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Preface

Millions of sensors are currently been deployed in sensor networks around
the globe and are actively collecting an enormous amount of data. Together
with legacy data sources, specialized software modules (e.g., modules performing
mathematical modeling and simulation) and current Web 2.0 technologies such
as mashups, deployed sensor networks give us the opportunity to develop unique
applications in a variety of sectors (environment, agriculture, health, transporta-
tion, surveillance, public security etc.). The terms Sensor Internet, Sensor Web
and Sensor Grid have recently been used to refer to the combination of sensor
networks and other technologies (Web, service-oriented, Grid and database) with
the view of addressing this opportunity.

Previous Sensor Internet, Sensor Web and Sensor Grid proposals make very
little use of semantics (e.g., they do not use semantic annotations, metadata,
ontologies etc.) and, in fact, whenever these proposals do refer to semantic con-
cepts, they do so in an unprincipled and non-systematic way. On the contrary,
the use of explicit semantics for Web and Grid resources as pioneered by many
Semantic Web and Semantic Grid projects enables us to overcome the hetero-
geneity of data and resources, and to improve tasks like data sharing, service
discovery and composition etc.

The 1st International Workshop on the Semantic Sensor Web (SemSensWeb
2009) took place in Heraklion, Crete on June 1st, 2009 in the context of the
European Semantic Web Conference 2009. The goal of the workshop was to
explore whether the core ideas and technologies of the Semantic Web can also be
applied to sensor networks to allow the development of an open information space
which we call the Semantic Sensor Web. SemSensWeb 2009 addressed, among
others, the following research questions that are fundamental for the realization
of the Semantic Sensor Web:

• What extensions are needed to established Semantic Web data models and
languages (e.g., RDF, SPARQL, OWL etc.) so that we can deal with sensor
data and meta-data? How do we model the temporal, spatial and thematic
dimensions that arise in sensor networks?

• What are appropriate ontologies for describing sensors, their processes and
products? What are appropriate languages and tools for semantic annota-
tion of sensors? How can we leverage existing standards developed by the
Sensor Web Enablement Working Group of the Open Geospatial Consor-
tium such as SensorML (http://www.opengeospatial.org/standards/
sensorml) or the W3C Geospatial Incubator Group (http://www.w3.org/
2005/Incubator/geo/)?



• What are appropriate principles and architectures for the semantics-based
integration of sensor networks? What kind of middleware is appropriate for
supporting the proposed architectures?

• What are appropriate techniques and tools for semantics-based data man-
agement over heterogeneous data streams coming from autonomously de-
ployed sensor networks? Can we apply semantic data integration techniques
as we know it from database and Semantic Web research? How do these
techniques interact with existing ways of processing (continuous) queries
over sensor networks e.g., in-network data processing?

• How do we develop open, scalable and fault-tolerant resource discovery
mechanisms for the Semantic Sensor Web? Is there a role for successful
technologies such as P2P networks and publish/subscribe systems here?

• Is it possible to combine existing techniques for developing mashups with
semantic technologies and sensor networks to allow the flexible and rapid de-
velopment of decision support systems for target application sectors? What
are appropriate high-level APIs that ease the rapid development of such
mashups? Can we build on already deployed tools such as SensorMap?

• What are interesting applications of Semantic Sensor Web in target sec-
tors such as environment, agriculture, health, transportation, surveillance,
public security etc.?
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Query Processing for the Semantic Sensor Web

(Invited talk)

Antonis Deligiannakis1

1Department of Electronics and Computer Engineering
Technical University of Crete, 73100 Chania, Greece

adeli@softnet.tuc.gr

The vision of the Semantic Sensor Web promises to unify the real and the
virtual world by integrating sensor technologies and Semantic Web technologies.
Sensors and their data will be formally described and annotated in order to facil-
itate the common integration, discovery and querying of information. Since this
semantic information ultimately needs to be communicated by the sensors them-
selves, one may wonder whether existing techniques for processing, querying and
modeling sensor data are still applicable under this increased load of transmitted
data. In our talk we revisit several techniques for query processing in sensor
networks and discuss how they can be adapted to, and used by, applications in
the Semantic Sensor Web.
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Sensor Networks in the Wild: Challenges and

opportunities for Semantic Web technologies

(Invited talk)

Dave de Roure1

1School of Electronics and Computer Science
University of Southampton, Southampton, SO17 1BJ, United Kingdom

dder@ecs.soton.ac.uk

Real sensor net deployments reveal challenges that may benefit significantly
from Semantic Web solutions. As data is collected we need to record its context
so that it may be properly interpreted, and when it is published we need to know
its provenance so that we can understand quality and trustworthiness. With
more devices delivering more data more often we need to deal with a deluge of
data through automation. Often neglected, we also need to be able to configure
and monitor devices and networks, and to handle diagnostics normal running
may be the exceptional case. In use, data is linked, annotated and integrated.
Mashups and workflows can be assembled rapidly with assistance in finding and
integrating data and the services that process it. And, as the data is used in
data-intensive science, we can share not just the data but the methods that are
used to handle it.
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Semantic-Enabled Transformation Framework for Time Series

Robert Barta1 and Thomas Bleier2

1 rho information systems
rho@devc.at

2 ARC Austrian Research Centers GmbH
thomas.bleier@arcs.ac.at

Abstract. Conventional processing of time series is done along a split horizon: on the one hand
it has to handle quantitative data organized along the time axis, on the other hand meta data
capturing circumstantial facts about the values, or about the time sequence as a whole. We propose
to use an integrative approach using a domain specific language for the transformation of time
sequences, covering arithmetic, temporal but also semantic aspects of such computations. In that
we leverage Topic Maps as one existing semantic technology.

1 Introduction

Time series over sensor observations are the predominant data structure in many life science and geospa-
tial applications. Whereever processes are observed, observation data is sampled and recorded together
with environmental information when, how and under which circumstances a measurement is taken (or
computation is performed).

Despite the simple concept of a chronologically ordered sequence of values, real-world time series
can have a substantial variety, both in terms of the quantitative values involved, the number of values
themselves, but also to which extent meta information is used. Processing needs also vary wildly, although
there are some typical computation patterns:

– Aggregation is the condensation of quantitative information into more abstract, qualitative values.
A gliding mean over SO2 values of the past half hour, for example, will aggregate over the time
axis. The mean values do not simply stand for themselves; they have to incorporate the knowledge
when and over which time frame they have been computed. Furthermore, aggregation methods will
depend—among many other things—on the phenomenon itself or the procedure how the sensor came
about the value in the first place.
But aggregation can also be over geographical areas, or space in general, and also over semantic axes:
If CO2 is known to be an instance of the class greenhouse gas, then an accumulated value of all
greenhouse gases can be automatically created.

– Disaggregation is the inverse process to estimate quantitative information along time, space and
semantic axes. One example are CO2 emissions of animals in a given area. If the total sum is known
and so is the ratio of animals and an average emission per cow, sheep and camel, then the emissions
of all sheep in the area can be factored out. This can be automatic if cow, sheep and camels are
subclasses of animals in the background ontology.

It are these patterns which sit at the core of modern environmental monitoring and forecasting systems.
For auditing, but also increasingly legal reasons more and more focus shifts from the data to the meta data,
so that whole processing chains have to reliably keep track on that, how and why particular time series
data is used for a particular decision. Recent EU regulations (INSPIRE) also mandate that environmental
information is properly passed on between countries and public agencies and citizens. This must include
meta information.

The challenge is that quantitative, temporal, spatial and semantic information has to be brought
into one consolidated computational model. In this work we propose such a domain specific language,
one which operates on time sequences. It should enable to specify transformations, not only based on
the numerical data, but also any semantic data available, be that inside the time sequence or within
an underlying semantic network. For practical reasons the language should be compatible with both
predominant semantic technology stacks, RDF [12] and Topic Maps [7], and it should also degrade
gracefully in the absence of any semantic network.
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Our work is to be understood in the context of SWE [13] and is specifically targeted at enhancing sensor
observation services (SOS [11]). The latter are not only instrumental to expose sensor measurements via
a web service; also time series derived from original sensor values can be offered by specialized SOSes
(virtual sensors). The necessary meta information to describe virtual sensors in SensorML [2] is directly
linked to the processing model we propose.

Our contribution is

– to choose and customize a semantic framework to seamlessly host temporal information,
– to define a time sequence transformation language, Formula 3 (F3), and
– to demonstrate how underlying ontological information can be leveraged to perform informed semantic

transformations.

In that we will proceed as follows. First we focus on Topic Maps as semantic technology and recapit-
ulate the most important concepts together with a textual notation of our making. Then we turn to the
query language (subsection 2.2). Using this as baseline, we defend our choice over the more main-stream
RDF/S framework later in section 6.1 (Related Work). Why the TM data model is still suboptimal for
our purposes and how it can be extended we cover in subsection 2.3.

The following larger section covers the language Formula 3 (F3). In order to keep this presentation
compact, we traded formal grammar rules with canonical examples from the sensor web domain. We only
hint at the fact that behind F3 a (process) algebra defines the formal semantics. The extension framework
(new data types, operators, kernel functions, etc.) will be covered elsewhere. Section 5 finally demonstrates
how F3 meta data management can be made semantic with the use of an underlying semantic network
and a path expression language adopted from TMQL (query language for TMs).

2 Temporal Topic Maps

Topic Maps (TM, the ISO standard defines this in plural) is a knowledge representation framework quite
comparable to the more main-stream RDF/S technology stack. While in the latter all information is
couched in form of triples (subject, predicate, object), basic concepts in TM are designed in a more
high-level, anthropocentric way. In the following we present these concepts in lockstep with a succinct
text notation (AsTMa= [8]).

2.1 Factual Information

Topics represent subjects, which can be anything, physical or not. To further knowledge aggregation,
topic identity can be supported by specially interpreted IRIs. In the case of objects which reside at
certain network locations such identifiers will naturally be URLs. For example, a given SOS deployment
can have its endpoint be used for identification:

demo-sos isa SOS-deployment = http://env05.arcs.ac.at/SOSsrv/

In the notation above such a subject locator IRI is symbolized by prefixing it with =. The topic identifier
demo-sos is only local within the map and can be used there to refer to that topic. If a subject does not
have a network address, then one (or several) subject identifiers can be used for identification:

arcs isa organisation ~ http://www.arcs.ac.at/

These identifiers are meant to indirectly identify the subject, such as web sites for organisations, images
for persons, and so forth.

As also shown in the example above, topics can have types, i.e. are instances of a class. That itself is
just another topic, to be elaborated on in this map or in some peripheral ontology. Topics can also have
any number of names attached, signalled by !:

arcs isa organisation ~ http://www.arcs.ac.at/
! Austrian Research Centers
! acronym : ARCS
! branding: Austrian Institute of Technology
...
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Names can be typed to allow to use different names for different purposes. While the first above is just
a name, the next is an acronym, the other a branding. These types are again topics.

To attach values to topics occurrences can be used. To add, say, a homepage or the number of employees
one would add to the above

...
homepage : http://www.arcs.ac.at/
nrEmployees : 1000

The data types here are implicit (IRI and xsd:integer, respectively), but it can be made explicit as well.
The types of occurrences themselves (homepage and nrEmployees) are further topics.

Relationships between topics are expressed via associations, whereby every involved topic is a player
of a certain role. The fragment

provisioning (provider : arcs, service : demo-sos)

means that arcs (in the role provider) provisions the demo-sos (in the role of a service). Obviously
the whole association itself is also of a certain type (provisioning). Notably, an association has no
intrinsic direction. It captures a certain fact, together with all involved parties. Other examples would
be marriages, or—to stay within the theme—observations and measurements. The roles themselves
(provider, service) are also topics to be detailed somewhere to the extent necessary.

2.2 TM Query Language

Instead of using an API into a consolidated topic map, we leverage TMQL [6] as access language. Like
any other query language TMQL has two concerns: (a) to locate and detect certain information in the
queried topic map, and (b) generate output based on the detected information. One familiar type of
output is the tabular form and it can be requested using a SELECT syntax:

select $p / acronym, $s =
where
provisioning (provider: $p, service : $s)

A query processor will first try to find all associations which follow the pattern above, i.e. have the
required association type and the given roles. Once such an association is found, the variables $p and
$s will be bound to the respective players in the captured association. On the outgoing side, $p and $s
will be used in the SELECT clause to evaluate path expressions. The expression $p / acronym would
evaluate to all acronyms of what $p is currently bound to. The expression $s = would return all subject
locators of the topic bound to $s. The overall result would be:

"ARCS", "http://env05.arcs.ac.at/SOSsrv/"

The query language is flexible enough to also generate XML output, not as string via text templates,
but in an internal representation (DOM). For this, one has to switch into FLWR (For, Let, Where,
Return) style:

return
<services>{
for $p in // organisation,

$s in // web-service
where

provisioning (provider : $p, service : $s)
return

<service href="{$s =}">{$p / acronym}</service>
}</services>

While the WHERE clause remains the same, the variables and the values over which they range are
made explicit. In the case of $p it should be all instances of organisation and for $s all instances of
web-service. The returned content is now organized as an XML structure. The expected output would
then be:
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<services>
<service href="http://env05...at/SOSsrv/">ARCS</service>

</services>

Additionally we assumed here that a SOS-deployment is a subclass of a web-service. Only then
taxonometric reasoning will deliver the above result.

Inside such an XML query string it is also trivial to embed further topic map information, such as
the name of the service provider:

<ows:ProviderName>
{$p / acronym || $p / name}

</ows:ProviderName>

The example also shows how TMQL expressions can be used to deal with incomplete or highly variable
data. Above, for instance, we looked first for provider acronyms. If there were none, the query would fall
back to the full name for the provider (|| is the shortcut ’or’).

Naturally TMQL supports loops over repetitive items, so it is straightforward to include, say, a list
of SOS offerings:

return
<ows:Parameter name="offering">
<ows:AllowedValues>{

for $o in // offering [ . <-> location == vienna ]
return

<ows:Value>{$o !}</ows:Value>

}</ows:AllowedValues>
</ows:Parameter>

The path expression // offering will compute all instances of offering in the map; notably not only
direct ones, but also instances along any subclass hierarchy existing the map. Then the path expression
continues with a filter (indicated by [] brackets). It only passes those things (each thing referenced with
.) which have an association of type location with a topic vienna.

One by one, each Viennese offering is bound to the variable $o. With such a binding the RETURN
clause is evaluated. It will extract the topic identifier (via $o !) and embed that into the XML fragment.

2.3 Extending the TM Model

While the generic Topic Map Model (TMDM [7]) is sufficiently equipped to host all information we
need for the experiment, it does not do it elegantly, or efficiently. Rather than to shoehorn measurement
data, temporal and spatial information into the model, we decided to experiment with rather minimal
extensions to the official TM data structure. Naturally, these extensions will propagate to the notation
and further to the query language.

The first step is to allow numerical values to have physical units, such as 5 kg or 20 mg / m^3.
Rather than to host quantity and the value inside a topic or a dedicated association, we prefer to define a
new basic data type. Accordingly, the impact on the model is minimal. Only the notation to create map
content has to allow units:

temperature-vienna isa temperature
value: 18 celsius

The very same notation is extended into TMQL, also to compare values and perform computations with
units.

Another modification concerns how values and topics can be related. According to the standard model
literal values can only be hosted inside occurrences. To make them take part in an association one would
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have to create a stub topic to hold the occurrence with the value. We lift this rather arbitrary restriction
and allow values also to directly take part in associations, albeit only as players. As a secondary benefit
we can now interpret occurrences as specialized associations, and names as specialized occurrences.

A more dramatic model extension is needed to naturally host time sequences. These are the most
prevalent data structure in our targetted application domain, so an effective coverage greatly affects the
scalability of any semantic system, both in terms of speed and complexity.

One particular value, say, a measurement inside such a sequence could be captured with an association:

measurement (value : 30 mg / m^3,
phenomenon : SO2)

Theoretically, the time aspect can be added using a predefined role time:

measurement (value : 30 mg / m^3,
phenomenon : SO2,
time : 2009-03-07T17:01)

The downside of this approach is that the lack of any temporal role inside an association leaves that
time aspect open to interpretation. And so does the case when more than one such role exists. This makes
interpretation by query processors difficult.

Another alternative would be to use the Topic Maps scope, an already existing mechanism to restrict
the validity of an association. But scope is not a very well defined concept and is used for other contexts
as well.

Instead, we redefined associations to have a time stamp, one which always exists. Such strict interpre-
tation enables query processors to perform interval algebra operations (inside, outside, overlap, ...). If the
timestamp is left undefined, then the association will range over all times. As physical events are never
instantaneous but interval-based, an interval length can be added to the time stamp. We do allow the
interval to be positive or negative to express subtle, but ultimately important information about when
the value is created and whether its validity extends into the future or the past. Of course, the interval
can be zero, covering the theoretical instantaneous case.

A typical example using time stamps with negative intervals is that of the gliding mean: The time
when a mean value is computed will become its time stamp. The length of the time window over which
the mean was built will be pointing into the past. Alternatively, mean values can also be computed over
future time windows as is the case in non-causal systems.

On the notational side, this extension is trivial; we simply allow time stamps and time intervals to be
added to an association:

measurement (value : 30 mg / m^3,
phenomenon : SO2 )

at 2009-03-07T17:09:37 - 3 hours

3 Formula 3

F3 is a functional language that transforms time sequences. Time sequence processors (TSP, Fig. 1) can
consume any number of sequences on the incoming side.

Fig. 1. Time Sequence Processor
7



TSPs are called a source if no sequence is expected. Typically these are constants or data fetched
from a database backend. TSPs can produce any (finite) number of sequences on the outgoing side; sinks
produce nothing and or are used for debugging, visualisation or again, database storage.

When a TSP is triggered into evaluation, it will consume a certain number of sequences on the
incoming side. With these (and an additional variable binding to fine-control its behavior) the TSP will
perform its computation. If there are still sequences left on the incoming side, then the computation
will be repeated with those, continuing until the incoming side is exhausted. All partial results will be
combined into one outgoing sequence of time sequences. A greedy TSP is one which consumes always all
incoming sequences.

3.1 Time Series Abstract Data Model

While F3 makes no assumptions about the provenance of a time sequence, it has the abstract expectation
that it is a linear array of chronologically ordered slots.

The time information within the slot is not just a time stamp (with a system specific precision).
A time duration marks the temporal extension of the slot. That duration can be positive or negative,
depending on whether the validity of the slot reaches into the future or the past. Slots also have a logical
time which is the index in the sequence (starting with 0).

The payload in the slot has the form of key/value pairs. Keys are either simple identifiers or take
the form of QNames or IRIs. Values are either anything of the former or literals such as strings, integer,
floats or application-specific objects such as images and matrices. They can also be time durations or
time patterns.

When slots are combined into a sequence obviously their time stamp and their signed durations have
to be honored. Any temporal overlaps have to be resolved to arrive at a functional time sequence, i.e. one
which can deliver one slot for one particular time stamp.

3.2 Virtual Machine Operators

F3 defines a minimal set of primitive TSPs. As a whole they cover all possible computation patterns as
all high-level language elements can be compiled into this set. Ignoring optimization, any implementation
of F3 will only have to implement these operators.

– Null: This operator takes one sequence and creates none.
– Nmap: This operator takes one sequence and iterates over all slots. On each of them a lambda expression

is evaluated returning a new slot. A new sequence is constructed from these slots.
– Nreduce: This operator takes one sequence and iterates over all slots. On each of them it will evaluate

a lambda expression which aggregates the slot into an aggregate slot. That will be the only slot in
the outgoing sequence.

– Nfork: This operator takes one sequence and evaluates a lambda expression on each slot. The result
values are used for classification in that one outgoing sequence is generated for each different value,
holding only those slots which produced exactly that value.

– Ngrep: This operator takes one sequence and evaluates a lambda expression on each slot. Slots for
which that result is empty are discarded. With the others an outgoing sequence is constructed.

– Tfork: This operator takes one time sequence and slices it according to a time pattern and a window
size. The time pattern (for instance every 3 hours) defines a number of time stamps, all computed
relative to the start of the incoming time sequence. The time stamps are shifted along the window size,
resulting in a number of individual time windows. These are used for slicing the incoming sequence
into individual time sequences.

– Tjoin: This operator is the inverse of Tfork. It joins all incoming time sequences into one. Any
temporal overlaps will be resolved.

– Tee: This is the identity operator. It echos all incoming sequences. It is used for debugging and
visualisation.
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3.3 Surface Syntax Operator

While applications can use an API to compose primitive TSPs for complex processing patterns, for-
mulating transformation algorithms is more convenient using a compact syntax. Such a transformation
can consist of (a) parameters for fine-control, (b) formal parameters for time sequences expected by the
operator, and (c) blocks to generate values along a particular timeline.

At the beginning of a TSP definition a parameter block can define one or more modalities of that
operator:

#-- modal parameters ----------
{ progress => 30 mins }

Each parameter can be associated with a default value which the invoking application can override.
This is following by a list of formal time sequence parameters. The example TSP expects two sequences,

one which holds wind directions measured in degrees and another holding wind speeds:

#-- sequence parameters -------
@Direction { phenomenon => wind,

unit => degrees }
@Speed { phenomenon => wind }

If a TSP is to return time sequences, then at least one block to generate values has to be declared. The
first section of that handles the temporal aspect via the specification of a time pattern to be used, the
second controls the quantitive aspect containing numerical computations, and the third aspect handles
the meta data generation for that outgoing sequence.

#-- time pattern --------------
every $progress
#-- value generation ----------
< @Speed(t) if ( @Direction(t) < 30

or @Direction(t) > 330 ) >
#-- meta data -----------------
{ phenomenon => channel-0-speeds }

First the time pattern every 30 mins is used to compute time stamps starting from the earliest of the
two incoming sequences. The time duration 30 mins is taken from the modal parameter progress which
is available as variable. For each of these times the @Direction sequence is sampled (under whatever
interpolation regime that sequence is in) and that value is tested against the range -30 .. 30. If the
direction falls within that range, the @Speed sequence is sampled at the same time and a value with the
corresponding timestamp put into an outgoing slot. These slots are collected into an outgoing sequence.
That is finally enriched by the meta information manifesting that these are speeds for a certain direction
channel.

3.4 Modal Parameters

To fine-control the behavior of TSPs modal parameters can be declared using a simple key/value scheme.
Key names are reinterpreted as variables to be used throughout the rest of a TSP definition. Values can
be undef, any constant but also value expressions or time patterns.

The invoking application can optionally redefine the value of a modal parameter. If it does not, then
the declared value will be used by default.

3.5 Time Patterns

The times at which new values have to be generated can be controlled via a time pattern language. That
allows—in the simplest case—to enumerate individual times. But more general is the use of a declarative
time pattern specification. That uses repeating temporal patterns, such as every N hours or hourly
at 12:00. To increase the variability, time patterns can be hierarchical in that first a longer pattern is
specified and within that a more fine-grained subpattern:
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yearly:
in May .. June : every 2nd week
otherwise : every 30 minutes

Starting with the start time of all involved time sequences, that pattern would create a yearly pattern
whereby in the months May and June a time stamp will be computed every 14 days. In all other months
a 30 minute rhythm will be used.

When using these patterns, then a special variable t is bound always to one timestamp, one at a time.
Apart from generating physical times, there is also the option to use the index as logical time, such as in
every 2nd tick to address every second time slot in the incoming sequence. If no pattern is provided
the default is every tick. Using logical time, the variable n will always contain the current index, and
t will be bound to the time in the current slot.

3.6 Sequence Parameters

Operators can use explicit sequence parameters to not only give an incoming time sequence a local name,
but also to impose certain constraints on it. Only if all constraints are satisfied, evaluation will continue.

In the example

@Direction { phenomenon => wind,
unit => degrees }

@Speed { phenomenon => wind }

for the first incoming sequence it is checked whether the phenomenon measured is actually wind and than
in degrees. If this test passes, the sequence will be bound to a variable @Direction. The second incoming
sequence will be bound to @Speed if it passes its own test.

The constraints themselves are given by key/value pairs. Only if the incoming sequence has that very
key and that key links to the same value, then the constraint is satisfied. Values can be left undef to
simply check for the existence of a certain key. In any case, the keys are again reinterpreted as variables.
These can then be used throughout the rest of the TSP definition and is bound to the sequence value for
that key.

The binding of incoming time sequences to sequence parameters is purely positional. Any unbound
incoming sequence is left for another evaluation round of the same operator.

If no formal sequence parameter is declared, then a default one named @ will be used. It will always
consume a single incoming sequence and it can be used implicitly within value expressions, i.e. (t) instead
of @ (t) and [n] instead of @ [n]. If an operator is greedy and needs to consume all sequences, then the
special @... must be used to indicate this. It cannot specify constraints.

3.7 Simple Value Generation

Value generation follows mostly the syntax and semantics of conventional programming languages such as
FORTRAN, C or Java. This includes the notation for constant values, the usual prefix and infix operators,
the general function invocations and the precedence grouping with parenthesis. An example would be

log ( @Speed(t) / 1000 + $speed )

There are, however, some language specifica. Conditionals, i.e. expressions where the evaluation de-
pends on a condition, are not written with if cascades or a ternary operators, but instead use individual
postfix if clauses:

< [n] if n.depth < -100 m
or [n] * 0.01 if n.depth < 100 m
or 0 otherwise >

Depending on the depth component different formulas will be used to generate a value. The otherwise
is syntactic sugar as the lexical order is used for testing individual conditions.

When expressions inside a condition are evaluated, they actually do not return a TRUE or FALSE value
as this data type per se does not exist in the language. Instead undef is used for FALSE, anything which
is not undef is regarded to be TRUE.
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3.8 Units

Life sciences being the main application domain for the language, all expressions are also aware of physical
units, specifically those from the SI system. This starts with constants having units, such as 3kg or 27.7
m/s. But it also implies that all computations must respect units as well. In expressions such as @Speed(t)
- 100 km/h the physical dimensions of all operands must match, i.e. the @Speed time sequence must have
only values with length per duration.

Every expression can also be unit-converted. One way of conversion is to impose an additional unit
onto the value of the expression. In

@A[n] <-< mg

every value would get mg as unit. If it already had a unit, that would be added as if the computation
@A[n] * 1 mg had been used. In the other direction any existing unit can be relinquished:

@A[n] >-> m

The processor will convert any value with a length dimension into the number of meters, dropping the
unit altogether from the value leaving a simple scalar. That mechanism can also be used to scale values.
In @A[n] >-> 1 km the values are converted to kilometers, or even leaving the SI system with @A[n] >->
inch which converts into inches.

3.9 Slot Selection

When using time patterns which iterate over the incoming time sequence(s), a natural way to access a
particular slot is to use an index. Intuitively, the first (and oldest) value is addressed via a subscript [0],
the next with [1] and so forth. To count from the last (and youngest) value one has to use negative
values: [-1] retrieves the last value, [-2] the second-to-last, etc.

Referring to one particular value in the sequence is only moderately useful. If one needs to operate
on each individual value one needs to address the current value [n]. Logical indices can also be used
to timeshift sequences. In the same way as [n] always points to the current value, [n-1] refers to the
previous, [n-2] refers to that before, and [n+1] to the next. To shift a sequence into its own future, one
would write < [n-1] >, and to shift it into its past < [n+2] >.

In the case that the iteration over time sequences is based not on logical but a physical time, the
current slot can be addressed via (t), t symbolizing the current time. Similar to above a particular past
or future can be referred to by providing a negative or positive duration, such as in (t - 30 secs) or
(t + 3 days).

3.10 Aggregations

Slots can also be addressed in groups using a logical range. This is only used together with aggregations,
so that

< [n-2 .. n].sum >

produces sums of the last 3 values. Such ranges can be open to the left or to the right. This reflects the
traditional interval notation where parentheses are used:

< (n-2 .. n].sum >

Now only the last two preceeding values are added.
Aggregation intervals can also be specified via the physical time, such as in ( t-3 hours .. t

].mean to compute a 3 hour mean value. Again the interval can be open to either side.
The aggregation functions themselves are predefined (mean, sum, prod, max, min, count). All work

type sensitive, in the sense that for the first two the plus operator for that data type is used, for prod the
multiplication and for max and min the comparison. That list can only be extended outside the language.
The same is true if the aggregation functions need a special treatment of undefined values.

If the selected interval does not contain any value, only sum and count render something defined (0),
all other aggregates become undefined.
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3.11 Property Management

According to the abstract data model of the language, properties are always key/value pairs. This is
to ensure that properties can be easily mapped to RDF triples and Topic Map information items, such
as occurrences, names and associations. Properties can also be virtually supplied by the programming
environment in that pre-registered functions dynamically compute properties.

The syntax ensures that properties work equally on individual slots, whole time sequences and even
sequences thereof. Some properties inherit downwards in that they apply to a single slot if the whole
sequence has them. One example is unit where individual slots have to redefine this property to override
any sequence-wide value. The same applies to location.

Slot Properties Only in simple cases a time sequence will have one single value in each slot. In general,
slots will contain any number of properties, each with a key and a corresponding value, be that interpreted
as data or meta data. To access a value, it has to be dereferenced via its key:

[n] . phenomenon

If such a property did not exist in that slot undef would be returned. That makes it simple to use as test
for property existence as in [n] if [n] . phenomenon.

On the outgoing side, slots with their properties can be created using the following canonical syntax:

{
value => A[n],
phenomenon => iso:SO2

}

Obviously one particular key can appear only once. The key must be an
identifier (or QName or IRI), the value can be specified via an arbitrary value expression. That

expression is always evaluated in the current variable binding.
The key value is predefined and simplifies the syntax when a slot has one distinguished value, the

rest being meta data. Then namely

< A[n] * 2 { phenomenon => iso:SO2 } >

can be used instead of the canonical

< { value => A[n] * 2,
phenomenon => iso:SO2 } >

The key value is also the one used by default when accessing slots within expressions. The syntax A[n]
itself is a shortcut for the canonical A[n].value. Other properties of the slot have to be explicitly accessed
via their corresponding keys.

Some properties are predefined as they have a special meaning in the language. For time aggregation,
for instance, the delta property will cover the time interval over which was aggregated. If several slot
values are involved in a computation, then the time interval they cover is used. Otherwise delta defaults
to undef.

Also the unit property is handled by the language according to the computation. If an incoming value
had m/s and is divided by a value with a time dimension, then the outgoing property for unit will be
m/s^2. It is only defined if there is exactly one value component.

Time Sequence properties Also individual time sequences can have properties attached. Again, some
have a predefined meaning, such as start and end. These, respectively, represent the start and the end
time of the sequence. As every sequence is working under a particular interpolation regime, the property
interpolation returns an identifier for that interpolation method.

On the outgoing side, time sequence properties can be added directly after the value generator:

@A @B < .... > { location => vienna-stephansdom,
phenomenon => @A . phenomenon }

12



Some default handling here allows to reduce language noise: If the TSP is operating only on the
default sequence, then all its properties are automatically propagated. Only if the sequences are explicitly
declared, then the properties have to be as well.

3.12 Composite Values

In many cases the values within the properties will be numbers or strings, so that the language can
directly operate on them. In general, though, values might be matrices, images or arbitrarily complex.
These objects would be completely opaque to the language.

One way to handle this, would be to make the application developer write special accessor functions
for these complex objects and overload the relevant arithmetic operators. But in practical cases it is much
more convenient to give the language access to value components and let it handle the arithmetic.

Even though F3 cannot know anything about the internal structure of such objects, it can postulate
a generic accessor syntax which allows to drill down into any object. In the example

[n] . value . columns [3] [4]

the dot notation is used to traverse an assumed tree structure within the value property. And indices are
used to select by a number. Alternatively to the dot we also allow a slash / to insinuate a path language:

[n] . value / columns [3] [4]

At evaluation time, the language processor hands over such path expressions to the object which has
to resolve the path to return a simple value.

4 Operator Algebra

To reuse operators and reduce the overall complexity, individual operators can be combined to form larger
ones. One way is to pipeline them, so that the result of one operator becomes the input of the operator
next in the pipeline. In the following example the incoming sequence is first incremented by one, then
the results are doubled.

< [n] + 1 > | < [n] * 2 >

Pipelines can be extended to any number of stages, a single operator being just a trivial pipeline.
If one stage produces more sequences than the next stage can consume, again the repetitive evaluation
semantics from section 3 is used. Consequently, the expression

< [n] + 1 > < [n] - 1 > | < [n] * 2 >

is equivalent to

< ( [n] + 1 ) * 2 > < ( [n] - 1 ) * 2 >

Generators (section 3.3) can be used to stack time sequences on top of each other. But also for
already existing operators it is possible to stack them. That is achieved by connecting them with & (or
alternatively with commas):

< [n] + 1 > & < [n] - 1 >

When evaluating a stacked operator S, all incoming time sequences will be duplicated and subjected to
each of the inside operators. The time sequences produced by those are then stacked on top of each other,
honoring the lexical order in which the stacking was defined inside S. Consequently, the expression

< 2 * [n] > | < [n] + 1 > & < [n] - 1 >

is equivalent to the single operator

< 2 * [n] + 1 > < 2 * [n] - 1 >

As one would expect, the & binds stronger than the pipelining operator |. That precedence can be
overridden by grouping inside () parentheses.
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5 Semantic Properties

From here on it is assumed that the Formula 3 processor has access to an underlying topic map. That
semantic network contains information pertinent to the application domain, in the geosemantic case
generic concepts from O&M [3], SensorML but also necessary geographical information and background
ontologies covering observable phenomena. Such a network may be materialized or it may be virtual
where external resources are mapped dynamically into the map [1].

Depending on the needs, there are several levels of engagement with the semantic network.

5.1 Identification Regime

When testing for certain properties and when creating keys and identifiers one important aspect is a
consistent identity management for any addressed subjects. Only with this quality assurance measure a
robust and long-term management of data is feasible.

In this scenario a Formula 3 processor accesses the underlying topic map whenever an identifier, a
QName or an IRI is used in the property handling. In the case of a simple identifier that is interpreted as
topic identifier of an existing topic inside the map; when an IRI is used, then that must be one subject
identifier for a topic there.

The resolution of QNames, such as xsd:integer, is more complex: First the QName prefix (xsd) is
interpreted as topic identifier in the underlying map. That topic must be an instance of an ontology as—
according to Topic Maps concepts—it has to reify a map with all the vocabulary in that corresponding
namespace. That ontology is then consulted and in there a topic with the topic identifier integer must
exist.

5.2 Path Expressions for Values

A further step is to allow TMQL path expressions everywhere where simple expressions in Formula 3 are
allowed. At evaluation time these path expressions are evaluated against the underlying topic map. Any
existing variable binding can be passed into the path expression. With that the following is possible:

< value => [n] . amplitude,
intensity => { // wave-forms [ ./low <= $value ]

[ $value <= ./high ]
} >

For every value in the one (anonymous) input sequence the
amplitude property is extracted and propagated as value property to the outgoing sequence. Addi-

tionally, the amplitude value is bound to the variable $value. The TMQL path expression is wrapped
in {} brackets. It will first find all instances of wave-forms in the underlying map. It then will filter out
those which have a high-low range inside which the $value lies. That remaining wave form topic will be
returned in form of its topic identifier. With small modifications of the path expression also the subject
identifier or topic name(s) can be requested.

Path expressions can also be used for properties of outgoing sequences as the following example
demonstrates:

@A{ pheno => undef } # formal parameters
< ..... > # generating values
{ risk-level => { $pheno / risk } }

The pheno property of the incoming sequence @A is first bound to the variable $pheno. Then—when it
comes to create the result properties—the phenomenon is used as starting topic to find a risk occurrence
in the underlying map. Whatever is returned here (string, URL, ...) is embedded as value of the property.
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5.3 Path Expressions as Properties

TMQL path expressions not only can provide a property value, but also implicitly define the key as well.
All this depends on what a path expression actually returns.

In the most simplest case, a path expression can return an occurrence. That—according to the Topic
Maps paradigm—consists of a type, a value (and the scope). Ignoring the scope, the type can be naturally
interpreted as key and the occurrence value as the corresponding value. This is demonstrated with the
following:

{ # properties
{ tsunami / wikipedia }, # path expr
{ tsunami / homepage } # path expr
}

When these properties are generated for a slot or for a whole sequence then first the tsunami topic is
located in the underlying map. Then an occurrence of type wikipedia is looked for. If it exists, then
the type wikipedia will be used as key and the WikiPedia URL as value. Similarily for the homepage
occurrence.

What works for occurrences also works for names. Also here the name type will be used as key. The
name itself is always a string and it will serve as property value. Also Topic Maps associations have such
an embedding rule: Here per association role one property is generated. The role itself is used as key, the
player for that role is the value.

6 Related Work

As the work here is rather architectural in nature, we touch several areas. First and foremost it is the choice
of the semantic technology which impacts on the available infrastructure, feature sets and limitations. As
we have chosen Topic Maps for our experiment, we will first argue this decision with some rationale. The
remaining sections deal with similar processing models from which we have drawn ideas for the language
F3, and with ways to extend a semantic network model with temporal information.

6.1 Topic Maps vs. RDF Rationale

While there has been some work in conceptually mediate between the RDF and the Topic Maps model
( [5] [4]) the two semantic technology stacks differ in various aspects.

In contrast to RDF, TM have been designed to be subject-centric, rather than resource-centric. Ac-
cordingly, Topic Maps include a dedicated identification regime with subject locators and identifiers to
control how to address resources, physical objects and abstract concepts. In that they avoid any discus-
sion what a URI actually means or any need to resolve theme on the network (httpRange-14 issue).
One practical consequence thereof is that merging of maps is based not only on the equivalence of two
node IRIs within graphs, but also whether these IRIs are used as locator or identifier. Map merging is
then more robust as several such identifiers may exist for one and the same subject. The identification
regime also does not make it necessary to resort to heavy-weight ontology-based mechanisms, such as
owl:equivalentClass or owl:sameAs.

In terms of statements Topic Maps offer not only single-valued properties (equivalent to RDF triples
with literals), but also multilateral associations involving more than two topics. Multilateral statements
not only avoid the use of blank nodes, something which adds to inferencing complexity. They also allow
to directly model N-ary relationships and therefore put a topic in a relationship in that particular context
(relativistic modelling). All associations are symmetric in nature avoiding the need to keep multiple
versions of a property only to constrain later explicitly in an ontology that one is the inverse of the other.

Any statement context can be further refined with the use of a scope (not mentioned earlier). While
somewhat underdefined, it limits in a standardized way the validity of a statement, a feature so useful
that many RDF programming frameworks offer it and that SPARQL mimicks with the GRAPH concept.

TMs have no limitations on the use of class/instance relationships. One and the same topic can be a
class and an instance in the same map. While this may have theoretical implications in some reasoning

15



scenarios, it drastically simplifies modelling of many (if not most) real-world scenarios where sets of sets
are needed.

Like RDF, Topic Maps also allow to reify statements. The difference is that in TM only already
asserted statements can be reified, staying consistent with a subject-centric approach.

In terms of the standards stack, Topic Maps use a fundamentally different layout. Instead of defin-
ing independently an ontology language (OWL) and a query language (SPARQL) directly on the model
(RDF/S), Topic Maps first position the query and access language (TMQL) on top of the model (TMDM),
committing hereby to closed world assumption and a particular inferencing regime. The constraint lan-
guage (TMCL) is fully defined in terms of the query language; otherwise there is no ontology language for
Topic Maps. With this setup the Topic Maps standards architecture limits the range of possible ontology
languages, but it leads to a leaner overall model and a single point of definition for the semantics. That
has a direct impact on the formal semantics and on optimization techniques when querying maps with
known constraints.

There are also significant differences between the query languages:

– SPARQL only uses a pattern matching approach to detect certain node constellations in the underly-
ing graph. TMQL offers that too, but additionally a path language to navigate to nearby corners of a
map. The path expression language is powerful enough so that (almost) all queries can be expressed
with it. It can also be used in SELECT clauses to further postprocess information bound to variables.

– TMQL can return customized XML content directly to be used by the invoking application, not
just according to one particular standardized schema. This enables optimizations within TMQL and
avoids situation where SPARQL query returns many NULL results which are eventually ignored by
the application.

– As TMQL subscribes to the closed world assumption (CWA) it can offer a straightforward NOT
operator within the WHERE clause. Many applications using SPARQL resort to postprocess the
results.

The differences reflect that Topic Maps address rather controlled (and controllable) application sce-
narios, whereas RDF is more targeted to the (open) Semantic Web.

6.2 Temporal Extensions

There seem to be two schools how to embed temporal information into an existing semantic network
model. The first, unobtrusive approach taken by OWL Time [9] is to define a dedicated vocabulary
covering things time events, durations and intervals together with their relations (contained-in, overlaps,
and so forth). Given an appropriate data type for the representation of dates, process information can
be modeled as nodes labeled in this vocabulary.

The intrusive method is to modify the model itself. In the RDF space this has been proposed by [10].
While their background is to capture historical events and incremental changes, their line of argumentation
is valid in the environmental monitoring domain and holds equally well for Topic Maps, as it does for RDF.
Specifically the ability to reason over temporal aspects much more effectively than using a vocabulary
approach is relevant for applications on a larger scale.

Extending the Topic Maps model by an intrinsic temporal component on associations—or in fact on
any statement—we follow this approach. The variation we introduce is to also store the time interval
(even together with a direction) to even better reflect the nature of our data corpus.

7 Summary

One of the driving factors for this work is to offer a consistent framework—conceptually and then in
terms of programming languages—to manipulate time series of observation data. This is relevant for
both, adhoc virtual sensors as well as for from the craddle to the grave long-term management.

Preliminary work on integrating semantic technologies into time series processing had shown that
first not only concepts from the life sciences domain, but also that of the sensor web domain have to be
aligned. Only then an integration of involved programming languages seemed feasible, something which
also suggests global optimization opportunities.
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One downside of our approach to extend a semantic technology model with temporal aspects is
certainly that off-the-shelf software cannot be used. On the upside time sequences can now be hosted
natively inside topic maps, make pathway for a range of other applications.

Our ontological coverage of O&M and SensorML terminology at this stage is rather incomplete and
will have to be improved in further efforts. One goal is to be eventually able to mediate process descriptions
between F3 and SensorML. In this step the strong identification regime of Topic Maps might prove helpful
for discovery.

To evolve F3 itself a research prototype has been implemented. In that, the obvious intent was to
benefit as much as possible from existing functional programming techniques and pave the way for large-
scale deployments (such as in clouds).

The integration with semantic networks is also ongoing work. Still a number of ideas have not been
explored yet. Path expressions, for instance, could also be used in incoming sequence properties, not just to
compute values from the topic map, but also to provide the tests themselves. Also the component selector
sublanguage could be mapped onto TMQL path expressions, furthering the integration and making it
more obvious to host time sequence data itself inside the semantic network.
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Abstract. This document presents the SEMbySEM project aiming to provide a 
framework for universal sensors management by semantics. The entire scope 
from the sensors description to the End-users display is addressed, including 
sensors connection and events handling, system ontology, business rules design, 
graphical models and End-users display. Within the course of the project a new 
semantic standard dedicated to system management is defined according to 
business requirements and addressing the semantic description of managed 
objects as well as the means to bind the actual entities to their conceptual 
counterparts. 

Keywords: Semantic Web Technologies, Sensor Web, Ontologies, Rules, 
Sensors, Internet of things. 

1 Introduction 

With the advent of what is commonly described as the “Internet of things”, the 
trend toward a world of sensors is becoming everyday more obvious as many current 
life objects become equipped with embedded data and communication capabilities 
(like RFID tags). In this “world of sensors”, the semantic sensor web is a framework 
aiming to provide ways to process the huge amount of data they will produce. 

Our work targets the end-user point of view. From an end-user point of view, the 
information provided by a set of sensors is only meaningful within the scope of some 
end-user activity, targeting a defined goal achievable via a dedicated scenario. 

 The SEMbySEM project aims at defining tools and standards for the management 
of systems defined as coherent set of objects and grounded on a semantic abstract 
representation of the system to be supervised or managed. 

This abstract representation has two purposes. The first one is to isolate the 
technical issues related to the communications with the various sensors, in what we 
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call a Façade Layer. This Facade layer transforms the data coming from these sensors 
into semantic information and allows end-users to focus only on their activity while 
ignoring the technical details of each sensor. The second purpose is to be able to work 
directly on a semantic model of the system consisting of dynamically updated 
ontology plus related business rules (i.e. production rules). In this way, the multiple 
sensors data is linked to concepts of the system using a well-defined level of 
granularity. For instance, sensors will be grouped together if they belong to the same 
object, or if they are in the same location. 

In order to define the ontology and the business rules a need for a new semantic 
representation appears, as the systems to be managed are intrinsically dynamic. A 
main need in the semantic model is the possible actions on real-life objects, as sensors 
may also be linked to actuators. 

2 Related work 

Sensor Web has gained interest due to hardware and communication advances 
(generalization of technologies such as RFID, geo-localisation, extension of internet-
connected devices) and needs for standards to allow more interoperability between the 
various types of sensors. The Open Geospatial Consortium1 developed a framework 
of standards for Sensor Web Enablement (SWE). This standardization effort enables 
the use of a neutral format to define the various sensors and systems, their interfaces, 
the type of information they convey and their communications. However, SWE 
standards are syntactic and do not embed logical expressivity for inference. Therefore 
the logic of the managed system, defining how the various sensors combine their 
information together to represent complex objects, needs to be embedded in the core 
of applications. 

On another hand, Semantic Web standards, developed by the World Wide Web 
consortium2, are able to represent complex knowledge, including logic associated to 
the data. RDF [5], as a neutral format for data representation, enables communication 
and storage in a neutral format. Based on this format, OWL [4] permits to define 
ontologies, i.e. the conceptualization of a given domain. While this format allows the 
definition of a model, it also enables the use of Description Logic (DL) to partly 
defines the behaviour of the system. For instance, Description Logic defines the 
notion of Restriction, allowing the definition of dynamic classification; instances are 
classified in a class as soon as they match given criteria (e.g. a given train is classified 
in the Late Train class as soon as it has some Delay). 

Since DL is sometimes below the expressivity needs for real systems 
representations, several proposals were developed to extend it with rules in order to 
embed more business logic in the model itself and not spread this additional logic in 
software code. SWRL [6] was proposed as extensions to this model, but is felt 
insufficient since the expressivity of the rule and the expressivity of the DL model can 

                                                           
1 OGC, http://www.opengeospatial.org/  
2 W3C, http://w3c.org/  
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lead to undecidability [16]. These standards also suffer from lack of skill from users 
who are not familiar with knowledge representation and Description Logics.  

From a corporate point of view, while production rule engines are already widely 
spread in enterprise applications they are not yet fully integrated with semantic 
models. Moreover, rules suffer from heterogeneity of expressivity (Production Rule, 
Logic Programs) and heterogeneity of formats. Several standardization processes are 
on-going, such as the JSR94 standard (addressing rule interoperability at Java level) 
and, at a more general level, the OMG Production Rule Representation (PRR) [9] and 
W3C Rule Interchange Format3 (RIF) proposal for a rule interoperability language4. 

In term of general framework for Semantic Sensor Web, different works highlight 
the added value of semantics, such as [1,2,3]. They propose different architectures 
gathering SWE, Ontology and Rules to process sensor data. These standard-based 
prototypes illustrate the added-value of such architecture to answer concrete use-
cases. However they not address the soundness of the system, the scalability issue and 
the user interaction in the system. 

Scalability issue mainly comes from the reasoning engine, able to apply the logic 
of the model. This issue comes from the complexity of the algorithms based on DL 
(e.g. NExpTime-complete) and of logic programming rule systems. 

Regarding user interaction, these systems focuses on monitoring applications and 
do not allow to perform action on the underlying systems linked by sensors. Sensors 
can be available as Web Service, but current SSW architecture does not take into 
account their potential operations. In particular ontologies do not include the notion of 
action. In this area, Semantic Web Service attempts to add semantic metadata to the 
Web Services standards. Some standards such as SAWSDL[7] or OWL-S[8] propose 
different supports of the semantics in Web Services. The first one allows semantically 
annotating the service when OWL-S allows to entirely define the service using 
semantic concepts. In the case of OWL-S it is then possible to define the goal of the 
service and how to perform some processes.  

Based on these assessments, we propose a framework able to go beyond the 
observed limitations, that is to say able (1) to provide a generic communication layer 
with sensors, (2) to semantically define a model and its logic to aggregate information 
from various sensors, (3) to allow the definition of the model of the managed system 
by business experts  thanks to a targeted standard, (4) to deal with large scale systems, 
(5) to perform actions on objects connected to sensors and (6) to display a pertinent 
interface to End-users.  

 

                                                           
3 W3C RIF (Rule Interchange Format) working group, 

http://www.w3.org/2005/rules/wiki/RIF_Working_Group 
4 There is an overlap in scope between W3C RIF and PRR. While PRR focuses on the standard 

metamodel definition and modeling of production rules with an XMI format, RIF focuses on 
a rule interchange format based on XML for web applications and also defines interactions 
between ontologies and rules, see [9] for more details. 
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3 The SEMbySEM Project 

3.1 Project Overview 

SEMbySEM (SErvices Management by Semantics) is a 30-months European 
project carried out under the EUREKA ITEA2 framework and begun July 1st, 2008. 
This project aims at creating a lightweight, adaptive monitoring software system 
dedicated to the management of systems of all sizes. The Human-Machine Interface 
(HMI) will be dedicated for each End-user’s “business role”, displaying to each End-
user only the pertinent information about the monitored system. 

The software core of SEMbySEM will constitute the initial contribution of an 
Open Source project aiming to promote the use of domain specific semantics for the 
management of large systems in various domains like logistics, computing and system 
monitoring. 

Supervision software dedicated to future systems need to be easier to deploy and to 
maintain than the present ones, while addressing the increasing complexity of 
“systems of systems” and keeping an overall management capability for the users. 
The approach envisioned for SEMbySEM to address this issue is the extensive use of 
semantics in the system description allowing the active contribution of expert users 
for the monitoring system design and configuration.  

The SEMbySEM project is based on the definition of two standards and several 
tools: 

• A MicroConcepts standard for the semantic description of manageable 
objects and a standard allowing the mapping of real world Manageable 
Objects to MicroConcepts; 

• A consistent set of tools including a common software framework 
comprising runtime tools and authoring software. 

The targeted managed system size is between one thousand and one hundred 
thousand of concepts instances with ten thousands rules. 

3.2 Project Limitations 

The project is mainly dedicated to event-based supervision, aiming at hiding any 
technological issue under a semantic abstraction layer and specific HMI for each End-
user. This framework is very flexible and can be extended for further applications 
depending on specific needs. 

Some limitations will appear in the first version of the project. This one will 
mainly focus on ontological system representation and rules reasoning. For instance 
planning or workflow processing are not included in the SEMbySEM framework. The 
second drawback, common to all event-based systems, is that commands from End-
users may not be available to sensors as they will not be connected or available at any 
time.  
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3.3 Illustrative Use-Case  

An ill ustrative Use-Case is the management of sensors in a railways station. In a 
station, several sensors may exist notably for building management and security 
(smoke sensors, doors sensors, ...) or for the operations of the station (sensors in the 
engines and wagons,...) Managed objects also exist, that are linked to sensors and on 
which actions are also possible: escalators, lifts, cameras, live departure boards, TV 
screens and the station announcement system.  

Sensors are accessed by End-users through a representation of managed objects 
and local grouping: security officers consider rooms or areas more than sensors. A 
train is not a physical object, it is a railways-domain concept composed of engine(s) 
and wagons and having its own properties (number, schedule, etc.). Therefore sensors 
composition and abstraction are mandatory from a business point of view. 

Actions may be done on managed objects. Cameras can be rotated, doors can be 
closed, live departure boards are regularly modified. Therefore the Actions on 
managed objects are also to be considered when we design such a system. Sensors are 
not enough to describe this system, as only bottom-up information collection is 
insufficient. 

Any automatic procedures that are embedded in the existing information system 
can be expressively described in rules. For example, when a fire alarm is triggered, 
the fire doors close automatically. Describing such rules in the system is interesting 
from a business point of view. 

4 Semantics of the system 

4.1 MicroConcepts, a business-driven standard for representation of objects 

The definition of a semantic model able to deal with the specificity of Sensor Web is 
important. As mentioned earlier there are two trends to model sensor web data. First 
is to use OGC syntactic standards, which are specifically designed for sensors but 
lack for semantics, and other trend is to use Semantic Web standards such as OWL to 
bring semantics to the definition. 

Before choosing any standard we started a bottom-up analysis of the business 
needs to propose a business-driven solution and eventually chose or design an 
appropriate standard. We firstly pointed out the need of a high level standard to allow 
easy system management by end-users, receiving semantic information from the 
Façade, itself connected to sensors. Our need was then to define the semantics used 
by experts compared to the needs. 

Our study shown that OWL and the use of Description Logic are difficult to handle 
by business experts. In particular, users familiar with enterprise data management and 
more specifically databases are confused with the Open World Assumption5  

                                                           
5 Definition from Wikipedia: In formal logic, the Open World Assumption is the assumption 

that the truth-value of a statement is independent of whether or not it is known by any single 
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principle. The use of Close World Assumption and Unique Name Assumption6 
enables a better adoption of this standard since it is closer to databases and more 
generally to enterprise data management, compared to Open-World-Assumption 
which targets open web environment. In this context, various OWL axioms can be 
transformed in DB-like constraints as proposed in [10] and experimented in [11] to 
ensure the consistency of the model. 

Additionally, OWL expressiveness is somewhat limited to express some business 
needs because models are often very sophisticated. In particular qualified cardinality 
restrictions, property composition roles and efficient management of n-ary 
relationships and meta-modelling are missing compared to some real business needs. 
At the time of our study, OWL 2 working group published a working draft of the next 
OWL standard [12], extending the language by a number of new features such as 
qualified cardinality restrictions, property composition roles, definition of interval 
restriction for literals, etc. and then answering to several of our needs. 

Compared to our needs, further extensions can be proposed, notably Advanced 
Property Composition7 (saying for example that a property value of an instance equals 
the average/min/max/sum of some of the value of its components), Actions enabling 
acting on objects (for example "start" or "stop" a device managed by the system) and 
Parameters. 

We then defined a business-oriented model, named MicroConcept, developed in 
the scope of the SEMbySEM project. This is a business-driven standard to be publicly 
released, and comprising a limited set of axioms. The main ones are the following: 

- Ontology, as container of all objects of a given domain. 
- Concept, as classifier for objects sharing some common features. 
- Property (with object or literal value), defined independently from concepts 

and then able to be used in different classes. Property can use: 
o Domain. 
o Range. 
o Cardinality restrictions. 
o Qualified Cardinality Restrictions. 
o Properties of properties (transitive, symmetric, etc.) 

                                                                                                                                           
observer or agent to be true. It is the opposite of the closed world assumption which holds 
that any statement that is not known to be true is false. […] Semantic Web languages such as 
RDF(S) and OWL make the open world assumption. The absence of a particular statement 
within the web means, in principle, that the statement has not been made explicitly yet, 
irrespectively of whether it would be true or not, and irrespectively of whether we believe (or 
would believe) that it is (or would be) true or not. In essence, from the absence of a statement 
alone, a deductive reasoner cannot (and must not) infer that the statement is false. 

6 Definition from Wikipedia: The Unique Name Assumption is a concept from ontology 
languages and Description Logics. In logics with the unique name assumption, different 
names always refer to different entities in the world. The ontology language OWL does not 
make this assumption, but provides explicit constructs to express that two names denote 
distinct entities [4]. 

7 Advanced Property Composition was part of OWL 2 discussions but seems not appear in 
latest working drafts. 

24



SEMbySEM: a Framework for Sensors Management  7 

o Default value for properties. 
o Static values (values shared by all instances of a concept). 
o Property composition (a property value is equal to the property value 

of a linked component). 
o Advanced property composition (similar to previous one but using 

mathematical functions). 
- Concept and property subsumption to define inheritance. 
- Instance of a concept. 
- Enumeration. 
- Action, defining the way to act on the real object represented by its instances. 

o Actions have input and output parameters. 
- All elements contain identification (unique ID), versioning, localized name 

and description. 

4.2 Adding rules to MicroConcepts 

Rules bring added-value by avoiding spreading the business logic across company 
models, code and documentation. It ensures the uniqueness of the behaviour attached 
to semantic objects.  A drawback of this approach is that the addition of a rule 
language on top of an ontology language (such as OWL) can lead to inconsistency 
because axioms of the language and rules can affect each others. Different approaches 
were proposed such as Semantic Web Rule Language (SWRL)[6] and Description 
Logic Program (DLP) [13]. SWRL extends OWL with rules in a non-native way; in 
the DLP approach, the intersection of Description Logic and Logic Program is used, 
using only a subset of DL but providing a better computability.  

For higher scalability we developed the MicroConcept standard in order to be used 
with a production rule engine (such as JESS or DROOLS) implementing RETE [14] 
algorithm. The scalability of such approach was proven and enables its use in 
industrial environment as RETE-based algorithms are already used in many 
enterprises. 

In order to cope with the heterogeneity of rule standards, we define rules in a 
neutral format linked to the MicroConcept standard. In particular, the rules are able to 
directly address the semantic objects of the model (concepts, instances, properties) 
and benefit from the logic of the model: for instance, if a rule uses a concept, the 
matching is done for the more general concept as well. 

Integration of a RETE-based rule engine, giving good performances is then 
smooth. 

4.3 Implementation strategy of the MicroConcept standard 

Our studies enable us to design specifications and language semantics of the 
MicroConcept standard, based on the needs expressed by real use-cases, without 
limitation to existing standards. Compared, for example, to OWL 2, MicroConcept 
adds several axioms (notably Action and Advanced Property Composition) and 
moreover uses the closed-world and unique-name assumptions. 
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Besides these differences, we want to leverage existing standards for the 
implementation in order to benefit from existing design tools, API, serialization forms 
and repositories. We identified two strategies of implementation: 

(1) Directly define MicroConcept based on MOF 2 [15] models (an OMG 
recommendation). Similar to OWL2, whose structural definition is based on 
the MOF, our language can be expressed in term of MOF meta-model, giving 
it a formal, computable definition. 
As a result, MicroConcept is a meta-model and can be serialized in XMI 
format, edited with compliant editors (such as UML tools with an appropriate 
profile), and moreover can benefit from a powerful programmatic 
environment. In particular we can benefit from technologies such as model 
transformation implemented in the Eclipse Modeling Framework8. This 
ensures to limit specific code to the minimum and to be able to maintain the 
standard in the future. 

(2) Define MicroConcept based on OWL 2 meta-model. In this case, our standard 
represents a meta-ontology which can be instantiated by business ontology 
taking the benefits from all the logic of the standard and from all the tools 
developed around this language: parsers, inference engines (e.g. Pellet9), 
programmatic environment (such as Jena10 or OWL API11) and repositories. 
Extensions proposed in our standards (in particular Action) are addressed by 
the rule engine and by a set of rules not editable by users, given a way to 
easily maintain the standard and be able to make some evolution. Closed-
World-Assumption is addressed by the specific architecture of the core of the 
application (Cf. subsection 5.4). 

4.4 Illustrative examples 

We give here Micro-Concepts and rules for the illustrative use-case presented in 
section 3.3. Full specifications of these languages will be published later on the 
project website12.  

4.4.1 Mi cro-Concepts 

The following Micro-Concepts are defined:  
• Train 
• Engine 
• Wagon 
• Station 
• Camera 

                                                           
8 http://www.eclipse.org/modeling/emf/ 
9 http://clarkparsia.com/pellet 
10 http://jena.sourceforge.net/ 
11 http://owlapi.sourceforge.net/ 
12 http://www.sembysem.org  
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• Light 

4.4.2 Properties 

The following Properties are defined: 
• speed: relation possessed by a Train or an Engine with a decimal value. 
• serialNumber: relation possessed by an Engine or a Wagon with a string 

value. 
• trainNumber : relation possessed by a Train with an integer value. 
• hasEngine: relation possessed by a Train with a value that is an instance of 

Engine. 
• hasWagon: relation possessed by a Train with values that are instances of 

Wagon. 
• inPlatform : relation possessed by a Train with a value that is an instance of 

the Platform. 
• hasLight: relation possessed by a Platform with values that are instances of 

Lights. 
• hasCamera: relation possessed by a Platform with values that are instances 

of Camera. 

4.4.3 Actions 

The following Actions are defined: 
• Engine has 'Start'  and 'Stop' actions. 
• Camera has a 'Focus_on_platform' action. This action has a parameter 

'to_platform ' taking an instance of  'Platform ' as parameter. 
• Light has 'Switch_On' and 'Switch_Off' actions. 

4.4.4 Rules 

Rules can be defined directly on top of MicroConcepts. We give as example the 
expression of the rule "If a train arrives at a given platform, turn the camera to that 
platform and switch on all the lights on this platform". This rule used the proposed 
rule serialization. 
 

rule "TrainInPlatform" 
if 
{ 
// If a train arrives at a given platform 
?t := Train (?tPlatform := inPlatform, ?cams := one(hasCamera), ?lights := 
one(hasLight) ) 
} 
then 
{ 
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// Then turn the camera to the given platform 
?CameraFocusAction := createAction(?cams, Camera/Focus_on_platform); 
?CameraFocusAction->to_platform := ?tPlatform; 
execute(?CameraFocusAction); 
 
//Then switch on the lights of this platform 
excecute(?lights, Light/Switch_On); 
 
} 

5 SEMbySEM general architecture 

Let us consider an existing set of communicating objects or elements, constituting 
what from now we will call indifferently a universe or a managed system. This 
universe will be monitored with sensors dispatched on several fixed locations and on 
some moving objects. The deployment and operational use of a management system 
for this universe will be done in two phases, design time and runtime. Design time 
operations will encompass the detailed definition of all the sensors which can 
contribute to the universe, the ontology of the universe including all the existing and 
required concepts related to the universe sensors and their associated business rules, 
and the viewpoints of each stakeholder including a display HMI. Runtime will be the 
operational use of the management system controlling this universe. 

 
5.1 Design time 
 

The design is intended to be done by expert users in the domain, assisted by 
ontology designers, rules designers and sensors communications designers. 

Firstly, the ontology definition concerns the mandatory concepts defining and 
operating the universe, including first the objects that are managed and on which 
sensors acquire data, objects composed from several elementary objects and abstract 
objects that correspond to business concepts. The associated rules to permanently 
update the ontology are a whole part of the universe dynamic model. The ontology 
must also support the actions defined on the concepts and linked to actuators on the 
real managed objects. 

The sensors definition includes all the sensors that can be encountered within the 
universe from an operational point of view, meaning the communication protocols to 
access them, the type of communication they support, the kind of message they 
deliver, the potential actions on the managed objects, the operational flow rate of data, 
an identifier to the associated concepts in the ontology, etc.  

The stakeholders’ viewpoints definition includes all the graphic data (icons, 
widgets, buttons, etc.) and the links to the related semantic data (in the ontology). 
These two features are grouped in several HMI models, each model containing one or 
several different views. Each model corresponds to a set of End-users and will present 
only pertinent information for this set of users. 
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5.2 Runtime 

 
During runtime the dynamicity of the managed system is very important. The fixed 

and mobile sensors emit messages when an event occurs or when they are scheduled 
for it, while End-users connect and disconnect through their interfaces, act on the 
managed objects or on virtual objects in the semantic model. Each event from sensors 
is registered and processed in order to update the semantic model through direct 
modification and modifications triggered by the business rules. The display of the 
connected End-users must be updated accordingly when the semantic model updates 
are pertinent for them. Each action from an End-user or from rules is processed 
internally and sent to the right managed object when necessary. 

 
5.3 Overall architecture 

 
The architecture we have retained to address these issues is composed of three 

layers: the Façade layer, the Core layer and the Visualisation layer. The Façade layer 
is the interface with sensors and the Visualisation layer is the interface with End-
users. The Core layer contains the semantic model. 

The goal of the Façade layer is to be the interface between the sensors and the 
semantic model. All the technical diversity concerning protocols, communication 
matters, sensor types and so on is addressed in this layer. The Façade transforms 
heterogeneous messages and events from sensors to standardized messages addressed 
to one or several concepts transmitted to the Core layer. The Façade also transforms 
actions messages from the Core to the actuators. 

The Core processes the events from the Façade in order to maintain an up-to-date 
semantic model of the universe. For this the arrival of a message from the Façade 
triggers a short process: identification of the concept instance related to the message 
or creation of this instance if it does not exist, consistency validation of the update 
with regards to the model requirements and update of the semantic model. 
Afterwards, the rule engine is called, taking as input the successful model changes 
and processing until no rule is left to trigger. The second main task of the core layer is 
to send the pertinent semantic data to the Visualisation layer. Each time an End-user 
connects to the system, the Core layer is notified of the semantic concepts instances 
requiring data display. Then each time these instances are updated the data is also sent 
to the Visualisation layer until the End-user disconnects. 

The Visualisation layer aims at displaying to the End-users the pertinent 
information they require to perform their task. Therefore each End-user has access to 
tailored viewpoints, designed by expert users and HMI experts and displaying data 
from the semantic model. This information is continuously updated each time an 
event occurs. The End-users may also perform actions on the instances of the 
semantic model through their HMI. The Visualisation layer performs several tasks: it 
gets all the semantic data that is of interest for the End-user and links it to graphical 
components for display, according to HMI models. 

29



12 J-S. Brunner, J-

5.4 Architecture of the 

In the two implementation strategies
not exactly the same as OWL, especially regarding the concept of Closed
Assumption. In this context, we use 

First, a Constraint Checking module is responsible for consistency checks similarly 
to DB-style constraints [
Closed-World-Assumption, it is applied, in particular, on Cardinality (e.g. if a 
property has a MaxCardinality
Property.  

Secondly a reasoner is responsible to apply the general logic of the MicroConcept 
model. This module expands the asserted data with inferred data resulting of 
classification, use of property composition, symmetric, inve
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Fig. 1. Overall SEMbySEM architecture 

Architecture of the semantic  processing layer 

In the two implementation strategies described at section 4.3, the embedded logic is 
not exactly the same as OWL, especially regarding the concept of Closed
Assumption. In this context, we use three levels to process the logic of our model.

First, a Constraint Checking module is responsible for consistency checks similarly 
style constraints [10]. This module ensures the consistency of the model in the 

Assumption, it is applied, in particular, on Cardinality (e.g. if a 
MaxCardinality of 1 and has already one value), and Functional 

Secondly a reasoner is responsible to apply the general logic of the MicroConcept 
model. This module expands the asserted data with inferred data resulting of 
classification, use of property composition, symmetric, inverse property, etc.

 

, the embedded logic is 
not exactly the same as OWL, especially regarding the concept of Closed-World-

three levels to process the logic of our model. 
First, a Constraint Checking module is responsible for consistency checks similarly 

]. This module ensures the consistency of the model in the 
Assumption, it is applied, in particular, on Cardinality (e.g. if a 

ne value), and Functional 

Secondly a reasoner is responsible to apply the general logic of the MicroConcept 
model. This module expands the asserted data with inferred data resulting of 

rse property, etc. 
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Finally, a rule engine based on RETE algorithm, applies the additional business 
logic defined by the business user. 

Additionally, a query engine is responsible to handle queries received from the 
visualization layer. It interprets the query and answer according to the logic of the 
model (already inferred by the 3 previously described modules since we use forward 
chaining inference). 

The model itself benefit from the advantage of the chosen implementation strategy. 
In particular memory, disk representation, serialization and persistency use state-of-
the-art standards to provide a powerful and maintainable solution. 

Fig. 2. Core layer general architecture 

6 Current status of the project 

At the time of the redaction of this paper, the SEMbySEM project is still in its first 
year. Architectural choices had been done as well as functional and technical 
specification of most parts of the framework. The MicroConcept standard was drafted 
and will be checked against the use-cases before release.  

The project starts now its development phase. First results and evaluations are 
expected at the end of this year. 

In order to foster SEMbySEM standard and framework, an open-source version of 
the framework will be released in early 2010. Standards and framework will be 
available on the official website of the project (http://www.sembysem.org) where 
additional information will be added progressively. 
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7 Conclusion and future work  

We have presented here the whole idea of the SEMbySEM project aiming at the 
creation of a semantic infrastructure for service management. The main idea is to use 
a business-driven standard called MicroConcept to define the semantic model linked 
to sensors and manageable objects. MicroConcept was designed according to business 
needs but will be implemented with respect to state-of-the-art standards in order to 
provide both the expressivity required to model the use-case and the scalability to 
implement them. Additionally, a production rule engine supports the business logic in 
order to minimize specific developments.  

In upstream of this core system, sensors and manageable objects low-level 
communications are transformed by the Façade layer to feed the semantic model. 

In downstream, users can access to the system through a visualisation layer 
performing queries to the semantic model and supporting actions from users to the 
system. 

This architecture enables a powerful framework able to answer to a large variety of 
use-cases. The implementation phase is starting and will helps to validate all the 
architecture presented in this paper. 
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Abstract. The increasing availability of sensor data through a variety of sensor-driven 

devices raises the need to exploit the data observed by sensors with the help of formally 

specified knowledge representations, such as the ones provided by the Semantic Web. In order 

to facilitate such a Semantic Sensor Web, the challenge is to bridge between symbolic 

knowledge representations and the measured data collected by sensors. In particular, one needs 

to map a given set of arbitrary sensor data to a particular set of symbolic knowledge 

representations, e.g. ontology instances. This task is particularly challenging due to the 

potential infinite variety of possible sensor measurements. Conceptual Spaces (CS) provide a 

means to represent knowledge in geometrical vector spaces in order to enable computation of 

similarities between knowledge entities by means of distance metrics. We propose an ontology 

for CS which allows to refine symbolic concepts as CS and to ground instances to so-called 

prototypical members described by vectors. By computing similarities in terms of spatial 

distances between a given set of sensor measurements and a finite set of prototypical members, 

the most similar instance can be identified. In that, we provide a means to bridge between the 

real-world as observed by sensors and symbolic representations. We also propose an initial 

implementation utilizing our approach for measurement-based Semantic Web Service 

discovery.  

Keywords: Sensor Data, Conceptual Spaces, Semantic Sensor Web, Vector 

Spaces. 

1 Introduction 

Current and next generation wireless communication technologies will encourage 

widespread use of well-connected sensor-driven devices which in fact produce sensor 

data by observing and measuring real-world environments. This has already lead to 

standardisation efforts aiming at facilitating the so-called Sensor Web, such as the 

ones by the Sensor Web Enablement Working Group1 of the Open Geospatial 

Consortium (OGC)2. The increasing availability of sensor data raises the need to 

merge such data with formally specified knowledge representations, such as the ones 

                                                           
1 http://www.opengeospatial.org/projects/groups/sensorweb 
2 http://www.opengeospatial.org/ 
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provided by Semantic Web (SW) standards such as OWL [22] or RDF [23]. However, 

whereas sensor data usually relies on measurements of perceptual characteristics to 

describe real-world phenomena, ontological knowledge presentations represent real-

world entities through symbols. The symbolic approach – i.e. describing symbols by 

using other symbols, without a grounding in perceptual dimensions of the real world – 

leads to the so-called symbol grounding problem [2] and does not entail 

meaningfulness, since meaning requires both the definition of a terminology in terms 

of a logical structure (using symbols) and grounding of symbols to a perceptual level 

[2][13].  

 In that, in order to facilitate the vision of the Semantic Sensor Web (SSW) [18] the 

challenge is to bridge between formal symbolic knowledge representations and the 

measured data collected by sensors by mapping a given set of arbitrary sensor data to 

a particular set of symbolic representations. This task is particularly challenging due 

to the potential infinite variety of possible data sets.  

Conceptual Spaces (CS) [8] follow a theory of describing knowledge in 

geometrical vector spaces which are described by so-called quality dimensions to 

bridge between the perceived and the symbolic world. Representing instances as 

vectors, i.e. members, in a CS provides a means to compute similarities by means of 

spatial distance metrics. However, several issues still have to be considered when 

applying CS. For instance, CS as well as sensor data provide no means to represent 

arbitrary relations between data sets, such as part-of relations.   

In order to overcome the issues introduced above, we propose a two-fold 

knowledge representation approach which extends symbolic knowledge 

representations through a refinement based on CS. This is achieved based on an 

ontology which allows to refine symbolic concepts as CS and to ground instances to 

so-called prototypical members, i.e. prototypical vectors, in the CS. The resulting set 

of CS is formally represented as part of the ontology itself. By computing similarities 

in terms of spatial distances between a given set of sensor measurements and the 

finite set of prototypical members, the most similar instance can be identified. In that, 

our approach provides a means to bridge between the real-world - as measured by 

sensor data - and symbolic representations. 

The remainder of the paper is organized as follows: Section 2 introduces the 

symbol grounding problem in the context of sensor data, while our representational 

approach based on CS is proposed in Section 3. In Section 4, we introduce an 

implementation of our approach based on an existing SWS reference model and we 

introduce first proof-of-concept prototype in Section 5. Finally, we discuss and 

conclude our work in Section 6.  

2 Sensor Data, Symbol Grounding and Spatial Representations 

This section motivates our approach by introducing the so-called symbol grounding 

problem in the context of the SSW and introduces some background knowledge on 

metric-based spatial knowledge representation. 
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2.1. Sensor Data and the Symbol Grounding Problem 

Sensor data usually consists of measurements which describe observations of 

phenomena in real-world environments. In order to ensure a certain degree of 

interoperability between heterogeneous sensor data, recent efforts, such as the 

OpenGIS Observations and Measurements Encoding Standard (O&M)3, propose a 

standardized approach to represent observed measurements based on a common XML 

schema. However, in order to provide comprehensive applications capable of 

reasoning in real-time on observed real-world phenomena, i.e. the contextual 

knowledge produced by sensor-driven devices, one needs to bridge between the 

measurements provided by sensors and the formally specified knowledge as, for 

instance, exploited by the Semantic Web [18]. Figure 1 illustrates the desired 

progression from observed real-world phenomena, e.g. a certain color, to 

measurements provided by sensors, e.g. measurements of the hue, saturation and 

lightness (HSL) dimensions, to symbolic knowledge entities such as a particular 

OWL individual representing a specific color.   

...

<owl:Class rdf:ID="Color">

<rdfs:subClassOf>

<owl:Class rdf:ID="PhysicalQuality"/>

</rdfs:subClassOf>

</owl:Class>

<Color rdf:ID="Lilac"/>

...

01010010100… {211; 169; 127}

11100010001… {228; 197, 8}

10001110100… {237; 177; 73}

Observed real-world 

parameter (e.g. color)

Sensor-data based on measurements

(e.g. HSL values)

Ontological Knowledge

(e.g. OWL individual of particular color)  

Fig. 1. Envisaged progression from real-world observations to ontological representations 

through sensor data.  

However, whereas sensor data usually relies on measurements of perceptual 

characteristics to describe real-world phenomena, ontological knowledge 

presentations represent real-world entities through symbols what leads to a 

representational gap. Hence, several issues have to be taken into account. The 

symbolic approach – i.e. describing symbols by using other symbols, without a 

grounding in the real world or perceptual dimensions what is known as the symbol 

grounding problem [2] – of established SW representation standards, leads to 

ambiguity issues and does not entail meaningfulness, since meaning requires both the 

definition of a terminology in terms of a logical structure (using symbols) and 

grounding of symbols to a perceptual level [2][13]. Moreover, describing the complex 

notion of any specific real-world entity in all its facets through symbolic 

representation languages is a costly task and may never reach semantic 

meaningfulness.  

Hence, in order to facilitate the vision of the SSW, the challenge is, to map a given 

set of sensor observation data to semantic (symbolic) instances which most 

appropriately represent the observed real-world entity within an ontology. In this 

                                                           
3 http://www.opengeospatial.org/standards/om 
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respect, it is particularly obstructive that a potentially infinite amount of real-world 

phenomena, i.e. measurement data, needs to be mapped to a finite set of knowledge 

representations, e.g. ontological concepts or instances.    

2.2. Exploiting Measurements through spatial Knowledge Representations 

Sensor data usually consists of sets of measurements being observed from the 

surrounding environment. In that, spatially oriented approaches to knowledge 

representation which exploit metrics to describe knowledge entities naturally appear 

to be an obvious choice when attempting to formally represent sensor data. 

Conceptual Spaces (CS) [8] follow a theory of describing entities in terms of their 

quality characteristics similar to natural human cognition in order to bridge between 

the perceived and the symbolic world. CS foresee the representation of concepts as 

multidimensional geometrical Vector Spaces which are defined through sets of quality 

dimensions. Instances are supposed to be represented as vectors, i.e. particular points 

in a CS. For instance, a particular color may be defined as point described by vectors 

measuring HSL or RGB dimensions. Describing instances as points within vector 

spaces where each vector follows a specific metric enables the automatic calculation 

of their semantic similarity by means of distance metrics such as the Euclidean, 

Taxicab or Manhattan distance [11] or the Minkowsky Metric [19]. Hence, semantic 

similarity is implicit information carried within a CS representation what is perceived 

as one of the major contribution of the CS theory. Soft Ontologies (SO) [10] follow a 

similar approach by representing a knowledge domain D through a multi-dimensional 

ontospace A, which is described by its so-called ontodimensions. An item I, i.e. an 

instance, is represented by scaling each dimension to express its impact, presence or 

probability in the case of I. In that, a SO can be perceived as a CS where dimensions 

are measured exclusively on a ratio-scale.  

However, several issues have to be taken into account. For instance, CS as well as 

SO do not provide any notion to represent any arbitrary relations [17], such as part-of 

relations which usually are represented within symbolic knowledge models. 

Moreover, it can be argued, that representing an entire knowledge model through a 

coherent CS might not be feasible, particularly when attempting to maintain the 

meaningfulness of the spatial distance as a similarity measure. In this regard, it is 

even more obstructive that the scope of a dimension is not definable, i.e. a dimension 

always applies to the entire CS/SO [17]. 

3 Grounding Ontological Concepts in Conceptual Spaces  

We propose the grounding of ontologies in multiple CS in order to bridge between the 

measurements provided by sensor-driven devices and symbolic representations of the 

SW.  
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3.1. Approach: Spatial Groundings for Symbolic Ontologies 

We claim that CS represent a particularly promising model when being applied to 

individual concepts instead of representing an entire ontology in a single CS. By 

representing instances as so-called prototypical members in CS, arbitrary sensor-data 

can be associated with specific ontology instances in terms of the closest – i.e. the 

most similar – prototypical member representation. 

We propose a two-fold representational approach – combining SW vocabularies 

with corresponding representations based on CS – to enable similarity-based 

matchmaking between a given set of sensor data and ontological representations. In 

that, we consider the representation of a set of n concepts C of an ontology O through 

a set of n Conceptual Spaces CS. Instances of concepts are represented as prototypical 

members in the respective CS. The following Figure 2 depicts this vision: 

 

Instance I1j Instance I1i 

Concept C1x 
is-a 

refined-as-cs 

refined-as-prototypical-member refined-as-prototypical-member 

d1 

d2 

d3 

is-a 

Ontology O1 

Conceptual Space CS1x  

Fig. 2. Representing ontology instances through prototypical members in CS. 

While benefiting from implicit similarity information within a CS, our hybrid 

approach allows overcoming CS-related issues by maintaining the advantages of 

ontology-based knowledge representations and provides a means to ground 

knowledge entities to cognitive dimensions based on measurements. To give a rather 

obvious example, a concept describing the notion of a geospatial location could be 

grounded to a CS described through quality dimensions such as its longitude and 

latitude. In previous work [3][4], we provided more comprehensive examples, even 

for rather qualitative notions, such as particular subjects or learning styles.  

Provided our refinement of ontology concepts as CS and of instances as 

prototypical members, a given set of sensor data which measures the quality 

dimensions of a particular CSi represents a vector v in CSi which can be mapped to an 

appropriate ontology instance I in terms of the spatial distance of the prototypical 

member of I and v.  Figure 3 illustrates the approach based on the color example 

introduced in Section 2.1. While measurements obtained from sensors are well-suited 

to be represented as vectors, i.e. members, in a CS, we facilitate similarity-based 

computation between a given set of sensor data and sets of prototypical members 

which represent ontological instances. For instance, the example in Figure 3 depicts 

the utilisation of a CS based on the HSL dimensions to map between color 

measurements obtained through sensors and prototypical members representing 

certain color instances. Based on the spatial distance between one measured color 
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vector and different prototypical members, the closest vector, i.e. the most similar 

one, can be identified. In that, CS provide a means to bridge between observed sensor 

data and symbolic ontological representations. 

 L 

S 

H 

...

<owl:Class rdf:ID="Color">

<rdfs:subClassOf>

<owl:Class rdf:ID="PhysicalQuality"/>

</rdfs:subClassOf>

</owl:Class>

<Color rdf:ID="Lilac"/>

...

01010010100… {211; 169; 127}

11100010001… {228; 197, 8}

10001110100… {237; 177; 73}

Similarity-based mapping through 

Conceptual Color Space

Sensor-data based on measurements

(e.g. HSL values)
Ontological Knowledge

(e.g. OWL individual of particular color)  

Fig. 3. Similarity-based mapping between distinct sets of sensor-based color measurements and 

ontological color instances based on a common CS using the HSL dimensions.    

3.2. A formal Ontology to represent Conceptual Spaces 

In order to be able to refine and represent ontological concepts through CS, we 

formalised the CS model into an ontology, currently being represented through 

OCML [12]. Hence, a CS can simply be instantiated in order to represent a particular 

concept.   

Referring to [16][8], we formalise a CS as a vector space defined through quality 

dimensions di of CS. Each dimension is associated with a certain metric scale, e.g. 

ratio, interval or ordinal scale. To reflect the impact of a specific quality dimension on 

the entire CS, we consider a prominence value p for each dimension. Therefore, a CS 

is defined by  

( ){ }ℜ∈∈= iinn

n pCSddpdpdpCS ,,...,, 2211
 

where P is the set of real numbers. However, the usage context, purpose and domain 

of a particular CS strongly influence the ranking of its quality dimensions. This 

clearly supports our position of describing distinct CS explicitly for individual 

concepts. Please note that we do not distinguish between dimensions and domains [8] 

but enable dimensions to be detailed further in terms of subspaces. Hence, a 

dimension within one space may be defined through another CS by using further 

dimensions [16]. In this way, a CS may be composed of several subspaces and 

consequently, the description granularity can be refined gradually. Dimensions may 

be correlated. For instance, when describing an apple the quality dimension 

describing its sugar content may be correlated with the taste dimension. Information 

about correlation is expressed through axioms related to a specific quality dimension 

instance. 

A particular (prototypical) member M – representing a particular instance – in the 

CS is described through valued dimension vectors vi:  

( ){ }MvvvvM in

n ∈= ,...,, 21
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With respect to [16], we define the semantic similarity between two members of a 

space as a function of the Euclidean distance between the points representing each of 

the members. Hence, with respect to [16], given a CS definition CS and two members 

V and U, defined by vectors v0, v1, …,vn and u1, u2,…,un within CS, the distance 

between V and U can be calculated as: 

∑
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−
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where u  is the mean of a dataset U and us is the standard deviation from U. The 

formula above already considers the so-called Z-transformation or standardization 

[13] which facilitates the standardization of distinct measurement scales utilised by 

different quality dimensions in order to enable the calculation of distances in a multi-

dimensional and multi-metric space. Please note, as mentioned in Section 2.2, 

different distance metrics could be applied depending on the nature and purpose of the 

CS. 

3.3. Representing Ontologies through Conceptual Spaces  

The derivation of an appropriate space CSi to represent a particular concept Ci of a 

given ontology O is understood a non-trivial task which aims at the creation of a CS 

instance which most appropriately represents the real-world entity represented by Ci. 

We particularly foresee a transformation procedure consisting of the following steps: 

S1. Representing concept properties pcij of Ci as dimensions dij of CSi. 

S2. Assignment of metrics to each quality dimension dij. 

S3. Assignment of prominence values pij to each quality dimension dij. 

S4. Representing instances Iik of Ci as members in CSi. 

Given the formal ontological representation of the CS model (Section 3.2), we are 

able to simply instantiate a specific CS by applying a transformation function  

ii CSCtrans ⇒:  

which is aimed at instantiating all elements of a CS, such as dimensions and 

prominence values (S1 – S3). S1 aims at representing each concept property pcij of Ci 

as a particular dimension instance dij together with a corresponding prominence pij of 

a resulting space CSi:  

( ){ } ( ){ }ℜ∈∈⇒∈ ijiijininiiiiiijinii pCSddpdpdpPCpcpcpcpctrans ,,...,,,...,,: 221121
 

Please note that we particularly distinguish between data type properties and relations. 

While the latter represent relations between concepts, these are not represented as 

dimensions since such dimensions would refer to a range of concepts (instances) 

instead of quantified metrics, as required by S2. Therefore, in the case of relations, we 

propose to maintain the relationships represented within the original ontology O 

without representing these within the resulting CSi. In that, the complexity of CSi is 

reduced to enable the maintainability of the spatial distance as appropriate similarity 

measure. The assignment of metric scales to dimensions (S2) which naturally are 

described using quantitative measurements, such as size or weight, is rather 
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straightforward. In such cases, interval scale or ratio scale, could be used, whereas 

otherwise, a nominal scale might be required. S3 is aimed at assigning a prominence 

value pij – chosen from a predefined value range – to each dimension dij. Since the 

assignment of prominences to quality dimensions is of major importance for the 

expressiveness of the similarity measure within a CS, most probably this step requires 

incremental ex-post re-adjustments until a sufficient definition of a CS is achieved.  

 With respect to S4, one has to represent all instances Iki of a concept Ci as member 

instances in the created space CSi:  

ikik MItrans ⇒:  

This is achieved by transforming all instantiated properties piikl of Iik as valued vectors 

in CSi. 

( ){ } ( ){ }
ikikliknikikikikliknikik MvvvvPIpipipipitrans ∈⇒∈ ,...,,,...,,: 2121

 

Hence, given a particular CS, representing instances as members becomes just a 

matter of assigning specific measurements to the dimensions of the CS. In order to 

represent all concepts Ci of a given ontology O, the transformation function consisting 

of the steps S1-S4 has to be repeated iteratively for all Ci which are element of O. The 

accomplishment of the proposed procedure results in a set of CS instances which each 

refine a particular concept together with a set of member instances which each refine 

a particular instance. Please note that applying the procedure proposed here requires 

additional effort which needs to be further investigated within future work. 

4 Implementation - Exploiting Sensor Data for Semantic Web 

Service Discovery 

In previous work [3][4], we applied our two-fold approach to Semantic Web Services 

(SWS) technology [6] which aims at the automated discovery, orchestration and 

invocation of Web services based on comprehensive semantic annotations of services. 

Current results of SWS research are available in terms of reference models such as 

OWL-S [14], SAWSDL4 or WSMO [24]. In [3][4], our CS representation was 

deployed to refine instances which are part of SWS annotations in order to enable 

interoperability between heterogeneous SWS and SWS requests. In contrast, here we 

propose the utilization of our CS-based representational approach to facilitate 

interoperability between observations and measurements provided by sensors and 

symbolic SWS representations based on extensions which are described in this 

section. 

The representational model described above had been implemented by and aligned 

to established SWS technologies based on WSMO [24] and the Internet Reasoning 

Service IRS-III [1]. Further details on the IRS-III Service Ontology  and its extension 

through our CS formalisation can be found in [5]. However, please note that in 

principle the representational approach described above could be applied to any SWS 

reference model and is particularly well-suited to support rather light-weight 

approaches such as SAWSDL or WSMO Lite [21]. 

                                                           
4 http://www.w3.org/2002/ws/sawsdl/spec/ 
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In order to facilitate the representational approach described in Section 3, we 

aligned the CS Ontology (Section 3.2) with the IRS-III Service Ontology to allow for 

the refinement of individual concepts – used as part of formal SWS descriptions – as 

formally expressed CS. In that, instances being used to represent SWS characteristics 

such as interfaces or capabilities can be refined as vectors.  

irs:Goal

irs:Web Service

can-solve-goal 

irs:Concept

irs:Instance

cs:Conceptual Space

uses

instance-of

cs:Prototypical Member

uses

refined-as

refined-as

member-in

cs:Quality Dimension

cs:Valued Vector

values

uses

uses

 
Fig. 4. Core concepts of the CS Ontology aligned to the IRS-III Service Ontology. 

Figure 4 depicts the core concepts of CSO and their alignment with the IRS-III 
Service Ontology. Concepts (instances) as being used by IRS service or goal 
descriptions are refined as CS (members) within the CSO. In that, following the 
procedure proposed in Section 3.3, service capabilities are refined in multiple CS. To 
take into account the representational gap between measurement data as provided by 
sensors and symbolic SWS goal representations, we introduced a novel way of 
requesting goal achievements through IRS-III. Instead of simply invoking a goal by 
providing the goal achievement request SWSi, including the actual input data, we also 
foresee the on-the-fly provisioning of underlying assumptions in terms of sets of 
measurements, i.e. vectors {V1, V2,…, Vn}, which in fact describe the actual contextual 
environment of the request.    
 In order to facilitate automated similarity computation between SWS and SWS 
requests, we extended the matchmaking capabilities of IRS-III through a set of 
additional functionalities:   
 

F1. Instantiation of member Mi in CSO for each Vi provided as part of SWSi 
F2. Similarity computation between goal request SWSi and potentially relevant 

SWS  
 
Given the ontological refinement of SWS descriptions into CS as introduced in 
Section 3.2 this new functionality enables to automatically achieve IRS-III goals 
without being restricted to complete matches between a particular goal achievement 
request and the available SWS. When attempting to achieve a goal, our new function 
is provided with the actual goal request SWSi, named base, and the SWS descriptions 
of all x available services that are potentially relevant for the base – i.e. linked through 
a dedicated mediator:  

},...,,{ 21 xi SWSSWSSWSSWS ∪  

Each SWS contains a set of concepts C={c1..cm} and instances I={i1..in}. We first 
identify all members M(SWSi) – in the form of valued vectors {v1..vn} refining the 
instance il of the base as proposed in Section 3.2. In addition, for each concept c 
within the base the corresponding conceptual space representations MS={MS1..MSm} 
are retrieved. Similarly, for each SWSj related to the base, prototypical members 
M(SWSj) – which refine capabilities of SWSj and are represented in one of the 
conceptual spaces CS1..CSm, – are retrieved: 

)}(),...,(),({)( 21 xi SWSMSWSMSWSMSWSMCS ∪∪  
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Based on the above ontological descriptions, for each member vl within M(SWSi), the 

Euclidean distances to any prototypical member of all M(SWSj) which is represented 

in the same space MSj as vl are computed. In case one set of prototypical members 

M(SWSj) contains several members in the same MS – e.g. SWSj targets several 

instances of the same kind – the algorithm just considers the closest distance since the 

closest match determines the appropriateness for a given goal. For example, if one 

SWS supports several different locations, just the one which is closest to the one 

required by SWSi determines the appropriateness.  

Consequently, a set of x sets of distances is computed as follows 

Dist(SWSi)={Dist(SWSi,SWS1), Dist(SWSi,SWS2) .. Dist(SWSi,SWSx)} where each 

Dist(SWSi,SWSj) contains a set of distances {dist1..distn} where any disti represents the 

distance between one particular member vi of SWSi and  one member refining one 

instance of the capabilities of SWSj. Hence, the overall similarity between the base 

SWSi and any SWSj could be defined as being reciprocal to the mean value of the 

individual distances between all instances of their respective capability descriptions 

and hence, is calculated as follows: 
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Finally, a set of x similarity values – computed as described above – which each 

indicates the similarity between the base SWSi and one of the x target SWS is 

computed:  
)},(),..,(),({ 2,1, xiii SWSSWSSimSWSSWSSimSWSSWSSim  

As a result, the most similar SWSj, i.e. the closest associated SWS, can be selected and 
invoked. In order to ensure a certain degree of overlap between the actual request and 
the invoked functionality, we also defined a threshold similarity value T which 
determines the similarity threshold for any potential invocation.    

5 Application: Measurement-based SWS discovery of Weather 

Forecast Web Services 

Our measurement-based SWS discovery approach (Section 4) was actualised within 

an initial proof-of-concept prototype application which mediates between different 

weather forecast Web services. This example use case illustrates how measurements 

can be dynamically mapped to symbolic representations, SWS in this case, by means 

of similarity-computation within CS.  

Here, SWS1, SWS2 and SWS3 provide weather forecast information for different 

locations. Each service has distinct constraints, and thus distinct SWS descriptions. In 

detail, SWS1 is able to provide forecasts for France and Spain while SWS2 and SWS3 

are providing forecasts for the United Kingdom. All services show different Quality 

of Service (QoS) parameters. Three distinct service ontologies O1, O2, and O3 had 

been created, each defining the capability of the respective service by using distinct 

vocabularies. For example, SWS2 considers concepts representing the notions of 

location and QoS together with corresponding instances (see also Table 1): 
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{ }
22)2,(),,( SWSOQoSUKQoScountry ⊂⊂  

By applying the representational approach proposed in Section 3, each concept of the 

involved heterogeneous SWS representations had been refined as a shared CS, while 

instances - defining the capabilities of available SWS - were defined as prototypical 

members. For example, a simplified CS (CS1: Location Space in Figure 5) was 

utilized to refine geographical notions (e.g. country) by using two dimensions 

indicating the geospatial position of the location: 

{ } { } 12211 ),(),( CSlongitudelatitudelplp ==  

The two dimensions latitude and longitude are equally ranked, and hence, a 

prominence value of 1 has been applied to each dimension. Note that each of the 

depicted concepts and instances, such as O2:UK and O3:UK, are distinct and 

independent from each other, and thus might show heterogeneities, such as distinct 

labels, for instance United Kingdom and Great Britain. In the case of O2:UK and 

O3:UK, these two instances are refined by two distinct prototypical members: 

( ){ }12121 -3.435973,55.378051)( CSvvvSWSL i ∈===  and 

( ){ }12131 -3.435963,55.378048)( CSvvvSWSL i ∈=== . Each member has been defined by 

different individuals applying similar, but non-equivalent geodata.  

In addition, a second space (CS2: QoS Space in Figure 5) has been defined by three 

dimensions – latency (in ms), throughput (number of Web services), availability (in 

%): { } ( ){ } 2332211 ,,),,( CStyavailabilithroughputlatencyrprprp ==  
 

O3:QoS-3 O3:UK 

O3:QoS O3:Country
  

SWS Ontology O3 

is-a is-a 

O2:QoS-2 O2:UK 

O2:QoS O2:Country

 

SWS Ontology O2 

is-a is-a 

O1:QoS-1 O1:France 

O1:QoS O1:Country 

SWS Ontology O1 

is-a is-a 

O4:QoS-4 O4:Toulouse 

O4:QoS O4:City  

SWS Request Ontology O4 

is-a is-a 

  CS1 Location Space          CS2 QoS Space        

 
Fig. 5. Grounding assumptions of distinct weather forecast SWS to common CS. 

Potential service consumers define a goal (e.g. SWS4 in Figure 5) together with the set 

of input parameters and the underlying assumptions in terms of measurements. After 

accomplishment of F.1, i.e. the dynamic instantiation of members in their 

corresponding CS to represent the sensor data provided with the actual goal request 

SWS4, all involved goals and SWS were grounded in the same set of CS as depicted in 

Figure 5.  

In that, assumptions of available SWS had been described independently in terms 

of simple conjunctions of instances which were individually refined in shared CS as 

shown in Table 1. As shown in Table 1, the request SWS4 assumes a SWS which 
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provides weather forecast for the location UK (L1(SWS4)) and ideal QoS (Q1(SWS4)) 

demanding zero latency but high throughput and availability. 

Table 1. Assumptions of involved SWS and SWS requests described in terms of vectors in MS1 

and MS2. 

 
Assumption

)..()..( 2121 mSWSiSWSiSWSinSWSiSWSiSWSiSWSi QQQLLLAss ∪∪∪∪∪∪∪=  

 Members Li in CS1 (locations) Members Cj in CS2 (QoS) 

SWS1 
L1(SWS1)={(46.227644, 2.213755)} 
L2(SWS1)={(40.463667, -3.74922)} 

Q1(SWS1)={(155, 2, 91)} 

SWS2 L1(SWS2)={(55.378051, -3.435973)} Q1(SWS2)={(15, 50, 98)} 

SWS3 L1(SWS3)={(55.378048, -3.435963)} Q1(SWS3)={(78, 5, 95)} 

SWS4 L1(SWS4={(55.378048, -3.435963)} Q1(SWS4)={(0,100,100)} 

 

Though no exact SWS matches these criteria, at runtime similarities are calculated 

between SWS4 and the related SWS (SWS1, SWS2, SWS3) through the similarity-based 

discovery function described in Section 4. This led to the calculation of the following 

similarity values:  

Table 2. Automatically computed similarities between SWS request SWS4 and available SWS. 

 Similarities  

SWS1 0.010290349 

SWS2 0.038284954 

SWS3 0.016257476  

Given these similarities, our introduced goal achievement method automatically 

selects the most similar SWS (i.e. SWS2 in the example above) and triggers its 

invocation.  

6 Discussion and Conclusions  

In order to contribute to the vision of the SSW, i.e. the convergence of sensor data and 

formal knowledge representations as part of the Semantic Web, we proposed a 

representational model which grounds ontological representations in CS to overcome 

the symbol grounding problem. The latter is perceived to be as one of the major 

obstacles towards the SSW. While ontological instances are represented as 

prototypical members within a CS, arbitrary sensor data which measures the 

dimensions of the CS can be associated with the most appropriate instance by 

identifying the most similar, i.e. the closest, prototypical member to the vector which 

represents the sensor data. Our approach is facilitated through a dedicated CS 

Ontology which allows to refine any arbitrary concept (instance) as CS (prototypical 

member). In that, our representational model allows to bridge between sensor 

measurements and symbolic knowledge representations by means of similarity 

computation between vectors within CS. 

In addition, we implemented our approach by applying it to the field of SWS and 

utilising it for measurement-based SWS discovery while bridging between symbolic 

SWS representations and sensor-based measurement data. Therefore, we extended the 
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matchmaking algorithm of an existing SWS Broker, IRS-III, with new capabilities 

allowing for measurement-based matchmaking based on our two-fold representational 

model. A first proof-of-concept prototype application utilises our approach to enable 

measurement-based discovery of weather forecast Web services based on measured 

parameters such as the geospatial location and the service QoS.  

The proposed approach has the potential to further support interoperability between 

heterogeneous sensor data and symbolic knowledge representations. While our 

approach supports automatic mapping between ontology instances and sensor-based 

measurements it still requires a common agreement on shared CS. In addition, 

incomplete similarities are computable between partially overlapping CS.  

However, the authors are aware that our approach requires considerable effort to 

establish CS-based representations. Future work has to investigate on this effort in 

order to further evaluate the potential contribution of the proposed approach. 

Moreover, while overcoming issues introduced in Section 2, further issues remain. 

For example, whereas defining instances, i.e. vectors, within a given CS appears to be 

a straightforward process of assigning specific quantitative values to quality 

dimensions, the definition of the CS itself is not trivial. Nevertheless, distance 

calculation relies on the fact that resources are described in equivalent geometrical 

spaces. However, particularly with respect to the latter, traditional ontology and 

schema matching methods could be applied to align heterogeneous spaces. In 

addition, we would like to point out that the increasing usage of upper level 

ontologies, such as DOLCE [9] or SUMO [15], and emergence of common schemas 

for sensor data such as the OpenGIS Observations and Measurements Encoding 

Standard, leads to an increased sharing of ontologies at the concept level. As a result, 

our proposed hybrid representational model becomes increasingly applicable by 

further contributing to the vision of the SSW.  
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Abstract. This paper describes steps towards a common event model
for event representation in sensor information systems. The model builds
on a representation of events, and introduces the idea of semantic-role
from linguistics, attaching semantic annotations to the underlying con-
cepts of formal event representation. We describe how semantic-role an-
notations facilitate linkages across the descriptive layers drawn from sen-
sor data ontologies, allowing us to reason more effectively about causality
within a sensed environment. An overview of the parent system for which
the event model was derived is given to provide application context for
the work. This is followed by a detailed description of the model, together
with a description of how the model is used within a prototype system
that illustrates the model in practice. The paper ends with conclusions
and issues for further work.

1 Introduction

The vision of a semantic reality, as described by Manfred Hauswirth in 2007 [5],
posits a world where sensor technology and the semantic web combine to enable
a single unified view that bridges the gap between virtual and physical space.
The result would be a machine readable semantic layer, rooted in an ontolog-
ical domain-description, making possible a machine navigable information-web
that mirrors reality. The use of ontologies provides a vocabulary and classi-
fication mechanism through which specific domains may be described. These
descriptions are encoded in meta-data used to annotate the data gathered from
the sensor-web. The addition of a semantic layer enables the possibility to rea-
son about and understand the relationships between the ’things’ described in
the ontology-based annotations. The possible benefits and applications for this
machine-readable real-time virtual lens on the world are numerous: health-care
provision, security and crime prevention, traffic management, wild-life preserva-
tion, environmental monitoring, are only a few such examples. Of course, the
potential harmful uses are equally present, but we should not let this prevent us
from exploring the issues and challenges towards this new technology.
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The true semantic reality is some way off. If we consider, however, that
the semantic reality envisioned could, if viewed from a different perspective, be
described as a collection of intersecting semantic sensor webs [10], then we are
closer than we think.

Taking Sheth and Henson [10] as a datum, a semantic sensor-web is seen as
a network of remote, autonomous sensors, which detect changes (events) in the
environment and make these data available as an information source on the Web.
These source data may then be used for information-fusion towards a higher-
level understanding of the sensed environment; for example, weather tracking,
flood monitoring, avalanche prediction, or crime prevention. Each sensor-web
may include a number of different modalities. The addition of a semantic layer
allows for a richer interpretation of the source data.

The Integrated Sensor Information System project (ISIS [1]) maybe viewed
as an example of a semantic sensor-web. Its application is crime prevention on
public transport. Its fundamental structure is a distributed sensor-web, with
both remote and central semantic-based analytics capability, designed to fuse
sensor data towards an understanding of the environment under surveillance
from a security and crime prevention perspective - so called situation awareness.
ISIS is designed to: assert threat levels on public transport using embedded
sensor-array nodes positioned on-board buses as they traverse the transport
network; inform key decision makers of changes in threat-level via a control room
interface; and manage its own network. It is an example of applying semantic
senor technology in a real-world domain.

A key aspect of ISIS is the use of multi-modal sensors (video cameras, mi-
crophones and radio-frequency sensors). Because we are using different modes
of sensor, each type will ’speak ’ a different language. To make sense of this, we
must unify the differences towards a common language, in order that the system
as a whole may be mutually understood. This requirement is not unique to ISIS
and the common approach is to use ontologies to markup identifiable objects
and events as they occur in the data. (We have defined a set of ontologies for
this purpose). In addition to marking-up objects and events, we also want to be
able to reason about the causality of events and their relationship to the objects
involved. We have achieved this by introducing the notion of semantic-role from
linguistics.

The introduction of semantic-role allows us to define intra-ontology-relations
as a common platform for event modelling and causality inferencing. The semantic-
role-relations provide us with the logical linkages we need between the different
elements of the data-model (see figure 1). They allow for a formal interpretation
of the different relationships between the informative elements defined in differ-
ent classes of ontology. Consider this example, “a man approaches the chair ”: in
this case we would assign the semantic-role agent and goal to the man and chair
respectively. (The vocabulary for describing the goal and agent are taken from
the domain ontologies, as are the event descriptions). This structure (agent-
event-goal) may, at a given time, and within the rules of the ontology governing
the event, be evaluated using inference rules, and said to be a true/false state-
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ment. The concepts within each class of ontology describing a specific object-,
or event-class, may now be related by assigning the semantic-role relation to the
participant objects of an event. This allows us to reason about events and search
for specific events involving specific objects identities. The semantic-role rela-
tions between different object and event ontologies in our model, therefore, link
the objects in a scene to the events in a scene across different sensor-modalities.
In this way they act as a semantic-bridge, linking the knowledge-base of the
domain. Reasoning-agents are then able to navigate the information-space via
formally defined semantic relationships. The links between the descriptive layers
that focus on the objects and properties, and the layers describing the events
within a scene, can be now be used to determine who did what. This is not
sufficient for our purpose; we also need to know the when.















Fig. 1: Semantic Role Relations.

Events do not happen without time. We must therefore include time in our
modelling process. Events happen over time intervals, therefore, synchronised
data streams are needed to determine unique object-event-relations as viewed
from different sensors.

In ISIS, sensors, together with their associated analytics, identify objects
in the sensed data from multiple sources. These data need to be unified at
a particular time instance across these multiple sources. For example, a noise
heard by an audio sensor may be matched in time with a video data of the same
scene that shows a person dropping a plate; we may then say that these two
sensors sensed the same event in time; and say: who dropped the plate! Another
key addition to time is the notion of space. An array of sensors, fixed to survey
a bounded environment, are, by their physical location, co-located in space. If
their sensor-view is aligned in both time and space, then we are able to infer
that they are ’watching’ the same scene.

Additional contextual information can also be used to unify a scene. Con-
sider this example: if a distance relationship is known between two finger-print
readers, and at two different time-instances the same finger-print scan is read
at each, we can infer that in the time-interval between readings the person (or
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at least their finger) moved from the location of one reader to the location of
the other. This example begins to show the rich set of information that comes
together to create understanding, and shows the links between objects, events,
sensor activity, physical space, time, and causality.

To begin the process of building a machine readable semantic-skin over the sensor
data captured by the ISIS system, we must define the fundamental elements of
our data-model. It must be capable of capturing the objects, properties, events,
time and space, as well as the semantic-role-relationship between the different
ontology conceptualizations. To do this we adopt the same principals outlined
by Westermann and Jain [11] for a Common Event Model.

This paper describes our interpretation of Westermann’s model towards a
common event model for ISIS. Our model may be seen as the rich descriptive skin
that wraps different layers of abstraction within multiple sensor data sources.
At its core are the unique objects in the scene, captured at each time instant,
with additional layers that describe atomic events, low-level events, higher-level
events and ultimately domain-specific behaviors, each occurring over increasing
time intervals. By linking ontologies across each layer using the notion of a
semantic-role-relation, our model allows for greater understanding of causality
within the sensor data towards an integrated sensor information system. Our
work uses the Video Event Representation Language (VERL) and the Video
Event Markup Language (VEML) presented by Fraccois et al [4] and the theory
of Causality from Hobbs [6] as its base.

This paper is structured as follows: section 2 presents an overview of the ISIS
system that places our work in context. Section 3 gives a full description of the
Common Event Model for ISIS, together with database representation, example
event annotations. A prototype system developed to test and explore issues with
the work is described in Section 4, with details of how our model integrates the
elements of the system. Conclusions and further work are presented in section 5.

2 ISIS System Overview

In this section we present a high-level view of the ISIS system. Although the
application for our system is crime prevention, we believe that by making a
separation between the sensor hardware infrastructure and the language layers
through which the system represents and interprets the sensed environment, ISIS
can be applied to many different domains.

Figure 2 shows a high-level view of the ISIS system. Four key elements exist:

1. A remote sensor-array node. In our application this is located on-board a
bus traversing the transport network. Its main function is to sense the scene
and detect in the data the profile and mix of passengers on-board, and infer
any domain specific behaviors relating to security and crime detection. This
real-time risk inferencing contributes to an on-board risk level. Once the risk
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Fig. 2: Separation of Concerns in the ISIS Infrastructure

level rises above a certain threshold, an alert message is communicated to a
human-operator in a network control centre.

2. A wireless communications infrastructure. Vehicles traversing the transport
system communicate via message exchange with a control room. This is done
over a wireless network.

3. Network Control Centre. The control centre is manned by human operators
- domain experts. It has two main functions: a) to provide real-time visual-
isation of the current state of the sensor-array network, allowing operators
to respond to alert messages as they are triggered, and b) archive and re-
trieval capabilities for storing data and gathering evidence in the event of a
crime. The human operator is an intimate part of the system. Their domain
knowledge is a bridge between the events in the context scene - detected,
annotated and stored in the archive - and the world-view of witnesses, or
other interested parties. As such, the vocabularies used should reflect the
domain under scrutiny (in our case, crime and security). By using ontologies
we are able to semantically map queries from an operator to queries over the
data archive.

4. Common Event Model and Language. Key to unifying the ISIS infrastruc-
ture is a common event model, capable of capturing the physical environment
being surveyed in terms of time and space as well as the objects and rela-
tionships within the scene. The ontological language used to describe each
scene must be shared across all participants in the system - human and pro-
cess. Providing this common language platform has proved a key enabler
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for human interaction with the system when retrieving specific events from
the sensor data archive. It also provides the necessary separation of data-
model from hardware infrastructure. As new domains are added to the event
model ontologies and mapped on to rules within the system model, so new
behaviors and events may be monitored.

We now go on to discuss the breakdown of sensor data towards the fundamental
constructs of the common event model proposed.

2.1 Perceiving the Physical Environment

In the words of Marvin Gaye “The World is just a great big Onion” [2]. This is
a view we take when perceiving the world via the ISIS sensor-web towards the
goal of triggering an alert of a specific security/crime event on-board a bus in
our network.

Figure 3 shows two views on the data. Figure 3a shows how the data stream
is broken down into individual frames (in reality these may be key-frames rather
than every frame). At a time instant we detect within the frame the identifiable
objects and their properties. The objects are assigned a unique identifier. To
determine events, we must examine the difference between frames over a time
interval. At the lowest level - atomic-event - this is done with consecutive frames.
For higher-level events a great time interval is used, as are more frames. Taking
this approach to determining events, we can see that over time, layers within
the data appear that correspond to the activity within the scene. This is the
approach we use to trigger an alert within the system. By considering domain
specific behaviors as a collection of related events, we are able to determine at
what point a set of events may be perceived as a ’looked-for ’ behavior. At this
point the system will raise an alert. This is illustrated in figure 3b.






















(a) Frame analysis of Sensor Data






(b) High-level Event Triggers

Fig. 3: Abstract layers and frame instances within sensor data.
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To achieve this requirement we need a formal language to describe the sam-
pling of the real-world discussed above, and to represent this in a conceptual
model. This language and process of representation is now discussed.

3 Towards a Common Event Model

Figure 4 shows the proposed model. The model has three elementary data types,
namely: property, object (entity) and event. Data elements hold values that cor-
respond to the vocabulary introduced by the ontology/ies for that data element.
Furthermore, each data element may relate to another data element through a
semantic/thematic role. A Time Ontology supports the temporal aspect of the
model such as the temporal granularity, i.e. how often the model is refreshed by
inputs from sensory devices, as well as temporal metrics.

Fig. 4: Common Event Model for the Integrated Sensor Information Systems

The two most important views of the data scheme are Event and Object.
The Event is a constituent for representing actions e.g. approaching, coming
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near or nearer, in space or time. The Object refers to things, or entities, that
we identify in a domain of interest, for example, in an office surveillance model,
objects may include persons, and stationary items such as computers or desks.
The Property refers to the qualities of objects, or is used to describe an event
through a semantic role. For example, location can be a quality assigned to
Objects for a specific time, or it can be a factual datum that completes the
meaning of an action like “approaching a location”. In a domain of interest,
there might be more than one Property; in this case, each Property will be
described by an individual ontology of that Property.

In the proposed model, each instant output of a sensor is uniquely tagged
by the vocabulary provided by the Object and Property ontology, and accom-
panied by a temporal tag. The temporal tag uniquely identifies the source of
information i.e. a sensor device,and its modality; moreover, each temporal tag
has a pointer to real data sampled by a sensor. As an example, a temporal tag
for a surveillance camera identifies one camera in a multiple camera network.
Moreover, the temporal tag provides a pointer to the video frame that has been
captured, at that time instant, and by that camera - a pointer can be a URL of
a jpeg image file.

As the model provides a common vocabulary for annotating the output of
sensors, it is possible to check the output of sensors against each other by defined
relations within the ontologies. A checking procedure can then be employed -
whether for assigning a confidence measure, and/or the discovery of anomalies
- allowing the checking-rules for data consistency to be written for concepts
introduced by ontologies, rather than for each individual sensor. This ability
separates the language of description and inference from the sensor hardware
infrastructure.

As mentioned earlier, another distinct feature of the proposed model is the
use of semantic-role [7] in its structure. As figure 4 (Event Objects and Event
Details) shows, Object and Property are related to Event through a composition
of semantic-role labeled entities. The introduction of semantic-role into the model
plays two major roles: firstly, it holds a relation between concepts which are
defined in two different ontologies, e.g. between concepts in Object Ontology,
and Event Ontology, forming an intra-ontology relationship between the distinct
concepts, and second, semantic-role labels provide linguistics knowledge about
how to interpret and map factual data to/from natural language utterances.

To explain the importance of semantic role, we continue with an example.
The Video Event Representation Language (VERL) [4] is a formal language
for video content modeling. VERL is formed on first order logic to describe an
ontology of events; individuals may then define their own event ontology in a
domain of interest and exploit VERL to describe that event in an ontology. In the
VERL framework, each video instance is accompanied by a Video Event Markup
Language (VEML) tag [3] - VEML describes the content of a video stream
according to its companion VERL. In this matter, our work has benefited from
the underlying logic behind the VERL framework and relevant event detection
procedures. In addition our proposed approach takes advantage of ontologies
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in the supported domain’s background knowledge, and it uses the definitions
of events and their semantics in the event ontology to go one step further, by
introducing semantic-roles into the model proposed by a formal language like
VERL.

A VEML annotation for the sample “approach” event is shown below (exam-
ple 1). The approach event has a certain meaning encoded in rules, conveyed by
the VERL ontology. The definition of the approach event holds two arguments
(argNum1 and argNum2) each with a corresponding value. In addition, other
details such as the start frame and end frame for a specific instance of approach
event in a specific video stream, as well as a name for the event. This complete
VEML annotation refers to a specific event instance.

Example 1. VEML Approach Event
<event type="APPROACH" id="EVENT1">

<begin unit="ms">136</begin>
<end unit="ms">147</end>
<property name="name" value="Person1-approaches-DOOR1"/>
<argument argNum="1" value="Person1"/>
<argument argNum="2" value="DOOR1"/>

</event>

The VEML representation of the approach event above implies the statement
“Person1 approaches Door1” in a human observer’s mind and is encoded in the
definition of “approach” event in the VERL rule ontology. To enable machines
to have such an interpretation from the above video annotation however, we
need a formal description, which tells a machine how to interpret/translate the
VEML annotation to/from natural language. (We say natural language here as
this refers to the expressiveness of the proposed model - this is emphasised by
Westermann and Jain [11]) - this expressiveness requirement can be achieved by
the help of semantic-role.

If we introduce the first argument of an approach event as the agent of
the event and the second argument as the goal of the event, then we are able
to map an utterance like the above statement into/from its companion VEML
representation. The following shows our suggested XML representation for the
first and second arguments of VEML representation (example 2):

Example 2. XML Representation introducing Semantic Role
<event type="APPROACH" id="EVENT1" begin=”T03” end=”T07”>

<argument semantic_role="agent" value="Person1"/>
<argument semantic_role="goal" value="DOOR1"/>

</event>

Because VEML is a formal language it is possible to write unambiguous ontolog-
ical mappings from the VEML representation into the proposed model, where
we know the semantic role of each argument. In effect, the above XML represen-
tation will be encoded through a set of facts organized around the elements of
the data model. To give more insight, the next section describes the architecture
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of a prototype system that uses the event model described above, to integrate
the elements of a doorway surveillance system.

4 Prototype System

The proposed data model has been employed in a prototype system for a doorway
surveillance system (see figure 5). The system automatically captures video from
multiple sources and annotates the video, identifying people as well as their
gender property as they walk and enter into a controlled environment.

The system comprises three main components: a sensor based analysis com-
ponent (shown as camera sensors and their companion Image Analyzers (IA)),
a Data Manager (DM), and an Event Detection (ED) component. The sys-
tem components are implemented as autonomous agents communicating through
TCP/IP connections.

Fig. 5: Block Diagram of the Sensor-based Prototype System.

The Camera Sensors are annotating observations using vocabularies provided
by the time, property, and object ontologies and writing the annotations to a
sub-part of the data model. The Data Manager checks data aggregation and as-
signs confidence measures to annotations. The Event Detection process mines for
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events in the annotated observations and writes these to another sub-part of the
model. The Image Analysers identify people and their location, as well as their
gender, and assign them a unique ID. This is done by mapping extracted fea-
tures using Principal Component Analysis [8,9] to high level concepts described
in the ontologies, for example the type of object.

Figure 6 shows how the proposed model integrates the physical aspects of the
ISIS sensor network. Referring back to figure 3b it is possible to see how the
model integration illustrated in figure 6 produces layers within the data, where
each layer is rooted in the information-base described by the pool of ontologies
that make up the domain. At the core (1st layer) the atomic events are captured
as time invariants. These represent the lowest level of detail infered by the sys-
tem. Each subsequent layer represents a skin of new, infered knowledge, whose
pool of knowledge is drawn from that held by the the previous n− 1 layers.

Fig. 6: A layered view on system inferences. At the core of the system, sensors
are annotating time invariants.

The Event Detection procedure, as it is described above, may be repeated for
several turns. Figure 6 shows this layered view of system inferences. The Atomic
Event Detection procedure detects the most granular events. These are then used
by the system as higher level abstract definitions for inferencing events at the
next level of granularity; this may also be viewed from a temporal granularity
perspective. Such a setup for event detection may be helpful when employing
different communication technologies for data exchange at the physical network
layer, as each communication may refer to specific abstractions captured within
the data.

5 Conclusions and Further Work

This paper introduces a scheme for content modeling of temporal media in an
integrated sensor network. The aim of the work is to move a step closer towards a
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common event model for integrated media data as described by [11]. To do so, an
ontology-supported data model that connects data elements using semantic-role-
relations was introduced. Our aim was to show that by introducing the notion of
semantic-role from linguistics, we are able to better represent semantic content
of sensor-data captured within our sensor-web. The use of ontologies aids the
checking of data aggregation and consistency towards a unified view of the world
under surveillance, independent of the physical sensor devices. Introducing se-
mantic roles in an event modeling framework provides a means for systematic
mapping of the outcome of semantically labeled natural language constituents,
into elements of a data model and vice versa. Moreover, semantic-role-relations
can be used for managing intra-ontology semantic relations, i.e. semantic rela-
tions between concepts that are defined in different ontologies. We showed how
this model may be used to integrate the elements of an integrated sensor in-
formation system, representing infered domain knowledge as layered skins with
increasing information granularity.

The current system is implemented in Prolog with ontologies implemented in
first order logic. Converting the ontologies to a standard ontology language such
as Ontology Web Language is considered for immediate future. Although tempo-
ral reasoning and representing temporal inference rules remains untouched, this
also forms a part of our future work. In addition, the approach proposed raises an
issue regarding the trade-off between the real-time inferencing of events and the
storage of events as higher level abstractions used in higher level reasoning. For
further experimental study and investigation therefore, is the balance between
the granularity of the stored events and those infered in real-time.
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Abstract. Currently millions of sensors are being deployed in sensor networks 
across the world. These networks generate vast quantities of heterogeneous data 
across various levels of spatial and temporal granularity. Sensors range from 
single-point  in  situ  sensors  to  remote  satellite  sensors  which  can  cover  the 
globe. The semantic sensor web in principle should allow for the unification of 
the  web  with  the  real-word.  In  this  position  paper,  we  discuss  the  major 
challenges  to  this  unification  from  the  perspective  of  sensor  developers 
(especially  chemo-sensors)  and  integrating  sensors  data  in  real-world 
deployments. These challenges include: (1) identifying the quality of the data; 
(2) heterogeneity of data sources and data transport methods; (3) integrating 
data  streams  from  different  sources  and  modalities  (esp.  contextual 
information), and (4) pushing intelligence to the sensor level.

Keywords:  Environmental  sensor  networks,  chemo-sensors,  metadata 
standards, sensor intelligence

1   Introduction

The semantic sensor web offers the unique opportunity to unify the real and virtual 
world [1].  The notion of  unifying  the real  world with the virtual  world has  been 
described before as internet-scale control, a concept that which originated with IBM 
researchers Ron Ambrosio and Alex Morrow [2]. The notion of internet-scale sensing 
and how it relates to chemo-sensors has also been examined [3], and this suggestion 
made that the realization of large-scale sensor networks should be based on internet 
enabled  sensors  that  allow  for  external  browsing  of  the  sensor’s  status,  provide 
command and control, and facilitate feedback of information to individuals and other 
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devices (see Fig. 1). Such a view suggests pushing analytics down to the sensor level. 
The  internet-scale  sensing concept  is  very  similar  to  current  proposals  for  the 
Semantic  Sensor Web (SSW) where  such a system will  need  to  be  automatically 
deployed, automatically configured and have tailored delivery of information for a 
variety of users [1]. 

At its simplest a SSW is one where sensor data is annotated with semantic metadata 
to increase interoperability as well as to provide contextual information essential for 
situational knowledge [4]. According to the ‘Sensor Model Language (SensorML) for 
In-situ  and  Remote  Sensors’  discussion  paper  a  sensor  is  "an  entity  capable  of 
observing  a  phenomenon  and  returning  an  observed  value.  A  sensor  can  be  an 
instrument or a living organism (e.g. a person)…", p12, [5]. Clearly, manual sampling 
still takes place in many parts of the world (where it may be a legal requirement) and 
this  results  in  under-sampling.  Under-sampling  can  be  overcome  either  by  using 
remote  sample  collection  devices  (auto-samplers)  or  by  using  sensor  networks  to 
continuously measure over long time periods. However, we should note that the SSW 
will  have  to  deal  with  data  from manual  sampling  (perhaps  via  a  lab-based  data 
management  system)  as  well  as  near  real-time data  streams.  This  is  important  as 
“events” may be detected via SSW but confirmation may require autosamplers to grab 
samples from the same source at the same time, and flag that they are available; an 
operator  has  to  go  to  the  sample,  and  collect  for  a  more  sophisticated  lab-based 
analysis that generate data acceptable in a court.

The variety of existing sensor networks is extensive but the core consistent with 
that  of  SSW in that  it  envisages  a  world in which the status of the real  world is 
monitored  by  large  numbers  of  distributed  sensors,  forming  a  sensor  ‘mesh’  that 
continuously feeds  data into integration  hubs,  where  it  is  aggregated,  correlations 
identified, information extracted, and feedback loops used to take appropriate action 
[6]. Sensor networks provide a web of interconnectivity that provides the multiple 
sources of information that will underpin more accurate decision making. Decision-
making in the SSW will be absolutely essential. Decision making is a complex and 
demanding process which is often constrained in a number of possibly conflicting 
dimensions including quality, responsiveness and cost. We suggest that analytics in 
the SSW will happen across a continuum from one edge of the SSW to the other, 
from the sensors right through to the end user. By this we mean data stream analytics 
can occur on the sensor itself (see Section 4) and from any point in SSW to the end 
user who may apply his or her own analytics to a variety of data streams from the 
SSW. 

Sensor networks are composed of sensor nodes which are the smallest component 
of a sensor network that has integrated sensing and communication capabilities and 
these can be wired (as in some coastal observatories) or wireless (as in wireless sensor 
networks).  The  sensor  node  has  basic  networking  capabilities  through 
communications with a base-station and sometimes other nodes. The simplest sensor 
nodes will have a  microcontroller  to perform basic processing operations but sensor 
nodes  can  also  be  highly  complex,  e.g.  remote  sensing  instruments  on  satellite 
platforms, and which perform complex processing operations locally. 

At present  the culture in SSW/wireless  sensor  network (WSN) research is  very 
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heavily biased towards transducers like thermistors which is understandable as they 
exhibit  almost  ideal  behaviour  -  low cost,  long-life,  very  low-power,  small  form 
factor,  high  accuracy  and  precision,  rugged,  reliable,  etc.  This  bias  colours  the 
expectations of SSW/WSN researchers in that they expect all sensors to conform to 
this ideal. The physical  sensor bias, in short, is the notion that  all sensors act like 
thermistors and thus are held to be reliable or at least reliable enough that questions of 
data  quality  are  relatively  straightforward,  and  the  sensors  are  simple  to  use  and 
require little maintenance. In reality this is invariably not the case for a variety of 
reasons including, leaching of active components from sensing membranes (see [7]), 
physical  damage,  lack  of  selectivity,  non-linear  performance,  baseline  drift  and 
biofouling  (particularly  in  the  marine  environment).  And as  such  the  data  stream 
generated  by  sensors  (especially  environmental  sensors)  is  prone  to  data  quality 
(trust) issues [8]. Physical  sensors which are encapsulated can also be affected by 
extreme  changes  in  temperature.  The  SSW  system  itself  must  be  capable  of 
examining the  streams of  data being imported,  and  both observing  environmental 
events as they take place (e.g. pollution event) or observing erratic behaviour from a 
particular sensor and flagging it as unreliable and requiring attention. An end user 
who accesses data from the SSW should be given information on the quality of the 
data from a sensor or set of sensors and ultimately be given enough information to 
ascertain whether they wish to trust the data or not. But how is the analytics to take 
place ? Should there be a standard? The solution to this may lie in current research on 
the interaction between the rule and the ontology layers of the Semantic Web. 

In dealing with raw data streams we can ask – what does this data stream mean ? 
Generally  speaking  data  streams  are  not  self  identifying  and  we  require  outside 
information,  metadata,  to  understand  the  stream.  The  main  driver  for  the  use  of 
metadata has been data sharing. Scientists generate large amounts of data and often 
we wish to share this data with other researchers. This "data sharing" is made easier 
when the data formats are the same or at least interoperable. However, it is often the 
case that "data sharing" is difficult due to competing standards and a general lack of 
metadata.  In  the marine area  there has  been  much work on establishing metadata 
standards. This work has been driven by practical needs as often because researchers 
are interested in phenomena that cover large areas where several groups or institutes 
are gathering data. To get  a full picture of a particular phenomenon, e.g.  an algal 
bloom along a coast line, a researcher may need to augment the in-situ sensor data 
streams with information from a variety of other sources (e.g. satellite information). 
Therefore in considering SSW applications it is worth examining current standards to 
see if they can fit into a SSW.

Another goal  of  internet-scale sensing and the SSW is to allow for plug’n’play 
sensors (or alternatively deploy-and-forget sensors). It  is worth noting how difficult 
this in the real world. Consider the example of an ocean observatory such as the one 
being developed by the Monterey Bay Aquatic Research Institute (MBARI). MBARI 
highlight  that  the  network  for  the  ocean  observatory  will  use  a  wide  variety  of 
communication links:  optical  fibre,  microwave,  packet  radio,  satellite and acoustic 
[9]. This results in a diversity of throughput, latency and intermittence throughout the 
network. These are factors which will also affect the SSW in the real-world, namely – 
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can the SSW handle a diversity of throughput, latency and intermittence ? There has 
been  work  done  on  data  transport  protocols  that  guarantee  delivery  (e.g.  [IBM’s 
MQTT) but  where  a  sensor  is  continuously sending data  it  may be the case  that 
dropping several packets is not considered a large problem. This is major challenge 
(and perhaps the most obvious) for the SSW – given the heterogeneity of data sources 
and data transport methods how can they all fit neatly into the SSW ?

Therefore, from the perspective of sensor developers (especially chemo-sensors) 
and with respect to integrating sensors data in real-world deployments there are four 
main challenges to the unification of the real and virtual world: 

1. The heterogeneity of data sources and data transport methods that all must 
neatly fit into the SSW. 

2. The quality of the data must be described and understood. 
3. Data  streams  from  different  sources  and  modalities  (esp.  contextual 

information)  which  vary  in  across  many  dimensions,  including  spatial, 
temporal, granularity of data, must be integrated.

4. The SSW must be capable of supporting analytics  (e.g.  decision making) 
across the SSW nodes.

Some of these challenges are inter-related e.g. a solution to integrating data streams 
from different sources and modalities must respond to challenge (1).

2   Integrating data from heterogeneous sensors and modalities: a 
marine example

The question of what constitutes a sensor must not be constrained when considering 
the SSW. For example in the context of environmental monitoring, in-situ wireless 
sensor networks (WSN's) substantially reduce the need for costly labour-intensive on-
site sampling and data collection. However WSN's pose some distinct disadvantages 
and  we  are  often  required  to  consider  alternative  or  complementary  sensing 
modalities.  In  order  to  identify  and  highlight  some of  the  issues  for  the  SSW in 
relation to integrating data from heterogeneous sensors, we will examine the scenario 
of  marine  monitoring.  However  many of  the  issues  outlined  here  can  equally  be 
applied to other application scenarios.

Marine  monitoring  includes  the  observation  of  various  aspects  of  the  marine 
environment.  It  ranges  from  the  detection  of  pollution  and  the  development  of 
harmful algal  blooms to the monitoring of  coastal  features and coastal  erosion. A 
recent analysis of developments in mote-based wireless sensor networks with respect 
to environmental monitoring [6] suggests that there are still many limitations with the 
current  capability  of  these  platforms  for  sustainable  environmental  sensing.  As 
previously  mentioned,  in-situ  sensors  which  are  in  direct  contact  with  the 
environment  are  subject  to  the  problem  of  bio-fouling  and  require  regular 
maintenance. This can result in unreliable and noisy data or gaps in the sensing data. 
Furthermore, the more advanced chemo-sensors are still quite expensive to produce, 
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and at present require regular maintenance (from days to weeks). Therefore only a 
limited  number  of  these  may  be  deployed  in  the  environment  and  are  subject  to 
regular maintenance. Due to the expense and logistical difficulties associated with in-
situ networks and some of the problems outlined above, it is currently not possible to 
monitor  a  wide  area  over  long  periods  of  time  with  current  mote-based  wireless 
sensor networks. Also, in-situ sensor networks may not be suited to certain types of 
applications. For example Alexander and Holman [10] used an alternative sensing 
mechanism (video cameras) to quantify near-shore morphology of a coastal location 
since the turbulent nature of the surf zone often makes it difficult to maintain in-situ 
instrumentation.

2.1   Satellite-based remote sensing

Due  to  the  limitations  outlined  above,  alternative  sensing  modalities  are  often 
considered for the purposes of marine monitoring. Sophisticated satellite sensors are 
very effective for monitoring many parameters such as sea surface temperature, sea 
surface  height,  ocean  currents,  turbidity,  and  chlorophyll  pigment  concentration 
(which subsequently  can be used to determine the amount  of  algal  growth in the 
water). A number of these sensors are orbiting the earth on various satellite platforms. 
These sensors have differing spatial resolutions and operate on satellites with varying 
orbits and orbit cycle times (which subsequently affect geo-spatial comparison and 
temporal resolution).

Some of these sensors only operate in the solar reflective spectral range; hence 
they only gather useful data on cloud-free days during periods of daylight (i.e. when 
illumination  conditions  are  suitable).  For  example,  MERIS  (Medium  Resolution 
Imaging Spectrometer) onboard ESA's Envisat platform is a programmable, medium-
spectral resolution, imaging spectrometer, which operates in this range. Its primary 
purpose is to measure the colour of the ocean and subsequently derive estimates of the 
concentration of parameters such as chlorophyll and suspended sediments. It  has a 
spatial resolution of 1200m over the ocean and 300m over land and coastal zones and 
it completes coverage of the Earth in 3 days [11].

Other  sensors are not subject  to these restrictions and can provide data during 
periods of darkness and cloud-cover. An example of such a sensor is a radar altimeter 
which  transmits  microwave  frequency  pulses  to  the  sea  surface  and  receives  the 
reflected echoes [12].  This type of remote sensor is  often used for measuring sea 
surface  height.  The  Ocean  Surface  Topography  Mission  (OSTM)/Jason-2  is  an 
international  satellite  mission  that  was  launched  in  June  2008  to  extend  the 
continuous climate record of sea surface height measurements. The main instrument 
onboard Jason-2 is an altimeter that measures the distance from the satellite to the 
ocean surface. It repeats its ground track every ten days, covering 95 percent of the 
world's ice-free oceans [13].

Many of these satellite sensor streams also arrive in various formats. Furthermore 
data is not overlaid on one common grid which affects geospatial comparison. There 
exists  a  number  of  European  and  international  projects  aimed  at  improving  the 
interoperability of satellite sensor data; an example of such a project is the Global 
High  resolution  Sea  Surface  Temperature  pilot  project  (GHRSST-PP)  which  was 
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initiated  by  GODAE  –  Global  Ocean  Data  Assimilation  Experiment.  GODAE 
identified that numerical ocean forecasting models require a near real-time supply of 
SST data, sampled often enough to resolve the diurnal cycle, along with an accuracy 
better than 0.2K and a spatial resolution better than 10 km which is only possible by 
combining the best capabilities of different types of sensors. 

In  2002  GODAE initiated  GHRSST-PP  [14]  and  the  data  products  from this 
programme satellite  provide  SST observations  from various  satellite  sensors  in  a 
common  format  (netCDF)  together  with  a  measure  of  uncertainty  for  each 
observation. This means that all satellite SST data are presented in a common format 
and the user doesn’t have to re-code for the ingestion of different satellite data. The 
ancillary data provided allows the user to filter data based on the criteria outlined to 
their specific application. A combined analysis of all available SST data is carried out 
enabling the benefits of using in situ, microwave satellite SST and infra-red satellite 
SST in synergy. Diagnostic datasets are also produced for a number of sites around 
the globe. This is where all available data for a number of areas are gathered and 
subsequently  resampled  onto  a  common  grid  to  assist  intercomparison  and 
characterisation of the various input data streams [15]. 

2.2   Alternatives to Satellite-based remote sensing

Another alternative sensing modality is that of optical airborne remote sensing. Its 
major benefit as opposed to satellite remote sensing is that the user can define its 
operational  and  deployment  characteristics.  It  generally  can  provide  much  higher 
spatial  resolution  data  and  be  deployed  when  atmospheric  (i.e.  cloud  free), 
environmental,  and  solar  conditions  are  acceptable  to  study  specific  phenomenon 
[16]. This can also be coordinated with in-situ sampling for algorithm validation or 
development. In coastal aquatic environments, many processes occur over space and 
time  scales  that  cannot  be  adequately  monitored  using  satellite  remote  sensing 
systems. The use of airborne remote sensing offers unique capabilities that enable 
specific coastal events to be studied. Coastal video systems have also been identified 
as effective tools for coastal monitoring and can be used to monitor coastal erosion, 
sea conditions, etc. A prime example of this is a major European research project 
entitled CoastView [17]. This is an alternative to the more expensive satellite and 
airborne remote sensing data which can also provide data over long periods of time at 
high spatial and temporal scales which is suitable for monitoring inland and coastal 
marine locations. Web cams and CCTV cameras are cheap and easily deployed. In 
fact, there are an abundance of web-cams available on the World Wide Web that can 
be used for monitoring purposes.

The singular use of video and images from cameras can act as a powerful sensing 
tool  but  even  more  so  when  used  in  combination  with  other  sensing  modalities. 
Davidson et  al.  [17] point  out that  despite  the potential  to improve monitoring of 
coastal zones with coastal video systems, that there are many coastal management 
issues that may only be addressed adequately through the integration of additional 
data sources and expert knowledge alongside the image data. For example, O’Connor 
et al have investigated the use of multiple sensing modalities in a river location [18] 
using video feeds with data streams on pH, temperature, turbidity, conductivity and 
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depth. It can provide some context around what is being sensed by monitoring various 
parameters. The conditions surrounding certain events may subsequently be deduced 
e.g. what are the environmental conditions surrounding an algal bloom event, what 
were  the  prior  conditions  to  increased  phosphate  detected  in  the  water.  This  can 
subsequently  be  used  to  automatically  control  the  sampling  frequency  of  in-situ 
sensors. Multiple sensing signals can also be used to deduce the quality of data and 
provide this information to the user. 

2.3   Problems facing SSW from the coalface of the marine enviroment

The SSW should be aiming at providing similar functionality to GHRSST-PP on a 
much larger scale. In effect the SSW must be able to provide an awareness of the 
capabilities, limitations and differences of the sensors and associated data streams. 
This is necessary in order to select appropriate data streams, from the diverse array 
currently  available,  to  meet  the  needs  of  specific  applications.  Other  problems 
outlined in this section were that: (a) the phenomena sensed is broad and this requires 
a broad suite of sensors / instruments which all have to described / classified within 
the SSW; (b) In the real world we will have unreliable and noisy data or gaps in the 
sensing data and the SSW must account for this; (c) data is often in different formats 
(which currently results in users having to recode) and these must neatly fit into the 
SSW; (d) SSW should allow reasoning over heterogeneous multimodal sensor data 
and  push  intelligence  to  the  sensor  level  i.e.  if  condition  (x),  condition(y)  and 
condition(z)  are  met,  start  sampling  more  frequently  or  alert  the  responsible 
authorities  that  samples  need  to  be  taken  immediately,  (e)  the  SSW  should 
accommodate interoperability of data streams and be able to deduce that the sensing 
signal in question is faulty or offline and subsequently provide the alternative. 

All of these problems relate to the four challenges outlined in section 1. Challenge 
(1) which relates to the heterogeneity of data sources covers problems (a), (c), and (e) 
and so appears to be the largest challenge to SSW. While challenge (2) which relates 
to data quality is highlighted by problem (b), and (d) relates to challenge (4) where 
analytics occur across the SSW.

3   Precursors & building blocks of the Semantic Sensor Web

Considering the maxim that it is best not to reinvent the wheel we will outline a 
number of attempts at describing data and sensors. These attempts can be viewed as 
the precursors  to the SSW or as possible components in  future architectures.  One 
movement in sensor research is towards making sensors web-resident thus making it 
possible to remotely discover, access, and use real-time data taken directly from the 
sensors.  These three activities, discovery, access and use are fundamental to working 
with sensors. We will briefly describe three standards of data description and sensor 
description (1) the CDI XML schema [19], (2) MarineXML [20] / CSML and (3) 
SensorML [21]. SensorML falls into the category of sensor description rather than 
just data description. We should stress that these three standards are just three among 
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a larger community of standards, e.g. KeelyBricks [22], MBARI [23] , MIML [24], 
ESML [25] , and OBIS [26]. The common data index (CDI) is designed to be used as 
an index to the individual datasets held by sea-search partners and as such could be 
described as a description of data sets [19]. This metadata about data sets has been 
implemented in an XML format known as the CDI XML schema. . The CDI XML 
format has adopted the ISO19115 metadata standard which is an ISO standard that 
defines  the schemas for  describing geographic  information and services [19].  The 
CDI is supposed to provide enough information to answer the following questions: (1) 
Where? - What is the geographical location of the captured data?  (2) When? - When 
the observation began and when did it  end? What was the sampling interval? (3) 
What?  -  What  was  measured?  (4)  How?  -  What  instruments  were  used?  What 
platforms were involved? (5) Who? - Who is the originator of the data? (6) Where to 
find data? - Which partner holds the data? Is there web access? Are there restrictions?

MarineXML gives a common framework for the data and its structure in terms of a 
catalogue of feature types but does so by largely using the Climate Science Markup 
Language  (CSML)  to  tag  data.  In  fact,  it  is  probably  more  correct  to  say  that 
MarineXML is a framework for allow interoperability of marine data. The framework 
requires the implementation of a common vocabulary for measurement systems by 
use of parameter dictionaries for storing agreed definitions of  phenomena and the 
units  used  to  measure  them.  This  is  the  same  solution  that  the  CDI  uses  for 
instruments and the respective measurements. However, MarineXML adapts the unit 
and  phenomena  dictionary  definitions  inherent  in  the  Climate  Science  Markup 
Language (CSML) in applying a GML encoding of CFStandardNames for referencing 
phenomena dictionaries and UDUnits for unit definitions.  Essentially,  phenomena 
(things that  can be sensed/measured) are measured in terms of  units.  GML has a 
dictionary  of  phenomena  and  associated  units  (of  measurement).  Whereas  CDI 
schema XML is based on ISO19115 and MarineXML is based on ISO 19136 both 
these ISO standards fall into the general ISO 19100 category of geographic standards. 
Thus we use the term "MarineXML/CSML" to refer to the data standard rather than 
the whole data interoperability framework of MarineXML.

As with the CDI XML schema there is the conception that a common framework 
and grammar for expressing the data and its structure is needed and that this also 
necessitates a common vocabulary of measurement systems and feature types. But 
abstractly all marine data in general should have the following attributes: (1) Position: 
all  data  will  have  associated  positional  information;  (2)  Time;  (3)  Units;  (4) 
Tolerances:  accuracy,  precision,  resolution;  (5)  Source;  (6)  Agent:  what  person  / 
organisation carried out the data recording? (7) Method: method by which the data 
was obtained, (8) Promoter: entity that initiates data collection, e.g.  a government 
agency; (9) Original purpose: what was the original purpose of the data collection? 
(10)  Restrictions:  are  there  copyright  restrictions  etc?  (11)  Errors;  (12)  Quality 
control; (13) Form; (14) Format; (15) Metadata.

SensorML  is  an  XML  based  description  of  the  process  or  processes  of 
measurement that a sensor or sensor systems performs. Processes are entities that take 
one or more inputs and through the application of well-defined methods using specific 
parameters, results in one or more outputs.  In addition there is a large amount of 
metadata  related  to  the  sensor  with  respect  to  system  location,  capabilities, 
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characteristics,  contacts,  time  constraints,  legal  constraints,  security  constraints 
amongst others. 

3.1   The problem of granularity and metadata standards

One problem which reoccurs in the creation of SSW systems is - what metadata is 
to be used and how specific should it be? However, a second problem arises when 
organizations  use  different  types  of  metadata  and  this  problem  is  a  question  of 
semantics in the broadest sense – what do the metadata terms actually mean? It may 
be the case that different groups may represent the same data in different ways or use 
codes that have different levels of granularity. The SSW system has to be able to deal 
with all  these problems.  In  Table 1  are listed two parameters which list  the GF3 
codes. In this example the code “DRYT” refers to “Dry bulb temperature”. In Table 2 
we list  a  number of  BODC codes related to  “air  temperature” using a “dry  bulb 
thermometer”. As can be seen the BODC codes list the instrument used, in this case a 
“dry bulb thermometer”, as well as what is being measured. The BODC also appears 
to have more entries for “air temperature” using a “dry bulb thermometer” than GF3. 
The BODC in this case is more detailed and thus has a higher level of granularity and 
different levels pose a problem which data with different tags have to be integrated. 
Does “DRYT” map onto all three BODC codes or is it just equivalent to one of the 
BODC codes? This type of question must be answered by developers of the SSW 
system but also more importantly is must be answered by the community of users. 
The problem of granularity is a general problem for ontology-builders and those who 
wish to map ontologies. This problem also falls under challenge (2), the heterogeneity 
of data sources, when the SSW uses descriptions to aid in classifying data sources the 
choice of appropriate metadata standards is fundamental. 

4.1 Chemo-sensors & the semantic sensor web

Chemo/bio-sensor Networks employ emerging molecular sensing technologies in 
order to monitor specific targets in the environment, and in some cases develop linked 
proxies  for  predictive  use.  The  Adaptive  Sensors  Group  (based  in  Dublin  City 
University)  have  developed  a ground-based  sensing  device,  in  this  case,  an 
autonomous phosphate analyzer [27]. This is a field-deployable system for long-term 
monitoring  of  phosphate  levels  in  natural  waters  was  developed  incorporating 
sampling,  pumping,  reagent  and  waste  storage,  optical  detection,  and  wireless 
communication in a robust  and portable device.  The analyzer  is  more complex in 
design than common sensors such as thermistors and passive infrared sensors as it 
uses “wet chemistry” to analyse phosphate which involves pumps, valves and fluid 
handling, the use of reagents and storage of waste.

The phosphate monitoring analyser is designed to operate autonomously in long-
term field deployments. Figure 2 depicts trial results from a waste water treatment 
plant obtained during a 30+ day trial. A trial of this length is a major achievement as 
many chemo-sensors operate over days rather than weeks to months. Comparable data 
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were  obtained  by  the  plant’s  monitoring  system  suggesting  that  the  wireless 
phosphate analyser can produce reliable data and is sufficiently robust to be operated 
in a completely autonomous manner for at least seven weeks. 

4.1   Analytics: pushing intelligence to the edge of the semantic sensor web 

SmartBay is a program of national infrastructure investment with the aim of enabling 
the  development  of  next  generation  advanced  coastal  and  marine  monitoring  and 
management technologies [28]. The Marine Institute (Ireland) and IBM are engaged 
in a multiyear collaboration to develop and provide advanced capabilities for global 
water  management  solutions.  This  collaboration  is  multifaceted  but  two  major 
outcomes have been the development of an advanced embedded sensor platforms and 
the  development  SmartBay  information  portal.   The  advanced  embedded  sensor 
platforms  are  based on hardware  that  is  ultra  low power  and  embedded software 
builds  IBM  technology  (e.g.  J9  JVM,  Lotus  Expeditor  components,  MQ 
Microbroker).  This platform has been developed to  push intelligence down to the 
sensor level where real-time decision making can take place. 

The autonomous phosphate analyzer [27]  was used as a testbed for the advanced 
embedded sensor platforms. The core idea here is to push intelligence onto the sensor. 
The new system has the following capabilities: (1) Self monitoring - the system is 
able  to  monitor  its  consumables  and  change  sample  rates  in  response  to  outside 
events;  (2)  Scalability  –  the  command  and  control  can  be  updated  remotely  and 
multiple  units  can  be  updated  simultaneously;  (3)  Verifiable  data  transmission  – 
MQTT is used to ensure data is delivered.

The  concentration  of  phosphate  in  the  treatment  plant  is  affected  by  the  local 
ambient weather conditions and so it is desirable to vary the sampling rate as local 
weather  conditions  change.  Rainfall  can result  in  increases  in  phosphate  levels  in 
water  bodies  due  to  increased  run  off  from  agricultural/forestry  land  where 
manure/fertilizers  are  used.  Heavy rainfall  or  storm events  can also lead  to  large 
increases  in  the  flow  in  a  river  which  can  also  increase  phosphate  levels.  The 
inclusion of satellite meteorological data, which is usually available directly on the 
web or  can  be  acquired  from the  local  meteorological  institute,  can  give  a  more 
complete picture of the reasons behind the changes of the pollutants measured. This is 
exemplified by the causal link between deterioration in water treatment effectiveness 
and  the  waste  volume  throughput.   A  major  increase  in  water  volume input  for 
example  due  to  heavy  rainfall  in  the  local  catchment,  may  overwhelm a  plant’s 
capacity and lead to a deterioration in the treated water quality.  For a chemo-sensor 
such as the phosphate system on board analytics may identify events based on local 
changes in phosphate level but data from contextual sources are required to provide 
the full picture. The seamlessly joining of plug-n’-play sensors into the SSW requires 
the system to be able to handle (1) the sensor and (2) contextual information. Can the 
SSW  provide  a  sensor  with  contextual  information  that  can  allow  for  predictive 
modeling? 

Recent developments in wireless sensor node technologies have resulted in devices 
with increased CPU, memory and transmission capabilities. Such developments have 
lead to the possibility of deploying goal based reasoners onto the leaf nodes of the 
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network to engage in real  time, in-situ and intelligent decision making. Given the 
remote operation, potential latency in message transmission and data volume, such 
abilities may be crucial to the successful operation of the sensing system. Each entity 
resident on a node is termed an agent and there may be multiple agents on a single 
node. An example of one such system is AgentFactory Micro Edition (AFME) [29]. 
AFME has  been  successfully  deployed  on  a  wide  range  of  devices  with  varying 
capabilities. For example, it has been used on SunSPOTs to provide adaptive sensing 
capabilities. AFME has also been deployed to the SmartBay Phosphate Monitoring 
system. Using AFME provides a common programming model for the wide range of 
sensor devices that  may possibly be deployed to compliment the core system. As 
mentioned previously, it also provides in network decision making so for example, 
decisions based on trade-offs between system accuracy and power consumption can 
be taken without human intervention in the field. The degree of cleaning of the device 
will impact power consumption, as well as sample quality. In some cases it may be 
vital to have a very precise reading when, for example, no other sensors are within the 
locality. However, when numerous other sensors are also participating, then minor 
inaccuracies may be tolerated as they can be averaged out by using a combination of 
all  sensor  readings.  Further  standard  energy  saving  decisions  such  as  adaptive 
transmission and sampling frequencies can also be taken by the agents.  

In addition to network based decisions, the agents can also provide some analytic 
mechanism to signify important trends in the data. For instance, if a phosphate level is 
breached  as  in  Figure  2,  the  agent  might  decide  to  notify  a  local  or  government 
authority. Such thresholding and event detection can be disseminated to the agents in 
a  similar  way  to  the  policy  level  considerations  such  as  prioritizing  power 
consumption discussed previously. The thresholds may be automatically adjusted on a 
daily or even hourly basis depending on the cumulative levels detected over a given 
period  of  time.  A  code  snippet  from  AFME  which  would  classify  three  high 
phosphate events in the Figure 2 but more importantly a series of actions can occur 
from this ongoing event detection is given below:

newThreshold(?t) > setThreshold(?t)
threshold(?x), reading(?y) > checkReading(?x, ?y);
thresholdBreached(?amount) > informUserAgent(?amount);
severeThresholdBreached(?amount), strictPolicy() > informPlantAgent(?amount); 

Further code from AFME could also detect sensor drift, diagnose operational issues 
and identify further user-defined events and integrate outside data sources.

However,  Figure  2  also  highlights  the  challenges  to  the  SSW.  The  reference 
sensor  (in  red)  does  not  identify  the  first  event  that  is  flagged  by  the  prototype 
phosphate sensor. Which raises the question - is this event real or is it a false positive? 
Many sensors will need access to contextual information and have sophisticated on-
board intelligence to assist in the process of deciding whether detected events are true 
or  false.  The SSW should allow sensors  to  discover,  access,  and process relevant 
contextual  information  -  even  sophisticated  instruments  such  as  the  prototype 
phosphate sensor can benefit from contextual information that improves the quality of 
event detection.  The contextual information should also be quality tagged (e.g. via 
metadata) to identify whether it should be used or not by other nodes in the SSW and 
this quality checking may further require access to other sets of related contextual 
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information; which highlights the challenge of quantifying data quality. It will also be 
the case that false negatives can occur (what events have been missed?) and so as the 
numbers  of  devices  scale  up,  the  complexity  of  decision-making  also  scales  up. 
However,  in  both cases  (false  positives  and  false  negatives),  the  quality  of  event 
detection, and dependent decision making, can be improved.  In the case of false 
positives, the confidence in a positive decision is enhanced through, for example for 
the phosphate sensor, correlation of sampling rate with rainfall level; i.e. water quality 
decreases  when  there  is  a  heavy  rainfall  event  in  the  local  catchment;  therefore 
increase sampling rate to get more independent measurements for cross-validation. 
On  the  other  hand,  if  an  event  is  predicted  from contextual  information  but  not 
detected (possible false negative), the instrument could be instructed to check the data 
using more sophisticated algorithms to see if there is any evidence of an event.  

4.2   Problems facing SSW from the coalface of analytics and chemo-sensors

To summarise our discussion of analytics and chemo-sensors, it  is clear that more 
sophisticated decision making tools are needed to ensure that the incidence of false 
positives and false negatives is minimized. If this is not done then the usefulness of 
the aggregated information will be unacceptably compromised, and WSN effectively 
useless. In short, decision-making tools are required to if we are to achieve workable, 
functioning  internet-scale  sensing.  This  problem  falls  under  challenge  (4)  where 
analytics  may  occur  across  the  whole  SSW  and  challenge  (3)  where  contextual 
information will  have  to  accessed from different  data  streams (and different  data 
sources and modalities). 

5   Conclusions

Currently millions of sensors are being deployed in sensor networks across the world. 
These networks generate vast quantities of heterogeneous data across various levels 
of spatial and temporal granularity. The semantic sensor web will handle sensor data 
ranging from networks to single-point in-situ sensing to remote sensing which can 
cover the globe. This will result in the unification of the web with the real-word. In 
this position paper, we discussed the major challengers to this unification from the 
perspective of sensor developers (especially chemo-sensors) and integrating sensors 
data in real-world deployments. These challenges are:  

1. The heterogeneity of data sources and data transport methods that all must 
neatly fit into the SSW. 

2. Identifying the quality of the data. 
3. Integrating  data  streams  from  different  sources  and  modalities  (esp. 

contextual information).
4. Analytics (e.g. decision making) may occur across the SSW.
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These  challenges  were  discussed  in  relation  to  current  metadata  standards, 
integrating  data  sources  in  the  marine  environment  and  in  relation  to  a  chemical 
analyzer.  These challenges cannot be dealt with separately as we have seen in the 
marine environment  that  the heterogeneity  of  data sources  makes integrating data 
streams  from  different  sources  and  modalities  extremely  difficult,  and  makes 
analytics based on contextual information problematic. The identification data quality 
will also rely on contextual information that is difficult to automatically process given 
the  heterogeneity  of  data  sources.  Thus  heterogeneity  of  data  sources  (and  data 
transport methods) is the core challenge but the other challenges must be dealt with 
for  the  SSW  to  offer  a  fully  scaleable,  integrated  solution  to  environmental 
monitoring.  

Acknowledgements
We gratefully acknowledge the financial  support from Science Foundation Ireland 
under  the  CLARITY  CSET  award  (07/CE/I1147),  the  Marine  Institute  for  the 
Beaufort Marine Research Award in Environmental Sensing (BEAU-SENS-10) and 
Enterprise Ireland Technology Development Award (No: TD/08/111).

References

1. Manfred Hauswirth and Stefan Decker, "Semantic Reality - Connecting the Real and the 
Virtual World," Microsoft SemGrail Workshop, Redmond, Washington, June 21-22, 2007. 

2. R.  Ambrosio,  “Internet-Scale  Data  Acquisition  and  Control  Systems  — Programming 
Paradigm Challenges”, Paper presented at the conference, Creating An Expanded DER 
Industry, November 28–30, Loews L’Enfant Plaza Hotel, Washington, DC. (2001).

3. D. Diamond,  “Internet-scale sensing”, Anal Chem., 15, 278A-286A (2004) 
4. Amit  Sheth,  Cory  Henson,  and  Satya  Sahoo,  "Semantic  Sensor  Web,"  IEEE Internet 

Computing, July/August 2008, p.78-83.
5. Sensor  Model  Language  (SensorML)  for  In-situ  and  Remote  Sensors 

portal.opengeospatial.org/files/?artifact_id=11516
6. D. Diamond, S. Coyle, S. Scarmagnani, and J. Hayes,  “Wireless Sensor Networks and 

Chemo-/Biosensing”, Chem. Rev., 108, 2, 2008, pp. 652-679
7. Sonia  Ramirez-Garcia  and  Dermot  Diamond.  Internet-scale  Sensing:  Are  Biomimetic 

Approaches the Answer?, Journal of Intelligent Material Systems and Structures, 18 (2) 
(2007) 159-164.

8. G. M. P. O’Hare,  D. Diamond, K. T.  Lau, J.  Hayes,  C. Muldoon,  M. J.  O’Grady, R. 
Tynan,  G.  Rancourt,  H.  R.  Kolar  and R.  J.  McCarthy,  IBM Journal  of  Research  and 
Development (2009), submitted for publication.

9. O’Reilly,  T.C.,  et  al.,  2001:  “Smart  Network”  infrastructure  forthe  MBARI  Ocean 
Observing System, Proceedings of theOceans 2001 MTS/IEEE Conf., Honolulu, Hawaii, 
November5-8, 2001.

10. P. Alexander and R. Holman. Quantitative analysis of nearshore morphological variability 
based on video imaging. Marine Geology, 208(1):101{111, 2004.

11. Christopher W. Brown, Laurence N. Connor, John L. Lillibridge, Nicholas R. Nalli and 
Richard V. Legeckis. Remote Sensing of Coastal Aquatic Environments, Chapter 2, An 
introduction to satellite sensors, observations and techniques, 21-49. Springer, 2007.

12. Ocean  Surface  Topography  Mission/Jason-2, 
http://www.nasa.gov/mission_pages/ostm/overview/index.html

75

http://www.nasa.gov/mission_pages/ostm/overview/index.html


13. MERIS Product Handbook, http://envisat.esa.int/handbooks/meris/
14. GODAE – Global Ocean Data Assimilation Experiment, http://www.godae.org/
15. GHRSST  –  Group  for  High  Resolution  Sea  Surface  Temperature,  http://www.ghrsst-

pp.org/index.htm
16. J. S. Myers and R. L. Miller. Remote Sensing of Coastal Aquatic Environments, Chapter 

3, Optical Airborne Remote Sensing, 51-66. Springer, 2007.
17. M. Davidson, M. V. Koningsveld, A. de Kruif, J. Rawson, R. Holman, A. Lamberti, R. 

Medina, A. Kroon, and S. Aarninkhof. The coastview project: Developing video-derived 
coastal state indicators in support of coastal zone management. Coastal Engineering, 54(6-
7):463-475, 2007.

18. E.  O'Connor,  A.  F.  Smeaton,  N.  E.  O'Connor,  and  D.  Diamond.  Integrating  multiple 
sensor  modalities  for  environmental  monitoring  of  marine  locations.  In  SenSys  '08: 
Proceedings of the 6th ACM conference on Embedded network sensor  systems,  pages 
405{406, New York, NY, USA, 2008. ACM.

19. Common Data  Index  (CDI)  -  Metadata  Format  and  full  description  of  XML schema 
-version 2.04. http://www.sea-search.net/cdi_documentation/

20. MarineXML, http://www.iode.org/marinexml/
21. Tutorial  1:  Using  SensorML  to  describe  a  Complete  Weather  Station  (2006). 

http://vast.uah.edu/SensorML/tutorial/SensorML%20Tutorial%201%20-%20Weather
%20Station%20System.pdf

22. Keeley,  R,  Isenor  A,  Linguanti,  J  (2003),  XML  Bricks., 
http://ioc.unesco.org/marinexml/contents.php?id=19 

23. Monterey  Bay  Aquarium  Research  Institute, 
http://www.mbari.org/ssds/ReferenceDocuments/MOOSMetadataSchema.xsd

24. Marine Information Mark-up Language, http://www.rdc.uscg.gov/iws/pubs/miml.pdf
25. Earth Science Mark-Up Language, http://esml.itsc.uah.edu/index.jsp 
26. Ocean Biogeographic Information System, http://iobis.org//obis/obis.xsd 
27. C.M.  McGraw,  S.E.  Stitzel,  J.  Cleary,  C.  Slater  and  D.  Diamond.  Autonomous 

microfluidic system for phosphate detection, , Talanta 71 (2007) 1180–1185.
28. SmartBay, http://www.marine.ie/home/services/operational/SmartBay/
29. Muldoon,  C.,  O'Hare,  G.M.P.,  O'Grady,  M.,  Tynan,  R.,  Agent  Migration  and 

Communication in WSNs, 1st International Workshop on Sensor Networks and Ambient 
Intelligence, December 1-4, 2008, Dunedin, New Zealand.

Table 1.  GF3 codes for a number of parameters captured by M3A buoys.  

Parameter Unit GF3 codes
Air Temperature Celsius DRYT
Wind Speed m/sec WSPD
… … …

Table 2.  BODC codes for ‘Air temperature’ using a dry bulb thermometer.  

Parameter Description BODC codes
Air Temperature “AirTemp”:Temperature  of  the 

atmosphere  by  dry  bulb 
thermometer

CDTBSS01

Air Temperature “AirTemp”:Temperature  of  the 
atmosphere  by  dry  bulb 
thermometer

CDTASS02

Air Temperature “AirTemp”:Temperature  of  the 
atmosphere  by  dry  bulb 
thermometer

CDTASS03

76

http://www.marine.ie/home/services/operational/SmartBay/
http://www.iode.org/marinexml/
http://www.ghrsst-pp.org/index.htm
http://www.ghrsst-pp.org/index.htm
http://envisat.esa.int/handbooks/meris/


0

1

2

3

4

5

30
/0

6/
20

08

04
/0

7/
20

08

08
/0

7/
20

08

12
/0

7/
20

08

16
/0

7/
20

08

20
/0

7/
20

08

24
/0

7/
20

08

28
/0

7/
20

08

01
/0

8/
20

08

05
/0

8/
20

08

09
/0

8/
20

08

13
/0

8/
20

08

Date

P
ho

sp
ho

ru
s 

co
n

ce
nt

ra
tio

n
 (

m
g

 L
 -1

)

P (online monitor)

P-PO4 (prototype sensor)

Fig. 2. Chemo-sensor in action: trial results. The phosphate levels of a waste water treatment 
plant obtained with a prototype analyzer during a 30+ day trial are shown. Comparable data 
were obtained by the plant’s monitoring system for reference values (on-line monitor).  The 
AgentFactory Micro Edition operating on the phosphate analyzer detects three high phosphate 
events based on the prototype analyzer data using the indicated threshold, which can set off a 
chain of remedial action.  However, the first event is possibly a false positive as the reference 
system does not  indicate  high levels.   Furthermore,  high levels  of  phosphate  are  indicated 
towards the end of the trial by the reference monitor, but not by the prototype system, which is 
potentially a false negative.

High Phosphate Level Events

Fig.  1. Establish  the  chain.  All 
analytical  measurements  must  be 
linked  to  realize  the  concept  of 
Internet-scale  sensing.  Localized 
control  of  important  parameters  is 
maintained,  but  the  information  is 
shared  with  external  users  via  the 
Internet.

77



. 
¶ 
¶ 
¶ 
¶ 
¶ 
¶ 
.¶ 

 

78



An Ontological Representation of Time Series 
Observations on the Semantic Sensor Web 

Cory A. Henson1, Holger Neuhaus2, Amit P. Sheth1, Krishnaprasad Thirunarayan1, 
and Rajkumar Buyya3 

 
1 Kno.e.sis Center, Department of Computer Science and Engineering 

Wright State University, Dayton, OH 45435, USA 
{cory, amit}@knoesis.org 

 
2 CSIRO Tasmanian ICT Centre 

GPO Box 1538, Hobart, TAS, 7001, Australia 
holger.neuhaus@csiro.au 

 
3 GRIDS Lab, Department of Computer Science and Engineering 

University of Melbourne, Australia 
raj@csse.unimelb.edu.au 

Abstract. Time series observations are a common method of collecting sensor 
data. The Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) 
provides a standard representation for time series observations within the 
Observations and Measurements language, and therefore is in heavy use on the 
Sensor Web. By providing a common model, Observations and Measurements 
(O&M) facilitates syntax-level integration, but lacks the ability to facilitate 
semantic-level integration. This inability can cause problems with 
interoperability between disparate sensor networks that may have subtle 
variations in their sensing methods. An ontological representation of time series 
observations could provide a more expressive model and resolve problems of 
semantic-level interoperability of sensor networks on the Semantic Sensor Web. 
In this paper, such an ontology model is proposed, as well as a real-world use-
case from sensor networks currently measuring rainfall in the South Esk river 
catchment in the North East of Tasmania, Australia. 

Keywords: Observations and Measurements, Ontology, Semantic Sensor Web, 
Sensor Web Enablement, Time Series Observations  

1   Introduction 

Sensors are quickly becoming ubiquitous and can be found in a vast range of 
environments. Therefore, not surprisingly, there are multitudes of ways that sensors 
generate and represent observation data. Such differences may include the data 
formats, units of measurement, spatiotemporal resolution, domain of application, 
quality of observation, and the characteristics of the data over time, e.g. frequency, 
percentage of data loss, when data loss occurs, etc. All of these factors affect the 
integration of data from different sensors measuring phenomena.  
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This is equally true in the water resource management domain. In the Tasmanian 
South Esk river catchment, several sensor systems of different types are deployed for 
measuring rainfall. These sensors provide a data rich environment for continuous flow 
forecasting using Data Driven Modeling (DDM). When integrating data from 
different sources or mapping data to sensor (or measurement) information models, the 
semantics of the data need to be well understood. It is also important to register the 
semantics of shared data elements so that consumers of the data (any system designer, 
domain experts, and end users) can precisely determine the exact meaning of data 
occurring at interfaces between components of the information models. Of all the 
possible types of sensor data models, we focus on time series. 

A time series is a sequence of observations which are ordered in time. A time 
series observation model is a common method of representing sensor data with a 
linear temporal order.  As such, time series observations are utilized in a wide variety 
of fields such as statistics and signal processing for advanced analysis and forecasting. 
Many sensing systems on the Sensor Web use data collection methods that naturally 
lend themselves to representation as time series observations. Accordingly, the OGC 
Sensor Web Enablement (SWE) [1] provides a standard representation for time series 
observations within the Observations and Measurements (O&M) language [2]. O&M 
is an XML-based model for representing sensor observations on the Web. By 
providing a common model, O&M facilitates syntax-level integration, but lacks the 
ability to facilitate semantic-level integration. In this paper, we intend to show how 
time series observations can be modeled in an ontology that can (in future work) be 
used to overcome problems of integration and querying. One integration problem 
results from the fact that while different sensor networks may represent sensor 
observation data using a common model, they may use various sensing methods that 
are not explicitly represented. One query problem results from the necessity to know 
a-priori the sensing method used to generate a dataset (which, again, is not explicitly 
represented) in order to correctly interpret a query result. Both can be overcome 
through a semantic description of time series observations.  

In order to make our discussion more clear, we will use descriptions of the sensor 
systems monitored by the CSIRO Tasmanian ICT Centre as a running example. As of 
this writing, there are twenty rain gauge sensor systems in Tasmania monitored by the 
Australian Commonwealth Scientific and Industrial Research Organization (CSIRO). 
The sensing systems at CSIRO adhere to the OGC-SWE standards and publish 
observation data in O&M. In particular, the rain gauge sensors publish rainfall 
observation data with the om:TimeSeriesObservation model (the om namespace is 
used to represent concepts in O&M). These rain gauge sensors collect rainfall in a 
bucket (or cup) and, when filled, the bucket tips and empties its contents. Because the 
system is aware of how much rainfall is required to fill the bucket, the rainfall level 
can be accurately recorded by monitoring when the bucket tipping events occur. 
Figure 1 shows an illustration of a rain gauge sensor [3]. 
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Figure 1.  Illustration of a rain gauge sensor [3]. 

 
The remainder of the paper is organized as follows.  Section 2 presents 

background material on the sensor network in the Tasmanian South Esk river 
catchment, the Sensor Web Enablement, and Semantic Web. Several different types 
of time series observations are introduced in Section 3. In Section 4, an ontological 
representation of time series observations is discussed. Finally, conclusions and future 
work are detailed in section 5.  

2   Background 

Scientists have long understood the importance of quality time series observations for 
conducting research and analyzing data. This is also true for the sensor network 
project in the South Esk river catchment in Tasmania. The models for time series 
observations, as described in this paper, are reliant on two sets of standardizations, (1) 
the Semantic Web languages defined by the World Wide Web Consortium (W3C), 
and (2) the Observations and Measurements (O&M) language defined by the Open 
Geospatial Consortium (OGC) Sensor Web Enablement (SWE). This combination is 
typical of applications on the Semantic Sensor Web [4][5]. 

2.1   Sensor Network in the Tasmanian South Esk River Catchment 

Drought is a common problem that has been plaguing Australia for many years. The 
state of Tasmania is especially affected, with drought conditions worsened in 2008 
and many areas reporting no significant rainfall for three years [6]. Consequently, 
water has become an exceptionally scarce resource. The inefficient management of 
water resources is exacerbated by a deficiency of quality information about 
Australia’s water conditions. To overcome this problem, CSIRO has developed the 
‘Water for a Healthy Country’ Flagship [7], a national research program addressing 
sustainable management of Australia’s water resources. As part of this program, the 
CSIRO Tasmanian ICT Centre aims at establishing a technology platform to provide 
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water information systems delivering dynamic, timely reporting and forecasting of 
water resources.   This will be achieved through four key research areas that will [7]: 

1. Enable water information interoperability through standards development, web 
service integration, semantic web, model interoperability. 

2. Improve the usability and availability of water data through development in 
wireless and wired sensor networks, improved telemetry integration, novel 
hydrologic measurement techniques, data analysis and data assimilation methods. 

3. Develop next generation modeling and forecasting tools through interoperable, 
modular computer models, advanced computing algorithms and powerful 
scenario planning tools. 

4. Develop improved reporting and visualization tools through new interoperable 
and modular tools, products and technologies for operating, reporting and 
accounting of water resources at multiple scales. 

The CSIRO Tasmanian ICT Centre is building a test bed system that attempts to 
incorporate sensors, models and data from multiple organizations operating within the 
South Esk Catchment [8]. The South Esk Catchment covers an area of approximately 
3350 square kilometers and experiences widely varying climatic conditions with 
rainfall ranging from 500 mm in the low lying areas to 1500 mm in the highlands. 
Consequently, there is a high spatial variability in runoff yield [9]. Runoff yield is the 
quantity of water that travels over the land surface, through the soil, and groundwater, 
and is discharged into surface streams (i.e. the amount of water that leaves the 
catchment). There is an opportunity to improve water planning and management 
through continuous monitoring and forecasting of river flow. The project will explore 
how environmental sensors, hydrological models and decision support tools can be 
combined in a pluggable hydrological sensor web for continuous flow forecasting. A 
pluggable hydrological sensor web would have the ability to integrate any sensor into 
the web-based system without explicit re-configuration. 

2.2   Sensor Web Enablement  

The Open Geospatial Consortium established the Sensor Web Enablement as a suite 
of specifications related to sensors, sensor data models, and sensor Web services that 
will enable sensors to be accessible and controllable via the Web [1]. The following 
list describes the languages and service interface specifications of the SWE: 
• Observations & Measurements (O&M) - Standard models and XML Schema for 

encoding observations and measurements from a sensor, both archived and real-
time. 

• Sensor Model Language (SensorML) - Standard models and XML Schema for 
describing sensors systems and processes; provides information needed for 
discovery of sensors, location of sensor observations, processing of low-level 
sensor observations, and listing of taskable properties. 

• Transducer Model Language (TransducerML) - Standard models and XML 
Schema for describing transducers and supporting real-time streaming of data to 
and from sensor systems. 
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• Sensor Observations Service (SOS) - Standard web service interface for 
requesting, filtering, and retrieving observations and sensor system information. 
This is the intermediary between a client and an observation repository or near 
real-time sensor channel. 

• Sensor Planning Service (SPS) - Standard web service interface for requesting 
user-driven acquisitions and observations. This is the intermediary between a 
client and a sensor collection management environment. 

• Sensor Alert Service (SAS) - Standard web service interface for publishing and 
subscribing to alerts from sensors. 

• Web Notification Services (WNS) - Standard web service interface for 
asynchronous delivery of messages or alerts from SAS and SPS web services and 
other elements of service workflows [1]. 

2.3   Semantic Web 

The Semantic Web, as described by the W3C Semantic Web Activity, is an evolving 
extension of the World Wide Web in which the semantics, or meaning, of information 
on the Web is formally defined [10]. Formal definitions are captured in ontologies, 
making it possible for machines to interpret and relate data content more effectively. 
In this project, we use the Web Ontology Language (OWL) [11] to encode ontologies 
and the general purpose rule engine for the Jena Semantic Web Framework to encode 
rules [12].  

2.4   Observations and Measurements Ontology 

As mentioned in the introduction, time series observations are often encoded in 
O&M. Several attempts have been made in creating an ontological representation of 
O&M. Probst [13] performs an ontological analysis of the core O&M terms. Through 
this analysis, an OWL encoding of O&M is aligned with the DOLCE [14] 
foundational ontology. In a more recent attempt [5], the authors generate an OWL-DL 
encoding of O&M, called O&M-OWL, in order to reason over sensor data and infer 
complex features. The ontological representation of time series observations 
discussed in this paper uses O&M-OWL. The relationships discussed in Section 4.1 
were originally described in [5] (with the exception of om-owl:memberOf and without 
the detailed RDF/XML serialization provided here). In order to avoid confusion, from 
this point forward we will refer to O&M in OWL as O&M-OWL and prefix concepts 
with the namespace om-owl, and refer to O&M in XML as O&M-XML and prefix 
concepts with the namespace om-xml. 

3 Types of Time Series Observations 

There are various ways to monitor, collect, and represent sensor data with time series 
observations. At the CSIRO Tasmanian ICT Centre, there are four distinct methods of 
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monitoring rain gauge sensors, which can be divided along two dimensions: (1) 
cumulative vs. non-cumulative and (2) interval-based vs. event-based.  

 
• Cumulative systems continually increment the observation result value as the 

monitoring progresses through time.   
• Non-cumulative systems are not incremental and thus provide an independent 

value for each observation result. 
 

• Interval-based systems generate observation result values at discrete points 
within a specified interval of time. 

• Event-based systems generate observation result values only when a defined 
event occurs.  

 
Interval-based/Non-cumulative systems generate independent observation result 

values at fixed time points.  Each observation result value represents the amount of 
rainfall measured since the end of the previous interval. Figure 2 shows an example 
with fixed time points every thirty minutes from 1:00 AM to 3:00 AM. The vertical 
lines represent the fixed intervals and the dots represent observation result values that 
have measured rainfall.  Each bucket tip event represents 0.2 mm of measured 
rainfall. So, from this example, we can see that between 1:00 AM and 1:30 AM, one 
bucket tip event occurred.  No such events occurred between 1:30 AM and 2:00 AM.  
Two events occurred between 2:00 AM and 2:30 AM, and one between 2:30 AM and 
3:00 AM. 

 

 

Figure 2.  Interval-based, non-cumulative time series observation graph 

 
Interval-based/Cumulative systems generate incremental observations result 

values at fixed time points. Each observation result value represents the cumulative 
amount of rainfall measured since the start of the process. Figure 3 shows an example 
with fixed time points every thirty minutes from 1:00 AM to 3:00 AM. The vertical 
lines represent the fixed intervals and the dots represent the incremental addition of 
observation result values measuring rainfall.  So, from this example, we can see that 
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between 1:00 AM and 1:30 AM, one bucket tip event occurred.  Between 1:00 AM 
and 2:00 AM, still only one bucket tip occurred. Three events occurred between 1:00 
AM and 2:30 AM, and four between 1:00 AM and 3:00 AM. 

 

 

Figure 3.  Interval-based, cumulative time series observation graph 

 
Event-based/Non-cumulative systems generate independent observations result 

values whenever a defined event occurs. Each observation result value represents the 
amount of rainfall measured since the previous event. Figure 4 shows an example 
with a total time interval from 1:00 AM to 3:00 AM. The vertical lines represent 
bucket tip events and the dots represent observation result values that have measured 
rainfall.  So, from this example, we can see that at 1:20 AM the first bucket tip event 
occurred, the second at 2:10 AM, the third at 2:20 AM, and the fourth at 2:50 AM. 

 

 

Figure 4.  Event-based, non-cumulative time series observation graph 

 
Event-based/Cumulative systems generate incremental observation result values 

whenever a defined event occurs. Each observation result value represents the 
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cumulative amount of rainfall measured since the start of the process. Figure 5 shows 
an example with a total time interval from 1:00 AM to 3:00 AM. The vertical lines 
represent bucket tip events and the dots represent the incremental addition of 
observation result values measuring rainfall.  So, from this example, we can see that 
at 1:20 AM the first bucket tip event occurred, the second at 2:10 AM, the third at 
2:20 AM, and the fourth at 2:50 AM. 
 

 

Figure 5.  Event-based, cumulative time series observation graph 

 
The authors admit there could be additional methods and categories; however, we 

hope these will be adequate and are sufficiently general for the current discussion. 
Table 1 shows how many rain gauge systems monitored by the CSIRO Tasmanian 
ICT Centre have the properties described above. 

 

Table 1.  Number of rain gauge systems with the selected properties. 

 Non-cumulative Cumulative 
Interval-based 7 7 
Event-based 3 3 

4 Representation of Time Series Observations 

A time series observation is a specialized observation collection. More specifically, if 
the member observations of an observation collection have the same feature of 
interest, the same observed property, and different sampling times, this set of 
observations may be represented as a time series observation whose sampling time is 
the period encompassing all the member times [2].  An example would include a rain 
gauge sensor that measures rain levels at discrete time intervals. In order to create an 
ontological representation of time series observations, there are three significant 
classes to be discussed: a class describing a basic observation (om-owl:Observation), 
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a class describing an observation collection (om-owl:ObservationCollection), and a 
class describing a time series observation (om-owl:TimeSeriesObservation). Each of 
these classes defines properties. However, in comparison to an XML-based 
specification, such as O&M-XML, an ontology specification, such as O&M-OWL, 
enables the explicit representation of typing constraints on properties in terms of 
domain and range.  This is exposed through the RDF/XML code below. 

4.1   Observation Class (om-owl:Observation) 

An observation is an act of observing a property or phenomenon, with the goal of 
producing an estimate of the value of the property [2]. O&M-OWL provides the 
following relationships for observations (with RDF/XML encoding): 

 
• om-owl:featureOfInterest is a “representation of the observation target, being the 

real-world object regarding which the observation is made [2].” Example 
includes a coverage feature, such as the South Esk Catchment in Tasmania, 
Australia. 

 
<owl:ObjectProperty rdf:about="#featureOfInterest"> 

<rdfs:d omain rdf:resource="#Observation"/> 
<rdfs:range rdf:resource="#Feature"/> 
<owl:inverseOf rdf:resource="#propertyValueProvider"/> 

</owl:ObjectProperty> 
 

• om-owl:observedProperty “identifies or describes the phenomenon for which the 
observation result provides an estimate of its value. It must be a property 
associated with the type of the feature of interest [2].” Example includes a rainfall 
property. 

 
<owl:FunctionalProperty rdf:about="#observedProperty"> 

<rdf:t ype rdf:resource= 
"http://www.w3.org/2002/07/owl#ObjectProperty"/> 

<rdfs:domain rdf:resource="#Observation"/> 
<rdfs:range rdf:resource="#PropertyType"/> 

</owl:FunctionalProperty> 

 
• om-owl:samplingTime is the “time that the result applies to the feature-of-interest 

[2],” or, in other words, it is the time when the phenomenon was measured in the 
real-world. Example includes a single instant sampling time at 5:00 am on Jan. 
26, 2009. 

 
<owl:FunctionalProperty rdf:about="#samplingTime"> 

<rdf:ty pe rdf:resource= 
"http://www.w3.org/2002/07/owl#ObjectProperty"/> 

<rdfs:domain rdf:resource="#Observation"/> 
<rdfs:range rdf:resource="#Time"/> 

</owl:FunctionalProperty> 

 
• om-owl:observationLocation is the location of an observation event; usually 

associated with the location of the sensor when an observation occurred (i.e., 
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om:samplingTime). Example includes a single point observation location with 
latitude, longitude, and elevation coordinates. 

 
<owl:FunctionalProperty rdf:ID="observationLocation"> 

<rdf:ty pe rdf:resource= 
"http://www.w3.org/2002/07/owl#ObjectProperty"/>     

<rdfs:domain rdf:resource="#Observation"/> 
<rdfs:range rdf:resource="#Location"/> 

</owl:FunctionalProperty> 

 
• om-owl:result is an “estimate of the value of some property generated by a 

known procedure [2].”  Example includes a rain-level measurement result of 5.2 
mm. 

 
<owl:FunctionalProperty rdf:about="#result"> 

<rdf:ty pe rdf:resource= 
"http://www.w3.org/2002/07/owl#ObjectProperty"/> 

<rdfs:domain rdf:resource="#Observation"/> 
<rdfs:range rdf:resource="#ResultData"/> 

</owl:FunctionalProperty> 

 
• om-owl:procedure is a “description of a process used to generate the result. It 

must be suitable for the observed property [2].” Note that in this schema a sensor 
is defined as a type of process, along with other methods, algorithms, 
instruments, or systems of these. Example includes a rain gauge sensor as the 
procedure. 

 
<owl:FunctionalProperty rdf:ID="procedure"> 

<rdf:ty pe rdf:resource= 
"http://www.w3.org/2002/07/owl#ObjectProperty"/>     

<rdfs:domain rdf:resource="#Observation"/> 
<rdfs:range rdf:resource="#Process"/> 
<owl:inverseOf rdf:resource="generatedObservation"/> 

</owl:FunctionalProperty> 

 
• om-owl:memberOf is a relation to a set of observations, or observation collection. 

Example includes a rainfall observation that is a member of a time series 
observation collection. 

 
<owl:TransitiveProperty rdf:ID="memberOf"> 

<rdf:ty pe rdf:resource= 
"http://www.w3.org/2002/07/owl#ObjectProperty"/> 

<rdfs:domain rdf:resource="#Observation"/> 
<rdfs:range rdf:resource="#ObservationCollection"/> 
<owl:inverseOf rdf:about="#member"/> 

</owl:TransitiveProperty> 

4.2   Observation Collection Class (om-owl:ObservationCollection) 

An observation collection is composed of a set of member observations [2]. O&M-
OWL provides the following relationship for observation collections (with RDF/XML 
encoding): 
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• om-owl:member is a relation from an observation collection to a constituent 

observation (inverse of om-owl:memberOf). Example includes time series 
observation collection that has rainfall observations as members. 

 
<owl:Tr ansitiveProperty rdf:about="#member"> 

<rdf:type rdf:resource= 
"http://www.w3.org/2002/07/owl#ObjectProperty"/> 

<rdfs:domain rdf:resource="#ObservationCollection"/> 
<rdfs:range rdf:resource="#Observation"/> 
<owl:inverseOf rdf:resource="#memberOf"/> 

</owl:TransitiveProperty> 

4.3   Time Series Observation Class (om-owl:TimeSeriesObservation) 

In addition to being a specialized type of observation collection, a time series 
observation is also considered a type of observation. Therefore, om-
owl:TimeSeriesObservation inherits properties from both om-owl:Observation and 
om-owl:ObservationCollection described above. While om-
owl:TimeSeriesObservation is a sub-class of om-owl:Observation, it does not 
normally make use of the om-owl:result relationship. (It is conceivable that this 
property could be useful when modeling cumulative observation result values, 
however, this is not used in the current model for reasons to be detailed below.) On 
the other hand, om-owl:samplingTime is a very important property for om-
owl:TimeSeriesObservation, whose sampling time is the period encompassing all the 
member times [2]. Remember that the sampling time of event-based systems is based 
on when an event occurred and the sampling time of interval-based systems is based 
on fixed-time points. In order to make this distinction explicit, we have created two 
sub-classes of om-owl:TimeSeriesObservation, including om-
owl:EventBasedTimeSeriesObservation and om-
owl:IntervalBasedTimeSeriesObservation, and two sub-properties of om-
owl:samplingTime, including om-owl:eventBasedSamplingTime and om-
owl:intervalBasedSamplingTime. 
 
<owl:ObjectProperty rdf:about="#samplingTime"> 

<rdfs: domain rdf:resource="#Observation"/> 
     <rdfs:range rdf:resource="#Time"/> 
</owl:ObjectProperty> 
<owl:ObjectProperty rdf:ID="eventBasedSamplingTime"> 

<rdfs:subPropertyOf rdf:resource="#samplingTime"/> 
<rdfs:domain rdf:resource="#EventBasedTimeSeriesObservation"/> 

</owl:ObjectProperty> 
<owl:ObjectProperty rdf:ID="intervalBasedSamplingTime"> 

<rdfs:subPropertyOf rdf:resource="#samplingTime"/> 
<rdfs:domain rdf:resource="#IntervalBasedTimeSeriesObservation"/> 

</owl:ObjectProperty> 

 
From the O&M specification, we know that a time series observation is a 

specialization of an observation collection with the restriction that all member 
observations must share the same feature of interest and the same observed properties 
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[2]. Such constraints are difficult to represent in an XML encoding.  In O&M-XML, 
these constraints are simply implied through the wording of the specification with the 
intention that implementations will faithfully adhere to the intended definition.  While 
difficult for XML representations, such constraints may be naturally represented in an 
OWL-DL ontology using the OWL property restrictions. In the code below, we show 
an observation sub-class, csiro:SouthEskCatchmentRainGuageObservation, which 
contains the restriction that all instantiated observations of this type have an observed 
property csiro:rainfall and a feature of interest csiro:SouthEskCatchment through the 
owl:hasValue restriction.  (The csiro namespace is used in an extension of O&M-
OWL with concepts targeted toward the CSIRO Tasmanian ICT Centre’s sensing 
systems). 
 
<owl:Class rdf:about= 

"http: / /www.csiro.au#SouthEskCatchmentRainGuageObservation"> 
<rdfs:subClassOf rdf:resource="#Observation"/> 
<rdfs:subClassOf> 

<owl:Restriction> 
<owl:onProperty rdf:resource="#observedProperty"/>                     
<owl:hasValue rdf:resource="http://www.csiro.au#rainfall"/> 

     </owl:Restriction> 
</rdfs:subClassOf> 
<rdfs:subClassOf> 

    <owl:Restriction> 
<owl:onProperty rdf:resource="#featureOfInterest"/> 
<owl:hasValue rdf:resource= 

"http://www.csiro.au#SouthEskCatchment"/> 
      </owl:Restriction> 

</rdfs:subClassOf> 
</owl:Class> 

 
In addition, a time series observation sub-class, 
csiro:SouthEskCatchmentRainGuageTimeSeriesObservation, contains the restriction 
that all instantiations of this type of time series observation have all member 
observations of type csiro:SouthEskCatchmentRainGuageObservation through the 
owl:allValuesFrom restriction. 
 
<owl:Class rdf:about= 
"http: / /www.csiro.au#SouthEskCatchmentRainGuageTimeSeriesObservation”> 

<rdfs:subClassOf rdf:resource=”#TimeSeriesObservation”/> 
<rdfs:subClassOf> 

<owl:Restriction> 
<owl:onProperty rdf:resource="#member"/> 
<owl:allValuesFrom rdf:resource= 

"http://www.csiro.au#SouthEskCatchmentRainGuageObservation"/> 
</owl:Restriction> 

</rdfs:subClassOf> 
</owl:Class> 

 
Through this combination of OWL property restrictions, we are able to more 
faithfully and explicitly represent the concept of om:TimeSeriesObservation. 
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4.4   Generating Time Series Observation Instances  

Given the heavy use of O&M-XML on the Sensor Web, it seems reasonable that 
translating O&M-XML documents into O&M-OWL instances could be a popular 
means of populating the ontology knowledge base. When generating instances of om-
owl:TimeSeriesObservation, several property values can be directly translated from 
corresponding O&M-XML documents, including: om-owl:featureOfInterest, om-
owl:observedProperty, om-owl:samplingTime, om-owl:observationLocation, and om-
owl:procedure. The individual om-owl:Observation instances share many property 
values with the om-owl:TimeSeriesObservation instance of which they are related 
through the om-owl:memberOf relation. Several of these shared properties can be 
directly propagated given that a om-owl:member relation holds from an instance of 
om-owl:TimeSeriesObservation. The relations that may be propagated include om-
owl:featureOfInterest, om-owl:observedProperty, om-owl:observationLocation, and 
om-owl:procedure. This translation of property values can be encoded in a set of 
rules.  As an example, the rule for propagating om-owl:featureOfInterest follows (in 
Jena rule engine syntax [9]):  
 
[PropagateFeatureOfInterestRule: 
 (?tso   rdf:type  om-owl:TimeSeriesObservation) 
 (?tso  om-owl:member  ?obs) 
 (?tso  om-owl:featureOfInterest  ?foi) 
�(?obs  om-owl:featureOfInterest  ?foi)] 

  
The other translatable property values have similar rules which we omit for the sake 
of brevity. The two remaining relations of om-owl:Observation to be instantiated 
include om-owl:samplingTime and om-owl:result. Sampling time for instances of om-
owl:Observation can be directly translated from om-xml:samplingTime of the om-
xml:TimeSeriesObservation. The instantiation of om-owl:result relation is more 
involved since the cumulative observation result values are dependent on previous 
observations, and we want to generate an independent representation for all 
observations. In order to accomplish this, we simply convert the cumulative result 
values into non-cumulative result values. Unlike the conversion of om-
owl:samplingTime, om-owl:result can be translated without loss of expressiveness 
since the cumulative result can always be recalculated. Therefore, there is no need to 
create sub-classes of om-owl:ResultData nor sub-properties of om-owl:result in order 
to explicitly represent the cumulative/non-cumulative distinction. The conversion of 
cumulative result values into non-cumulative result values is a straightforward 
process of subtracting from each observation the result values of those observations 
that were generated at a previous time point (either at a fixed time point, or when an 
event occurred).  

5   Conclusion and Future Work 

The Semantic Sensor Web aims to integrate Semantic Web technologies with sensing 
systems in order to provide more expressive representation, enhanced analysis, and 
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improved access and discovery of sensor data on the Web.  In this paper, we present 
an ontological representation of time series observations that could add much value to 
time series sensor data on the Semantic Sensor Web.  

In the future we hope to utilize this ontology to provide advanced query and 
manipulation of time series observations. Previously, queries of time series 
observations could only return data formatted in the same manner in which it was 
collected. We believe that by leveraging an ontological representation of time series 
observations, we may allow for automatic conversion of event-based time series 
observation to interval-based time series observation, and vice-versa.  For example, a 
user could query against an event-based system and receive an interval-based time 
series observation as a result. At the CSIRO Tasmanian ICT Centre, a practical use of 
this representation would be to enable the automated conversion of such observations 
for input into forecast models, which may, for example, require a time series 
observation with daily frequency of a given phenomenon which is only available as 
an hourly measurement. The required conversion methods could be encoded in the 
time series ontology. In addition, a set of operations on time series observations, such 
as union, concatenation, and intersection, would be useful for advanced integration. 
And finally, since time is such an obviously important component of time series 
observations, we intend on integrating this ontology with OWL-Time [15], a W3C 
recommended ontology based on temporal calculus that provides descriptions of 
temporal concepts such as instant and interval, and the relations between them.  

We believe that an ontological representation of time series observations is an 
important addition to the Semantic Sensor Web, and the practical use of this 
representation at the CSIRO Tasmanian ICT Centre provides a much needed 
experimental platform for future investigation into the integration of Semantic Web 
technologies with sensing systems. 
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Abstract. Today, sensing resources3 are the most valuable assets of crit-
ical tasks (e.g., border monitoring). Although, there are various types of
assets available, each with different capabilities, only a subset of these
assets is useful for a specific task. This is due to the varying informa-
tion needs of tasks. This gives rise to assigning useful assets to tasks
such that the assets fully cover the information requirements of the in-
dividual tasks. The importance of this is amplified in the intelligence,
surveillance, and reconnaissance (ISR) domain, especially in a coalition
context. This is due to a variety of reasons such as the dynamic nature
of the environment, scarcity of assets, high demand placed on available
assets, sharing of assets among coalition parties, and so on. A significant
amount of research been done by different communities to efficiently as-
sign assets to tasks and deliver information to the end user. However,
there is little work done to infer sound alternative means to satisfy the
information requirements of tasks so that the satisfiable tasks are in-
creased. In this paper, we propose a hybrid reasoning approach (viz., a
combination of rule-based and ontology-based reasoning) based on cur-
rent Semantic Web4 technologies to infer assets types that are necessary
and sufficient to satisfy the requirements of tasks in a flexible manner.

Key words: Sensors, Platforms, Resource Assignment, Semantic Web,
Rules, Hybrid Reasoning

1 Introduction

A sensor network [1] is a collection of heterogeneous sensing resources3, composed
of sensors and platforms. Sensors capture phenomena whereas platforms provide
the durability, mobility, communication capabilities, and so, on to the mounted
sensor(s). Advances in technology have made the deployment of sensor networks
3 A sensing resource (henceforth referred to as an “asset”) is a platform which contains

one or more sensors.
4 http://www.w3.org/2001/sw/

95



2 Geeth de Mel et al.

a robust and viable solution to reliably monitor and obtain timely, continuous,
and comprehensive observations about dynamic situations [17, 19]. Therefore, for
many critical tasks like border monitoring or surveillance, selection of sensing
assets for tasks play a key role in their success or failure. This leads to the
problem of assigning proper assets to tasks such that the assigned assets cover
the information needs of the individual tasks.

Effective and efficient assignment of assets to such tasks is an important
but computationally hard problem in sensor networks domain. The difficulty
of this problem is amplified in the intelligence, surveillance, and reconnaissance
(ISR) domain, and especially in a coalition context, where the assets belonging
to different parties are shared to archive tasks. This is due to a variety of rea-
sons. First, the environments in which these resources are deployed could rapidly
change (i.e., new high-priority tasks emerge, assets become unreliable, weather
conditions change, and so on) yielding new information requirements or assets
requirements. Second, the demand placed on available assets typically exceeds
the inventory [14] resulting in complex assignment choices. Last but not the least,
the inability to obtain a bird’s-eye view of the available assets to tasks makes
it impossible to perform assignments in an informed manner. All these reasons
imply the necessity to infer sound alternative means to satisfy the information
requirements of tasks so that the different capabilities provided by assets can
be used to cover the information requirements of tasks properly, thus increasing
the number of satisfiable tasks.

Many communities have investigated the assignment problem and proposed
different mechanisms that could be applied to solve it. Some of these approaches
rely on having a human in the loop to decide which assets are appropriate to
satisfy the requirements of tasks [4] whereas other approaches have tried to au-
tomate the assignment process [5, 13, 22]. However, these automated approaches
are highly constrained in terms of their assumptions. For example, the work
discussed in [5] assumes an unlimited inventory of assets, whereas [13] assumes
assets to be of the same type (i.e., any assets could provide some utility to a task).
This is not the case in general and especially in the environments highlighted
above. Assets are heterogeneous (different capabilities, operational conditions
etc.) by nature and only suitable for particular tasks.

Most of the current approaches have ignored important qualitative attributes
such as the capability provided by assets, prevailing weather conditions, etc.
These attributes play a major role in deciding which assets could be deployed
to achieve the information needs of tasks. Moreover, important many-to-many
relationships between assets and tasks (i.e., a task could be accomplished in
several different ways; an asset could be used to achieve several different kinds
of tasks) are not considered. We argue that considering these relationships allows
agile management of information providing assets by enabling reasoning about
different capabilities of assets and requirements of tasks.

In this paper, we propose knowledge-rich models and mechanisms based on
Semantic Web4 technologies to address the issues highlighted above. We propose
a rule-based system to infer multiple capabilities that could be used to satisfy the
information requirements of tasks. We then discuss an ontology-based reasoning
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framework to identify suitable asset types that meet those identified capabilities,
thus increasing the flexibility of the assignment. We present tools that are built
around these models to assist the decision makers in the assignment process in
order to identify suitable asset types for tasks. The proposed system not only
recommends asset types in an agile manner but also guarantees the soundness
of the solution inference process.

The rest of this document is structured as follows. In section 2, we survey
related research done in sensor networks and other domains that have inspired
our work. Section 3 introduces a rule-based system that enables inference of
different capabilities to satisfy the goals of tasks and gives some example outputs
from the rule system. In section 4, we highlight an ontology-based matchmaking
framework to infer sound solutions to the assignment problem based on the
capabilities provided by the assets and the requirements advertised by the tasks.
A case study, applying out approach is illustrated in section 5 and we conclude
in section 6, also providing future directions for this work.

2 Related Work

As stated previously, different communities have proposed a variety of approaches
to solve the problem of assigning assets to tasks. These approaches can be
grouped and summarized as follows:
Algorithmic Approaches. Many approaches have proposed a utility-based so-
lution with heuristics-based enhancements. For example, in [5] Byers and Nasser
propose a framework to solve the assignment problem based on energy conser-
vation to maximize the utility of a sensor network while keeping the cost of
the assignment per task under a pre-defined budget. Johnson et al. propose an
energy-aware approach to select assets for tasks in both static and dynamic en-
vironments [13] for competing tasks. One major drawback in these approaches is
the fact that all assets are assumed to be of the same type. We argue that this is
not the general case. Assets are heterogeneous (different capabilities, operational
conditions etc.) by nature and only suitable for particular tasks.

In [22], Tatton proposes an approach to optimize the assignment of assets to
task based on probability of target detection. In [8], Doll has further extended the
sensor allocation model by introducing notion of probability of line of sight and
field-of-view to the model in order to better estimate the asset performance. The
drawback of these approaches is the assumption that there exists a classification
that pre-identifies assets being suitable for some particular tasks in order to
perform the assignment.
Semantic-based Approaches. In [23], Whitehouse et al. propose a framework
based on semantics to allow users to perform declarative queries over a sensor
network (i.e., rather than querying raw data, users query whether a vehicle is
a car or a truck). A major drawback in this approach is the fact that all the
desired inference units must be declared for a sensor network before users can
start using the system. This is difficult, if not impossible, for a heterogeneous
sensor network deployed in a dynamic situation. Also the declarative language
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described in the work is not standardised (i.e., the language is described using
Prolog [6] predicates) which hinders the extensibility of the system.

Recent research has considered standardised descriptive schema represen-
tations (e.g., XML [21], RDFS5, OWL [7]) to assist in assets-to-tasks assign-
ment [4]. The keystone of this approach is to have standardised schemas to
describe assets, asset properties, and requirements. There is already a signif-
icant amount of work done in this area, for example XML-based approaches
such as the OpenGeospatial Consortium (OGC)6 suite of Sensor Web Enable-
ment (SWE) [4] specifications to ontologies such as OntoSensor [10], the Marine
Platforms Ontology [3], etc.

Lack of semantics in SensorML [18] (i.e., descriptions of assets and their
capabilities are in plain text) makes it difficult to be used in automated capability
inference mechanisms. OntoSensor [10] was created to assist in semantic data
fusion. Therefore, a great deal of emphasis has been put on modelling the data
from assets, but not their functional aspects. Hence, it cannot also be used as it
is in capability inferences.

The proposed approach builds upon the existing standards and mechanisms
for knowledge representation and reasoning in order to enable semantic-aware
assignment of assets to tasks. In the next section we propose a knowledge-based
rule system to address the issue of inferring different capabilities that can satisfy
the same information requirements of tasks.

3 Agile Inference of Capabilities: A Rule-based Approach

In an environment where there are many-to-many relationships between tasks
and assets, it is prudent to allow tasks’ requirements to be specified in manner
that is independent of specific capabilities of assets. For example, in a surveillance
task rather than asking for infrared capability one could specify the information
requirement for detecting vehicles. Let us assume that, according to the available
inventory, detecting a vehicle could be done with infrared, radar, or acoustic
capabilities, thus, yielding multiple degrees of freedom in (re)assignment of assets
to tasks.

We propose a rule-based system to address this issue. The proposed system
allows users to describe what they want to achieve (e.g., detect vehicles, identify
a particular building, etc.) and use the rule-based system to infer the different
capabilities that could be used to achieve tasks. In order to infer the required
capabilities to achieve tasks, tasks must be formalised with respect to the capa-
bilities that are required to achieve them. There are many knowledge corpora
that provide adequate information about the different capabilities required to
achieve the same task. In the next subsections, we discuss one of these knowledge
corpora and show how we have formalised it so that different capabilities can be
inferred to satisfy the same task.

5 http://www.w3.org/TR/rdf-schema/
6 http://www.opengeospatial.org
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3.1 National Image Interpretability Rating Scale (NIIRS)

NIIRS7 is an approach embraced by intelligence and civilian communities to
express the information potential of different image types [12]. NIIRS is defined
for visible, infrared, radar, and multispectral imagery, providing a 10-level scale
with each level containing several interpretation tasks or criteria. Within each
spectrum higher NIIRS levels inherit the criteria of their subordinates. For ex-
ample, with a NIIRS-3-rated image one can satisfy criteria set out by NIIRS 1
and 2.

The criteria indicate the expressivity of an image in terms of the amount
of information that could be extracted from it at the given scale. For example,
with visible NIIRS 4, identification of individual tracks is possible whereas with
an image of visible NIIRS 6, identification of a vehicle is made possible (i.e., the
make/model of the vehicle can be identified). Additionally a task can be achieved
using different spectra with different NIIRS values. For example, detecting a large
aircraft could be done with infrared and visible imagery using ratings 2 and 3
respectively. The image classification criteria could be broadly categorized as
detect8, distinguish9, and identify10

In section 3.3 we show how we formalised the NIIRS knowledge corpus. In
order to formalise NIIRS, first we need to come up with a classification of the
elements in the environment. In the next section, we discuss a possible represen-
tation for this classification using an OWL-DL ontology.

3.2 Detectable Ontology

Let us first introduce the notion of detectable: detectable are the objects (e.g.,
vehicles, building, people and so on) of interest. For example let us take the task
detect large buildings (e.g., hospitals, factories). In this case detectables can be
classified as buildings. Let us take another example task detect individual vehicles
in a row at a known motor pool. Vehicles are the detectables in this example.

We have created a detectables ontology to represent these concepts. Figure
1 shows a fragment of the taxonomies we have developed. We have used these
concepts in the formalization of the criteria described in NIIRS, as we explain
in Section 3.3. As Figure 1 shows, detectable concepts are broadly categorized
into Area, Component, Equipment, LinesOfTranspotation, Platform, Sensor, and
Structure. We have classified other detectable concepts as subclasses of these
main concepts. A Car which is a subconcept of WheeledVehicle is a GroundPlat-
form (i.e., Figure 1(b)). SiteConfiguration represents a collection of buildings
whereas SiteComponent refers to an individual building such as Pier, Hanger

7 http://www.fas.org/irp/imint/niirs.htm
8 Ability to find or discover the presence of an item of interest, based on its general

shape, contextual information, etc.
9 Ability to determine that two detected objects are of different types or classes based

on one or more distinguishing features
10 Ability to name an object by type or class, based primarily on its configuration and

detailed components
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(b) Site Configurations

(a) Main Concepts of Detectables (c) Lines of Transportation

Fig. 1. Taxonomy of “Detectables”

or part of a building such as BoilerHall. Factory is not classified under either
of them since it could be a single building structure or a multiple building con-
figuration. Also we have introduced an object property hasFeature to describe
the distinctive features of Detectables. For example, piers and hangars are both
detectable concepts but they also are parts of a port, which makes them features
of the port. Furthermore, this classification helps us formally define the concepts
detectable, distinguishable, and identifiable:

1. Detectable: If the concept of interest has any sub-concept then it is de-
tectable (e.g., WheeledVehicle).

2. Distinguishable: If a set of concepts are detectable, then they are also
distinguishable. For example, if we detect a Jeep and a Car, then we can
distinguish between them based on their shape.

3. Identifiable: If the concept of interest has no sub-concepts, then it is iden-
tifiable. For example, one can say a SAAB 9-3 sedan is identifiable.

3.3 Formalisation of Interpretation Tasks

We define a criterion as a 6-element tuple FIT (T, W, F,C, I, V ), where T rep-
resents the type of the interpretation task to perform (e.g., detect, distinguish,
identify, and so on); I is the type of capability/intelligence (e.g., imagery spec-
tra in NIIRS) that could be used to perform the interpretation task; W =
{w1,w2,. . . ,wi} is a set of detectables (e.g., {port, hospital}) that can be ob-
served using the capability/intelligence I; F = {f1,f2, . . . ,fj} is a set of features
(e.g., {pier, warehouse, loading bay, ambulance}) describing W ; C represents the
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context of the detectables; V is a numeric value that represents the quality of the
intelligence (e.g., the rating of an imagery source in NIIRS). Below we provide
examples of this formalism based on NIIRS criteria.

With an image rated Visible NIIRS 1, one can detect a medium-sized port
facility and/or distinguish between taxi-ways and runways at a large airfield [12].
So, from this criterion, we can derive if there is a port facility in the image then
one can detect it. Also according to the Radar NIIRS 1, one can detect a port
facility based on its features (i.e., presence of piers and warehouses). Example 1
and Example 2 shortly describe how tasks could be presented in our formalism
to exploit features and context of criteria while inferring different capability.

Example 1 The task of detecting a port can be formalised as FIT(detect, {Port},
{}, {}, image(Visible), 1). In this case, a reasoner can infer detection of a port can
be achieved by using Visible NIIRS 1. However, in many cases, using explicit
features of ports (e.g., piers and warehouses), we can detect objects more ac-
curately. Therefore, the representation FIT(detect, {Port}, {Pier,Warehouse}, {},
image(Radar), 1) allows a reasoner to use some explicit features of a port while
detecting it.

Example 2 Some tasks are highly sensitive to the context. For example, dis-
tinguishing between a taxiway and a runway using imagery intelligence can only
be achieved if the context of the task enables clear images to be taken. If the
context is airfield, which means that the task will be executed over an airfield,
it is possible to distinguish between a taxiway and a runway. This can be rep-
resented as FIT(distinguish, {Taxiway,Runway}, {}, {AirField}, image(Visible), 1).
Similarly, to detect individual vehicles in a row at a known motor pool using
radar intelligence, we have FIT(detect, {Vehicle}, {}, {Motor-Pool}, image(Radar),

4).

We believe the proposed FIT formalism can be used to formalise knowledge
from other intelligence domains too. For example, Guo et al. [11] propose an
approach to detect and distinguish vehicles based on their acoustic signatures.
Therefore, detect and distinguish tasks in our framework can also be formalised
using acoustic signatures instead of NIIRS. In this case, if an acoustic signature
of value 5 enables us to detecting a vehicle, we should formalise our statement
as FIT(detect,{Vehicle},{},{},5,Acoustic).

An extensive knowledge base has been created using the representation above
by formalizing the NIIRS corpus. In the next section, we present a set of rules
that are implemented to draw conclusions from this knowledge base to find di-
verse but feasible set of capabilities to perform a task. This makes the assignment
of assets to tasks more flexible and agile; we reason about multiple ways in which
assets can satisfy the requirements of a task.

3.4 Rules to Derive Capabilities

In this section, we present a set of rules to make inferences from the created
knowledge base using the FIT formalism. These rules derive minimal, but nec-
essary and sufficient capabilities needed to achieve a particular task. For example,
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let X be a set of objects that need to be observed. Detecting an element xi ∈ X
is defined using the rules below.

detect(xj , ij , vj) ← distinguish(xj , ij , vj) (1)

distinguish(xj , ij , vj) ← identify(xj , ij , vj) (2)

detect(xj , ij , vj) ← FIT (detect, w, f, c, ij , vj) ∧ xj ∈ w (3)

identify(xj , ij , vj) ← FIT (identify, w, f, c, ij , vj) ∧ xj ∈ w (4)

distinguish(xj , ij , vj) ← FIT (distinguish, w, f, c, ij , vj) ∧ xj ∈ w (5)

These rules can be interpreted as follows. Rule 1 states that the object of
interest xi can be detected using intelligence ij and the quality of intelligence vj

(corresponds to ratings in NIIRS terminology) if it can be distinguished using
ij and vj . Similarly, Rule 2 states that xi can be distinguished using ij and vj if
it can be identified using ij and vj . Rules 3, 5 and 4 state that you can detect,
identify or distinguish an object xi if you can find a related FIT statement in
which xi is a member of the set w of detectables declared in the statement.

3.5 Example Results

We have developed a proof-of-concept prototype using CIAO Prolog11 to show
how these rules draw conclusions from the knowledge base. For this purpose, we
first query the system for required capabilities of the tasks detect, distinguish,
and identify. Then, in this section we summarize the inferred capabilities. For
example, a query to detect a large airplane returns the following result set.

?- detect(largeAirliner,Results).

Results = [(image(infrared),2),(image(radar),2),(image(visible,3))]

The inferred solution recommends three capabilities that could be used to
perform the task using one of visible, infrared, or radar imagery with a minimum
NIIRS of 3, 2, and 2 respectively. However, detection of a small airplane can
only be achieved using an infrared imagery with a minimum NIIRS of 3.

?- detect(smallAirliner,Results).

Results = [(image(infrared),3)]

Therefore, according to the definitions of the interpretation tasks, distinguish-
ing between a large plane and a small plane could only be done using infrared
image with a minimum NIIRS of 3. This is because, infrared NIIRS 3 is the
smallest common denominator in the above two queries to detect a large plane
and a small plane. Below is the result of the query that confirms the expected
result.

?- distinguish([largeAirliner,smallAirliner],Results).

Results = [(image(infrared),3)]

11 http://clip.dia.fi.upm.es/Software/Ciao/
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4 Capability-Requirement Matching

In [9, 16], we proposed the Sensor Assignment to Missions (SAM)12 framework
to improve asset-to-task assignments based on current Semantic Web technolo-
gies together with semantic matchmaking [15]. The core of the approach is a set
of interlinking ontologies to describe scenarios (i.e., missions, operations, tasks),
assets (i.e., sensors and platforms), capabilities of the assets, and the require-
ments of the tasks. These ontologies are represented in OWL DL [7].

This approach was inspired by the Missions and Means Framework (MMF) [20].
MMF was developed by the US Army Research Laboratory to provide means
for specifying a military mission in order to evaluate the utility of alternative
means (i.e., assets) to accomplish the goals. Based on MMF we have defined
an architecture to infer the types of assets that are fit for the purpose (i.e.,
can meet the information requirements of the task). We use semantic reasoning
and a matchmaking mechanism to derive these asset types. Figure 2 depicts the
architecture of the system.

SAM

ISTAR

Sensor 
Infrastructure

Sensor 
Catalog

Mission Script

< packages >

< requirements >

Fig. 2. SAM architecture

The architecture is composed of two main components, SAM the reasoner
and the sensor infrastructure, and some data sources (viz., ISTAR ontology,
and sensor catalogue). The ISTAR13 ontology represents the domain knowledge
of intelligence, surveillance, target acquisition, and reconnaissance aspects (e.g.,
types of intelligence). Figure 3 depicts the main concepts of the ISTAR ontology.
The left-hand side decomposes a mission into a collection of tasks with specific
information requirements (e.g., surveillance) and the right-hand side represents
capabilities provided by assets (e.g., target detection provided by an UAV) as a
12 http://www.csd.abdn.ac.uk/research/ita/sam
13 http://www.csd.abdn.ac.uk/research/ita/sam/downloads/ontology/ISTAR.owl
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composition of the functions provided by sensors and platforms. Requirements
of tasks are broadly categorized into two sections: intelligence (i.e., kinds of
intelligence disciplines such as imagery intelligence) and operational (i.e., desired
capabilities of a task such as constant surveillance) requirements.

The sensor catalogue contains the attributes of assets (i.e., location, energy,
current status, and so on.). These assets are particular instances of the asset
types described in sensor and platform ontologies of the ISTAR ontology. The
attributes of assets are retrieved from a sensor infrastructure [2].

Task Capability

Operation

Mission

Asset

Platform System

Sensor

comprises toAccomplish

comprises toAccomplish

toPerform

is-a

is-a

is-a

mounts

attachedTo

requires

providesallocatedTo

interferesWith

entails

Fig. 3. Main concepts and relations in the ISTAR ontology. Reproduced from [9]

The reasoner checks the requirements of a given task and suggests asset types
that are feasible and logically sound for the task. These solutions are logically
sound due to the logical properties of OWL-DL [7] and the inference mecha-
nisms used. We use Pellet14 as a DL reasoner for inferences. Some solutions
recommended by the reasoner are collection of asset types. This is because a
task may not be satisfied with only one asset. For example, to achieve the goals
of the task, visual and audio information are needed but there is no single asset
to provide both. SAM uses a set-covering algorithm to compute this. Since a
solution may contain more than one asset type, we refer to a solution collectively
as an asset package. Furthermore, using subsumption15 relationships, the rea-
soner finds all the plausible assets types for a particular task. We believe these
solutions can be used in many useful ways, such as to analyse the feasibility of a
mission with respect to an assets inventory, to assist in planning and re-planning
stages of the mission, and so on.

14 http://clarkparsia.com/pellet/
15 A concept A subsumes a concept B if the definitions of A and B logically imply that

members of B must also be members of A.
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SAM

ISTAR

Sensor 
Infrastructure

Sensor 
Catalog

Mission Script

< packages >

< requirements >

Rule System

Acoustic 
KB

Imagery 
KB

< tasks >

< capabilities >

Fig. 4. SAM architecture with integrated rule system

We have extended the SAM architecture by incorporating the rule system
discussed in Section 3 as shown in Figure 4. With the resulting integrated system,
users can specify their information needs at higher level. That is, they do not
have to express every capability requirement of a task explicitly; instead they
simply let the rule system infer multiple capabilities in which the task could
be accomplished. These inferences allow the system to compute many different
asset types that could be used to satisfy the requirements of a given task.

5 A Case Study

In this section, we introduce an example scenario and demonstrate how the
system proposed in Section 4 computes feasible asset types for tasks in a realistic
situation. Let us suppose a mission where an international peacekeeping force
has to maintain a safe corridor between two countries. In order to perform this
mission, many operations need to be carried out. Let one of those operations be
“Perimeter Surveillance”, which could be broken down into a set of tasks. Some
possible tasks for the operation are:

1. Detect human activity in the region. This task is a part of the operation
because a suspicious gathering near or in the region of the safe corridor may
imply a critical breach in perimeter.

2. Detect vehicle movement. This may imply the movement of troops or
militia.

3. Identify vehicle of particular type. For example armoured vehicles might
imply an imminent treat.

Let us consider the task identify vehicle. A high-level requirement of iden-
tifying a vehicle task could be identifying jeeps. The SAM tool discussed in
section 4 allows users to specify their requirements in this manner (e.g., detect
vehicles, identify jeeps, etc.) as shown in figure 5.

When the SAM tool receives such requirements, they are automatically
passed onto the rule system discussed in section 3.4. Within the rule system, the
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Fig. 5. SAM tool

appropriate rule is executed (e.g., detect rule is fired for detect activities whereas
for identifying activities, identify rule is fired.). The rule traverses through the
knowledge-bases (KBs) known to the rule system, and infer minimum capability
ratings required to satisfy requirements. These KBs are created with respect
to the formalism described in section 3.3. In order to satisfy the requirement
identify jeeps, the rule system derives {VisibleNIIRSRating6, RadarNIIRSRating6,

ACSignature7} as the required ratings.
This result set represents the fact that, in order to identify a jeep, one needs

assets that could either provide visual, radar, or acoustic capability at a particu-
lar rating or above. These results are handed back to the SAM tool as shown in
figure 4. SAM tool then passes these results to the ontology-based reasoner to
identify the potential assets types that satisfy these capability requirements. It is
important to note that these capability ratings are provided by an asset: sensors
provide the capabilities such as radar, acoustic whereas platforms provide the
capabilities such as altitude, range capabilities required to compute a particular
rating. We represent this using the following logical formula.

Asset([P,S]):providesCapabilityRating([C,R]) ← Platform(P):canProvideRating([C,R]) ∧
Platform(P):carriesSensor(S) ∧
Sensor(S):providesCapability(C)

Therefore, in order to infer suitable asset types the reasoner first has to iden-
tify the suitable platform and sensor types based on the above capability ratings.
We have created an ontology to represent these ratings and rating types concepts.
The figure 6 depicts the NIIRS [12] imagery types and NIIRS imagery rating
concepts of this ontology. We have imported this ontology into our ISTAR13

ontology and associated these concepts with sensors and platforms types. At the
reasoner level, we then use Pellet14 to identify platform types that could provide
a particular rating or above (using subsumption relationships among the rat-
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NIIRS TypesNIIRS Ratings

Fig. 6. NIIRS imagery types and ratings

ings) and sensor types that could be used to satisfy the capabilities for a specific
rating. The reasoner then uses a set covering algorithm to compute all possible
asset types that could be used to satisfy the task requirements. For example, to
identify a jeep following asset types are recommended.

Asset Type Explanation

iRobotPackbot with AcousticArray Provides an acoustic signature of value 9
Raven with DaylightTV Provides a visual rating of value 7
Reaper with DaylightTV Provides a visual rating of value 6
Reaper with SAR Provides a radar rating of value 6
GlobalHawk with EOCamera Provides a visual rating of value 6
GlobalHawk with SAR Provides a radar rating of value 6
HarrierGR9 with EOCamera Provides a visual rating of value 7
NimrodMR2 with EOCamera Provides a visual rating of value 6

Table 1. Assets capable of identifying a jeep

6 Conclusions and Future Work

In this paper, for the assets-to-tasks assignment problem, we have proposed
an approach motivated by the importance of the litheness to the assignment
problem. We have combined an ontology-based and rule-based reasoning mech-
anisms to achieve this. We have proposed a formalism to represent tasks. A well
known knowledge corpus is formalised to create a knowledge-base, based on this
formalism. A set of rules has been implemented to draw conclusions from this
knowledge-base and we have validated the flexibility of this inference process by
examples and a case study. In this architecture, the rule-based system is used to
infer the information providing capabilities whilst an ontology-based reasoner is
used to produce sound asset types that are necessary and sufficient to meet the
information requirements of the tasks.

We have demonstrated the usefulness of the proposed approach by means of
an example scenario. Our experiments imply that the research is promising even
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though it is currently in its early stages. Hence, we plan to investigate the follow-
ing issues as a future work. First, we want to generalize the task representation
so that a number of other domains could be represented using the same formal-
ism. Second, the current version of the rule-based reasoning depends on the rule
engines such as Prolog and Jess16. This is partly due to the existing limitations
of the rule languages and tools catered for Semantic Web (e.g., SWRL does not
support negation). We are currently investigating other rule representations that
enable us to formalise rules using first order logics constructs.
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