An Ontological Representation of Time Series
Observations on the Semantic Sensor Web

Cory A. Hensoh Holger Neuhatfs Amit P. Sheth Krishnaprasad Thirunarayan
and Rajkumar Buyya

! Kno.e.sis Center, Department of Computer ScienceEagiheering
Wright State University, Dayton, OH 45435, USA
{cory, amit}@knoesis.org

2 CSIRO Tasmanian ICT Centre
GPO Box 1538, Hobart, TAS, 7001, Australia
holger.neuhaus@csiro.au

3 GRIDS Lab, Department of Computer Science and Ergimg
University of Melbourne, Australia
raj@csse.unimelb.edu.au

Abstract. Time series observations are a common method Igfctiog sensor
data. The Open Geospatial Consortium (OGC) Sensor Bxieblement (SWE)
provides a standard representation for time seoleservations within the
Observations and Measurements language, and thelisfin heavy use on the
Sensor Web. By providing a common model, Observataml Measurements
(O&M) facilitates syntax-level integration, but k& the ability to facilitate
semantic-level integration. This inability can ocausproblems with
interoperability between disparate sensor netwaitkat may have subtle
variations in their sensing methods. An ontologregdresentation of time series
observations could provide a more expressive maddl resolve problems of
semantic-level interoperability of sensor netwooksthe Semantic Sensor Web.
In this paper, such an ontology model is propossdyell as a real-world use-
case from sensor networks currently measuring atiinf the South Esk river
catchment in the North East of Tasmania, Australia.
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1 Introduction

Sensors are quickly becoming ubiquitous and canfdoed in a vast range of

environments. Therefore, not surprisingly, there iaultitudes of ways that sensors
generate and represent observation data. Suchreadifes may include the data
formats, units of measurement, spatiotemporal wtisol, domain of application,

quality of observation, and the characteristicgshaf data over time, e.g. frequency,
percentage of data loss, when data loss occurs Aitof these factors affect the

integration of data from different sensors meaguphenomena.



This is equally true in the water resource managememain. In the Tasmanian
South Esk river catchment, several sensor systémigferent types are deployed for
measuring rainfall. These sensors provide a delteemvironment for continuous flow
forecasting using Data Driven Modeling (DDM). Wheéntegrating data from
different sources or mapping data to sensor (oisomeanent) information models, the
semantics of the data need to be well understddd.dlso important to register the
semantics of shared data elements so that conswinges data (any system designer,
domain experts, and end users) can precisely deterthe exact meaning of data
occurring at interfaces between components of tifi@rmation models. Of all the
possible types of sensor data models, we focusrenderies.

A time series is a sequence of observations whiehoedered in time. A time
series observation model is a common method ofesgmiting sensor data with a
linear temporal order. As such, time series olasarms are utilized in a wide variety
of fields such as statistics and signal procesi&ingdvanced analysis and forecasting.
Many sensing systems on the Sensor Web use dad¢etamt methods that naturally
lend themselves to representation as time serissraditions. Accordingly, the OGC
Sensor Web Enablement (SWE) [1] provides a stanagmasentation for time series
observations within the Observations and Measur&m@=s.M) language [2]. O&M
is an XML-based model for representing sensor oasiens on the Web. By
providing a common model, O&M facilitates syntaxéé integration, but lacks the
ability to facilitate semantic-level integratiom this paper, we intend to show how
time series observations can be modeled in an ayyahat can (in future work) be
used to overcome problems of integration and qogryDne integration problem
results from the fact that while different sensatworks may represent sensor
observation data using a common model, they mawaseus sensing methods that
are not explicitly represented. One query problesuits from the necessity to know
a-priori the sensing method used to generate aetafahich, again, is not explicitly
represented) in order to correctly interpret a gussult. Both can be overcome
through a semantic description of time series olagiems.

In order to make our discussion more clear, we wgé descriptions of the sensor
systems monitored by the CSIRO Tasmanian ICT Cexstr@ running example. As of
this writing, there are twenty rain gauge sensestesys in Tasmania monitored by the
Australian Commonwealth Scientific and Industri@sRarch Organization (CSIRO).
The sensing systems at CSIRO adhere to the OGC-Switlards and publish
observation data in O&M. In particular, the rainuga sensors publish rainfall
observation data with them: TimeSeriesObservation model (theom namespace is
used to represent concepts in O&M). These rain gagnsors collect rainfall in a
bucket (or cup) and, when filled, the bucket tipd @mpties its contents. Because the
system is aware of how much rainfall is requirediltahe bucket, the rainfall level
can be accurately recorded by monitoring when thekét tipping events occur.
Figure 1 shows an illustration of a rain gauge sefty.
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Figure 1. lllustration of a rain gauge sensor [3].

The remainder of the paper is organized as followSection 2 presents
background material on the sensor network in thenfmian South Esk river
catchment, the Sensor Web Enablement, and Sem&afetic Several different types
of time series observations are introduced in 8ecsi. In Section 4, an ontological
representation of time series observations is digll Finally, conclusions and future
work are detailed in section 5.

2 Background

Scientists have long understood the importanceuafity time series observations for
conducting research and analyzing data. This ie @ise for the sensor network
project in the South Esk river catchment in Tasmanihe models for time series
observations, as described in this paper, arentedia two sets of standardizations, (1)
the Semantic Web languages defined by the WorldeWiteb Consortium (W3C),
and (2) the Observations and Measurements (O&Mjuage defined by the Open
Geospatial Consortium (OGC) Sensor Web Enablen®ME). This combination is
typical of applications on the Semantic Sensor \Mé55].

2.1 Sensor Network in the Tasmanian South Esk River Catchment

Drought is a common problem that has been plagfingralia for many years. The
state of Tasmania is especially affected, with dhtwconditions worsened in 2008
and many areas reporting no significant rainfatl laree years [6]. Consequently,
water has become an exceptionally scarce resouitee.inefficient management of
water resources is exacerbated by a deficiency wdlity information about
Australia’s water conditions. To overcome this peoh, CSIRO has developed the
‘Water for a Healthy Country’ Flagship [7], a nat& research program addressing
sustainable management of Australia’s water ressurds part of this program, the
CSIRO Tasmanian ICT Centre aims at establishirgchnology platform to provide



water information systems delivering dynamic, tijme¢porting and forecasting of
water resources. This will be achieved through f®y research areas that will [7]:

1. Enable water information interoperability through standards development, web
service integration, semantic web, model interopiéta

2. Improve the usability and availability of water data through development in
wireless and wired sensor networks, improved telgméntegration, novel
hydrologic measurement techniques, data analysislata assimilation methods.

3. Develop next generation modeling and forecasting tools through interoperable,
modular computer models, advanced computing algost and powerful
scenario planning tools.

4. Develop improved reporting and visualization tools through new interoperable
and modular tools, products and technologies foerating, reporting and
accounting of water resources at multiple scales.

The CSIRO Tasmanian ICT Centre is building a test §ystem that attempts to
incorporate sensors, models and data from multigganizations operating within the
South Esk Catchment [8]. The South Esk Catchmeversoan area of approximately
3350 square kilometers and experiences widely mgrylimatic conditions with
rainfall ranging from 500 mm in the low lying arets 1500 mm in the highlands.
Consequently, there is a high spatial variabilityunoff yield [9]. Runoff yield is the
guantity of water that travels over the land swefabrough the soil, and groundwater,
and is discharged into surface streams (i.e. theuamof water that leaves the
catchment). There is an opportunity to improve watkanning and management
through continuous monitoring and forecasting wériflow. The project will explore
how environmental sensors, hydrological models decision support tools can be
combined in a pluggable hydrological sensor webctmtinuous flow forecasting. A
pluggable hydrological sensor web would have thktyalo integrate any sensor into
the web-based system without explicit re-configorat

2.2 Sensor Web Enablement

The Open Geospatial Consortium established thedBé&lieb Enablement as a suite
of specifications related to sensors, sensor datets, and sensor Web services that
will enable sensors to be accessible and contfleligia the Web [1]. The following
list describes the languages and service intedpeeifications of the SWE:

*  Observations & Measurements (O&M) - Standard models and XML Schema for
encoding observations and measurements from arsdmgb archived and real-
time.

*  Sensor Model Language (SensorML) - Standard models and XML Schema for
describing sensors systems and processes; proufi@snation needed for
discovery of sensors, location of sensor obsemati@rocessing of low-level
sensor observations, and listing of taskable ptagser

e Transducer Model Language (TransducerML) - Standard models and XML
Schema for describing transducers and supportialgtiree streaming of data to
and from sensor systems.



e Sensor Observations Service (SOS) - Standard web service interface for
requesting, filtering, and retrieving observati@ml sensor system information.
This is the intermediary between a client and aseolation repository or near
real-time sensor channel.

e Sensor Planning Service (SPS) - Standard web service interface for requesting
user-driven acquisitions and observations. Thish&s intermediary between a
client and a sensor collection management envirohme

*  Sensor Alert Service (SAS) - Standard web service interface for publishing an
subscribing to alerts from sensors.

* Web Notification Services (WNS) - Standard web service interface for
asynchronous delivery of messages or alerts froi® &4d SPS web services and
other elements of service workflows [1].

2.3 Semantic Web

The Semantic Web, as described by the W3C Sem@fdlt Activity, is an evolving
extension of the World Wide Web in which the serantor meaning, of information
on the Web is formally defined [10]. Formal defioits are captured in ontologies,
making it possible for machines to interpret arldteedata content more effectively.
In this project, we use the Web Ontology Langua®¢/() [11] to encode ontologies
and the general purpose rule engine for the Jema&& Web Framework to encode
rules [12].

2.4 Observations and M easurements Ontology

As mentioned in the introduction, time series obagons are often encoded in
O&M. Several attempts have been made in creatingraological representation of
O&M. Probst [13] performs an ontological analysfghe core O&M terms. Through
this analysis, an OWL encoding of O&M is alignedttwithe DOLCE [14]
foundational ontology. In a more recent attempt {5¢ authors generate an OWL-DL
encoding of O&M, called O&M-OWL, in order to reasomer sensor data and infer
complex features. The ontological representation tiofie series observations
discussed in this paper uses O&M-OWL. The relatigps discussed in Section 4.1
were originally described in [5] (with the excepptiof om-owl: memberOf and without
the detailed RDF/XML serialization provided herg)order to avoid confusion, from
this point forward we will refer to O&M in OWL as&W-OWL and prefix concepts
with the namespacem-owl, and refer to O&M in XML as O&M-XML and prefix
concepts with the namespame-xml.

3 Typesof Time Series Observations

There are various ways to monitor, collect, andesgnt sensor data with time series
observations. At the CSIRO Tasmanian ICT Centrexettare four distinct methods of



monitoring rain gauge sensors, which can be dividemhg two dimensions: (1)
cumulative vs. non-cumulative and (2) interval-lihgs. event-based.

e Cumulative systems continually increment the observation tegalue as the
monitoring progresses through time.

* Non-cumulative systems are not incremental and thus provide dapendent
value for each observation result.

* Interval-based systems generate observation result values atethsgoints
within a specified interval of time.

» Event-based systems generate observation result values onlgnwd defined
event occurs.

Interval-based/Non-cumulative systems generatepieinident observation result
values at fixed time points. Each observation Iteglue represents the amount of
rainfall measured since the end of the previousrual. Figure 2 shows an example
with fixed time points every thirty minutes from00: AM to 3:00 AM. The vertical
lines represent the fixed intervals and the dgisesent observation result values that
have measured rainfall. Each bucket tip eventesgmts 0.2 mm of measured
rainfall. So, from this example, we can see thaiben 1:00 AM and 1:30 AM, one
bucket tip event occurred. No such events occusegdleen 1:30 AM and 2:00 AM.
Two events occurred between 2:00 AM and 2:30 AM], ane between 2:30 AM and
3:00 AM.

Interval-based, Non-cumulative
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Figure 2. Interval-based, non-cumulative time series obsemaraph

Interval-based/Cumulative systems generate increahenobservations result
values at fixed time points. Each observation tegalue represents the cumulative
amount of rainfall measured since the start ofpteeess. Figure 3 shows an example
with fixed time points every thirty minutes from00: AM to 3:00 AM. The vertical
lines represent the fixed intervals and the dogsegent the incremental addition of
observation result values measuring rainfall. f8mm this example, we can see that



between 1:00 AM and 1:30 AM, one bucket tip evectusred. Between 1:00 AM
and 2:00 AM, still only one bucket tip occurred.réé events occurred between 1:00
AM and 2:30 AM, and four between 1:00 AM and 3:001 A

Interval-based, Cumulative
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Figure 3. Interval-based, cumulative time series observagiaph

Event-based/Non-cumulative systems generate indigmérobservations result
values whenever a defined event occurs. Each odos@nwesult value represents the
amount of rainfall measured since the previous evéigure 4 shows an example
with a total time interval from 1:00 AM to 3:00 AMLhe vertical lines represent
bucket tip events and the dots represent observediult values that have measured
rainfall. So, from this example, we can see thdt:20 AM the first bucket tip event
occurred, the second at 2:10 AM, the third at 2ARQ and the fourth at 2:50 AM.

Event-based, Non-cumulative
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Figure4. Event-based, non-cumulative time series observatiaph

Event-based/Cumulative systems generate incremehsarvation result values
whenever a defined event occurs. Each observatsnltr value represents the



cumulative amount of rainfall measured since thet stf the process. Figure 5 shows
an example with a total time interval from 1:00 Ab 3:00 AM. The vertical lines
represent bucket tip events and the dots reprefentincremental addition of
observation result values measuring rainfall. f8omn this example, we can see that
at 1:20 AM the first bucket tip event occurred, second at 2:10 AM, the third at
2:20 AM, and the fourth at 2:50 AM.

Event-based, Cumulative
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Figure5. Event-based, cumulative time series observatioptgra

The authors admit there could be additional metleodiscategories; however, we
hope these will be adequate and are sufficientlyega for the current discussion.
Table 1 shows how many rain gauge systems monitoyethe CSIRO Tasmanian
ICT Centre have the properties described above.

Tablel. Number of rain gauge systems with the selectedgrtigs.

Non-cumulative Cumulative
Interval-based 7 7
Event-based 3 3

4 Representation of Time Series Observations

A time series observation is a specialized obsemwatllection. More specifically, if
the member observations of an observation collectiave the same feature of
interest, the same observed property, and diffesamhpling times, this set of
observations may be represented as a time sersesvattion whose sampling time is
the period encompassing all the member times f2].example would include a rain
gauge sensor that measures rain levels at disimeeintervals. In order to create an
ontological representation of time series obseowvati there are three significant
classes to be discussed: a class describing a diasérvation gm-owl: Observation),



a class describing an observation collectiom-owl: ObservationCollection), and a
class describing a time series observatimm-¢wl: TimeSeriesObservation). Each of
these classes defines properties. However, in cosgoa to an XML-based
specification, such as O&M-XML, an ontology specdiion, such as O&M-OWL,
enables the explicit representation of typing c@msts on properties in terms of
domain and range. This is exposed through the RME/code below.

4.1 Observation Class (om-owl: Observation)

An observation is an act of observing a propertypleenomenon, with the goal of
producing an estimate of the value of the prop§&ly O&M-OWL provides the
following relationships for observations (with RD®L encoding):

» omowl:featureOfinterest is a “representation of the observation targeindée
real-world object regarding which the observatian made [2].” Example
includes a coverage feature, such as the SouthGasghment in Tasmania,
Australia.

<owl:ObjectProperty rdf:about="#featureOfInterest">

<rdfs:domain rdf:resource="#Observation"/>

<rdfs:range rdf:resource="#Feature"/>

<owl:inverseOf rdf:resource="#propertyValueProvider ">
</owl:ObjectProperty>

» om-owl:observedProperty “identifies or describes the phenomenon for wiitad
observation result provides an estimate of its ealli must be a property
associated with the type of the feature of intef@lst Example includes a rainfall

property.

<owl:FunctionalProperty rdf:about="#observedPropert y">
<rdf:type rdf:resource=
"http://www.w3.0rg/2002/07/owl#ObjectProperty"/>
<rdfs:domain rdf:resource="#Observation"/>
<rdfs:range rdf:resource="#PropertyType"/>
</owl:FunctionalProperty>

+ omowl:samplingTime is the “time that the result applies to the featof-interest
[2],” or, in other words, it is the time when thBgmnomenon was measured in the
real-world. Example includes a single instant samgptime at 5:00 am on Jan.
26, 2009.

<owl:FunctionalProperty rdf:about="#samplingTime">
<rdf:type rdf:resource=
"http://www.w3.0rg/2002/07/owl#ObjectProperty"/>
<rdfs:domain rdf:resource="#Observation"/>
<rdfs:range rdf:resource="#Time"/>
</owl:FunctionalProperty>

» om-owl:observationLocation is the location of an observation event; usually
associated with the location of the sensor wherolaservation occurred (i.e.,



om:samplingTime). Example includes a single point observation tiocawith
latitude, longitude, and elevation coordinates.

<owl:FunctionalProperty rdf:ID="observationLocation ">
<rdf:type rdf:resource=
"http://www.w3.0rg/2002/07/owl#ObjectProperty"/>
<rdfs:domain rdf:resource="#Observation"/>
<rdfs:range rdf:resource="#Location"/>
</owl:FunctionalProperty>

omowl:result is an “estimate of the value of some property gmed by a
known procedure [2].” Example includes a rain-lemeasurement result of 5.2
mm.

<owl:FunctionalProperty rdf:about="#result">
<rdf:type rdf:resource=
"http://www.w3.0rg/2002/07/owl#ObjectProperty"/>
<rdfs:domain rdf:resource="#Observation"/>
<rdfs:range rdf:resource="#ResultData"/>
</owl:FunctionalProperty>

om-owl:procedure is a “description of a process used to generaterglult. It
must be suitable for the observed property [2].teNitnat in this schema a sensor
is defined as a type of process, along with othesthods, algorithms,
instruments, or systems of these. Example inclidesin gauge sensor as the
procedure.

<owl:FunctionalProperty rdf:ID="procedure">
<rdf:type rdf:resource=
"http://www.w3.0rg/2002/07/owl#ObjectProperty"/>
<rdfs:domain rdf:resource="#Observation"/>
<rdfs:range rdf.:resource="#Process"/>
<owl:inverseOf rdf:resource="generatedObservation"/ >
</owl:FunctionalProperty>

om-owl: member Of is a relation to a set of observations, or obd@maollection.
Example includes a rainfall observation that is amber of a time series
observation collection.

<owl:TransitiveProperty rdf:ID="memberOf">
<rdf:type rdf:resource=
"http://www.w3.0rg/2002/07/owl#ObjectProperty"/>
<rdfs:domain rdf:resource="#Observation"/>
<rdfs:range rdf:resource="#ObservationCollection"/>
<owl:inverseOf rdf:about="#member"/>
</owl:TransitiveProperty>

4.2 Observation Collection Class (om-owl: ObservationCollection)

An observation collection is composed of a set efnber observations [2]. O&M-
OWL provides the following relationship for obsetiea collections (with RDF/XML
encoding):



« omowl:member is a relation from an observation collection toc@nstituent
observation (inverse ofbm-owl:memberOf). Example includes time series
observation collection that has rainfall observagias members.

<owl:TransitiveProperty rdf:about="#member">
<rdf:type rdf:resource=
"http://www.w3.0rg/2002/07/owl#ObjectProperty"/>
<rdfs:domain rdf:resource="#ObservationCollection"/ >
<rdfs:range rdf:resource="#Observation"/>
<owl:inverseOf rdf:resource="#memberOf"/>
</owl:TransitiveProperty>

4.3 Time Series Observation Class (om-owl: TimeSeriesObservation)

In addition to being a specialized type of obseoratcollection, a time series
observation is also considered a type of obsemwatidherefore, om
owl: TimeSeriesObservation inherits properties from botbm-owl: Observation and
om-owl: ObservationCollection described above. While om-
owl: TimeSeriesObservation is a sub-class ofom-owl:Observation, it does not
normally make use of them-owl:result relationship. (It is conceivable that this
property could be useful when modeling cumulatiesesvation result values,
however, this is not used in the current modelré&asons to be detailed below.) On
the other hand,omowl:samplingTime is a very important property foom-
owl: TimeSeriesObservation, whose sampling time is the period encompassinthal
member times [2]. Remember that the sampling tilmevent-based systems is based
on when an event occurred and the sampling timatefval-based systems is based
on fixed-time points. In order to make this distion explicit, we have created two
sub-classes of om-owl: TimeSeriesObservation, including om-
owl: EventBased TimeSeriesObservation and om-
owl: IntervalBasedTimeSeriesObservation, and two sub-properties of om-
owl:samplingTime,  including om-owl:eventBasedSamplingTime and om-
owl:interval BasedSamplingTime.

<owl:ObjectProperty rdf:about="#samplingTime">
<rdfs:domain rdf:resource="#Observation"/>
<rdfs:range rdf:resource="#Time"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="eventBasedSamplingTime" >
<rdfs:subPropertyOf rdf:resource="#samplingTime"/>
<rdfs:domain rdf:resource="#EventBasedTimeSeriesObs ervation"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="intervalBasedSamplingTi me">
<rdfs:subPropertyOf rdf:resource="#samplingTime"/>
<rdfs:domain rdf:resource="#IntervalBasedTimeSeries Observation"/>
</owl:ObjectProperty>

From the O&M specification, we know that a time issrobservation is a
specialization of an observation collection withe thestriction that all member
observations must share the same feature of int@nelsthe same observed properties



[2]. Such constraints are difficult to represeneaim XML encoding. In O&M-XML,
these constraints are simply implied through thedivg of the specification with the
intention that implementations will faithfully adteeto the intended definition. While
difficult for XML representations, such constraimsy be naturally represented in an
OWL-DL ontology using the OWL property restrictiora the code below, we show
an observation sub-classsiro: SouthEskCatchmentRainGuageObservation, which
contains the restriction that all instantiated ebatons of this type have an observed
propertycsiro:rainfall and a feature of interessiro: SouthEskCatchment through the
owl:hasValue restriction. (Thecsiro namespace is used in an extension of O&M-
OWL with concepts targeted toward the CSIRO TasarandCT Centre's sensing
systems).

<owl:Class rdf:about=
"http://www.csiro.au#SouthEskCatchmentRainGuageObse rvation">
<rdfs:subClassOf rdf:resource="#Observation"/>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#observedProperty"/>
<owl:hasValue rdf:resource="http://www.csiro.au#rai nfall"/>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#featureOfInterest"/>
<owl:hasValue rdf:resource=
"http://www.csiro.au#SouthEskCatchment"/>
</owl:Restriction>

</rdfs:subClassOf>
</owl:Class>
In addition, a time series observation sub-class,

csiro: SouthEskCatchmentRainGuageTimeSeriesObservation, contains the restriction
that all instantiations of this type of time seriebservation have all member
observations of typesiro: SouthEskCatchmentRainGuageObservation through the

owl:allValuesFrom restriction.

<owl:Class rdf:about=
"http://www.csiro.au#SouthEskCatchmentRainGuageTime SeriesObservation™>
<rdfs:subClassOf rdf:resource="#TimeSeriesObservati on"/>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#member"/>
<owl:allValuesFrom rdf:resource=
"http://www.csiro.au#SouthEskCatchmentRainGuageObse rvation"/>
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>

Through this combination of OWL property restrictsp we are able to more
faithfully and explicitly represent the conceptonf: TimeSeriesObservation.



4.4 Generating Time Series Observation I nstances

Given the heavy use of O&M-XML on the Sensor Webseems reasonable that
translating O&M-XML documents into O&M-OWL instareecould be a popular
means of populating the ontology knowledge baseeM{fenerating instances af
owl: TimeSeriesObservation, several property values can be directly trandldtem
corresponding O&M-XML documents, includingom-owl:featureOfinterest, om-
owl: observedProperty, om-owl: samplingTime, om-owl: observationLocation, andom-
owl:procedure. The individualom-owl:Observation instances share many property
values with theom-owl: TimeSeriesObservation instance of which they are related
through theom-owl:memberOf relation. Several of these shared properties @n b
directly propagated given thatam-owl:member relation holds from an instance of
om-owl: TimeSeriesObservation. The relations that may be propagated inclode
owl: featureOfinterest, om-owl:observedProperty, om-owl:observationLocation, and
om-owl:procedure. This translation of property values can be endomea set of
rules. As an example, the rule for propagatingowl:featureOfinterest follows (in
Jena rule engine syntax [9]):

[PropagateFeatureOfinterestRule:
(?tso rdf:type om-owl:TimeSeriesObservation)
(?tso om-owl:member ?0bs)
(?tso om-owl:featureOfinterest ?foi)

- (?0bs om-owl:featureOfinterest ?foi)]

The other translatable property values have simubas which we omit for the sake
of brevity. The two remaining relations ofm-owl:Observation to be instantiated
includeom-owl: samplingTime andom-owl:result. Sampling time for instances o
owl:Observation can be directly translated froom-xml:samplingTime of the om-
xml: TimeSeriesObservation. The instantiation ofomowl:result relation is more
involved since the cumulative observation resuluea are dependent on previous
observations, and we want to generate an indepéendgresentation for all
observations. In order to accomplish this, we sjmgnvert the cumulative result
values into non-cumulative result values. Unlikee ticonversion of om-
owl:samplingTime, om-owl:result can be translated without loss of expressiveness
since the cumulative result can always be recatedlal herefore, there is no need to
create sub-classes ofitowl: ResultData nor sub-properties afm-owl:result in order

to explicitly represent the cumulative/non-cumuwdatdistinction. The conversion of
cumulative result values into non-cumulative resudtlues is a straightforward
process of subtracting from each observation tealtrevalues of those observations
that were generated at a previous time point (edle fixed time point, or when an
event occurred).

5 Conclusion and Future Work

The Semantic Sensor Web aims to integrate Semdfglr technologies with sensing
systems in order to provide more expressive reptaten, enhanced analysis, and



improved access and discovery of sensor data o/gte In this paper, we present
an ontological representation of time series olat@ns that could add much value to
time series sensor data on the Semantic Sensor Web.

In the future we hope to utilize this ontology tooyide advanced query and
manipulation of time series observations. Previpusjueries of time series
observations could only return data formatted i@ shhme manner in which it was
collected. We believe that by leveraging an ontigiagrepresentation of time series
observations, we may allow for automatic conversafnevent-based time series
observation to interval-based time series obsemwatind vice-versa. For example, a
user could query against an event-based systenremedive an interval-based time
series observation as a result. At the CSIRO Taemd@T Centre, a practical use of
this representation would be to enable the autainzdeversion of such observations
for input into forecast models, which may, for exden require a time series
observation with daily frequency of a given phenaore which is only available as
an hourly measurement. The required conversion adstltould be encoded in the
time series ontology. In addition, a set of operaion time series observations, such
as union, concatenation, and intersection, wouldigeful for advanced integration.
And finally, since time is such an obviously im@ort component of time series
observations, we intend on integrating this ontglegth OWL-Time [15], a W3C
recommended ontology based on temporal calculus gravides descriptions of
temporal concepts such iastant andinterval, and the relations between them.

We believe that an ontological representation wifetiseries observations is an
important addition to the Semantic Sensor Web, #rel practical use of this
representation at the CSIRO Tasmanian ICT Centmviggs a much needed
experimental platform for future investigation irttee integration of Semantic Web
technologies with sensing systems.
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