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Abstract. Time series observations are a common method of collecting sensor 
data. The Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) 
provides a standard representation for time series observations within the 
Observations and Measurements language, and therefore is in heavy use on the 
Sensor Web. By providing a common model, Observations and Measurements 
(O&M) facilitates syntax-level integration, but lacks the ability to facilitate 
semantic-level integration. This inability can cause problems with 
interoperability between disparate sensor networks that may have subtle 
variations in their sensing methods. An ontological representation of time series 
observations could provide a more expressive model and resolve problems of 
semantic-level interoperability of sensor networks on the Semantic Sensor Web. 
In this paper, such an ontology model is proposed, as well as a real-world use-
case from sensor networks currently measuring rainfall in the South Esk river 
catchment in the North East of Tasmania, Australia. 

Keywords: Observations and Measurements, Ontology, Semantic Sensor Web, 
Sensor Web Enablement, Time Series Observations  

1   Introduction 

Sensors are quickly becoming ubiquitous and can be found in a vast range of 
environments. Therefore, not surprisingly, there are multitudes of ways that sensors 
generate and represent observation data. Such differences may include the data 
formats, units of measurement, spatiotemporal resolution, domain of application, 
quality of observation, and the characteristics of the data over time, e.g. frequency, 
percentage of data loss, when data loss occurs, etc. All of these factors affect the 
integration of data from different sensors measuring phenomena.  



This is equally true in the water resource management domain. In the Tasmanian 
South Esk river catchment, several sensor systems of different types are deployed for 
measuring rainfall. These sensors provide a data rich environment for continuous flow 
forecasting using Data Driven Modeling (DDM). When integrating data from 
different sources or mapping data to sensor (or measurement) information models, the 
semantics of the data need to be well understood. It is also important to register the 
semantics of shared data elements so that consumers of the data (any system designer, 
domain experts, and end users) can precisely determine the exact meaning of data 
occurring at interfaces between components of the information models. Of all the 
possible types of sensor data models, we focus on time series. 

A time series is a sequence of observations which are ordered in time. A time 
series observation model is a common method of representing sensor data with a 
linear temporal order.  As such, time series observations are utilized in a wide variety 
of fields such as statistics and signal processing for advanced analysis and forecasting. 
Many sensing systems on the Sensor Web use data collection methods that naturally 
lend themselves to representation as time series observations. Accordingly, the OGC 
Sensor Web Enablement (SWE) [1] provides a standard representation for time series 
observations within the Observations and Measurements (O&M) language [2]. O&M 
is an XML-based model for representing sensor observations on the Web. By 
providing a common model, O&M facilitates syntax-level integration, but lacks the 
ability to facilitate semantic-level integration. In this paper, we intend to show how 
time series observations can be modeled in an ontology that can (in future work) be 
used to overcome problems of integration and querying. One integration problem 
results from the fact that while different sensor networks may represent sensor 
observation data using a common model, they may use various sensing methods that 
are not explicitly represented. One query problem results from the necessity to know 
a-priori the sensing method used to generate a dataset (which, again, is not explicitly 
represented) in order to correctly interpret a query result. Both can be overcome 
through a semantic description of time series observations.  

In order to make our discussion more clear, we will use descriptions of the sensor 
systems monitored by the CSIRO Tasmanian ICT Centre as a running example. As of 
this writing, there are twenty rain gauge sensor systems in Tasmania monitored by the 
Australian Commonwealth Scientific and Industrial Research Organization (CSIRO). 
The sensing systems at CSIRO adhere to the OGC-SWE standards and publish 
observation data in O&M. In particular, the rain gauge sensors publish rainfall 
observation data with the om:TimeSeriesObservation model (the om namespace is 
used to represent concepts in O&M). These rain gauge sensors collect rainfall in a 
bucket (or cup) and, when filled, the bucket tips and empties its contents. Because the 
system is aware of how much rainfall is required to fill the bucket, the rainfall level 
can be accurately recorded by monitoring when the bucket tipping events occur. 
Figure 1 shows an illustration of a rain gauge sensor [3]. 

 



 

Figure 1.  Illustration of a rain gauge sensor [3]. 

 
The remainder of the paper is organized as follows.  Section 2 presents 

background material on the sensor network in the Tasmanian South Esk river 
catchment, the Sensor Web Enablement, and Semantic Web. Several different types 
of time series observations are introduced in Section 3. In Section 4, an ontological 
representation of time series observations is discussed. Finally, conclusions and future 
work are detailed in section 5.  

2   Background 

Scientists have long understood the importance of quality time series observations for 
conducting research and analyzing data. This is also true for the sensor network 
project in the South Esk river catchment in Tasmania. The models for time series 
observations, as described in this paper, are reliant on two sets of standardizations, (1) 
the Semantic Web languages defined by the World Wide Web Consortium (W3C), 
and (2) the Observations and Measurements (O&M) language defined by the Open 
Geospatial Consortium (OGC) Sensor Web Enablement (SWE). This combination is 
typical of applications on the Semantic Sensor Web [4][5]. 

2.1   Sensor Network in the Tasmanian South Esk River Catchment 

Drought is a common problem that has been plaguing Australia for many years. The 
state of Tasmania is especially affected, with drought conditions worsened in 2008 
and many areas reporting no significant rainfall for three years [6]. Consequently, 
water has become an exceptionally scarce resource. The inefficient management of 
water resources is exacerbated by a deficiency of quality information about 
Australia’s water conditions. To overcome this problem, CSIRO has developed the 
‘Water for a Healthy Country’ Flagship [7], a national research program addressing 
sustainable management of Australia’s water resources. As part of this program, the 
CSIRO Tasmanian ICT Centre aims at establishing a technology platform to provide 



water information systems delivering dynamic, timely reporting and forecasting of 
water resources.   This will be achieved through four key research areas that will [7]: 

1. Enable water information interoperability through standards development, web 
service integration, semantic web, model interoperability. 

2. Improve the usability and availability of water data through development in 
wireless and wired sensor networks, improved telemetry integration, novel 
hydrologic measurement techniques, data analysis and data assimilation methods. 

3. Develop next generation modeling and forecasting tools through interoperable, 
modular computer models, advanced computing algorithms and powerful 
scenario planning tools. 

4. Develop improved reporting and visualization tools through new interoperable 
and modular tools, products and technologies for operating, reporting and 
accounting of water resources at multiple scales. 

The CSIRO Tasmanian ICT Centre is building a test bed system that attempts to 
incorporate sensors, models and data from multiple organizations operating within the 
South Esk Catchment [8]. The South Esk Catchment covers an area of approximately 
3350 square kilometers and experiences widely varying climatic conditions with 
rainfall ranging from 500 mm in the low lying areas to 1500 mm in the highlands. 
Consequently, there is a high spatial variability in runoff yield [9]. Runoff yield is the 
quantity of water that travels over the land surface, through the soil, and groundwater, 
and is discharged into surface streams (i.e. the amount of water that leaves the 
catchment). There is an opportunity to improve water planning and management 
through continuous monitoring and forecasting of river flow. The project will explore 
how environmental sensors, hydrological models and decision support tools can be 
combined in a pluggable hydrological sensor web for continuous flow forecasting. A 
pluggable hydrological sensor web would have the ability to integrate any sensor into 
the web-based system without explicit re-configuration. 

2.2   Sensor Web Enablement  

The Open Geospatial Consortium established the Sensor Web Enablement as a suite 
of specifications related to sensors, sensor data models, and sensor Web services that 
will enable sensors to be accessible and controllable via the Web [1]. The following 
list describes the languages and service interface specifications of the SWE: 
• Observations & Measurements (O&M) - Standard models and XML Schema for 

encoding observations and measurements from a sensor, both archived and real-
time. 

• Sensor Model Language (SensorML) - Standard models and XML Schema for 
describing sensors systems and processes; provides information needed for 
discovery of sensors, location of sensor observations, processing of low-level 
sensor observations, and listing of taskable properties. 

• Transducer Model Language (TransducerML) - Standard models and XML 
Schema for describing transducers and supporting real-time streaming of data to 
and from sensor systems. 



• Sensor Observations Service (SOS) - Standard web service interface for 
requesting, filtering, and retrieving observations and sensor system information. 
This is the intermediary between a client and an observation repository or near 
real-time sensor channel. 

• Sensor Planning Service (SPS) - Standard web service interface for requesting 
user-driven acquisitions and observations. This is the intermediary between a 
client and a sensor collection management environment. 

• Sensor Alert Service (SAS) - Standard web service interface for publishing and 
subscribing to alerts from sensors. 

• Web Notification Services (WNS) - Standard web service interface for 
asynchronous delivery of messages or alerts from SAS and SPS web services and 
other elements of service workflows [1]. 

2.3   Semantic Web 

The Semantic Web, as described by the W3C Semantic Web Activity, is an evolving 
extension of the World Wide Web in which the semantics, or meaning, of information 
on the Web is formally defined [10]. Formal definitions are captured in ontologies, 
making it possible for machines to interpret and relate data content more effectively. 
In this project, we use the Web Ontology Language (OWL) [11] to encode ontologies 
and the general purpose rule engine for the Jena Semantic Web Framework to encode 
rules [12].  

2.4   Observations and Measurements Ontology 

As mentioned in the introduction, time series observations are often encoded in 
O&M. Several attempts have been made in creating an ontological representation of 
O&M. Probst [13] performs an ontological analysis of the core O&M terms. Through 
this analysis, an OWL encoding of O&M is aligned with the DOLCE [14] 
foundational ontology. In a more recent attempt [5], the authors generate an OWL-DL 
encoding of O&M, called O&M-OWL, in order to reason over sensor data and infer 
complex features. The ontological representation of time series observations 
discussed in this paper uses O&M-OWL. The relationships discussed in Section 4.1 
were originally described in [5] (with the exception of om-owl:memberOf and without 
the detailed RDF/XML serialization provided here). In order to avoid confusion, from 
this point forward we will refer to O&M in OWL as O&M-OWL and prefix concepts 
with the namespace om-owl, and refer to O&M in XML as O&M-XML and prefix 
concepts with the namespace om-xml. 

3 Types of Time Series Observations 

There are various ways to monitor, collect, and represent sensor data with time series 
observations. At the CSIRO Tasmanian ICT Centre, there are four distinct methods of 



monitoring rain gauge sensors, which can be divided along two dimensions: (1) 
cumulative vs. non-cumulative and (2) interval-based vs. event-based.  

 
• Cumulative systems continually increment the observation result value as the 

monitoring progresses through time.   
• Non-cumulative systems are not incremental and thus provide an independent 

value for each observation result. 
 

• Interval-based systems generate observation result values at discrete points 
within a specified interval of time. 

• Event-based systems generate observation result values only when a defined 
event occurs.  

 
Interval-based/Non-cumulative systems generate independent observation result 

values at fixed time points.  Each observation result value represents the amount of 
rainfall measured since the end of the previous interval. Figure 2 shows an example 
with fixed time points every thirty minutes from 1:00 AM to 3:00 AM. The vertical 
lines represent the fixed intervals and the dots represent observation result values that 
have measured rainfall.  Each bucket tip event represents 0.2 mm of measured 
rainfall. So, from this example, we can see that between 1:00 AM and 1:30 AM, one 
bucket tip event occurred.  No such events occurred between 1:30 AM and 2:00 AM.  
Two events occurred between 2:00 AM and 2:30 AM, and one between 2:30 AM and 
3:00 AM. 

 

 

Figure 2.  Interval-based, non-cumulative time series observation graph 

 
Interval-based/Cumulative systems generate incremental observations result 

values at fixed time points. Each observation result value represents the cumulative 
amount of rainfall measured since the start of the process. Figure 3 shows an example 
with fixed time points every thirty minutes from 1:00 AM to 3:00 AM. The vertical 
lines represent the fixed intervals and the dots represent the incremental addition of 
observation result values measuring rainfall.  So, from this example, we can see that 



between 1:00 AM and 1:30 AM, one bucket tip event occurred.  Between 1:00 AM 
and 2:00 AM, still only one bucket tip occurred. Three events occurred between 1:00 
AM and 2:30 AM, and four between 1:00 AM and 3:00 AM. 

 

 

Figure 3.  Interval-based, cumulative time series observation graph 

 
Event-based/Non-cumulative systems generate independent observations result 

values whenever a defined event occurs. Each observation result value represents the 
amount of rainfall measured since the previous event. Figure 4 shows an example 
with a total time interval from 1:00 AM to 3:00 AM. The vertical lines represent 
bucket tip events and the dots represent observation result values that have measured 
rainfall.  So, from this example, we can see that at 1:20 AM the first bucket tip event 
occurred, the second at 2:10 AM, the third at 2:20 AM, and the fourth at 2:50 AM. 

 

 

Figure 4.  Event-based, non-cumulative time series observation graph 

 
Event-based/Cumulative systems generate incremental observation result values 

whenever a defined event occurs. Each observation result value represents the 



cumulative amount of rainfall measured since the start of the process. Figure 5 shows 
an example with a total time interval from 1:00 AM to 3:00 AM. The vertical lines 
represent bucket tip events and the dots represent the incremental addition of 
observation result values measuring rainfall.  So, from this example, we can see that 
at 1:20 AM the first bucket tip event occurred, the second at 2:10 AM, the third at 
2:20 AM, and the fourth at 2:50 AM. 
 

 

Figure 5.  Event-based, cumulative time series observation graph 

 
The authors admit there could be additional methods and categories; however, we 

hope these will be adequate and are sufficiently general for the current discussion. 
Table 1 shows how many rain gauge systems monitored by the CSIRO Tasmanian 
ICT Centre have the properties described above. 

 

Table 1.  Number of rain gauge systems with the selected properties. 

 Non-cumulative Cumulative 
Interval-based 7 7 
Event-based 3 3 

4 Representation of Time Series Observations 

A time series observation is a specialized observation collection. More specifically, if 
the member observations of an observation collection have the same feature of 
interest, the same observed property, and different sampling times, this set of 
observations may be represented as a time series observation whose sampling time is 
the period encompassing all the member times [2].  An example would include a rain 
gauge sensor that measures rain levels at discrete time intervals. In order to create an 
ontological representation of time series observations, there are three significant 
classes to be discussed: a class describing a basic observation (om-owl:Observation), 



a class describing an observation collection (om-owl:ObservationCollection), and a 
class describing a time series observation (om-owl:TimeSeriesObservation). Each of 
these classes defines properties. However, in comparison to an XML-based 
specification, such as O&M-XML, an ontology specification, such as O&M-OWL, 
enables the explicit representation of typing constraints on properties in terms of 
domain and range.  This is exposed through the RDF/XML code below. 

4.1   Observation Class (om-owl:Observation) 

An observation is an act of observing a property or phenomenon, with the goal of 
producing an estimate of the value of the property [2]. O&M-OWL provides the 
following relationships for observations (with RDF/XML encoding): 

 
• om-owl:featureOfInterest is a “representation of the observation target, being the 

real-world object regarding which the observation is made [2].” Example 
includes a coverage feature, such as the South Esk Catchment in Tasmania, 
Australia. 

 
<owl:ObjectProperty rdf:about="#featureOfInterest">  

<rdfs:domain rdf:resource="#Observation"/> 
<rdfs:range rdf:resource="#Feature"/> 
<owl:inverseOf rdf:resource="#propertyValueProvider "/> 

</owl:ObjectProperty> 
 

• om-owl:observedProperty “identifies or describes the phenomenon for which the 
observation result provides an estimate of its value. It must be a property 
associated with the type of the feature of interest [2].” Example includes a rainfall 
property. 

 
<owl:FunctionalProperty rdf:about="#observedPropert y"> 

<rdf:type rdf:resource= 
"http://www.w3.org/2002/07/owl#ObjectProperty"/> 

<rdfs:domain rdf:resource="#Observation"/> 
<rdfs:range rdf:resource="#PropertyType"/> 

</owl:FunctionalProperty> 

 
• om-owl:samplingTime is the “time that the result applies to the feature-of-interest 

[2],” or, in other words, it is the time when the phenomenon was measured in the 
real-world. Example includes a single instant sampling time at 5:00 am on Jan. 
26, 2009. 

 
<owl:FunctionalProperty rdf:about="#samplingTime"> 

<rdf:type rdf:resource= 
"http://www.w3.org/2002/07/owl#ObjectProperty"/> 

<rdfs:domain rdf:resource="#Observation"/> 
<rdfs:range rdf:resource="#Time"/> 

</owl:FunctionalProperty> 

 
• om-owl:observationLocation is the location of an observation event; usually 

associated with the location of the sensor when an observation occurred (i.e., 



om:samplingTime). Example includes a single point observation location with 
latitude, longitude, and elevation coordinates. 

 
<owl:FunctionalProperty rdf:ID="observationLocation "> 

<rdf:type rdf:resource= 
"http://www.w3.org/2002/07/owl#ObjectProperty"/>     

<rdfs:domain rdf:resource="#Observation"/> 
<rdfs:range rdf:resource="#Location"/> 

</owl:FunctionalProperty> 

 
• om-owl:result is an “estimate of the value of some property generated by a 

known procedure [2].”  Example includes a rain-level measurement result of 5.2 
mm. 

 
<owl:FunctionalProperty rdf:about="#result"> 

<rdf:type rdf:resource= 
"http://www.w3.org/2002/07/owl#ObjectProperty"/> 

<rdfs:domain rdf:resource="#Observation"/> 
<rdfs:range rdf:resource="#ResultData"/> 

</owl:FunctionalProperty> 

 
• om-owl:procedure is a “description of a process used to generate the result. It 

must be suitable for the observed property [2].” Note that in this schema a sensor 
is defined as a type of process, along with other methods, algorithms, 
instruments, or systems of these. Example includes a rain gauge sensor as the 
procedure. 

 
<owl:FunctionalProperty rdf:ID="procedure"> 

<rdf:type rdf:resource= 
"http://www.w3.org/2002/07/owl#ObjectProperty"/>     

<rdfs:domain rdf:resource="#Observation"/> 
<rdfs:range rdf:resource="#Process"/> 
<owl:inverseOf rdf:resource="generatedObservation"/ > 

</owl:FunctionalProperty> 

 
• om-owl:memberOf is a relation to a set of observations, or observation collection. 

Example includes a rainfall observation that is a member of a time series 
observation collection. 

 
<owl:TransitiveProperty rdf:ID="memberOf"> 

<rdf:type rdf:resource= 
"http://www.w3.org/2002/07/owl#ObjectProperty"/> 

<rdfs:domain rdf:resource="#Observation"/> 
<rdfs:range rdf:resource="#ObservationCollection"/>  
<owl:inverseOf rdf:about="#member"/> 

</owl:TransitiveProperty> 

4.2   Observation Collection Class (om-owl:ObservationCollection) 

An observation collection is composed of a set of member observations [2]. O&M-
OWL provides the following relationship for observation collections (with RDF/XML 
encoding): 



 
• om-owl:member is a relation from an observation collection to a constituent 

observation (inverse of om-owl:memberOf). Example includes time series 
observation collection that has rainfall observations as members. 

 
<owl:TransitiveProperty rdf:about="#member"> 

<rdf:type rdf:resource= 
"http://www.w3.org/2002/07/owl#ObjectProperty"/> 

<rdfs:domain rdf:resource="#ObservationCollection"/ > 
<rdfs:range rdf:resource="#Observation"/> 
<owl:inverseOf rdf:resource="#memberOf"/> 

</owl:TransitiveProperty> 

4.3   Time Series Observation Class (om-owl:TimeSeriesObservation) 

In addition to being a specialized type of observation collection, a time series 
observation is also considered a type of observation. Therefore, om-
owl:TimeSeriesObservation inherits properties from both om-owl:Observation and 
om-owl:ObservationCollection described above. While om-
owl:TimeSeriesObservation is a sub-class of om-owl:Observation, it does not 
normally make use of the om-owl:result relationship. (It is conceivable that this 
property could be useful when modeling cumulative observation result values, 
however, this is not used in the current model for reasons to be detailed below.) On 
the other hand, om-owl:samplingTime is a very important property for om-
owl:TimeSeriesObservation, whose sampling time is the period encompassing all the 
member times [2]. Remember that the sampling time of event-based systems is based 
on when an event occurred and the sampling time of interval-based systems is based 
on fixed-time points. In order to make this distinction explicit, we have created two 
sub-classes of om-owl:TimeSeriesObservation, including om-
owl:EventBasedTimeSeriesObservation and om-
owl:IntervalBasedTimeSeriesObservation, and two sub-properties of om-
owl:samplingTime, including om-owl:eventBasedSamplingTime and om-
owl:intervalBasedSamplingTime. 
 
<owl:ObjectProperty rdf:about="#samplingTime"> 

<rdfs:domain rdf:resource="#Observation"/> 
     <rdfs:range rdf:resource="#Time"/> 
</owl:ObjectProperty> 
<owl:ObjectProperty rdf:ID="eventBasedSamplingTime" > 

<rdfs:subPropertyOf rdf:resource="#samplingTime"/> 
<rdfs:domain rdf:resource="#EventBasedTimeSeriesObs ervation"/> 

</owl:ObjectProperty> 
<owl:ObjectProperty rdf:ID="intervalBasedSamplingTi me"> 

<rdfs:subPropertyOf rdf:resource="#samplingTime"/> 
<rdfs:domain rdf:resource="#IntervalBasedTimeSeries Observation"/> 

</owl:ObjectProperty> 

 
From the O&M specification, we know that a time series observation is a 

specialization of an observation collection with the restriction that all member 
observations must share the same feature of interest and the same observed properties 



[2]. Such constraints are difficult to represent in an XML encoding.  In O&M-XML, 
these constraints are simply implied through the wording of the specification with the 
intention that implementations will faithfully adhere to the intended definition.  While 
difficult for XML representations, such constraints may be naturally represented in an 
OWL-DL ontology using the OWL property restrictions. In the code below, we show 
an observation sub-class, csiro:SouthEskCatchmentRainGuageObservation, which 
contains the restriction that all instantiated observations of this type have an observed 
property csiro:rainfall and a feature of interest csiro:SouthEskCatchment through the 
owl:hasValue restriction.  (The csiro namespace is used in an extension of O&M-
OWL with concepts targeted toward the CSIRO Tasmanian ICT Centre’s sensing 
systems). 
 
<owl:Class rdf:about= 

"http://www.csiro.au#SouthEskCatchmentRainGuageObse rvation"> 
<rdfs:subClassOf rdf:resource="#Observation"/> 
<rdfs:subClassOf> 

<owl:Restriction> 
<owl:onProperty rdf:resource="#observedProperty"/>                     
<owl:hasValue rdf:resource="http://www.csiro.au#rai nfall"/> 

     </owl:Restriction> 
</rdfs:subClassOf> 
<rdfs:subClassOf> 

    <owl:Restriction> 
<owl:onProperty rdf:resource="#featureOfInterest"/>  
<owl:hasValue rdf:resource= 

"http://www.csiro.au#SouthEskCatchment"/> 
      </owl:Restriction> 

</rdfs:subClassOf> 
</owl:Class> 

 
In addition, a time series observation sub-class, 
csiro:SouthEskCatchmentRainGuageTimeSeriesObservation, contains the restriction 
that all instantiations of this type of time series observation have all member 
observations of type csiro:SouthEskCatchmentRainGuageObservation through the 
owl:allValuesFrom restriction. 
 
<owl:Class rdf:about= 
"http://www.csiro.au#SouthEskCatchmentRainGuageTime SeriesObservation”> 

<rdfs:subClassOf rdf:resource=”#TimeSeriesObservati on”/> 
<rdfs:subClassOf> 

<owl:Restriction> 
<owl:onProperty rdf:resource="#member"/> 
<owl:allValuesFrom rdf:resource= 

"http://www.csiro.au#SouthEskCatchmentRainGuageObse rvation"/> 
</owl:Restriction> 

</rdfs:subClassOf> 
</owl:Class> 

 
Through this combination of OWL property restrictions, we are able to more 
faithfully and explicitly represent the concept of om:TimeSeriesObservation. 



4.4   Generating Time Series Observation Instances  

Given the heavy use of O&M-XML on the Sensor Web, it seems reasonable that 
translating O&M-XML documents into O&M-OWL instances could be a popular 
means of populating the ontology knowledge base. When generating instances of om-
owl:TimeSeriesObservation, several property values can be directly translated from 
corresponding O&M-XML documents, including: om-owl:featureOfInterest, om-
owl:observedProperty, om-owl:samplingTime, om-owl:observationLocation, and om-
owl:procedure. The individual om-owl:Observation instances share many property 
values with the om-owl:TimeSeriesObservation instance of which they are related 
through the om-owl:memberOf relation. Several of these shared properties can be 
directly propagated given that a om-owl:member relation holds from an instance of 
om-owl:TimeSeriesObservation. The relations that may be propagated include om-
owl:featureOfInterest, om-owl:observedProperty, om-owl:observationLocation, and 
om-owl:procedure. This translation of property values can be encoded in a set of 
rules.  As an example, the rule for propagating om-owl:featureOfInterest follows (in 
Jena rule engine syntax [9]):  
 
[PropagateFeatureOfInterestRule: 
 (?tso  rdf:type  om-owl:TimeSeriesObservation) 
 (?tso  om-owl:member  ?obs) 
 (?tso  om-owl:featureOfInterest  ?foi) 
�(?obs  om-owl:featureOfInterest  ?foi)] 

  
The other translatable property values have similar rules which we omit for the sake 
of brevity. The two remaining relations of om-owl:Observation to be instantiated 
include om-owl:samplingTime and om-owl:result. Sampling time for instances of om-
owl:Observation can be directly translated from om-xml:samplingTime of the om-
xml:TimeSeriesObservation. The instantiation of om-owl:result relation is more 
involved since the cumulative observation result values are dependent on previous 
observations, and we want to generate an independent representation for all 
observations. In order to accomplish this, we simply convert the cumulative result 
values into non-cumulative result values. Unlike the conversion of om-
owl:samplingTime, om-owl:result can be translated without loss of expressiveness 
since the cumulative result can always be recalculated. Therefore, there is no need to 
create sub-classes of om-owl:ResultData nor sub-properties of om-owl:result in order 
to explicitly represent the cumulative/non-cumulative distinction. The conversion of 
cumulative result values into non-cumulative result values is a straightforward 
process of subtracting from each observation the result values of those observations 
that were generated at a previous time point (either at a fixed time point, or when an 
event occurred).  

5   Conclusion and Future Work 

The Semantic Sensor Web aims to integrate Semantic Web technologies with sensing 
systems in order to provide more expressive representation, enhanced analysis, and 



improved access and discovery of sensor data on the Web.  In this paper, we present 
an ontological representation of time series observations that could add much value to 
time series sensor data on the Semantic Sensor Web.  

In the future we hope to utilize this ontology to provide advanced query and 
manipulation of time series observations. Previously, queries of time series 
observations could only return data formatted in the same manner in which it was 
collected. We believe that by leveraging an ontological representation of time series 
observations, we may allow for automatic conversion of event-based time series 
observation to interval-based time series observation, and vice-versa.  For example, a 
user could query against an event-based system and receive an interval-based time 
series observation as a result. At the CSIRO Tasmanian ICT Centre, a practical use of 
this representation would be to enable the automated conversion of such observations 
for input into forecast models, which may, for example, require a time series 
observation with daily frequency of a given phenomenon which is only available as 
an hourly measurement. The required conversion methods could be encoded in the 
time series ontology. In addition, a set of operations on time series observations, such 
as union, concatenation, and intersection, would be useful for advanced integration. 
And finally, since time is such an obviously important component of time series 
observations, we intend on integrating this ontology with OWL-Time [15], a W3C 
recommended ontology based on temporal calculus that provides descriptions of 
temporal concepts such as instant and interval, and the relations between them.  

We believe that an ontological representation of time series observations is an 
important addition to the Semantic Sensor Web, and the practical use of this 
representation at the CSIRO Tasmanian ICT Centre provides a much needed 
experimental platform for future investigation into the integration of Semantic Web 
technologies with sensing systems. 
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