
Time-limited data storing in peer to peer networks
Scherbakov Konstantin

SPbSU
Saint Petersburg,

Russia
konstantin.scherbakov@gmail.com

ABSTRACT
Different techniques of using peer to peer networks are
mentioned. The process of data distribution in peer to
peer network by the single node’s initiative for purpose
of further downloading by this node’s owner is
described. A common model of special peer to peer
network (UDD network), developed for single node
initiated data distribution, with its main characteristics
and used algorithms is introduced. Some ways of
improving existing peer to peer networks for the
purpose of compliance to UDD network specification
are mentioned. Experimental results of single node’s
initiated data distribution in one of the existing peer to
peer networks (with our improvements applied) are
analyzed.

Introduction and related work
Pure and hybrid peer to peer (p2p) networks are widely
used now in our life. There are at least two main ways
to use them:

- for grid/cloud computing/storage (Amazon S3,
Nirvanix SDN, Gridnut, Wuala etc.)
[1,5,9,13,19,25]

- for data exchange between interconnected
nodes (bittorrent, exeem, ed2k, kademlia,
gnutella 1,2 etc) [2,4,6,7,21,22]

If p2p network is designed for data exchange, new
nodes usually connect to it for the purpose of retrieving
some files, they are interested in, or share to other nodes
some files, they want to. But there is at least one more
alternative way of using such type of p2p networks. One
node can connect to network for storing its own
data/files over other nodes for the purpose of retrieving
this data by node’s owner from any other place. This
data may be uninteresting for other nodes of network
and may be encrypted. So let’s call such type of data the
u-data. This way is rarely used because of lack of data
access control, data availability control and u-data fast
distribution mechanisms in existing p2p networks.

Our main goal is to introduce the architecture of
prototype of such p2p network and search request
routing/data storing/indexing protocols for it, that
allows any node to store securely its u-data over the
network for some fixed time interval and also grants this
node’s owner ability to retrieve his data from any other
location during fixed period of time mentioned below
and control availability of this data over the network
during its limited storing period. Using of these
mechanisms by particular node should depend of some

coefficient of node’s usefulness for the whole network.
So nodes, that are more useful for the network, should
have opportunity to use these mechanisms more often
and more completely.

UDD P2P network model
Let’s assume that one person or group of persons have
some u-data, that is very useful for this person or group
of persons, but not interesting for other participants of
our future u-data distribution (UDD) p2p network. This
person wants to have access to this data from any place,
where he can connect to internet (and to our UDD p2p
network too). He also wants to have ability to extend his
data storing time and he expects that there is some
mechanism used in this network that prevents with high
probability his data from being deleted from all network
nodes during its limited storing time.

What properties we expect for our UDD p2p network?
Let’s assume that our network will have the properties
listed below:

1. Network nodes should have their own limited
long-term memory

2. Network nodes should have access to some
computing resources (for example their own
CPU) to calculate data content and keyword
hashes

3. Network should have some mechanisms for u-
data storing and effective distributing and
deleting

4. Network should provide high probability data
disappearance preventing mechanism

5. Network should have mechanisms of effective
data search request routing and metadata
storing [3,8,10-12,14,15,17,20,23,24,26,27]

6. Network nodes may connect and disconnect
from network constantly and therefore network
provide some mechanisms of retrieval node
connect/disconnect rate

This is ideal network for our purposes. Real p2p
networks (especially file sharing) often have 3-4 of
these properties, but we won’t examine them at this
point. It’s only important to note, that some of this
networks may be rather easily extended in special way
to have all properties of our ideal p2p u-data storing
network [16]. It’s important to introduce and describe
the method of u-data distribution in UDD network
initiated by some specific node.

In usual p2p network data distribution process usually

have some general stages:

- Data hashing (data content hashing, data
description keyword extraction and hashing
etc.)

- Data announcing (more precisely this stage
should be called “data hashes announcing”)

- Waiting for external requests for announced
data from other network nodes

- Data uploading to external network nodes
interesting in data announced

It’s a good way of distribution process for data that may
be interesting and useful for other peers in usual file
sharing p2p network, where waiting for external
requests stage hasn’t infinite durability for the data
being distributed. But we assumed that our data is
uninteresting for other nodes. Furthermore, our data
may be encrypted by its owner to prevent effective
using of it by other network node’s owners. Therefore
3rd stage of usual data distribution process will have
infinite durability for u-data in usual file sharing
network. So how we can effectively distribute data in
our ideal network? Nodes have some limited long-term
memory. If we try to send our data in all accessible
nodes, some of them may reject it, because of lack of
free disc space. Our first goal is to share u-data between
N nodes (including the initial one), where N is defined
by data and initial node’s (n_init) owner (N should be
limited according to the node n_init usefulness
coefficient, mentioned above). Lets assume that n_init
have M neighbors. If M>N we will ask them about their
free space and ask them to reserve sizeof(u-data) bytes
for our u-data storing with M queries and get M_ok
results with satisfying answer. If M_ok < N, we will ask
this nodes for their neighbor lists and then repeat our
first step. If M<N, we can ask them for neighbors first
and then ask extended node list for free space
reservation. But we can save some network bandwidth
by uniting these two types of requests into a single one.
So n_init can ask its neighbors to reserve some free
space for its u-data and in the same request it can ask
them to forward this request to their neighbors. After
receiving at least M satisfying results, n_init sends to
each of them full list of nodes from this list and offers to
receive his data. M nodes start to receive this data, using
swarm cooperation. After that they receives a unique
id’s, which are actually a structure with some fields:
data hash, data lifetime/finish storing date, replication
coordinator priority/id (this value will help to determine
current replication coordinator for stored u-data), M,
owner node’s data access key (a special access key for
this portion of data only), owner node’s id key, search
keywords, etc. This process is briefly described in the
code listing below

Listing 1:

$neighbors_arr = get_neighbors();
//neighbor list

$m_ok=0;

foreach ($neighbors_arr as
$neighbor_num=>$neighbor_value)

{

 if (reservespacerequest(

 &$neighbors_arr[$neighbor_num],&$m_ok,

 $space, $datahash)==1)

 $neighbors_arr[$neighbor_num]

 ['reserved']=1;

 $neighbors_arr[$neighbor_num]

 ['checked']=1;

}

$cur_neighbor=
get_firstkey(&$neighbors_arr);

while ($m_ok<$n)

{

 addneighbors_callback(&$neighbors_arr,

 &$m_ok,$cur_neighbor,

 'reservespacerequest');

 if(($cur_neighbor=get_nextkey(

 &$neighbors_arr,$cur_neighbor))===

 false) break;

}

$invited=send_download_invitation(
&$neighbors_arr);

/*some code deleted from listing*/

$resultnodes=send_data_info(
&$neighbors_arr);

As was mentioned above our ideal network can be
constructed by extending some real p2p file sharing
network (for example bittorrent of ed2k/kademlia
network). But if we realize a possibility of distributing
u-data in some client application for these networks
without any limitation, very few nodes will use it,
because while being unlimited, this process can make a
lot of parasitic traffic in the network and slow down
downloading and uploading of usual files. So if we want
to extend these networks with u-data distribution ability,
we need to describe some methods that can guarantee
limited use of this function, for example by useful for
whole network nodes only. Usually coefficient of
usefulness is represented by formula

coef_usf=node_upl/node_dwn,

where node_down>0, and infinity otherwise.

When any nodes download some data they need, their
node_dwn values increases, and when they upload some
data to other nodes, their node_upl values increases.
These values can never decrease. For our extended
network, we can change this formula to

fair_coef_usf = (u_usual+ deltads*d_special) /

(d_usual + deltaus*u_special),

where u_usual – outgoing traffic value for usual data,
d_usual – incoming traffic value for usual data,
u_special and d_special – incoming and outcoming
traffic value for special data (distributed over our u-data
distribution mechanism), deltads, deltaus – special
weight coefficients, introduced for correcting value of
fair_coef_usf after using by some node possibility to
distribute u-data .

Now let’s return to the end of u-data distribution

process. Let’s assume that our network have some
special nodes, that allow storing data indices (it’s true, if
we’ll extent bittorrent or ed2k network, that are now).

All M nodes with our data stored on it sends data hash,
finish storing date, search keywords to their neighbor
nodes, which are marked as indexing nodes, which
stores these values in a special data structure, you can
see on the scheme 1 below.

As we can see on this scheme, our special node has 2
hash tables. First hash table contains hashes of search
keywords, stored in dynamic array as array keys. Each
value in this array contains link to a special list of
pointers to objects, where each object contains content
hash for data, relevant to this keyword, data note and
filename, node id’s or addresses, where this data is
stored. We can store ids for nodes with dynamic ip
addresses and raw ip addresses for nodes with the static
ones. But if we only have hash table for keywords, our
special nodes will be useless for search by data content
hash request routing. So we’ll create a second hash table
for this purpose. It contains known data content hashes
links to special node, with links to the head of special
object list, which also contains links to real objects with
data about data hash, keyword hash, node id’s and/or
ips, mentioned above. So, when search request arrives,
we split it to keywords and search for their hashes in
first table. Then we get data filenames, keyword
relevance in some way, data notes and send it back to
node, that initiated this request and let it decide, what to
do with the result retrieved. When hash search request
arrives, we send back to the request initiator ids / ip
addresses of nodes that can store this data.

How we can use this structure for updating storing-time

of u-data distributed in our network? Node n_init should
send special request with data hash and new storing
time to all known nodes with our hash table structures.
Then these special nodes should find a record about this
data by its content hash. And finally they should update
storing time for this record and send update request to
known nodes with this data stored. This is non-
guarantied way to update data storing time, but our goal
is to update data on some nodes. All other work should
do current data availability coordinator.

Listing 2:

$reqtype=get_rec_type($request);

if ($rectype==’updatetime’ &&

($newtime>time()+$delay))

{

 $dataobj=0;

 search_by_datahash($hashstructure2,

 $hash,&$dataobj);

 update_storingtime_delayed(&$dataonj,

 $newtime,$delay);

 mark_for_update(&$dataonj);

 send_updatetimerec_delayed(&$dataonj,

 $newtime);

}

elseif ($rectype==’deleterec’)

{

 $dataobj=0;

 search_by_datahash(&$hashstructure2,

 $hash,&$dataobj);

 send_deleterec_delayed(&$dataonj,

 $delay);

 delete_delayed(&$dataonj,$delay);

}

/* $delay represents time in seconds,
after which this object is actually
deleted after it was disabled for search
requests */

In the listing 2 we can see code that allows indexing
nodes to update or delete objects with data hashes and
nodes ids/ips lists. It’s significant that objects are not
deleted immediately, so we only mark them as deleted
and set some delay time, after that it will be actually
deleted during the regular indexing node’s maintenance
process. This process should take place regularly in the
periods of low CPU/network/etc load of indexing node.
While maintenance, indexing node should check all
objects for it’s data storing time and if necessary,
physically delete them, if undelete flag is not set. Else if
this flag is set, node indexing should take away delete
flag and update storing time, if it’s higher than current
time, and if there is no delete flag for this or higher
storing time for this data hash, else node should also
delete object permanently.

So, how we can use this structure for searching u-data,
distributed over the network and for updating its storing
time / non-guaranteed deleting etc.?

Here you can see this process:

Listing 3:

if (is_server_load_low())

{

 foreach ($hashstructure2 as $hkey =>

 $hvalue)

 {

 $actionlist=getactions(

 &$hashstructure2[$hkey]);

 if ($actionlist)

 writelog(executeactions(

 &$hashstructure2[$hkey],

 $actionlist));

 while (!is_server_load_low())

 {

 sleep(5);

 }

 }

}

We have mentioned data coordinator below. Let’s
briefly describe its functions. Regularly all nodes,
storing our u-data sends requests to current coordinator
to check its availability, tell it that they are available and
receive a list of other nodes with u-data stored.
Coordinator monitors these requests and has a list of
currently active nodes with u-data presented. If

coordinator suddenly disconnects, other nodes elects a
new one by special data id, they have. They use last
received nodes list in this process. Node with minimum
data id (this may be UNIX time for example) wins the
election and became a new coordinator. When the old
coordinator arrives back in network, he sends requests
to known nodes with u-data stored and receives new
coordinator address. Then he tells new coordinator to
tell other nodes about new old coordinator send current
node list and became a regular node.

Experimental results
And now let’s make some experiments with our data
distribution mechanism in the real network. We have
extended existing bittorrent client bittornado, torrent
tracker tbdev [2,21,22] and a special tool to emulate
large number of different nodes (this tool is written on
PHP). We are using 2 servers: C2D E4400, 3GB ram,
Centos 5.0 and C2D E6400, 3GB ram, FC6. We know
some statistics for the normal bittorrent network, based
on this 2 servers: network average size = 4100 peers;
about 1700 peers connected to network with intervals
more 24 hrs. Average peer renewal speed: 0.08 peer per
second. Average incoming/outcoming speed of all peers
= 1.4 mbit/s

Nobody other then us was given modified p2p network
client, so we will create virtual nodes on server 1, make
server 2 indexing node and start to distribute data over
our virtual network with most characteristics equal to
the real one.

Firstly we’ll assume, that all peers have appropriate disc
space for our data and we wont’s actually save it on it’s
discs. We’ll only save data hashes, storing time and
indexes instead of it. 1700/4100 * 100% roughly = 41%.
So in all our experiments 41% of peers will be always
connected to network.

In first two sets of our experiments we’ll set and fix the
coordinators updating interval to 1 hour and start to
distribute data to varying number of nodes. We’ll also
vary average number of connected nodes (in experiment
set two). Our goal is to determine conditions, when last
node with our data will leave network and it became
inaccessible and how many nodes we need to have 25%
of nodes at the end of one coordinator update period.

Then we’ll also vary coordinator updating interval and
will determine the same conditions, when all stored data
will disappear. But firstly we’ll assume that our network
doesn’t have a constantly connected (core) nodes.

Every experiment we’ll repeat 100 times to determine
best and worst results for current conditions.

In the first set of experiments (100 nodes connected to
network in average, coordinator update time = 1 hour;
every hour 59 random nodes leaves network and 59
other connects)1 we can see, that when N (total nodes to

1 Raw data for this set of experiments can be found at
http://195.70.211.9/syrcodis09_set1.txt

Diagram 2. Second set of experiments.

Diagram 1. First set of experiments.

which our data is distributed initially) reaches value of
14, more than 25% of nodes will still have our data on it
after 1 hour in the worst result acquired. Theoretically N
should reach the value of 60 to give as a guarantee of
data saving after one coordinator update period at least
on one node, but practical results are better, because
probability of the event “all nodes with data leave our
network after one coordinator update period” decreases
exponentially (and will be about O(10^(-59*2)) for
N=59). So in real network we don’t need to distribute
data on such huge amount of nodes to save our data
with probability very close to 1.

When taking a look to diagram 2 (second set of
experiments, where we have 41 persistently connected
nodes, and other properties are equal to set 1)2 we can

2 Raw data for this set of experiments can be found at
http://195.70.211.9/syrcodis09_set2.txt

see slightly higher number of minimum required nodes
for data saving on 25% of nodes at the end of
coordinator update period. It’s close to 25 nodes,
because in this set of experiments 59 unique nodes
leaves the network, and in set 1 this value is distributed
in the interval (1,59).

Now let’s vary total number of connected nodes with
other properties of network equal to set 2. At the
Diagram 3, which represents the 3rd set of experiments3
we can see results for 4000 connected nodes and for N
from 1 to 2996 with step 85. While N reaches value of
86, we have more than 50% of nodes with our data alive

after coordinator update period

While network connect/disconnect rate is fixed, it’s

3 Raw data for this set of experiments can be found at
http://195.70.211.9/syrcodis09_set3.txt

Diagram 3. Third set of experiments.

better to have more non-persistently connected nodes
for minimizing the number of nodes, to which our data
should be distributed for having the probability of
saving very close to 1 after one coordinator update
period. This probability will decrease with time very
slowly, so we’ll have its high enough at the end of our
data storing interval, because it’s not equal to infinity.
More experiments are required to determine maximum
satisfying storing time interval for high probability of
data saving. We can also say that varying coordinator
update interval can help us to increase the probability of
data saving. It’s important to rightly determine update
interval before distributing any data in network and vary
this interval while data life cycle to minimize the
number of nodes to which data is distributed and save
the network bandwidth and node’s computing resources.
We can do this by sending special requests to indexing
nodes for example (we have one of them in our
experiments – it’s an extended bittorrent tracker). These
actions will make a little additional non data-transfer
traffic over the network, but will save us significantly
more traffic between nodes.

Conclusions
So, we have described a model of ideal p2p network for
data distribution initiated by a single node. We also
introduced some methods, that should be used in such
type of network and make three series of experiments
with good results. Our next work will be concerned to
examining more deeply routing mechanisms in that type
of networks and introducing methods that will allow
making data distribution and retrieval more secure.

REFERENCES
[1] Amazon S3 official documentation:
http://docs.amazonwebservices.com/AmazonS3/2006-
03-01/

[2] BitTorrent full specification (version 1.0).
http://wiki.theory.org/BitTorrentSpecification

[3] A. Crespo and H. Garcia-Molina. Routing Indices
for Peer-to-Peer Systems. In ICDCS, July 2002.

[4] Exeem project specification: http://www.exeem.it.

[5] I. Foster. Peer to Peer & Grid Computing. Talk at
Internet2 Peer to Peer Workshop, January 30, 2002

[6] Gnutella project specification:
http://www.gnutella.com.

[7] Kademlia: A Design Specification.
http://xlattice.sourceforge.net/components/protocol/kade
mlia/specs.html

[8] V. Kalogeraki, D. Gunopulos, D. Zeinalipour-Yazti.
A Local Search Mechanism for Peer-to-Peer Networks.
In CIKM, 2002.

[9] J. Kubiatowicz, D. Bindel, Y. Chen. Ocean-store:
An architecture for global-scale persistent storage. In
ASPLOS, 2000.

[10] C. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker.
Search and Replication in Unstructured Peer-to-Peer
Networks. In ICS, 2002.

[11] D. Menasce and L. Kanchanapalli. Probabilistic
Scalable P2P Resource Location Services.
SIGMETRICS Perf. Eval. Review, 2002.

[12] I.Nekrestyanov. Distributed search in topic-
oriented document collections. In SCI'99, volume 4,
pages 377-383, Orlando, Florida, USA, August 1999.

[13] Nirvanix SDN official documentation:
http://nirvanix.com/sdn.aspx

[14] S. Ratnasamy, P. Francis, M. Handley. A scalable
content-addressable network. In ACM SIGCOMM,
August 2001.

[15] A. Rowstron and P. Druschel. Pastry: Scalable,
distributed object location and routing for large-scale
peer-to-peer systems. In Middleware, 2001.

[16] K. Scherbakov. Search request routing in Bittorrent
and other P2P based file sharing networks, SYRCoDIS
2008, Saint-Petersburg, Russia

[17] I. Stoica, R. Morris, D. Karger. Chord: A scalable
peer-to-peer lookup service for internet applications. In
Proc. ACM SIGCOMM, 2001.

[18] M. Stokes. Gnutella2 Specifications Part One.
http://gnutella2.com/gnutella2_search.htm.

[19] D. Talia, P. Trunfio. A P2P Grid Services-Based
Protocol: Design and Evaluation. Euro-Par 2004

[20] A. S. Tanenbaum. Computer Networks. Pren-tice
Hall, 1996.

[21] TBSource official documentation: http://www.tb-
source.info

[22] TorrentPier official documentation:
http://torrentpier.info

[23] D. Tsoumakos and N. Roussopoulos. Adaptive
Probabilistic Search for Peer-to-Peer Networks. In 3rd
IEEE Int-l Conference on P2P Computing, 2003.

[24] D. Tsoumakos, N. Roussopoulos. Analysis and
comparison of P2P search methods. Proceedings of the
1st international conference on Scalable information
systems, Hong Kong, 2006

[25] Wuala project official documentation:
http://www.wuala.com/en/about/

[26] B. Yang and H. Garcia-Molina. Improving Search
in Peer-to-Peer Networks. In ICDCS, 2002.

[27] B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry:
An infrastructure for fault-tolerant wide-area location
androuting. Technical Report UCB/CSD-01-1141,
Computer Science Division, U. C. Berkeley, April 2001

