversion facility so that it can understandthe
messagessentfrom otherexpert systems. In the work, we
employaspecification-sharing(SS)-basedcooperation,called
assistedcoordination[Genesereth1994]. Thesharedspecifi-
cationcomesfrom REPOSITlibrary which servesasa com-
mon structureof noun and verb conceptsnamedthe com-
mon domainontology and the commontask ontology. As
the methodsof modeling,operationalizing,cooperatingand
communicating(wrapping)distributedexpert systemscome
up, we put themtogetherinto an interoperationenvironment
for distributedexpertsystemsINDIES(Fig. 9).

In our previouswork, a numberof significantlessonsob-
tainedin exchangingthemessagesamongtheheterogeneous
expert systems.However the way to constructthe common
ontologiesis still remainasthefuturework. Ourcurrentwork
canbe regardedas a new approachto reuseheterogeneous
repositoriesbasedon ontologies.

6 Conclusion

As conclusion,the computingenvironment,which supports
dynamic constructionof businessmodelsand applications
from businessdocument,shouldbe developedfor the pur-
poseto perform the re-engineeringbusinessprocessesac-
cording to the changesof businesssituations. From stand-
pointthattheheterogeneousrepositoriesshouldbeintegrated
to achievetheunifiedsupportof theapplicationdevelopment,
we have proposedthe framework of theextractionof the re-
quiredinformationbasedon ontologieswith reusablereposi-
toriessuchase-businessprocesshandbook,CommonKADS
andREPOSIT. In orderto constructthebusinessmodelsand
to implementthemastheactualbusinessincludingsoftware
applications,we develop two repositorieson different-grain-
levels: the businessspecificationrepositoryon the level of
businessactivitiesandthebusinesssoftwarerepositoryonthe
level of softwareapplications.

We have implementedthe prototypesystemby JAVA and
confirmedthat it supportsus in variousphasesof business
applicationdevelopmentincluding businessmodelmanifes-
tation, detailedbusinessmodeldefinition andan implemen-
tationof businesssoftwareapplications.Furthermore,weare
re-organizingourproductin orderto openit to thepublic.

References
[Code,et.al.1997] P.Code, D.North, M.Mayfield, “Object

Models:Strategies, Patterns,& Applications”, Yourdon
Press,1997.

[Fellbaum1998] C.Fellbaum ed: “Wordnet”, The MIT
Press,1998.

[Fowler 1997] M.Fowler, “AnalysisPatterns:PeusableOb-
jectModels”,Addison-Wesley, 1997.

[Genesereth1994] M.R.GeneserethandS.P.Ketchpcl: Soft-
wareAgents,CACM.ol.37.No.7.(1994)48–53.

[Izumi et.al.1999a] N.Izumi, A.Maruyama, A.Suzuki,
T.Yamaguchi: “An Interoperative Environment for De-
velopingExpertSystems”Proc.EKAW’99 LNAI.1621,
pp.335–340,Springer–Verlag(1999).

[Izumi et.al.1999b] N.Izumi, A.Maruyama, A.Suzuki,
T.Yamaguchi:“DesignandImplementationsof Reusable
Method Library for Developmentof Expert Systems”,
Journalof JSAI,14,6, 1061–1071,(1999),in Japanese.

[Izumi andYamaguchi2000] N.Izumi, T.Yamaguchi: “De-
veloping SoftwareAgentsBasedon ProductOntology
andProcessOntology”,Proc.ECAI-00WorkshoponAp-
plicationsof OntologiesandProblem–SolvingMethods
(2000)8-1—8-6.

Heiner Stuckenschmidt
172

[Kendall1999] E.A.Kendall, “Role Models: Patterns of
Agent
�

Analysis and Design”, British Telecom Jour-
nal Special Issue on DecentralizedBusinessSystems,
(1999).

[MIT ProcessHandbookProject] The MIT ProcessHand-
bookProject:http://ccs.mit.edu/ph

[Petrie1996] C.J.Petrie: “Agent-BasedEngineering, the
Web and Intelligence” IEEE Expert, 1996. URL:
http://java.standord.edu/

[Schreiberet.al.1999] GuunsSchreiber, et al: Knowledge
Engineering and Management: The CommonKADS
Methodology,MIT Press(1999).

[Uscholdet.al.1998] M.Uschold,et al: The EnterpriseOn-
tology, Knowledge EngineeringReview,Vol.13,Special
Issueon PuttingOntologiesto Use(1998).

[Yamaguchi1999] T.Yamaguchi:ConstructingDomainOn-
tologiesBasedon ConcetpDrift Analysis,IJCAI Work-
shop on Ontologies and Problem-Solving Methods:
LessonsLearned and Future Trends , 13-1 - 13-7,
(1999.8)

[CommonKADS] Seehttp://www.commonkads.uva.nl

Heiner Stuckenschmidt
173

Engineering Ontologies using Semantic Patterns

Steffen Staab, Michael Erdmann Alexander Maedche

Institute AIFB, University of Karlsruhe
D-76128 Karlsruhe, Germany

www.aifb.uni-karlsruhe.de/WBS/
Ontoprise GmbH, Haid-und-Neu-Strasse 7

D–76131 Karlsruhe, Germany
www.ontoprise.com

FZI Research Center
for Information Technologies
Haid-und-Neu-Strasse 10-14

D–76131 Karlsruhe, Germany
www.fzi.de/wim

Abstract

Interoperability is one of the major design
objectives when building applications for
B2B and Semantic Web applications. In
this paper, we present a methodology for
engineering semantic knowledge such that
these semantic structures are easier reusable
when switching between several representa-
tion languages. For this purpose, we re-
consider the commonalities of representation
languages and their usage in actual applica-
tions. Out of this consideration we derivese-
mantic patterns as a means to communicate
knowledge at an epistemological level of rep-
resentation and as a means for (partial) exe-
cution by any particular implementation of
any representation language. The underlying
method we propose combines the advantages
of formal specification methods (where fea-
sible) with informal, natural language expla-
nations such as used in software engineering
for design patterns.

1 Introduction
The Web tremendously changed the way companies
do their business, because it provides cheap, easy and
widely available transport for information. Now, the
Semantic Web is about to let the Web mature from
a technical platform that allows for the transporta-
tion of syntactic information to the communication of
knowledge. The prime format for the latter is RDF
(Resource Description Framework) and RDFS (RDF-
Schema). RDF[25] was designed by its developers
in the Web way,i.e. as a smallest common denom-
inator that a lot of people can easily adhere to, only
representing a light-weight object model (cf., e.g.,[3])
with URIs and reification. RDFS [8] adds an addi-
tional layer to integrate some simple notions of classes,
class inheritance, properties and property inheritance.
While RDF(S)1 certainly goes an important step into

1We use “RDF(S)” to refer to the combined technologies
of RDF and RDF-Schema.

the direction of the “Semantic Web”, it only provides
a very lightweight, and thus extremely restricted, se-
mantic language. Therefore, a number of proposals
for languages and language extensions on top of RDF
and RDFS are currently under development (cf.[14;
2; 11], which describe some of them). Given the large
variety of logics in use in many systems nowadays and
given experiences from knowledge representation and
reasoning2 that have shown the necessity of this multi-
tude of languages, the variety of these proposals gives
only a first impression of the Babel of languages which
will come up in the Semantic Web. This Babel, how-
ever, is counterproductive to semantic interoperability
which lies at the heart of doing smart B2B on the Se-
mantic Web (e.g., for exchanging knowledge about cat-
alogues or about resource availability). This paper is
about engineering machine-processable knowledge in
a way such that it is reusable across different Semantic
Web languages and across different styles of modeling.

Even before the wide-spread usage of the Web, there
have been efforts to find one representation level for
all languages (cf., KIF[20; 19]) and to automatically
translate between different languages (cf., OntoLin-
gua [22]), but both approaches heavily suffered from
the fact that themeaning of representations,i.e. their
semantic entailments, could not be adequately repre-
sented in a singlelingua franca. In order to allow
for reuse of semantic information and a multitude of
underlying representation languages, we approach the
problem from a different angle, an engineering point
of view, by considering differences and commonalities
of various languages at an explicitly modeledepiste-
mological level (cf. [7]). We opt for, first, building on
RDF(S) and, second, by constructingsemantic patterns
that capture the intended semantic entailments.

While RDF(S) allows for a frame model that virtu-

2Various applications request different types of languages
and reasoning systems, ranging from description logics sys-
tems (e.g., for data warehouse quality[17]), over — tractable
— non-monotonic reasoning systems (e.g., non-monotonic
inheritance for insurance help desk[27]), or systems that in-
clude temporal reasoning (e.g., for corporate history analysis
[4]).

Heiner Stuckenschmidt
174

ally everyone may agree one, what really distinguishes
and what is common to any two representation lan-
guages are the differences and commonalities of the se-
mantic entailments expressible there. We show in this
paper how to model commonalities in, what we call,se-
mantic patterns. Semantic patterns are used for com-
munication between Semantic Web developers on the
one hand, but also for mapping and reuse to different
target languages on the other hand, thus bridging be-
tween different representations and different ways of
modeling knowledge. Developing the semantic pat-
terns, we do not invent the wheel from scratch, but
we pick insights from software engineering and knowl-
edge representation research and integrate them for use
in the Semantic Web.

By sheer principle, we cannot produce an exhaus-
tive list of possible semantic patterns or show how the
epistemological level should look like given any set of
representation languages. Hence, we substantiate the
claims we make with a case study considering as tar-
get representation systems OIL/FaCT[14], currently
the most prominent semantic layer on top of RDF(S),
and SiLRi [13], an F-Logic-based[24] representation
system.

Outline of the paper. In the following, we start with
our model for semantic patterns, their underlying ratio-
nale as well as their formal and informal components
(Section 2). Then, we show how this model fits into
the Semantic Web (Section 3),i.e. how it can be re-
alized in RDF and from which point it has to evolve
now. Subsequently, we illustrate our approach with a
case study. We describe an application scenario, where
semantics are brought to bear in a target representation
independent way.

2 Semantic Patterns

The rationale and conceptual model of our approach is
explained in this section. In order to give the broad
view necessary to understand the problem of model-
ing knowledge for a variety of representation languages
through semantic patterns, this section

1. analyses the abstract properties of our problem,
thereby recollecting the most relevant related
work in this area;

2. characterizes the high-level solution to the prob-
lem, which leads to informal means for communi-
cating a semantic pattern together with formal de-
scriptions of consistency constraints; and, finally,

3. defines these two aspects of semantic patterns ex-
emplifying them by one extremely simple and
useful pattern, for which no modeling primitive
exists in most modeling languages and frame-
works.

2.1 The Problem and some of its History

When one tries to reuse semantics across boundaries
stemming from the usage of different representation
languages, different actual representation tasks and
their correspondingly different formal models, one
may recognize characteristics of the semantic mod-
els that remain constant. Striving for semantic inter-
changability the crucial point lies in capturing these
characteristics. This is difficult, because:

� Different language definitions come with different
formal models. In general, the models of two dif-
ferent languages are not comparable at all. Thus,
when one defines a translation there may not exist
a criterion to evaluate the correctness of the trans-
lation.

� There may be several semantically equivalent
statements in one language. Their equivalence is,
in general (e.g., for first-order predicate logic), un-
decidable. Hence, their fully automatic translation
is, in general, not feasible.

� Some choices for representation are not semanti-
cally motivated, but are made in order to generate
some particular behaviour of the actual system.

Therefore, direct translations from one representa-
tion language into the next do not seem to yield a vi-
able way. As a way around this dilemma, we consider
the engineering task of constructing a particular repre-
sentation. Rather than working hard to implement in-
tended semantic entailments in statements of one par-
ticular — for the purpose of reuse and translation even
arbitrary, language — the engineer may decide to ex-
plicitly model semantic entailments at a meta-level, in-
stantiate the meta-level description, and compile the fi-
nal representation into the one or the other target lan-
guage.

In fact, those semantic entailments that are most
widely agreed upon, such as necessary inheritance con-
ditions, directly show up in common representation
languages, such asrdfs:subclass andrdf:type in
RDF(S). This also is the reason that subsequently we
may easily assume that ground RDF facts are translat-
able into virtually all target languages.

Then, there is another medium size set of such se-
mantic characteristics that are widely deemed interest-
ing, that can be modeled independently from particular
target languages in a number of systems and that can
also be mapped into a wide range of languages. They
are widely known from object-oriented databases. Gru-
ber defined a set of primitives that captures them in his
Frame Ontology [22] for use of comparatively simple
translation between several representation languages
(e.g., transitivity of relations, database joins, or dis-
jointness of concepts).3

3Subsets of them have also been discussed/are under dis-
cussion for usage in description logics languages like OIL.

2

Heiner Stuckenschmidt
175

For characteristics more sophisticated than those
mentioned above, there exists no comprehensive con-
cept for engineering semantics in a way that is really
reusable across several languages.

By its very nature, the problem of describing formal
model characteristics for all representation languages
is an open one that cannot be solved by producing a
closed list of modeling primitives like the ones in Gru-
ber’s Frame Ontology. Hence, there is a need for a
technique of describing new semantic primitives at a
higher level of abstraction.

Again looking back into history, Brachman[7] and
others have captured particular model characteristics,
i.e. semantic entailments, in axiom schemata for the
purpose of easier engineering of large sets of axioms.
Axiom schemata provide an abstraction of actual ax-
ioms and particular axiom schemata were categorized
and named. Doing so, Brachman introduced the name
epistemological level for this layer of description. The
results of his efforts were a set of epistemological prim-
itives for description logics. Unlike our purpose, his
goal was not the reuse of semantics across represena-
tion languages, but rather the reuse of engineering ef-
forts in one language.

2.2 The High-level Solution to the Problem
While axiom schemata already go into the direction
of abstracting from formal model characteristics, by
definition they are developed for one language only.
Hence, one part of our high-level idea was to allow
for (an open list of)new epistemological primitives
that can be instantiated in different representation lan-
guages for modeling particular semantic entailments
and which are, thus, similar to named axiom schemata
working in one language.

However, one needs a more flexible paradigm better
suited to apply to a larger range of representation lan-
guages and more able to abstract from particular for-
mal models. As described above, the general problem
does not allow to come up with a completely formal
and ubiquitously translatable specification of seman-
tics. Hence, the other part of our high-level idea is
to require extra efforts from Semantic Web developers.
To support them in their efforts, it appeared to be a pre-
requisite that they could communicate more efficiently
about these new epistemological primitives — similar
to the way that software engineers talk about recurring
software designs.

Design Patterns and Semantic Patterns. Design
patterns have been conceived for object-oriented soft-
ware development to provide(i) a common design vo-
cabulary,(ii) a documentation and learning aid, and
(iii) support for reorganizing software. Likewise to the
naming and cataloguing of algorithms and data struc-
tures by computer scientists, design patterns are used
by software engineers to communicate, document and
explore design alternatives by using a common design

vocabulary or a design pattern catalog. By this way,
they also decrease the complexity of developing and
understanding of software systems. Additionally, de-
sign patterns offer solutions to common problems, help
a novice “acting” more like an expert and facilitate the
reverse-engineering of existing systems.

Though bridging between formal representations
seems to be a formal task only, very often quite the
contrary becomes true. When not everything, but only
relevant aspects of knowledge can or need to be cap-
tured, when not all inferences, but only certain strains
of semantic entailments can or need to be transferred,
the development of new semantic primitives should
not only allude to the formal definition of translations
into target languages, but also to informal explana-
tions. Therefore a semantic pattern does not only com-
prise new epistemological primitives, but likewise to
design patterns, it also serves as a means for communi-
cation, cataloguing, reverse-engineering, and problem-
solving. Thus, it may contribute to a more efficient
exploitation of Semantic Web techniques.

Semantic Patterns and Consistency. Experiences in
the related field of problem solving methods (cf. Sec-
tion 6) have shown that there are as many interpreta-
tions of natural language descriptions as there are read-
ers [15]. Given the preliminary that we do not want
to subscribe to any particular, extremely powerful, and
hence undecidable, specification language, we never-
theless need some means to describe consistency con-
ditions that an implementation of a semantic pattern
must adhere to.

The basic idea here is the following: A semantic
pattern enforces semantic entailments on ground facts.
A semantic pattern is implemented by translating its
instantiated epistemological primitives into the target
language. Thus, if one gives an instantiation of a
semantic pattern together with some example ground
facts related to the pattern, the implementation (i.e., the
translation together with the target system) may derive
semantic consequences. A translation may be consid-
ered consistent, if it derives those consequences out of
the example ground facts that the developers of the se-
mantic patterns wanted to be derived (i.e. the positive
examples) and not those that they explicitly excluded
(i.e. the negative examples).

This definition ofconsistency of translations is easy
to realize, since it only builds on premises that are al-
ready given within the semantic patterns framework
sketched so far. In particular, the translation of ground
RDF facts into the target language is sometimes triv-
ially done by an identity function (e.g., for OIL or
DAML-Ont). Otherwise it is not overly complicated,
because the RDF model already is a kind of least com-
mon denominator for the representation languages we
consider.4 The reader may note that this notion of con-

4The only counterexamples we could come up with were

3

Heiner Stuckenschmidt
176

sistency may not completely prevent misuse or misun-
derstanding. For instance, translations that map every-
thing to the empty set always incur consistency without
doing any good.

A complete description of semantic patterns includ-
ing a formal specification of consistency will be given
in the following.

2.3 Two Complementary Aspects of
Semantic Patterns

This subsection puts the high-level rationale outlined
above into a concrete perspective. We start with the in-
formal description of the template structure of semantic
patterns. Subsequently, we specify the formal parts of
semantic patterns including consistency conditions for
the translation into target representations.

Informal Description of Semantic Patterns. A Se-
mantic Pattern consists of two major parts. The first
part describes core elements that are completely in-
dependent from any actual implementation. The sec-
ond part specifies example implementations, including
descriptions about target system/language-specific be-
haviour.

The first part consists of the following eight core el-
ements (also cf. Example Pattern part 1 given in Ta-
ble 1):

1. Pattern Name: describes in few words the se-
mantic problem, its solutions and consequences.
Naming extends the pattern catalog and extends
the semantic pattern vocabulary.

2. Intent : is a short statement describing what the
pattern does and what its rationale and intent are.

3. Also Known as: enumerates other well-known
names of this patterns (synonym list).

4. Motivation : describes a scenario that illustrates
the semantic problem and elucidates how the
semantic pattern may help in making implicit
knowledge explicit.

5. Structure: represents the pattern. In particular,
it gives the defining namespace, lists the relevant
(new) epistemic primitive(s) and describes their
signature.

6. Known Uses: shows examples of the pattern
found in real Semantic Web applications.

7. Related Patterns: lists a number of closely re-
lated patterns (e.g. generalization hierarchy of
patterns) and describes how they are related

8. Constraints: lists tuples of RDF facts and instan-
tiated epistemic primitives (C

i;in, Ci;out, C
opt

i;out,

Ci;notout, C
opt

i;notout). Their intended meaning
is that for all i, givenC

i;in, and thus using the
new epistemic primitives of the pattern,Ci;out

rather esoteric schemes, like monadic predicate logics.

must be derived in any given implementation
andCi;notout must not be derived in any given
implementation. In addition, one may include
setsCopt

i;out andCopt

i;notout that, correspondingly,
should andshould not be derived in any given im-
plementation.

The second part deals with implementation aspects
of a Semantic Pattern. It consists of an arbitrary num-
ber of descriptions that relate the semantic pattern to
particular target languages/systems. Each singleton en-
try (referring to one target language/system) should in-
clude the following five template elements (also cf. Ex-
ample Pattern part 2 described in Table 2):

1. Name of target language/system: refers to the
actual language specification. Because various
system implementations may even incur different
behavior (ranging from response time to various
degrees of covering a specification), we also allow
to specify system implementations rather than just
language versions.

2. Applicability : The applicability of a semantic
pattern in an actual language/system may be re-
stricted. Example restrictions may necessitate the
generation of new symbols in a particular target
system or they may restrict the semantic entail-
ments generated fromC

i;in to some subset of
Ci;out to mention but two example restrictions.

3. Translation result of input constraints C
i;in:

shows the representation of an example fact base
in the target language. Thus, the user of the Se-
mantic Pattern sees an explicit example result of
the translation process.

4. Translation — Sample Speci`cation: This spec-
ification describes the translation of instantiated
epistemic primitives of the given pattern into the
target language. The specification may be given
in logics, pseudo code or a real programming lan-
guage. In some target languages (e.g., F-Logic) it
is reasonable to specify the translation in the tar-
get language itself. If the translation is given by a
formal specification it can be considered to repre-
sent the translationTi, which is referred to in the
following.

5. Comment: Additional comments on particulari-
ties of the translation and the translation results.

The reader may note in the example templates that
the various fields of the semantic patterns are not re-
quired. For ease of presentation, we have used italics
in the running example to abbreviate redundant syntac-
tic descriptions.

5For better readability we here mostly use a PL1-style of
denotation (without quantifiers) that can be easily mapped to
RDF.

4

Heiner Stuckenschmidt
177

Table 1: Example Semantic Pattern — Part 1

Semantic Pattern
Pattern Name Locally Inverse Relation
Intent Allows to define inverses the scope of which is restricted to particular concepts.
Also Known As Restricted inverse relation
Motivation Often the definition of global inverses is too generic and yields overly general inferences. For

example, one may have ontology definitions that every MOVIE ISSHOWN in a THEATRE and
every PLAY IS GIVEN in a THEATRE and THEATRE HOSTEVENT. Now, the local inverse of
ISSHOWN is HOST restricted to the range MOVIE and the local inverse ofISGIVEN is HOST
restricted to the range PLAY . A global inverse might lead to unwanted consequences. For this
reason this pattern allows the definition of inverse properties restricting their domain and range
concepts. This notion of locality is naturally given in OO systems, where properties are defined
locally in classes. It is not given in RDF(S) where properties are first-class citizens and exist
independent of classes.

Structure
Namespace http://ontobroker.aifb.uni-karlsruhe.de/schema/LocalInverse.rdf
Epistemic Primitive(s) LOCALINVERSE
Signature LOCALINVERSE(r1; c1; r2; c2)

with r1; r2 denoting binary relations andc1; c2 denoting their corresponding ranges
Known Uses http://ka2portal.aifb.uni-karlsruhe.de
Related Patterns The pattern “globally inverse relation” subsumes “locally inverse relation” when applied to the

same relations
Constraints5

C
1;in LOCALINVERSE(ISSHOWN; THEATRE; HOST;MOVIE);

DOMAIN(ISSHOWN;MOVIE); RANGE(ISSHOWN; THEATRE);
DOMAIN(HOST; THEATRE); RANGE(HOST; EVENT);
TYPE(Lassie;MOVIE); HOST(Schauburg; Lassie)

C
1;out ISSHOWN(Lassie;Schauburg)

C
opt
1;out TYPE(Schauburg; THEATRE)

C
1;notout ISGIVEN(Lassie;Schauburg); TYPE(Lassie; PLAY)

Target Language L1

(grey region indicates RDF parts)

Ci,IN

Ci,OUT

Ci,NOTOUT

Target Language L2

(grey region indicates RDF parts)

Ri,IN,2

Ri,OUT,2

Ri,NOTOUT,2

Ri,IN,1

Ri,OUT,1

Ri,NOTOUT,1

Mi,IN,2

Mi,OUT,2

Mi,NOTOUT,2

Interpretation I 2Interpretation I 1

Mi,IN,2

Mi,OUT,2

Mi,NOTOUT,2

|=/

=| =|

=|/

Models for L1 Models for L2

T
ra

n
sla

tio
n

T
1

T
ran

sla
tio

n
T

2

Syntax

Semantics

RDF(S)

Target Language L1

(grey region indicates RDF parts)

Ci,IN

Ci,OUT

Ci,NOTOUT

Target Language L2

(grey region indicates RDF parts)

Ri,IN,2

Ri,OUT,2

Ri,NOTOUT,2

Ri,IN,1

Ri,OUT,1

Ri,NOTOUT,1

Mi,IN,2

Mi,OUT,2

Mi,NOTOUT,2

Interpretation I 2Interpretation I 1

Mi,IN,2

Mi,OUT,2

Mi,NOTOUT,2

|=/=/

=|=| =|=|

=|/=|=|/

Models for L1 Models for L2

T
ra

n
sla

tio
n

T
1

T
ran

sla
tio

n
T

2

Syntax

Semantics

RDF(S)

Figure 1: Checking for consistency

Formal Consistency Conditions for Semantic Pat-
terns. Combining our considerations on consistency
with our actual specification of semantic patterns we
may now describe the overall setting in formal terms
(also cf. Figure 1).

We base our consistency checking on facts in RDF
(cf. C

1;in; C1;out; C1;notout in Figure 1), which may
include some of the new epistemic primitives. Each
translation maps this RDF based representation into a

target language (or system)Lj , resulting in target rep-
resentationsR

1;in;j ; R1;out;j ; R1;notout;j (j = 1; 2).
From any consistent translationTj the interpretation
of output factsR1;out;j must and the interpretations
of factsR1;notout;j must not be semantically entailed
by the corresponding interpretation of input constraints
R

1;in;j . Depending on the actual system, semantic en-
tailment (j=) or not-entailment (6j=) may be replaced by
syntactic derivation (̀) or not-derivation (6`).

To describe this intuition precisely, we specify:

De`nition 1 (Translation Mapping) A translation
mapping is any function Ti : 2

sentences(RDF)
!

2
sentences(Li), where sentences(X) stands for all

legal sentences of language X , Li (i = 1 : : : n)

are representation languages, and 2
sentences(X)

describes the set of all subsets of all legal statements
of language X .

This simply boils down to: a translation mapping for
target languageLi is able to translate every possible
RDF representation into this target language.

In this definition we assume that new epistemolog-
ical primitives are defined by statements in RDF (also
cf. Section 3). Given such a translation mapping, we

5

Heiner Stuckenschmidt
178

Table 2: Example Semantic Pattern — Part 2

Semantic Pattern Implementations for Locally Inverse Relations

Language/System OIL/FaCT
Applicability Requires the creation of artificial relations for this type of modeling.
Translation (Sample Code) copy RDF literally, create two new subproperties with specialized range restrictions and

declare appropriateINVERSErelation
Translation Result forC

1;in literal copy of the statements in C
1;in plus RDF equivalent of ...

slot-def host1
subslot-ofhost
inverse isShown

slot-def host2
subslot-ofhost
inverse isGiven

Comment The reader may note that in contrast tordfs:subPropertyOf OIL’s subslot-of
allows for cycles.

Language/System F-Logic/SiLRi
Applicability Applicable.
Translation (Sample Code) translate RDF syntactically and add two meta-rules (see below)
Translation Result forC

1;in Syntactic translation of statements in C
1;in plus ...

FORALL C1; C2; R1; R2; O1; O2
O2[R2!!O1] and O1 : C1

LOCALINVERSE(R1; C1; R2; C2) and O1[R1!!O2] and O2 : C2:
FORALL C1; C2; R1; R2; O1; O2
O1[R1!!O2] and O2 : C2

LOCALINVERSE(R1; C1; R2; C2) and O2[R2!!O1] and O1 : C1:

Language/System Predicate Logic
Applicability Applicable.
Translation (Sample Code) add the following PL2 Specification

FORALL C1; C2; R1; R2; O1; O2
R2(O2; O1) ^ TYPE(O1; C1)

LOCALINVERSE(R1; C1; R2; C2) ^ TYPE(O2; C2) ^R1(O1; O2)
FORALL C1; C2; R1; R2; O1; O2
R1(O1; O2) ^ TYPE(O2; C2)

LOCALINVERSE(R1; C1; R2; C2) ^ TYPE(O1; C1) ^R2(O2; O1)

can evaluate to which degree it is consistent with re-
gard to the constraint specification of the given seman-
tic pattern.

De`nition 2 Let the semantic pattern S include
the constraints (C

i;in, Ci;out, C
opt

i;out, Ci;notout,

C
opt

i;notout) for i := 1 : : :m. A translation mapping
Tj is called consistent with the Semantic Pattern S
iff forall i := 1 : : :m : Tj(Ci;in) j= Tj(Ci;out) and
Tj(Ci;in) 6j= Tj(Ci;notout).

De`nition 3 Let the semantic pattern S include
the constraints (Ci;in, Ci;out, C

opt

i;out, Ci;notout,

C
opt

i;notout) for i := 1 : : :m. A translation mapping
Tj is called strongly consistent with the Semantic Pat-
tern S iff Tj is consistent with S and forall i :=

1 : : :m : Tj(Ci;in) j= Tj(C
opt

i;out) and Tj(Ci;in) 6j=

Tj(C
opt

i;notout).

3 Semantic Patterns for the Semantic
Web

Building on the rational and methodology outlined
above, the basic idea of semantic patterns on the Web
has two major dimensions: First, there is the dimension
of technical representation and, second, there is the so-
cial process of establishing Semantic Pattern libraries
on the Web.

3.1 Representing Semantic Patterns in RDF
Semantic patterns are used for communicating some
information to human developers and some informa-
tion to computer systems. Hence, RDF is also the ideal
format for the representation of the Semantic Pattern
itself.

We have provided a RDF-Schema de-
scription for semantic patterns avail-
able at http://ontoserver.aifb.uni-
karlsruhe.de/schema/PatternSchema.rdf
which describes RDF resources ofrdf:type Pattern.

6

Heiner Stuckenschmidt
179

We refer to this schema with the namespace prefix
ps for Pattern Schema. An actual instantiation of
this schema,viz. our running example,locally
inverse relation, is shown at
http://ontoserver.aifb.uni-
karlsruhe.de/schema/LocalInverse.rdf.
For easier presentation we refer to it in the following
outline of these RDF structures by the namespace
prefixpa for Pattern Application.

A semantic pattern is ardfs:Resource and
can be associated with other resources by a
number of defined properties. The properties
ps:patternName, ps:intent, ps:alsoKnownAs,
and ps:motivation have been described in Sec-
tion 2 and associate a pattern object with literal,
textual values (rdf:parseType="Literal"). The
property ps:relatedPattern links a pattern to
related ones. The structure of a pattern is modeled
by the two propertiesps:epistemicPrimitive
andps:signature. The former represents a simple
literal while the latter associates a pattern with several
named properties (e.g.pa:class1 or pa:rel2).
These properties define the parameters of the pattern
and must define the pattern itself as theirrdf:domain.
The ranges of the parameter properties represent the
parameter types for the pattern. The example pattern
has four parameters:pa:class1 andpa:class2 of
type rdfs:Class, and pa:rel1 and pa:rel2 of
typerdf:Property.

All mentioned information becomes a part of the
actual pattern description, i.e. the RDF model. Ap-
plications can ask for the signature of a pattern by
querying this model, esp. theps:signature and
ps:epistemicPrimitive properties of the pattern.
This formal part of the model can directly be exploited
for further processing, e.g. for building GUIs for in-
stantiating a particular semantic pattern, e.g. for instan-
tiating the locally inverse relations-pattern withHOST,
MOVIE, ISSHOWN, and THEATRE.

The constraints (C
i;in, Ci;out etc.) used for check-

ing consistency of actual implementations represent
partial models that are only true within their consis-
tency checking context, but not on a global scale. The
means of RDF for representing contextual information
is reification. Therefore the different constraint sets are
modeled via reification. Each set of constraint state-
ments is retrievable from a pattern-resource by query-
ing one of the constraint-properties. Each such prop-
erty relates pattern-resources withrdf:Statements.
Translation functions (cf. Definition 1) may access
these sets and translate the reified statements into the
target language.

The second part of semantic patterns as described
in Section 2 defines target language/system-specific
information about the pattern, of possible implemen-
tations, and expected results of translation functions.
The description of the name of the target language
and system are modeled as literal values of the proper-

tiesps:language andps:system, respectively. The
translation code may be stored within another RDF-
literal accessible via theps:code property of the
ps:Implementation resource. Results of applying
this code to the sample given in the constraint setC

i;in
can be represented in the RDF-model of the imple-
mentation as well. Since languages exist that directly
operate on the RDF-model, it is possible to store rei-
fied RDF-statements reachable via theps:C in rdf-
property. Applications that do not understand RDF
syntax may retrieve the transformation of the state-
mentsC

i;in from ps:C in literal.
It is our general policy to allow developers a lot of

leeway. Currently, all mentioned properties are op-
tional and in the typical case eitherps:C in rdf or
ps:C in literal is given but not both.

The reader may note that the formal description (in
RDF) of formal parts allows for direct digestion of con-
straints and signatures for aims such as code genera-
tion, consistency checking, and user interface construc-
tion.

3.2 Semantic Pattern Libraries
Eventually, the need for particular semantic patterns is
driven by Semantic Web developers. With the engi-
neering of ontologies on the Web (cf., e.g.,[1]) new
ideas will come up about what type of inferencing shall
be supported and, hence, made interchangable between
representation systems.

Since this development is in its infancy right now, we
have started to collect a number of semantic patterns
that seem widely applicable:

� Gruber’s Frame Ontology includes a set of over
60 primitives, some of which are found in core
RDF(S), e.g.rdf:type, and some of which are
somewhat more sophisticated, e.g. symmetry of
relations or composition (database joins).

� Medical knowledge processing often relies on
the engineering ofpart-whole reasoning schemes
such as appear or do not appear when we consider
the following examples:(i), the appendix is part
of the intestine. Therefore, an appendix perfora-
tion is an intestinal perforation. And,(ii), the ap-
pendix is part of the intestine,but an inflamma-
tion of the appendix (appendicitis) is not an in-
flammation of the intestine (enteritis).
We have described how to represent structures that
allow for expressing (for(i)) and preventing (for
(ii)) these semantic entailments in RDF in[29] —
in a preliminary version of the semantic patterns
framework.

� Inheritance with exception is a semantic pattern
that is very often useful. Its application and
its tractable, even efficient, technical reasoning
part has been described, e.g., in[27]. The
core idea is that one considers the inheritance
of properties, allows for the non-inheritance

7

Heiner Stuckenschmidt
180

of certain properties, and uses a particular,
unambiguous strategy for resolving conflicts
between paths of inheriting and non-inheriting a
particular property. A simple example is that a
PATIENT’s treatment may be covered by medical
insurance, a NON-COMPLIANT PATIENT’s
treatment may not be covered, but a
NON-COMPLIANT, MENTALLY DISTURBED PATIENT’s
treatment will be paid by the insurance company.
Hence, coverage of treatment is typically inher-
ited, e.g. by almost all subclasses of patient, but
not by ones likeNON-COMPLIANT PATIENTs.
Note that often there is no translation into particu-
lar target languages for this pattern. For instance,
it can be realized in Prolog or F-Logic, but not in
the standard description logics systems.

� A number of patterns may be derived from object-
oriented or description logics systems, e.g.lo-
cal range restrictions are very often useful. A
simple example is that theparentOf a HUMAN
is restricted toHUMAN, the parentOf a FOX is
restricted toFOX, while the range restriction of
parentOfmay beANIMAL in general.

A more complete elaboration of these and other pat-
terns is currently under development. In particular,
we investigate how software engineering methodology
about modeling and code generation from an evolv-
ing library of semantic patterns can be brought to bear
within our modeling environment (cf. Section 5).

4 Using Semantic Patterns — A Case
Study

In [28] we have described how “Semantic Community
Web Portals” using ontologies can be built. The ontol-
ogy acts as a semantic backbone for accessing informa-
tion on the portal, for contributing information, as well
as for developing and maintaining the portal. We dis-
cussed a comprehensive and flexible strategy for build-
ing and maintaining a high-value community web por-
tal, where the development and maintenance process
consists of the stagesrequirements elicitation, web site
design, ontology engineering and query formulation.
The reasoning service for the portal was provided by
SiLRI [13], which is essentially based on F-Logic[24;
12], only ground facts may alternatively be provided
in RDF syntax. F-Logic fits nicely with the structures
proposed for RDF and RDFS, however, F-Logic does
not offer any support for interoperability of represen-
tation mechanisms,i.e. axioms written in F-Logic and
the implicit knowledge that comes from applying them
to the fact base are extremely hard to reuse in other
representation frameworks. In this section we show
how our approach fits with a recent proposal for rep-
resenting knowledge on the web, namely OIL, the on-
tology inference layer[14]. OIL, which is in several
semantic respects “orthogonal” to F-Logic, offers in-
ferencing[23] on a semantic layer on top of RDF(S).

In the following case study we show the usage of se-
mantic patterns for meeting the needs of an actual ap-
plication, while allowing for the engineering of seman-
tics on a level that is transportable to OILand F-Logic
(and many other representation schemes). The case
study described here relies on the tools and techniques
we employed for building “Semantic Community Web
Portals”. We here consider aCultural Event Por-
tal, that integrates distributed information from movie
databases and cinema programs and offers semantic ac-
cess to the information provided.

Cinema program

Movie DB

RDF

RDF

RDF

RDF

Instantiated
Semantic Patterns

in RDF(S)

...

Core Cultural
Event Ontology

in RDF(S)

query

translate

Cultural Event Portal

Crawl

instantiate

instantiate

SiLRi Reasoning
Ontology + Service

translate

FaCT-OIL Reasoning
Ontology + Service

Figure 2: Case Study — Building a Semantic Cultural
Event Portal

Figure 2 depicts the overall framework. Based on
the core ontology, actual facts are generated at the in-
formation provider side. For building a semantic cul-
tural event portal with sophisticated reasoning we addi-
tionally instantiate semantic patterns on top of the core
ontology. The core ontology with instantiated seman-
tic patterns may be translated into OIL and/or F-Logic.
Facts are crawled from the information providers and
given to the reasoning services. The portal accesses
the underlying reasoning services and provides com-
prehensive information on cultural events.

In the following we give some examples how the
core ontology looks like, show how actual semantic
patterns are defined and translated into OIL and/or F-
Logic.

4.1 Modeling the Core Ontology
We use our Ontology Engineering Environment On-
toEdit (cf. Section 5 and Figure 3) for engineering
class and property definitions in RDF(S) with graphical
means. Parts of the core ontology are given as follows:
<rdfs:Class rdf:ID="Event"/>
<rdfs:Class rdf:ID="Movie">
<rdfs:subClassOf rdf:resource="Event"/>

</rdfs:Class>
<rdfs:Class rdf:ID="Play">
<rdfs:subClassOf rdf:resource="Event"/>

</rdfs:Class>
<rdfs:Class rdf:ID="Theatre"/>

<rdf:Property rdf:ID="host">
<rdfs:domain rdf:resource="Theatre"/>

8

Heiner Stuckenschmidt
181

<rdfs:range rdf:resource="Events"/>
</rdf:Property>
<rdf:Property rdf:ID="isShown"/>
<rdfs:domain rdf:resource="Movie"/>
<rdfs:range rdf:resource="Theatre"/>

</rdf:Property>
<rdf:Property rdf:ID="isGiven"/>
<rdfs:domain rdf:resource="Play"/>
<rdfs:range rdf:resource="Theatre"/>

</rdf:Property>

The ontology defines the conceptual backbone for
generating RDF metadata on the information provider
side, as for example given through the following state-
ments:

<cultev:Movie rdf:ID="movie:Lassie">
<cultev:name>Lassie</cultev:name>
<cultev:hasActor
rdf:resource="actor:RoddyMcDowall"/>

</cultev:Movie>

4.2 Generating an OIL ontology with
Semantic Patterns

An OIL ontology is built on top of the core RDF(S)
data model and contains descriptions of classes, slots
and individuals[14]. Classes are unary predicates and
may be related to other classes by stating that one is
a subclass of another. Slots are binary relations, they
may also be related to each other via the notion of sub-
slots.

In our example application, Cultural Event Portal,
additional reasoning on top of core RDF(S) is required.
We therefore instantiate some patterns on top of the
core RDF(S) ontology to enforce semantic constraints
and then translate them into the more powerful OIL.
In our scenario we use two patterns, namely thelo-
cal range restriction and thelocally inverse relations
pattern. The patternlocal range restriction (cf. Sec-
tion 3.2) adds to the class definition of MOVIE with
respect to the propertyISSHOWN the range restriction
THEATRE. The following statements are added within
the concept definition of MOVIE:

<oil:hasSlotConstraint>
<oil:ValueType>
<oil:hasProperty rdf:resource="isShown"/>
<oil:hasClass rdf:resource="Theatre"/>

</oil:ValueType>
</oil:hasSlotConstraint>

In Section 2 our mechanism for defining semantic
patterns has been introduced using the example oflo-
cally inverse relations patterns. OIL offers the defi-
nition of global inverses, that is often too generic and
yields overly general inferences. In our example, we
defined in our ontology that every MOVIE ISSHOWN in
a THEATRE and every PLAY ISGIVEN in a THEATRE
and THEATRE HOST EVENT. Now, the local inverse of
ISSHOWN is HOSTrestricted to the range MOVIE and the
local inverse ofISGIVEN is HOST restricted to the range
PLAY .

As OIL does not directly support locally inverse re-
lations, the creation of artificial relations is required.
The translation into OIL is given through the following
statements:

<rdf:Property rdf:ID="host1">
<oil:subSlotOf rdf:ID="host"/>
<rdfs:domain rdf:resource="Theatre"/>
<rdfs:range rdf:resource="Movie"/>

</rdf:Property> <rdf:Property rdf:ID="host2">
<oil:subSlotOf rdf:ID="host"/>
<rdfs:domain rdf:resource="Theatre"/>
<rdfs:range rdf:resource="Play"/>

</rdf:Property>
<rdf:Property rdf:ID="isShown">
<oil:inverseRelationOf rdf:resource="host1"/>

</rdf:Property>

We introduce two new propertiesHOST1 andHOST2
as subslots ofHOST 6. The range of propertyHOST1
is restricted to the MOVIE class, the range of property
HOST2 is restricted to the PLAY class. Additionally we
use theinverseRelationOf construct of OIL to
denote that the propertyISSHOWN is inverse to the prop-
erty HOST1.

We also give the translation oflocally in-
verse relation pattern to Frame-Logic. The
pattern is applicable and is generated via the F-Logic
statements we have seen before:

LOCALINVERSE(ISSHOWN;MOVIE; HOST; THEATRE):

FORALL C1; C2; R1; R2; O1; O2 O2[R2!!O1] and O1 :

C1

LOCALINVERSE(R1; C1; R2; C2) and O1[R1!!O2] and O2 : C2:

FORALL C1; C2; R1; R2; O1; O2 O1[R1!!O2] and O2 :

C2

LOCALINVERSE(R1; C1; R2; C2) and O2[R2!!O1] and O1 : C1:

Essentially, this version was used for the Commu-
nity Web Portal, but it could not be communicated to
outsiders of F-Logic.

5 OntoEdit
Our general approach for engineering ontologies in
conjunction with developing and using semantic pat-
terns has been or is currently being implemented in
ONTOEDIT [30], an ontology engineering workbench
for building web ontologies7. In this section we give an
outline of how an ontology engineering environment is
augmented by components for realizing semantic pat-
terns.

The modeling of the core ontologies builds on
RDF(S) primitives. The process is started by collecting
terms for classes and organizing them hierarchically; in

6We use the oil:subSlotOf component as defined in
the denotational semantics of standard OIL available at
http://www.cs.man.ac.uk/ horrocks/OIL/Semantics/oil-
standard.html.

7More detailed information can be obtained at
http://ontoserver.aifb.uni-karlsruhe.de/ontoedit.

9

Heiner Stuckenschmidt
182

parallel one may add properties to the ontology. Sev-
eral different views for building the ontology are of-
fered to the user. Figure 3 depicts the graphical user
interface of ONTOEDIT: On the left hand side of Fig-
ure 3 the class hierarchy of our cultural event ontology
is depicted. The class-property view offers the user the
possibility to attach properties to classes. Properties
may also be defined globally and organized hierarchi-
cally.

ONTOEDIT offers a number of predefined semantic
patterns. On the lower right part of figure 3 the inter-
face for instantiating global inverseness and locally re-
stricted inverseness is depicted. The user selects prop-
erties and defines their (local) inverses explicitly. If
the user also restricts domain and range of the proper-
ties the semantic patternlocally inverse re-
lations is instantiated. The text descriptions of the
semantic patterns are available in ONTOEDIT’s help.

Once conceptual modeling is completed, one may
use ONTOEDIT to explore the defined ontology includ-
ing the newly instantiated semantic patterns. For this
purpose, one may crawl example RDF facts, translate
the semantic patterns into F-Logic or OIL and then ex-
plore ontology and facts by querying the test examples.

Figure 3: Snapshot of OntoEdit Web Ontology Work-
bench

6 Related Work
This paper is motivated by the need to share and ex-
change semantic knowledge on the Web (cf., e.g.,[9]
for general motivation or[28] for an actual applica-
tion). This need comprises the integration of various
sources on the content level as well as on the repre-
sentation level, i.e. integrating knowledge from various
basic representation mechanisms available (like[8]) or
on the rise (like[14; 2]).

We started out from the area ofontology engineer-
ing aiming at conceptual models that could be used in
multiple underlying representations (cf.[29]). Doing
so, we extended related work in the field of knowl-

edge representation usingaxiom schemata.Because our
goal was not only to formally represent, but to allow
for rich communication between developers who create
actual implementation based on various representation
systems, we looked into software and knowledge en-
gineering dealing withdesign and knowledge patterns
and problem-solving methods.

6.1 Ontology Engineering & RDFS
In our earlier proposals[30] we have discussed how
to push the engineering of ontological axioms from
thesymbol level onto theknowledge level — following
and extending the general arguments made for ODE
[6] and Ontolingua[16]. Also similar to our RDF(S)-
based ontology engineering tool ONTOEDIT is Protégé
[21], which provides comprehensive support for edit-
ing RDFS and RDF, but lacks any support for ax-
iom modeling and inferencing. In contrast to all of
these approaches, we aim also atpartial descriptions
of semantic entailments such as very often necessary
when switching from one to the other representation
paradigm.

6.2 Axiom Schemata
The usage of axiom schemata in various paradigms has
been a major motivation for our approach (cf. Subsec-
tion 2.3). In particular, we have relied on experiences
with engineering axiom schemata in F-Logic and on
related work that exploits axiom schemata in various
description logics dialects.

F-Logic. The logical model of F-Logic, essentially
a rich model for datalog, fits nicely with the struc-
tures proposed for RDF and RDFS. This also led to the
first implementation of an inference engine for RDF
(SiLRi [13]). SiLRi provides many inferencing possi-
bilities one wants to have in RDF and, hence, has pro-
vided an excellent start for many RDF applications. In
fact, it even allows to use axioms in restricted second-
order logic, but these axioms may not be denoted in
RDF, but only directly in F-Logic.

Description Logics. Description logics has been de-
rived from efforts for specifying the axiom schemata
that are most relevant for terminological engineering.
Hence, its development provides valuable input for rel-
evant semantic patterns such as the ones exploited in
our case study (cf. Section 4). To speak more pre-
cisely, description logics constitutes not a single, but
a set of similar languages. A large amount of research
has been undertaken to explore the effects of adding
additional syntactic and semantic features to existing
versions of description logics. However, their efforts
remain very far from bridging between mutually in-
compatible representation paradigms, which is the goal
of our approach.

A web-compatible version of description logics has
been presented with OIL[14]. OIL is intended as

10

Heiner Stuckenschmidt
183

a common core language that is more powerful than
RDF, but is intended to provide a basic layer rather than
a language “all singing all dancing”. As our case study
also illustrates, even OIL does not suffice for all poten-
tial needs, but semantic patterns may also be used on
top of OIL — rather than “only” on top of RDF.

Combinations of Different Logics. Obviously, there
has been the need for interoperability between F-Logic
and Description Logics and, hence, Levy and Rousset
[26] proposed an integration of a (simple) Description
Logics approach with horn rules. In the end, however,
neither one of them nor their integration will be suffi-
cient for all possible purposes and applications of the
future Semantic Web. A similar statement holds for
current combinations of modal logics; in fact, the field
as a whole is very young and can be exploited for prac-
tical purposes only to very limited extent in the near fu-
ture (cf. the excellent survey paper[5]). Along similar
lines KIF [19] was invented, but was most often only
used at the syntactical rather than at the semantic level
of knowledge transportation. Building on KIF, Gruber
[22] has investigated the translation between languages
using the frame ontology as its interlingua. Though the
frame ontology is very useful (essentially it catches the
primitives used in object-oriented database systems),
the language is too restricted in general.

We have shown in this paper, how to use semantic
patterns with OIL, a Web-compatible description log-
ics framework and F-Logic, a language that had been
intensively used for Semantic Web applications[28].
Thereby, our semantic patterns are not restricted to ei-
ther of these paradigms or their integration.

6.3 Patterns and Problem Solving Methods
Design patterns[18] — and their knowledge engineer-
ing counterparts[10] — have proved extremely suc-
cessful in describing characteristics of thecontents that
are to be described (algorithmic structures or knowl-
edge structures). We in contrast have focused on
the description oflanguage characteristics in order to
bridge between different representation languages, thus
applying the paradigms of patterns at the meta-level.

A similar contrast holds between semantic patterns
and problem solving methods. “Problem solving meth-
ods describe domain-independent reasoning compo-
nents” [15]. They come at various levels of abstrac-
tions, from informal text, over few lines of pseudo-
code up to implementations in a particular language.
Problem solving methods can be thought of as a vari-
ety of search methods with heuristics that benefit from
domain specific knowledge where the heuristic is built
into the problem solving method itself.

While on the very high level problem solving meth-
ods may appear similar to semantic patterns, there are
several major distinctions, only two of which we want
to mention here: First, semantic patterns only describe
what needs to be inferenced they do not specify how se-

mantic entailments are actually derived in a particular
representation, which is the domain of problem solv-
ing methods that describehow to do things. Second,
the domain proper of semantic patterns and problem
solving methods is rather dissimilar. Typical problem
solving method libraries include, e.g., “propose and re-
vise”, or “heuristic classification”, while semantic pat-
terns such as we propose abstract from language char-
acteristics to include, e.g., “part-whole reasoning”, “lo-
cal inverses”, or “inheritance with exceptions”.

7 Conclusion
We have shown a new methodology,viz. semantic pat-
terns, for engineering semantics on the Web in a way
that makes it easier to reuse in a wide range of exist-
ing representation systems and easier to communicate
between different Semantic Web developers. Seman-
tic patterns are used to describe intended semantic en-
tailments and, thus, allow a higher level of abstraction
above existing Semantic Web languages — similarly as
software design patterns allow to abstract from actual
applications.

With this approach, there comes now the possibil-
ity to bridge between various paradigms for represen-
tation. By semantic patterns, the social process of de-
signing new and communicating previously success-
ful semantic patterns may now be started. The reader,
however, may bear in mind that semantic patterns only
provide a ground of discourse for man and machine.
Which actual patterns will eventually turn out to be
successful for which purpose will have to be shown
over time by the Web community.

References
[1] Daml ontology library.

http://www.daml.org/ontologies/, observed 2000.

[2] Daml-ont initial release.
http://www.daml.org/2000/10/daml-ont.html Observed
at October 12, 2000, 2000.

[3] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and
J. Wiener. The lorel query language for semi-structured
data.Journal of Digital Libraries, 1(1):68–88, 1997.

[4] J. Angele, H.-P. Schnurr, S. Staab, and R. Studer. The
times they are a-changin’ — the corporate history ana-
lyzer. In D. Mahling and U. Reimer, editors,Proceed-
ings of PAKM-2000. Basel, Switzerland, October 30-
31, 2000, 2000.

[5] B. Bennett, C. Dixon, M. Fisher, E. Franconi, I. Hor-
rocks, U. Hustadt, and M. de Rijke. Combinations of
modal logics. submitted for publication, 2000.

[6] M. Blázquez, M. Fern´andez, J. M. García-Pinar, and
A. Gómez-Pérez. Building ontologies at the knowledge
level using the ontology design environment. InIn Pro-
ceedings of KAW-98, Banff, Canada, 1998, 1998.

[7] R. Brachman. On the epistomological status of seman-
tic networks.Associative Networks, pages 3–50, 1979.

11

Heiner Stuckenschmidt
184

[8] D. Brickley and R.V. Guha. Resource description
framework (RDF) schema specification. Technical re-
port, W3C, 1999. W3C Proposed Recommendation.
http://www.w3.org/TR/PR-rdf-schema/.

[9] V. Christophides and D. Plexousakis, editors.Proceed-
ings of the ECDL-2000 Workshop — Semantic Web:
Models, Architectures and Management, 2000.

[10] P. Clark, J. Thompson, and B. Porter. Knowledge pat-
terns. In A. Cohn, F. Giunchiglia, and B. Selman, edi-
tors,In Proc. of KR-2000, Breckenridge, CO, USA, 12-
15 April 2000, pages 591–600, San Mateo, CA, 2000.
Morgan Kaufmann.

[11] O. Corby, R. Dieng, and C. Hebert. A conceptual graph
model for w3c resource description framework. InIn
Proceedings of ICCS-2000. Darmstadt, Germany, Au-
gust 2000, LNAI. Springer, 2000.

[12] S. Decker. On domain-specific declarative knowledge
representation and database languages. InProc. of
the 5th International KRDB Workshop, pages 9.1–9.7,
1998.

[13] S. Decker, D. Brickley, J. Saarela, and J. An-
gele. A query and inference service for RDF. In
QL’98 - The Query Languages Workshop. W3C, 1998.
http://www.w3.org/TandS/QL/QL98/.

[14] S. Decker, D. Fensel, F. van Harmelen, I. Horrocks,
S. Melnik, M. Klein, and J. Broekstra. Knowledge rep-
resentation on the web. InProceedings of the DL-2000,
Aachen, Germany, 2000.

[15] D. Fensel and E. Motta. Structured development
of problem solving methods.IEEE Transactions on
Knowledge and Data Engineering, to appear.

[16] R. Fikes, A. Farquhar, and J. Rice. Tools for assembling
modular ontologies in Ontolingua. InProc. of AAAI 97,
pages 436–441, 1997.

[17] E. Franconi and G. Ng. The i.com tool for
Intelligent Conceptual Modeling. In Pro-
ceedings of 7th International KRDB Work-
shop. Berlin. http://sunsite.informatik.rwth-
aachen.de/Publications/CEUR-WS/Vol-29/.

[18] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.De-
sign Patterns — Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1994.

[19] M. R. Genesereth. Knowledge inter-
change format. draft proposed american
national standard (dpans). ncits.t2/98-004.
http://logic.stanford.edu/kif/dpans.html seen at Sep 7,
2000, 1998.

[20] M. Ginsberg. Knowledge interchange format: the KIF
of death.AI Magazine, 5(63), 1991.

[21] E. Grosso, H. Eriksson, R. W. Fergerson, S. W. Tu, and
M. M. Musen. Knowledge modeling at the millennium
— the design and evolution of Prot´egé-2000. InIn Pro-
ceedings of KAW-99, Banff, Canada, 1999, 1999.

[22] T. Gruber. A translation approach to portable ontol-
ogy specifications.Knowledge Acquisition, 5:199–220,
1993.

[23] I. Horrocks. Using an expressive description logic:
FaCT or fiction? InProc. of KR-98, pages 636–647,
1998.

[24] M. Kifer, G. Lausen, and J. Wu. Logical foundations of
object-oriented and frame-based languages.Journal of
the ACM, 42, 1995.

[25] O. Lassila and R. Swick. Resource description frame-
work (RDF). model and syntax specification. Tech-
nical report, W3C, 1999. W3C Recommendation.
http://www.w3.org/TR/REC-rdf-syntax.

[26] A. Y. Levy and M.-C. Rousset. Combining horn rules
and description logics in CARIN. Artificial Intelli-
gence, 104(1-2):165–209, 1998.

[27] L. Morgenstern. Inheritance comes of age: Applying
nonmonotonic techniques to problems in industry.Ar-
tificial Intelligence, 103:1–34, 1998.

[28] S. Staab, J. Angele, S. Decker, M. Erdmann, A. Hotho,
A. Maedche, H.-P. Schnurr, R. Studer, and Y. Sure. Se-
mantic community web portals. InIn Proc. of WWW9,
Amsterdam, The Netherlands, May, 15-19, 2000. Else-
vier, 2000.

[29] S. Staab, M. Erdmann, A. Maedche, and S. Decker.
An extensible approach for modeling ontologies in
RDF(S). In Christophides and Plexousakis[9].

[30] S. Staab and A. Maedche. Ontology engineering be-
yond the modeling of concepts and relations. InIn
Proceedings of the ECAI-2000 Workshop on Ontologies
and Problem-Solving Methods. Berlin, August 21-22,
2000, 2000.

12

Heiner Stuckenschmidt
185

Heiner Stuckenschmidt

	Klein.pdf
	1 Introduction
	2 Terminology
	3 Problems with ontology combination
	3.1 Mismatches between ontologies
	3.2 Ontology versioning
	3.3 Practical problems

	4 Current approaches and techniques
	4.1 Solving language mismatches
	4.2 Ontology level integration and user support
	4.3 Versioning

	5 Overview of approaches
	6 Conclusion and remarks

	Flett.pdf
	Introduction
	An introduction to e-business and its problems
	
	Query rather than search
	Static product search
	Unstructured text
	Heterogeneously modelled data
	Cultural and individual personalisation
	Telecoms infrastructure media

	An introduction to an e-business solution: ontologies meet conversational systems
	The requirements
	The solution
	Ontologies’ role in the solution
	What are ontologies anyway?
	The elements of ontologies

	Issues in enterprise-standard ontology environments
	Acquisition
	Visualisation
	Modularization and versioning
	Reasoning transparency
	Multitasking
	Competency
	Methodology and Ontology

	Conclusion
	Acknowledgements
	References

	preface.PDF
	Foundations and Languages
	Ontology Integration
	Applications of Ontologies
	Related Workshops of the last years

