
Normalization Rules of the Object-Oriented Data

Model

Vojt¥ch Merunka1,2, Ji°í Broºek1, Martin �ebek1, and Martin Molhanec2

1 Czech University of Life Sciences Prague, Faculty of Economics and Management,
Department of Information Engineering, merunka,brozekj,sebek@pef.czu.cz

2 Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical
Engineering, Department of Software Engineering in Economy,

molhanec@fel.cvut.cz

Abstract. There are only very few approaches to normalizing object-
oriented data. In this paper we present an approach to normalization
of the object-oriented conceptual model based on UML class diagrams.
First part of the paper describes the current status in the area of formal
methods used for object-oriented data modeling. Second part presents
four normalization rules, which are based on own experience and modi�ed
Ambler-Beck approach. These normalization rules are introduced on an
example. Our method has been used in education at several universities.
It has been and is also used for database design in software development
projects, which we carried out. Recently, development of the CASE tool
based on this approach has been started.

Keywords. Data normalization, object-oriented data model (ODM), relational
data model (RDM), �rst object-oriented normal form (1ONF), second object-
oriented normal form (2ONF), third object-oriented normal form (3ONF), fourth
object-oriented normal form (4ONF).

1 Introduction

Nowadays many various kinds of object-oriented software applications are used
practically. We have the long-term experience with Gemstone database and
Smalltalk programming, for example. Although there already are many the-
oretical works individually demonstrating suitability of non-relational object-
oriented data model, only the procedures based on experience with imperative
object-oriented programming languages are used in the area of analysis and de-
sign of data structures. However some techniques like behavioral design patterns
or object library components, which are optimal for algorithms in software ap-
plication, can fundamentally complicate their e�ective database processing. As
a consequence of this situation, we can see wrong usage of relationships and
hierarchies among objects, breakneck tricks in code, etc. The problem of these
applications is not that they do not work. Unfortunately really monstrous con-
structions work thanks to modern components and development systems and this



is why the discussion with designers about the need to rebuild their software is
very hard.

Moreover, relational design techniques as normalization, decomposition and
synthesis cannot be easily used in object-oriented data structures. This is why
various proposals of object-speci�c normalization techniques appeared in the
world of software developer's community. Unfortunately no generally accepted
and widely used technique or method for object-oriented data design has been
introduced so far. Our solution to this problem is adapting the Ambler-Beck
approach. It has been developed as a part of agile programming techniques. Our
contribution is in modi�cation of this approach towards speci�c data structures
in object-oriented models.

Therefore we decided to discuss the formal techniques of object-oriented de-
sign. A data structure is the fundament of almost all software applications and
object technology becomes the mainstream. In addition, many myths exist in
the community of object-oriented software vendors and developers. For example
very popular is the myth about no need for any normalization, about easiness
of programming etc.

2 The issue of di�erent software technologies

2.1 MDA

MDA is an abbreviation for Model Driven Architecture. MDA de�nes an ap-
proach that separates a speci�cation of business system description (CIM �
Computation Independent Model) from its computer implementation speci�-
cation (PIM � Platform Independent Model); and this computer speci�cation
from the �nal solution on a concrete technological platform (PSM � Platform
Speci�c Model). Each speci�cation represents an individual viewpoint of the
same problem. According to MDA, there is a mutual relationship between these
three views, and the models should transform from one to another when a sys-
tem is created. MDA is created and maintained by the Object Management
Consortium [9].

2.2 Object-oriented programming

The object-oriented approach has its origins in the researching of operating sys-
tems, graphic user interfaces, and particularly in programming languages, that
took place in the 1970s. It di�ers from other software engineering approaches by
incorporating non-traditional ways of thinking into the �eld of informatics. We
look at systems by abstracting the real world in the same way as in ontological,
philosophical streams. The basic element is an object that describes data struc-
tures and their behavior. In most other modeling approaches, data and behavior
are described separately, and, to a certain extent, independently. OOP has been
and still is explained in many books, but we think that this one [8] written by
OOP pioneers, belongs to the best.



The OOP can be regarded as one implementation option of PSM of more
possible implementation ways. The interesting question is the position of PIM. In
ideal case, this model should be independent on the following PSM. However, this
does not happen in practice. Either the object-oriented data model derived from
the UML or older Entity-Relation data model, which is closer to the relational
database technology, is usually used for conceptual modeling on the level of
abstraction correspondent to PIM.

If we try to �gure out how the independent conceptual data model for PIM
should really look like, we will �nd out, that we need to use following modeling
concepts:

1. Entity.
2. Link between entities - however we need to distinguish between:

(a) IS-A relationship, i.e. taxonomy or inheritance,
(b) ASSOCIATED-TO relationship, i.e. link creating tuples of entities, and
(c) HAS-A relationship, i.e. link describing hierarchic structures or data

compositions.

Detailed overview of various approaches can be found in the table 1. It is
obvious that on the conceptual modeling level, the relational data model and
existing object-oriented data model are incompatible. That is why we presume
that formal techniques known from the relational database �eld are not suitable
for object-oriented data modeling and vice versa.

A concept of object identity is the next problem of simple adoption of re-
lational technique for the object-oriented data model. In RDM, the identity of
record is created by a value of chosen attributes (primary keys). In object data
model identity of object is based on addresses into virtual memory and is inde-
pendent on any value changes.

2.3 Object-oriented databases

Database systems are based on various data models, e.g. network (and its sub-
species hierarchical data model), relational, object-relational and object-oriented
data model.

Nowadays relational database model dominates. But recent practice shows
that object databases are able to compete with relational databases. Object
databases are based on two substantially di�erent data models:

1. Object-relational (or hybrid) data model (ORDM) introduces an evolution-
ary trend of design. It concerns on addition of the original relational data
model with the support of some structures and operations known from pro-
gramming languages. Most of the big producers of relational database sys-
tems (e.g. Oracle) chose this alternative. Object relational data model stays
principally the same relational data model, but with extended functionality.



feature model comment

R Entity-Relational This is the traditional RDBMS
model based on Chen.

C Network This is the model of the network
databases (IDMS).

I no name This conceptual model does not
exist in the Software Engineering.
Or does anywhere?

RC Hybrid Network-Relational This is the RDBMS model
combined with data containers
(e.g. NF 2 = non-�rst normal form
databases).

RI Extended Entity-Relational This is the RDBMS model
extended by the inheritance (e.g.
IDEF1X).

CI OOP Model This is the data model of the recent
object-oriented programming
languages (e.g. Java, Smalltalk,
C#, ...) and many
programming-language-based
OODBMS.

RCI The Universal Conceptual Model This data model includes all
conceptual features and re�ects the
proposed ODMG 2.0 and 3.0
standard, but is not directly
implemented in recent
object-oriented programming
languages.

legend
R - presence of the association relationship (i.e. RELATED-TO).
C - presence of the composition relationship (i.e. HAS-A).
I - presence of the inheritance relationship (i.e. IS-A).

Table 1. Possible approaches of the conceptual data modeling.



2. Object-oriented data model (ODM) introduces a new revolutionary trend of
development. It concerns new data model, which is not built as an extension
of relational data model at all.

The impedance problem with storing and retrieving of object-oriented data in
relational and also in object-relational databases was the main reason for creating
the ODM. This is the reason, why the construction of new database models,
which would be able to work with objects better, has risen.

ODM and RDM di�er distinctively from each other. In RDM, tables are the
only possible form of logical data representation and their physical storage as
well. On the other hand, ODM is similar to network databases, as we knew them
in IDMS systems. The ODM can be interpreted as the renaissance of network
data model. In a very simple way, it can be described by the following equation:

network data model + objects + methods + polymorphism = ODM

It is reasonable to assume that the importance of object databases will grow
in the near future, because there are now many applications, where object-
oriented database shows its advantages. Common attribute of these applications
is large amount of complex data structures and their variability during their
lifetime. Those systems can work with more then hundred or thousand various
mutually composed and changing data types. Moreover, the queries over these
structures require common polymorphism and abstraction. In those systems, for
example, we need to write down the queries over sets containing elements of var-
ious types. At the same time we expect that while adding or updating data types
it will not be required to change already written queries and related data struc-
tures. Good example of those systems are data-warehouses. Those systems are
characteristic not only for company management systems, but also for various
governance evidence systems, hospital information systems and information sys-
tems containing ecological information, agricultural information, historiograph-
ical information as well, decision support in marketing and �nance[11,15,12].

On the other hand it is necessary to note that relational database works
very well in area, where database structure is constant. This means that new
data types not are added during lifetime of such system. Moreover, relational
databases traditionally achieve very good performance if the database consists
of large amount but simply structured records.

3 Miscellaneous approaches to object-oriented

normalization

Some various papers aroused since 1980s (for example [16]). First papers applied
to the enlargement of relational techniques, but we can meet the papers special-
ized to object-oriented data structures in recent last years. There are several
research groups in the world interested in object databases. The results of their



studies are used in object databases construction. The international organiza-
tion ODMG � Object Database Management Group � supports publications and
conferences on this topic.

3.1 Nootenboom's OONF

According to Hank Nootenboom the �rst three relational normal forms are uni-
versally valid for the object-oriented data model as well as for other possible
data models [13]. He introduces the concept of only one additional normal form
for objects as a substitute for fourth and �fth relational normal forms, having
the following de�nition:

A collection of objects is in OONF if it is in 3NF and contains mean-
ingful data elements only.

3.2 Khodorkovsky's ONF, 4ONF, 5ONF and 6ONF

The paper [10] proposes object normal forms, which concerns �the right relation�
among objects and methods. The rules of the de�ned object normal forms are
based on modi�cation of relational de�nitions of 4NF, 5NF (and 6NF, which
is author's original re�nement of 5NF). The author calls these modi�cations of
classical de�nitions as 4ONF, 5ONF and 6ONF.

The paper is considered to be more elaborated formulation of almost similar
ideas as the example above. The author says, that 1NF, 2NF and 3NF are
common for relational and object databases.

3.3 �Australian-Swiss� ONF

The authors [14] present only one ONF on various types of functional depen-
dencies among objects. Concretely, �path dependency� concerns a composition
of objects and navigability among objects, �local dependency� concerns relations
of internal object and �global dependency� concerns behavioral requirements on
application. Object-oriented structure is in ONF, if user requirements on appli-
cations are covered by a set of functional dependencies. This method relates to
the behavioral requirement of object databases, but it is not speci�cally focused
on the conceptual modeling of data.

3.4 Three Ambler-Beck's object normal forms

Ambler and Beck are pioneers of the agile approach in programming. They intro-
duced three object-oriented normal forms for object-oriented applications. [1,2].
These normal forms are analogous with �rst, second and third relational normal
form. The authors talk about these object normal forms as a tool for objects
classes' normalization complementary with technique of design patterns. Let's
look at their proposals in detail:



A class is in 1ONF when speci�c behavior required by an attribute that is
actually a collection of similar attributes is encapsulated within its own
class. An object schema is in 1ONF when all of its classes are in 1ONF.

Fig. 1. 0ONF

Fig. 2. Ambler's and Beck's 1ONF

It is evident from the de�nition and the example that authors wanted to
build the �rst normal form analogically to the �rst relational normal form.

From experience, it is little confusing that object can be non-normalized
even if it already has associated collection of encapsulated objects. See attribute
seminars of class Student in the �gure 1. In this example the class Student
contains the collection seminars, but the class Student is still in 0ONF. The



collection seminars from 0ONF does not di�er much from the relation takes
in 1ONF in the �gure 2. The di�erence between 0ONF and 1ONF is only in
presence of speci�c methods of class Student.

A class is in second object normal form (2ONF) when it is in 1ONF
and when �share� behavior that is needed by more than one instance of
the class is encapsulated within its own class(es). An object schema is in
2ONF when all of its classes are in 2ONF.

Fig. 3. Ambler's and Beck's 2ONF

As the de�nition and the example show, the 2ONF requires to detach at-
tributes, which are shared by more objects, into separate objects. In our experi-
ence, this de�nition is well accepted. Also, this de�nition o�ers analogous result,
as the second relational object form in relational databases.

A class is in third object normal form (3ONF) when it is in 2ONF and
when it encapsulates only one set of cohesive behaviors. An object schema
is in 3ONF when all of its classes are in 3ONF.



Fig. 4. Ambler's and Beck's 3ONF

It is possible to recognize, that the third and the last object normal form by
Ambler gives analogous results as the third relational normal form. This is our
experience as well. It concerns the characteristics within some objects, which
might be interpreted and behave as an independent object. In this case we need
to exclude them into new separate object.

4 Our experience

We have good results with Ambler-Beck approach. But we have found that
object-oriented community expects bit di�erent technique:

1. It has to be very simple, precise, and understandable and should work with
minimum of abstract concepts, similarly as �the classical relational normal-
ization�. We suppose that introduction of di�cult de�nitions distinctively
exceeding over the range of classical normal forms by having a lot of types
of concepts and relations, is not the right way.

2. It should be focused concretely on object-oriented modeling of data struc-
tures. We need to model structures of objects used for data storage and data
manipulation. We do not need to model objects responsible for functional
behavior of applications. For these another �behavioral� objects we already
have design patterns and other programming techniques. We do not need to
duplicate these proved techniques. We think that original Ambler's approach
needlessly tries to solve everything in one.

We have to de�ne, what do we exactly understand by the concept of data object.
Data objects serve only for data storing and manipulation. We will not work



with data elements and with methods separately. This is proposed by [12]. We
will de�ne only one common concept of �an attribute�. By an attribute, we will
understand the data property of an object, regardless if the data property is
coming from a data element or if this data property is a result of a method.

Of course, there is a question, if such simpli�cation is not too much. Ambler-
Beck's original approach works separately with data and methods and uses both
of them separately. But we think that we can allow this simpli�cation for the data
objects, because our approach is not aimed for behavioral design of application
structure.

4.1 First normal form rule

De�nition 1. A class is in the �rst object normal form (1ONF) when its ob-
jects do not contain group of repetitive attributes. Repetitive attributes must be
extracted into objects of a new class. The group of repetitive attributes is then
replaced by the link at the collection of the new objects. An object schema is in
1ONF when all of its classes are in 1ONF.

More formally; Let us have an object a in the object system Ω as a ∈ Ω, where
for k > 1 (length of collections of similar attributes) and n > 1 (number of
repetition of these collections) is data(a) = [· · · , x1

1, · · · , x1
k, · · · , xn

1 , · · · , xn
k , · · ·]

having ∀i ∈ (1, · · · , k) : class(x1
i ) = class(x2

i ) = · · · = class(xn
i ).

Then it is required to modify object a and create new objects bj ∈ Ω for
j ∈ (1, · · · , n) as data(a) = [· · · , {bj}, · · ·] and data(bj) = [xj

1, · · · , x
j
k].

Fig. 5. Unnormalized model

In the �gure 5 there is the example of data structure in non-normalized form
and in the �gure 6 there is the same example in 1ONF.

On the contrary with the original Ambler-Beck's approach, we do not as-
sume designers recognize groups of repetitive attributes automatically and ex-
tract them out into independent classes. The problem is not always trivial as in
presented example. Repetitive attributes can exist under various names, which
are not easy visible on the �rst sight.



Fig. 6. Model in 1ONF

4.2 Second normal form rule

De�nition 2. A class is in the second object normal form (2ONF) when it is
in 1ONF and when its objects do not contain attribute or group of attributes,
which are shared with another object. Shared attributes must be extracted into
new objects of a new class, and in all objects, where they appeared, must be
replaced by the link to the object of the new class. An object schema is in 2ONF
when all of its classes are in 2ONF.

More formally; Let us have two objects a, b ∈ Ω for k > 1 (length of a col-
lection of shared attributes) as data(a) = [· · · , x1, · · · , xk, · · ·] and data(b) =
[· · · , y1, · · · , yk, · · ·] having ∀i ∈ (1, · · · , k) : xi = yi.

Then it is required to modify objects a and b and create new object c ∈ Ω
as data(a) = [· · · , c, · · ·] and data(b) = [· · · , c, · · ·] and data(c) = [x1, · · · , xk] =
[y1, · · · , yk].

Fig. 7. Model in 2ONF

It concerns the attributes supplier's �rst name, supplier's surname and his
address and client's �rst name, client's surname, his address and method of
payment in our example. Because these attributes are common for both concrete
order and supply, it was necessary to create the new object class Contract.

4.3 Third normal form rule

De�nition 3. A class is in the third object normal form (3ONF) when it is in
2ONF and when its objects do not contain attribute or group of attributes, which



have the independent interpretation in the modeled system. These attributes must
be extracted into objects of a new class and in objects, where they appeared, must
be replaced by the link to this new object. An object schema is in 3ONF when all
of its classes are in 3ONF.

More formally; Let us have an object a ∈ Ω for k > 1 (length of a collection of
independent attributes) having data(a) = [· · · , x1, · · · , xk, · · ·], where [x1, · · · , xk]
is collection of independent attributes.

Then it is required to create new object b ∈ Ω and modify object a as
data(a) = [· · · , b, · · ·] and data(b) = [x1, · · · , xk].

Fig. 8. Model in 3ONF

It concerns the data about suppliers and clients in the objects of the class
Contract. These attributes represent some persons having independent interpre-
tation on contracts. The same applies to addresses.

4.4 Fourth normal form rule

De�nition 4. A class is in the fourth object normal form (4ONF) when it is
in 3ONF and when there is no other class in the system, which de�nes the
same attributes. These attributes must be extracted from classes, where they are
duplicated, and a�ected classes must be connected using class inheritance in order
to exclude data de�nition duplicates. If there is no existing class to be reused as
a inheritance superclass, a new superclass must be added into the system. An
object schema is in 4ONF when all of its classes are in 4ONF.

More formally; For each two objects a, b in the object systemΩ as a, b ∈ Ω having
data(a) = [x1, · · · , xk] and data(b) = [· · · , y1, · · · , yk, · · ·] where ∀i ∈ (1, · · · , k) :
class(xi) = class(yi), classes of these objects a, b must have inheritance rela-
tionship as class (a) ≺ class (b) in order to avoid duplicates.

5 Conclusion

It is a pity, that so perspective and practically used technology � the object-
oriented approach � still does not have comprehensible and universally accepted



theoretical foundation and formal techniques. It is known, that several research
centers are interested in this theme, but any coherent and widely accepted results
were not yet published in recent years. Absence of reputable formal tools and
techniques is the big problem of this promising technology. Therefore we suppose
that near future may bring maybe some alternative approaches, more or less
similar to our approach we presented in this paper.

Our method has been used in education at University of Thessaly in Volos,
Alexandrian Technological Institute in Thessaloniki, Lehigh University in Penn-
sylvania, Czech Technical University and Czech University of Life Sciences. It
was also used for database design in software development projects, which we
carried out for a large international consulting company Deloitte. Recently, the
project on object-oriented CASE tool supporting this approach sponsored by a
consortium of software companies has been started.

Our future research will focus on describing the rules of our object-oriented
normal forms as a sequence of refactoring steps.

References

1. Ambler Scott: Building Object Applications That Work, Your Step-By-Step Hand-
book for Developing Robust Systems Using Object Technology, Cambridge Univer-
sity Press/SIGS Books, 1997, ISBN 0521-64826-2

2. Ambler Scott: Object Orientation � Bringing data professionals and application
developers together, [online] January 2009, http://www.agiledata.org/essays/

3. Barry D.: The Object Database Handbook: How to Select, Implement, and Use
Object-Oriented Databases, John Wiley & Sons, 1996, ISBN 0471147184

4. Beck K.: Agile Database Techniques- E�ective Strategies for the Agile Software
Developer, John Wiley & Sons 2003, ISBN 0471202835

5. Blaha M., Premerlani M.: Object-Oriented Modeling and Design for Database Ap-
plications, Prentice Hall 1998, ISBN 0-13-123829-9

6. Catell R. G.: The Object Data Normal: ODMG 3.0, Morgan Kaufmann 2000, ISBN
1558606475

7. Gemstone Object Server � documentation & non-commercial version download,
[online], January 2009, http://www.gemstone.com

8. Goldberg Adele, Kenneth Rubin S.: Succeeding with Objects - Decision Frameworks
for Project Management, Addison Wesley 1995, ISBN 0-201-62878-3

9. David S. Frankel. Model Driven Architecture: Applying MDA to Enterprise Com-
puting. John Wiley & Sons 2003, ISBN 0-471-31920-1

10. Khodorkovsky V. V.: On Normalization of Relations in Databases, Programming
and Computer Software 28 (1), 41-52, January 2002, Nauka Interperiodica.

11. Kroha P.: Objects and Databases, McGraw Hill, London 1995, ISBN 0-07-707790-3.
12. Loomis M., Chaundri A.: Object Databases in Practice, ISBN 013899725X
13. Nootenboom Henk Jan: Nuts - a online column about software design.

http://www.sum-it.nl/en200239.html

14. Tari Zahir, Stokes John, Spaccapietra Stefano: Object Normal Forms and Depen-
dency Constraints for Object-Oriented Schemata, ACM Transactions on Database
Systems 513-569, Vol 22 Issue 4, December 1997.

15. Vanicek Jiri, Data Gathering for Science and Research, Agricultural Economics,
50, 2004 (1), 29-34.



16. Wai Y. Mok, Yiu-Kai Ng and David W. Embley, An Improved Nested Normal
Form for Use in Object-Oriented Software Systems. Proceedings of the 2nd Inter-
national Computer Science Conference: Data and Knowledge Engineering: Theory
and Applications, pp. 446-452, Hong Kong, December 1992.

17. Yonghui Wu, Zhou Aoying: Research on Normalization Design for Complex Object
Schemes, Info-Tech and Info-Net, vol 5. 101-106, Proceedings of ICII 2001, Beijing.


