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Abstract. Feature Diagrams (FDs) are widely used to scope the domain
of Software Product Lines (SPLs). In addition, valuable information can
be inferred from FDs; for instance, the total number of possible products
of a SPL. A common approach to calculate the number of products is
translating FDs into propositional logic formulas, which are processed
by off-the-shelf tools, such as SAT solvers. However, this approach only
works for small FDs. We think more scalable solutions can be reached
avoiding the diagram-to-logic transformation and taking advantage of
the tree organization of FDs. Due to the profusion of feature modeling
notations, this paper formally defines a pivot language, named Neutral
Feature Tree (NFT), where FDs are restricted to be trees. Most popular
FD notations can be easily and efficiently translated to NFT. The pa-
per also proposes a general and time-efficient algorithm to calculate the
number of products without considering crosstree constraints.

1 Introduction

Software Product Line (SPL) practice has become an important and widely
used approach for the efficient development of complete portfolios of software
products [17]. The domain of a SPL must be carefully scoped, identifying the
common and variable requirements of its products and the interdependencies
between requirements. In a bad scoped domain, relevant requirements may not be
implemented, and some implemented requirements may never be used, causing
unnecessary complexity and both development and maintenance costs [6]. To
avoid these serious problems, SPL domains are usually modeled with variability
languages.

Since FODA’s feature modeling language was proposed in 1990 [14], a number
of extensions and alternative languages have been devised to model variability
in families of related systems:



1. As part of the following methods: FORM [15], FeatureRSEB [11], Generative
Programming [6], Software Product Line Engineering [17], PLUSS [7].

2. In the work of the following authors: M. Riebisch et al. [19], J. van Gurp et
al. [24], A. van Deursen et al. [23], H. Gomaa [9].

3. As part of the following tools: Gears [3] and pure::variants [18].

Unfortunately, this profusion of languages hinders the efficient communica-
tion among specialists and the portability of variability models between tools.
In order to face this problem, P. Schobbens et al. [20, 13, 16] propose the Varied
Feature Diagram+ (VFD+) as a pivot notation for variability languages. VFD+

is expressively complete and many variability languages can be easily and effi-
ciently translated into it.

D. Benavides [2] has surveyed a number of analysis operations that infer
valuable information from feature diagrams. One these operations is calculating
the total number of products of a SPL. This value is used by economic models,
such as the Structured Intuitive Model for Product Line Economics (SIMPLE)[5]
and the Constructive Product Line Investment Model (COPLIMO)[4], to esti-
mate the SPL costs and benefits. For instance, SIMPLE estimates the cost of
building a SPL using equation 1, where: Corg expresses how much it costs for an
organization to adopt the SPL approach, Ccab is the cost of developing the SPL
core asset base3, n is the number of products of the SPL, Cunique(producti) is
the cost of developing the unique parts of a product, and Creuse(producti) is the
development cost of reusing core assets to build a product.

CSPL = Corg + Ccab +
n∑

i=1

(Cunique(producti) + Creuse(producti)) (1)

The importance of knowing the number of products of a feature diagram
is recognized by many commercial tools for SPL development, such as Gears
and pure::variants, which provide the calculation without considering textual
constraints between features 4. On the other hand, some researchers have pro-
posed a full calculation, that includes textual constraints, by translating feature
diagrams d into some kind of logic. For instance:

– D. Batory [1] proposes a translation of d into propositional logic. Resulted
formulas are processed by off-the-shelf Logic-Truth Maintenance Systems
and Boolean Satisfiability (SAT) solvers.

– D. Benavides [2] provides an abstract conversion of d into Constraint Sat-
isfaction Problems (CSP). FaMa Tool Suite [22] adapts this abstract con-
version to general CSP solvers, SAT solvers and Binary Decision Diagrams
(BDD) solvers.

3 According to the SPL approach, products are built from a core asset base, a collection
of artifacts that have been designed specifically for reuse across the SPL.

4 Textual constraints will be explained in section 2.2.
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– Gheyi et al. [8] provides a translation of d into Alloy’s logic. Internally, Alloy
checks models by converting them into propositional logic and using off-the-
shelf SAT solvers.

Unfortunately, the diagram-to-logic approach is only scalable for small fea-
ture diagrams. However, in SPLs with complex domains, companies have re-
ported feature models with over 1000 features (e.g., M. Steger et al. [21] present
a case study with 5200 features).

This paper proposes a time-efficient algorithm to calculate the SPL number
of products without considering textual constraints. Thus, we provide an upper
bound for the number of products. In contrast with evaluated commercial tools,
the algorithm is fully general and deals with a VFD+ subset, named Neutral
Feature Tree (NFT), where diagrams are restricted to be trees5. This paper
formally defines NFT and demonstrates that NFT and VFD+ are completely
equivalent. We think NFT is a good starting point for future implementations
of analysis operations which take advantage of feature diagrams structured as
trees.

The remainder of this paper is structured as follows. Section 2 formally de-
fines the abstract syntax and semantics of NFT. Section 3 presents the sketch of
our algorithm6. Finally, section 4 summarizes the paper and outlines directions
for future work.

2 An abstract notation for modeling SPL variability

Section 2.1 outlines the main parts of a formal language; sections 2.2 and 2.3 de-
fine the abstract syntax and semantics of NFT, respectively; and finally, section
2.4 demonstrates the equivalence between NFT and VFD+.

We emphasize NFT is not meant as a user language, but only as a formal
“back-end” language used to define semantics and allow for automated process-
ing.

2.1 Anatomy of a formal language

According to J. Greenfield et al. [10], the anatomy of a formal language includes
an abstract syntax, a semantics and one or more concrete syntaxes.

1. The abstract syntax of a language characterizes, in an abstract form, the
kinds of elements that make up the language, and the rules for how those
elements may be combined. All valid element combinations supported by an
abstract syntax conform the syntactic domain L of a language.

5 VFD+ diagrams are single-rooted Directed Acyclic Graphs.
6 There is available an implementation of the algorithm on

http://www.issi.uned.es/miembros/pagpersonales/ruben heradio/rheradio english.html
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2. The semantics of a language define its meaning. According to D. Harel et al.
[12], a semantic definition consists of two parts: a semantic domain S and
a semantic mapping M from the syntactic domain to the semantic domain.
That is, M : L → S.

3. A concrete syntax defines how the language elements appear in a concrete,
human-usable form.

Following sections define NFT abstract syntax and semantics. Most variabil-
ity languages may be considered as concrete syntaxes or “views” of NFT.

2.2 Abstract syntax of NFT

A NFT diagram d ∈ LNFT is a tuple (N, Σ, r,DE, λ, φ), where:

1. N is the set of nodes of d, among r is the root. Nodes are meant to represent
features. The idea of feature is of widespread usage in domain engineering
and it has been defined as a “distinguishable characteristic of a concept (e.g.,
system, component and so on) that is relevant to some stakeholder of the
concept” [6].

2. Σ ⊂ N is the set of terminal nodes (i.e., the leaves of d).
3. DE ⊆ N×N is the set of decomposition edges; (n1, n2) ∈ DE is alternatively

denoted n1 → n2. If n1 → n2, n1 is the parent of n2, and n2 is a child of n1.
4. λ : (N−Σ) → card labels each non-leaf node n with a card boolean operator.

If n has children n1, ..., ns, cards[i..j](n1, ..., ns) evaluates to true if at least
i and at most j of the s children of n evaluate to true. Regarding the card
operator, the following points should be taken into account7:
(a) whereas many variability notations distinguish between mandatory, op-

tional, or and xor dependencies, card operator generalizes these cate-
gories. For instance, figure 1 depicts equivalences between the feature
notation proposed by K. Czarnecki et al. [6] and NFT.

(b) whereas, in many variability notations, children nodes may have different
types of dependencies on their parent, in NFT all children must have
the same type of dependency. This apparent limitation can be easily
overcome by introducing auxiliary nodes. For instance, figure 2 depicts
the equivalence between a feature model and a NFT diagram. Node A
has three children and two types of dependencies: A → B is mandatory
and (A → C, A → D) is a xor -group. In the NFT diagram, the different
types of dependencies are modeled by introducing the auxiliary node
aux.

5. φ8 are additional textual constraints written in propositional logic over any
type of node (φ ∈ B(N)).

Additionally, d must satisfy the following constraints:

1. Only r has no parent: ∀n ∈ N · (∃n′ ∈ N · n′ → n) ⇔ n 6= r.
7 The same considerations are valid for VFD+.
8 also named cross-tree constraints [2].
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2. d is a tree. Therefore,
(a) a node may have at most one parent:

∀n ∈ N · (∃n′, n′′ ∈ N · ((n′ → n) ∧ (n′′ → n) ⇒ n′ = n′′))
(b) DE is acyclic: @n1, n2 . . . , nk ∈ N · n1 → n2 → . . . → nk → n1.

3. card operators are of adequate arities:
∀n ∈ N ·(∃n′ ∈ N ·n → n′) ⇒ (λ(n) = cards)∧(s = ‖{(n, n′)|(n, n′) ∈ DE}‖)

Fig. 1. card operator generalizes mandatory, optional, or and xor dependencies

Fig. 2. Different types of dependencies between a node and its children can be expressed
in NFT by introducing auxiliary nodes

2.3 Semantics of NFT

Feature diagrams are meant to represent sets of products, and each product is
seen as a combination of terminal features. Hence, the semantic domain of NFT
is P(P(Σ)), i.e., a set of sets of terminal nodes.

The semantic mapping of NFT (MNFT : LNFT → P(P(Σ))) assigns to every
feature diagram d, a product line SPL, according to the next definitions:
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1. A configuration is a set of features, that is, any element of P(N). A confi-
guration c is valid for a d ∈ LNFT, iff:
(a) The root is in c (r ∈ c).
(b) The boolean value associated to the root is true. Given a configuration,

any node of a diagram has associated a boolean value according to the
following rules:
i. A terminal node t ∈ Σ evaluates to true if it is included in the

configuration (t ∈ c), else evaluates to false.
ii. A non-terminal node n ∈ (N − Σ) is labeled with a card operator.

If n has children n1, ..., ns, cards[i..j](n1, ..., ns) evaluates to true if
at least i and at most j of the s children of n evaluate to true.

(c) The configuration must satisfy all textual constraints φ.
(d) If a non-root node s(s 6= r) is in the configuration, one of its parents n,

called its justification, must be too: ∀s ∈ N · s ∈ c ∧ s 6= r · ∃n ∈ N · n ∈
c ∧ (n, s) ∈ DE.

2. A product p, named by a valid configuration c, is the set of terminal features
of c: p = c ∩Σ.

3. The product line SPL represented by d ∈ LNFT consists of the products
named by its valid configurations (SPL ∈ P(P(Σ))).

2.4 Equivalence between NFT and VFD+

NFT differentiates from VFD+ in the following points:

1. Terminal nodes vs. primitive nodes. As noted by some authors [1], there
is currently no agreement on the following question: are all features equally
relevant to define the set of possible products that a feature diagram stands
for? In VFD+, P. Schobbens et al. have adopted a neutral formalization:
the modeler is responsible for specifying which nodes represent features that
will influence the final product (the primitive nodes P ) and which nodes are
just used for decomposition (N − P ). P. Schobbens points that primitive
nodes are not necessarily equivalent to leaves, though it is the most common
case. However, a primitive node p ∈ P , labeled with cards[i..j](n1, ..., ns),
can always become a leaf (p ∈ Σ) according to the following transformation
TP→Σ :
(a) p is substituted by an auxiliary node aux1.
(b) the children of aux1 are p and a new auxiliary node aux2.
(c) aux1 is labeled with card2[2..2](p, aux2).
(d) p becomes a leaf. aux2’s children are the former children of p.
(e) aux2 is labeled with the former cards[i..j](n1, ..., ns) of p.
Figure 3 depicts the conversion of a primitive non-leaf node B into a leaf
node.

2. DAGs vs. trees. Whereas diagrams are trees in NFT, in VFD+ are DAGs.
Therefore, a node n with s parents (n1, ..., ns) can be translated into a node
n with one parent n1 according to the following transformation TDAG→tree:
(a) s− 1 auxiliary nodes aux2, ..., auxs are added to the diagram.
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(b) edges n2 → n, ..., ns → n are replaced by new edges n2 → aux2, ..., ns →
auxs.

(c) D. Batory [1] demonstrated how to translate any edge a → b into a
propositional logic formula φa,b. Using Batory’s equivalences, implicit
edges aux2 → n, ..., auxs → n are converted into textual constraints
φaux2,n...φauxs,n and are added to φ (φ′ ≡ φ ∧ φaux2,n ∧ ... ∧ φauxs,n).

Figure 4 depicts the conversion of a node D with two parents B and C into
a node with a single parent.

Fig. 3. Any primitive non-leaf node can be converted into a leaf node by using TP→Σ

Fig. 4. Any DAG can be converted into a tree by using TDAG→tree

In order to identify when a transformation on a diagram keeps (1) the di-
agram semantics and (2) the diagram structure, P. Schobbens [20] defines the
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notion of graphical embedding. A graphical embedding is a translation T : L → L′
that preserves the semantics of L and is node-controlled, i.e., T is expressed as a
set of rules of the form d → d′, where d is a diagram containing a defined node or
edge n, and all possible connections with this node or edge. Its translation d′ is a
subgraph in L′, plus how the existing relations should be connected to nodes of
this new subgraph. According to this definition, TP→Σ and TDAG→tree are graph-
ical embeddings that guarantee the equivalency between NFT and VFD+.

3 Calculating the total number of products represented
by an NFT diagram without considering textual
constraints

This section presents how to calculate the total number of products of a SPL
modeled by a NFT diagram without considering textual constraints.

The number of products of a node n is denoted as P (n). Thus, the total
number of products represented by a NFT diagram is P (r), where r is the root.
For a leaf node l, P (l) = 1. Table 3 includes equations to calculate P (n) for a
non-leaf node n that has s children ni of type mandatory (i.e., n is labeled with
cards[s..s]), optional (cards[0..s]), xor (cards[1..1]) and or (cards[0..s]). Hence,
time-complexity for calculating P (n) in these cases is O(s). Therefore, time-
complexity for computing P (r) is quadratic on the diagram number of nodes,
i.e., O(N2).

type of relationship equation

mandatory (cards[s..s]) P (n) =
∏s

i=1
P (ni)

optional (cards[0..s]) P (n) =
∏s

i=1
(P (ni) + 1)

or (cards[1..s]) P (n) = (
∏s

i=1
(P (ni) + 1))− 1

xor (cards[1..1]) P (n) =
∑s

i=1
P (ni)

Table 1. Number of products for mandatory, optional, or and xor relationships

In general, when a node n has s children and is labeled with cards[low..high],
P (n) is calculated by equation 2, where Sk is the number of products choos-
ing any combination of k children from s. For the sake of clarity, let us de-
note P (n1), P (n2), . . . P (ns) as p1, p2, . . . , ps. In a straightforward approach,
Sk can be calculated by summing the number of products of all possible k-
combinations (see equation 3). Unfortunately, this calculation has the following
time-complexity C for P(r): O(N2N ) ⊆ C ⊆ O(N22N ).

P (n) =
high∑

k=low
Sk (2)
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Sk =
∑

1≤i1<i2<i3...<ik≤s

pi1pi2 . . . pik
(3)

A better time-complexity can be reached by using recurrent equations. The
base case is S0 = 1. According to equation 3, S1 =

∑s
i=1 pi. Calculating S2,

the number of products for combinations of 2 siblings that include n1 is p1p2 +
p1p3... + p1ps = p1(p2 + p3 + ... + ps) = p1(S1 − p1). Similarly, the number of
products of 2-combinations that include n2 is p2(S1 − p2). Adding up every 2-
combinations, we get

∑s
i=1 pi(S1 − pi). However, in the sum each term pipj is

being accounted for twice; once in the round for i and another in the round for
j. Thus, removing the redundant calculus:

S2 = 1
2

∑s
i=1 pi(S1 − pi)

= 1
2 (S1

∑s
i=1 pi −

∑s
i=1 p2

i )
= 1

2 (S2
1 −

∑s
i=1 p2

i )

Calculating S3, the number of products for combinations of 3 siblings that
include n1 is p1 multiplied by the number of products for 2-combinations that
do not contain n1, i.e., p1(S2 − p1(S1 − p1)). Adding up every 3-combinations,
we get:

s∑

i=1

pi(S2 − pi(S1 − pi)) = S2S1 − S1

s∑

i=1

p2
i +

s∑

i=1

p3
i

This time, every triple pipjpk is being accounted for three times. Hence,
removing the redundant calculus:

S3 =
1
3

(
S2S1 − S1

s∑

i=1

p2
i +

s∑

i=1

p3
i

)

Our reasoning leads to the general equation 4, that has a much better time-
complexity O(ks). Combining equations 2 and 4, we conclude that the total
number of products of a SPL represented by a NFT diagram can be calculated,
without considering textual constraints, in cubic time, i.e., O(N3); what consti-
tutes a considerable improvement from exponential to polynomial computational
complexity.

Sk =
{

1 if k = 0
1
k

∑k−1
i=0 ((−1)iSk−i−1

∑s
j=1 pi+1

j ) if 1 ≤ k ≤ s
(4)

3.1 Supporting the calculus for an extension of card

As pointed in figure 1, an important contribution of VFD+ is the card gener-
alization of the different kinds of relations between features (i.e., mandatory,
optional...). At the moment, VFD+ (and NFT) card syntax is:

cards[range](children)
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Nevertheless, our proposed calculus for the total number of products supports
the following more general syntax:

cards〈list〉(children)

Where list is a non-void list which may include one or more:

1. index i ∈ N · 0 ≤ i ≤ s
2. range [low..high] · 0 ≤ low < high ≤ s

Broadly speaking, list provides an easy way to express the selection of more
than one range of node sons. For instance, cards〈[0..1], 3, [5..6]〉(n1, ..., ns) ex-
presses the selection of:

– zero to one of n1, ..., ns

or
– three of n1, ..., ns

or
– five to six of n1, ..., ns

Formally defining the list extension semantics: in a valid configuration c, all
non-terminal nodes n ∈ (N−Σ) are labeled with the operator cards〈list〉(n1, ..., ns)
and the operator always evaluates to true for some e ∈ list, according to the
following rules:

– if e is an index, exactly e of the s children of n evaluate to true.
– if e is a range [low..high], at least low and at most high of the s children of

n evaluate to true.

To calculate the total number of products using card〈list〉, equation 2 should
be substituted by equation 5.

P (n) =
∑

e∈list

{
Se if e ∈ N∑high

k=low Sk if e ∈ [low..high]
(5)

4 Conclusions and Future Work

Variability notations are widely used to scope the domain of a SPL. Unfortu-
nately, there is a profusion of notations that hinders the efficient communication
among specialists and the portability of variability models between tools. P.
Schobbens et al. have faced this problem by proposing the pivot notation VFD+

and demonstrating that many kinds of variability diagrams can be easily and
efficiently translated into VFD+ diagrams. Valuable information can be inferred
from VFD+ diagrams; for instance, the total number of products of a SPL, that is
used by economic models to predict SPL costs and benefits. A common approach
to infer the SPL number of products is translating diagrams into propositional
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logic formulas, which are processed by off-the-self tools, such as SAT solvers.
However, this approach only works for small diagrams.

We think more scalable solutions can be reached avoiding the diagram-to-
logic transformation and taking advantage of the tree organization of diagrams.
Since VFD+ diagrams are single-rooted directed acyclic graphs, we have formally
defined a VFD+ subset, named NFT, where diagrams are restricted to be trees.
We have also demonstrated that NFT and VFD+ are completely equivalent. We
have proposed a time-efficient algorithm to calculate the number of products of a
SPL from a NFT diagram, without considering textual constraints among nodes.
The algorithm has quadratic complexity if the diagram only includes mandatory,
optional, or and xor relations, and, in general, has cubic complexity for any value
of VFD+’s card operator. In fact, we have demonstrated that the algorithm also
supports an extension of card to express disjunction of ranges. For future work,
we plan to extend the algorithm to compute textual constraints.
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