
Experiencing ASP with real world applications

G. Terracina1, E. De Francesco1, C. Panetta1, N. Leone1

Dipartimento di Matematica, Università della Calabria,
I-87036 Rende (CS), Italy

terracina,defrancesco,panetta,leone@mat.unical.it

Abstract

Disjunctive logic programming under answer set semantics (DLP,
ASP) is a powerful formalism for knowledge representation and reason-
ing. The language of DLP is very expressive, and allows for modelling
complex combinatorial problems. However, despite the high expres-
siveness of this language, the success of DLP systems is still dimmed
when the applications of interest become data intensive (current DLP
systems work only in main memory) or they involve some inherently
procedural sub-tasks or the handling of complex data structures. The
main goal of this paper is precisely to improve efficiency and usabil-
ity of DLP systems in these contexts, and verify these improvements
by a benchmarking activity on real-world applications. We present a
DLP system which: (i) carries out as much as possible of the reasoning
tasks in mass memory without degrading performances, thus allowing
to deal with data-intensive applications; (ii) extends the expressive-
ness of DLP with external function calls, yet improving efficiency (at
least for procedural sub-tasks) and knowledge-modelling power; (iii)
extends the expressiveness of DLP for supporting also the manage-
ment of recursive data structures (lists). We test the system on four
main areas: data-integration, combinatorial problems, data transfor-
mation, and string similarity computation. The experimental results
are very encouraging: the proposed system can handle significantly
larger amounts of data than competitor systems, and it is also faster
in response time.

1 Introduction

Disjunctive logic programming under answer set semantics (DLP, ASP) is a
powerful rule-based formalism for knowledge representation and reasoning.
The recent development of efficient DLP systems, like DLV [9], Cmodels
[7], Gnt2 [8], and ClaspD [5], has renewed the interest for DLP in modern
application areas.

However, current DLP systems present three main drawbacks in real
world scenarios: they are not capable of handling data intensive applications
(they work in main memory only), they are not well suited for modelling
inherently procedural problems, and they can not reason about recursive
data structures and infinite domains, such as XML/HTML documents, time,
etc.

Proceedings of the 15th International RCRA workshop (RCRA 2008):
Experimental Evaluation of Algorithms for Solving Problems with Combinatorial Explosion
Udine, Italy, 12–13 December 2008

Recently, we presented a database-oriented variant of DLV, namely DLVDB

[15], representing a first step towards overcoming these drawbacks. In fact,
[15] carries out all of its tasks in mass memory, thus enabling data intensive
applications, but only for limited forms of reasoning (only disjunction free,
stratified programs are allowed).

The goal of our current work is to enhance DLVDB features to improve
its efficiency and usability in the contexts outlined above, for an effective
exploitation of DLP in real world scenarios. The proposed enhancements
include: (i) full support to disjunctive datalog with unstratified negation,
and aggregate functions; (ii) extension of DLP with external function calls,
particularly suited for solving inherently procedural sub-tasks but also for
improving knowledge-modelling power; (iii) extension of DLP to support list
terms; (iv) an evaluation strategy devoted to carry out as much as possible
of the reasoning tasks in mass memory, thus enabling complex reasonings in
data intensive applications without degrading performances.

In order to make the above enhancements possible, various challenges
had to be faced:

1. Data intensive applications usually must access, and modify, data
stored in autonomous enterprise databases and these should be ac-
cessed also by other applications.

2. Evaluating the stable models of an ASP program directly in mass-
memory data-structures, could be highly inefficient.

3. Using the main memory to accommodate both the input data (here-
after, EDB) and the inferred data is usually impossible for data inten-
sive applications due to the limited amount of available main memory.

4. The introduction of functions and list terms makes the evaluation of
programs more complex.

Note that, from points 2. and 3. it comes out that some amount of data
must be loaded in main memory, but this should be as small as possible.

In order to face challenge 1. DLVDB is interfaced with external databases
via ODBC. ODBC allows a very straightforward way to access and manip-
ulate data over, possibly distributed, databases. Note that challenge 1.
makes the adoption of deductive systems integrating proprietary DBMSs
not effective.

As far as challenge 2. is concerned we adopt a mixed strategy, which
is outlined in Section 3; intuitively, the evaluation can be divided in two
distinct phases: the grounding and the model generation. Grounding is
completely performed in the database, whereas the model generation is car-
ried out in main memory; this allows also to address challenge 3. In fact, in
several cases, only a small portion of the ground program is actually needed

for the model generation phase, since most of the inferred data is “stable”
and belongs to every stable model (and is already derived during the ground-
ing phase). Finally, as for challenge 4. we exploit database stored functions
to implement external function calls; these are also the basis for supporting
list terms, which are handled with suitable manipulation functions.

It is worth pointing out that the resulting ASP system is very powerful: it
can encode any computable function in a rich and fully declarative language,
allowing to solve very complex combinatorial problems.

We have dedicated special attention also to efficiency; in fact, while
language extensions and mass memory evaluations usually tend to degrade
systems efficiency, our implementation presents comparable, and in several
cases even better, performances than competitor main memory systems, yet
allowing the handling of the highest amounts of data. The proposed system
has been in fact compared with state-of-the-art ASP systems. Test results,
reported in the paper, show that DLVDB is well suited for data intensive
applications both for time and space requirements.

2 System Language

The language supported by the proposed system is disjunctive datalog, ex-
tended with functions, aggregates, and list terms. Syntax and semantics
of this language are sketched next; details can be found in [2, 3]. Rules
accepted by the system have the form:

α1 ∨ · · · ∨ αk :-β1, . . . , βn, not βn+1, . . . ,notβm. (1)

where m, k ≥ 0, α1, . . . , αk, are ordinary atoms, and β1, . . . , βm are (ordi-
nary, external, or aggregate) atoms. External and aggregate atom predicate
names are conventionally preceded by “#”. Arguments of atoms are terms
that can be either constants, variables, or lists. Rules with k = 0 and m > 0
are called constraints, whereas rules such that k = 1 and m = 0 are called
facts.

An example of external atom could be #concat(X,Y,Z), which takes
two strings X and Y as input and returns a string Z corresponding to the
concatenation of X and Y . Examples of aggregate functions are #count

(number of terms) and #sum (sum of rational numbers).
A list term can be defined using the following two forms:

• [t1, . . . , tn] where t1, . . . , tn are terms;

• [h|t] where h (the head of the list) is a term, and t (the tail of the list)
is a list term.

Moreover, two special external atoms are reserved for lists manipulation,
namely #head(L,H), which receives a list L and returns its head H, and

#tail(L,T), which returns the tali T of L.1

Functions introduced in the program by external atoms are expected to
be defined as scalar stored functions in the database coupled with DLVDB;
in fact, as it will be clear in the following, DLVDB performs most of its
evaluations directly on a working database specified by the user. Moreover,
programs must be value-invention restricted (cfr. [2]), i.e. new values pos-
sibly introduced by external atoms must not propagate through recursion;
this avoids the generation of infinite-sized answer sets.

Stored functions in databases can return only one scalar value; as a con-
sequence, DLVDB adopts the convention that the last variable of the external
atom corresponds to the result returned by the function call, whereas all the
other variables are the input for the stored function.

3 Evaluation Strategies

The proposed evaluation strategy puts its basis on the sharp distinction
existing between the grounding of the input datalog program and the gen-
eration of its stable models. Then, two distinct approaches can be adopted
depending on whether the input program is non disjunctive and stratified
(in this case everything can be evaluated on the DBMS) or not. The former
case has already been addressed in [15]; here we concentrate our attention
on the latter one and on the new features of the system.

Evaluation of disjunctive programs with unstratified negation The
evaluation strategy we adopt carries out the grounding completely in the
database, by the execution of suitable SQL queries. This phase generates
two kinds of data: ground atoms (facts) valid in every stable model (and
thus not requiring further elaboration in the model generation phase) and
ground rules, summarizing possible values for a predicate and the conditions
under which these can be inferred.

Facts compose the so called solved part of the program, whereas ground
rules form the residual program, not completely solved by the grounding. As
previously pointed out, one of the main challenges in our work is to load the
smallest amount of information as possible in main memory; consequently,
the residual program generated by the system should be as small as possible.

Model generation is then executed in main memory with the technique
described in [9].

1Actually, our current implementation imposes some restrictions on the generic defi-
nition of list terms. In particular, in [t1, . . . , tn] only (possibly nested lists of) constants
are allowed, whereas in [h|t], h can be either a constant or a variable and t can be only
a variable. Note that these restrictions, coupled with the availability of #head and #tail
do not limit language expressiveness.

Definition 1. Let p be a predicate of a program P, p is said to be unsolved
if: (i) it is in the head of a disjunctive rule; or (ii) it is the head of at least
one rule involved in unstratified negation; or (iii) the body of a rule having
p as head contains at least one unsolved predicate. p is said to be solved
otherwise.

In our evaluation strategy, a solved predicate is associated with facts only
in the ground program and, thus, with certainly-true values, i.e. instanti-
ations of the predicate that make the resulting atom true in every stable
model. On the contrary, an unsolved predicate p may be defined by both
facts (certainly-true values) and ground rules; the latter identify possibly-
true values for p, i.e. instantiations of p that make the resulting atom true
in some stable models.

Given an unsolved predicate p we indicate the set of its certainly-true
values as ps and the set of its possibly-true values as pu.

As previously pointed out, rules having an unsolved predicate may gener-
ate ground rules in the instantiation. Since we are interested in generating
the smallest residual program as possible, ground rules are “epurated” of
certainly-true values.

Definition 2. A simplified ground rule (g-rule in the following) of a program
P is a ground rule not involving any certainly-true values of P.

It is now possible to illustrate the evaluation strategy implemented in
our system. Given a program P, the evaluation is carried out in five steps:

Step 1. Preprocess P for the database-oriented instantiation; this
produces a rewriting P ′ of P;

Step 2. Translate each rule of P ′ into a corresponding SQL statement;

Step 3. Compose and execute the query plan of statements generated
in Step 2 on the DBMS;

Step 4. Generate the residual program and load it in the Model
Generator of DLV;

Step 5. Execute the residual program in main memory and show the
results.

Step 1. The objective of Step 1 is to “prepare” rules of P to be translated
in SQL almost straightforwardly, in order to generate a residual programs
as small as possible. In more detail, for each rule r in P three kinds of rule
are generated in P ′:

A. If the head of r has one atom only, a rule (hereafter denoted as A-rule)
is created for deriving only certainly-true values of r’s head; note that if r

is disjunctive no certainly-true values can be derived from it.

B. A set of rules (hereafter, B-rules) supporting the generation of the g-
rules of r. The heads of these rules contain both the variables of unsolved
predicates in the body of r and the variables in the head of r. Ground
values obtained for these variables with B-rules are then used to instantiate
r with possibly-true values only.

C. A set of rules (hereafter C-rules) for generating the set of possibly-true
values of unsolved predicates as projections on B-rules obtained previously.

Step 2. Translation of the rules obtained in Step 1. into SQL is carried
out with the technique already presented in [15] for non disjunctive and
stratified programs.

Step 3. In order to compile the query plan, the dependency graph D asso-
ciated with P is considered [10]. In particular, D allows the identification of
a partially ordered set {Compi} of program components where lower com-
ponents must be evaluated first.

Then, given a component Comp and a rule r in Comp, if r is not recur-
sive, then the corresponding portion of query plan is as follows2: (1) evaluate
(if present) the A-rule associated with r; (2) evaluate each B-rule obtained
from r; (3) for each predicate in the head of r evaluate the corresponding
C-rule.

If r is recursive, the portion of query plan above must be included in a
fix-point semi-näıve evaluation, as described in [15].

Step 4 and 5. The generation of the residual program requires the analysis
of values derived by B-rules only. Then, for each rule r and each correspond-
ing B-rule (say, r.Bi), r is instantiated with values of r.Bi; during this phase
some checks are suitably carried out to remove certainly-true values from
the corresponding g-rule instances. The residual program is then loaded in
main memory for the generation of stable models. Note that each answer set
found on this residual program shall be enriched with certainly-true values
determined during the grounding.

More details on the implementation of Steps 1-5 are presented in [14].

Evaluation of programs with functions Recall that, by convention,
given an external atom #f(X1, . . . , Xn, O) used in a rule r, only the last
variable O can be considered as an output parameter, while all the other
variables must be intended as input for f . This corresponds to the function
call f(X1, . . . , Xn) = O on the DLVDB working database. Moreover, O can
be: (i) bound to other variables in r’s body, (ii) bound to a constant, (iii)

2Here, for simplicity of exposition, we refer to rules, indicating that the corresponding
SQL statements must be evaluated on the database.

a variable of r’s head. Then, in the SQL statement corresponding to r, a
function call is introduced in the WHERE part to implement cases (i) and
(ii) and in the SELECT part to implement case (iii).

As an example, consider the rule: mergedNames(ID, N) :- person(ID, FN,
LN), #concat(FN, LN, N). This rule belongs to case (iii) above and is trans-
lated into:

INSERT INTO mergedNames
(SELECT person.ID, concat(person.FN,person.LN) FROM person);

Evaluation of programs with list terms In our approach, list terms
are handled by suitable function calls; in particular, programs containing list
terms are automatically rewritten to contain only terms and function calls.
Three basic operations can be singled out to handle lists: (i) initialization,
(ii) packing of a term as head of a list, (iii) unpacking of a list in the head
term and its tail.

Lists are internally handled as strings, starting (resp., ending) with a ‘[’
(resp., ’]’) where terms are separated by a ‘,’. Initialization is then implicitly
implemented by the transformation of the list in a string (recall that we
currently limit lists of the form [t1, . . . , tn] to contain only – possibly nested
– lists of constants).

Packing of a list is carried out by a function #pack which receives a
term H and a list T and returns the list L=[H|T].3 E.g. the rule p([H|T]):-
dom(H),list(T) is translated into p(L):-dom(H), list(T), #pack(H,T,L).

Handling the unpacking is a bit more tricky. In fact, the corresponding
function should return two values (the head and the tail) but database stored
functions can output one value only and can not have side effects on existing
tables. Then, unpacking of a list must be carried out through two different
calls to functions #head and #tail introduced in Section 2.

As an example, a rule of the form q(H):- dom(H), list(T), list([H|T]) is
translated into q(H):-dom(H), list(T), list(L), #head(L,H), #tail(L,T).

The corresponding SQL statement will then be

INSERT INTO q (SELECT dom.H,

FROM dom, list l1, list l2 WHERE head(l1.L)=dom.H AND tail(l1.L)=l2.L).

Note that availability of #head and #tail functions allows also the ma-
nipulation of nested lists.

As a final remark, in order to simplify the evaluation process, we cur-
rently associate each occurrence of a list term in the head (resp., body) of
a rule with a call to #pack (resp., #head and #tail). This may be not
always the best choice in terms of efficiency, but provides a very easy way
to compose multiple lists in the same rule.

3Here and in the following functions handling lists are supposed to be already loaded
on the working database.

4 Experiments and Benchmarks

In order to asses the performance of the proposed system, we carried out
several tests on four categories of real world applications: data-integration,
combinatorial problems, data transformation, and string similarity compu-
tation. Next we report results obtained for each kind of test in a separate
section. All tests have been carried out on a Pentium IV with 500Mb of
RAM. The working database of DLVDB was defined on Microsoft SQL Server
2005.

4.1 Testing on a real data integration setting

In this section we describe the tests we carried out in querying inconsistent
and incomplete data. We exploited the data integration framework devel-
oped in the INFOMIX project (IST-2001-33570) [4] which integrates real
data from a university context.

Compared systems We compared DLVDB with state-of-the-art ASP sys-
tems, namely DLV [9], Gnt2 [8], ClaspD [5], Smodels [11], and Cmodels [7].
DLVDB and DLV include an internal proprietary grounder, whereas the other
systems require an external grounder; we tested both Lparse [13] and GrinGo
[6] for this purpose; precisely, given a grounder x and a system y, we run x|y
so as to direct the output of x into y; the output of the systems have been
directed to null in order to eliminate printing times from the computation
of the overall execution times.

It is worth pointing out that all systems but DLVDB and DLV do not ex-
plicitly support non-ground queries; in order to carry out our tests, we asked
these systems to compute all answer sets. However, since tested queries are
all non-ground (see below) answer sets must be all computed anyway. Note
also that Smodels and GrinGo do not support disjunction; since the data
integration framework required some disjunctive rules for handling data in-
consistencies, we adopted a semantic preserving rewriting when using these
systems to remove disjunctions4.

Tested queries We tested four queries, ranging from simple selections
to more complicated ones. Two of these queries have been also used for
studying the scalability of tested systems:

• Q1: select the student IDs and the course descriptions of the examinations
they passed (this query involves possible inconsistencies in student IDs,
exam records, and course descriptions).

4We used ClaspD also for non disjunctive programs with GrinGo. However, we checked
that running times of Clasp are the same as those of ClaspD in these queries.

• Q2: select the first and second names of the professors stored in the
database (this query involves possible inclusion dependency violations in
relationships involving professors, and possible inconsistencies in exam
records).

• Q3: select pairs of students having at least one common exam (this query
involves possible inconsistencies in student IDs and exam records). We
leveraged the complexity of this query by filtering out different subsets of
exam records.

• Q4: select pairs of students and course codes of passed examinations such
that the professor’s first name of the corresponding courses is the same (this
query involves possible inconsistencies in student IDs, exam records, and
course descriptions). We leveraged the complexity of this query by filtering
out different subsets of exam records.

All tested queries are non-ground. Due to space constraints we can not
show here their complete encodings. The interested reader can find them in
the on-line Appendix [1].

Results and discussion Test results are shown in Figure 1. In the
graphs, we used the notation x:y to denote the system y coupled with the
grounder x; moreover, to simplify the notation, we used symbol L (resp. G)
to denote Lparse (resp. GrinGo).

Results of queries Q1 and Q2 are shown in Figure 1(a). We can observe
that the amount of data involved by these queries is still manageable by
all tested systems in main memory. DLVDB and DLV present comparable
performances and they are at least 50% faster than other systems. In these
queries, there is no substantial difference in using Lparse or GrinGo.

The scalability of query Q3 is illustrated in Figure 1(b). Here (and in
Figure 1(c)) the line of a system stops when it (or the associated grounder)
has not been able to solve the query. Note that no system but DLVDB

has been capable of handling 100% of input data, due to lack of memory.
Specifically, for this query, grounders were able to complete the computation,
but systems not. As for obtained results, it is possible to observe that in
this query, when coupled with GrinGo, systems behave generally better
than with Lparse, at least for small inputs. Performances of DLVDB are
comparable to those of the other systems with Lparse for small inputs, but
it behaves much better for bigger data sizes. Notably ClaspD with GrinGo
presents the best performance for Q3 until it is able to handle data in main
memory.

Results for query Q4 are shown in Figure 1(c). Here, Lparse has not
been able to complete the grounding in reasonable time even for the smallest
data set (we stopped it after 12 hours). Hence, only results with GrinGo
are presented (which has been able to complete the grounding for plotted

(a) (b)

(c) (d)

Figure 1: Results for : (a) Q1, and Q2; (b) Q3; (c) Q4; (d) FastFoods.

data). Here, again, DLVDB allows handling bigger data sizes than the other
systems which, at some point, are subject to memory overflow. Also, the
performances of DLVDB in small data sets are extremely competitive.

4.2 Testing on a combinatorial problem

In this test, we considered a combinatorial problem, we call it FastFoods,
which checks whether a depot allocation has minimal supply costs among
all depot allocations of the same cardinality. Inputs to the problem are a
set of restaurants and a set of depots, each characterized by a Name and a
Position (Km). The output is an alternative set of depots, if available. The
complete encoding of this problem can be found in the on-line Appendix [1].

Note that we could test only DLV and DLVDB on this problem. In fact,
the encoding of FastFoods is heavily based on aggregate functions, especially
assignment aggregates which are not supported by the other systems.

Results showing response times for increasing numbers of restaurants are
illustrated in Figure 1(d) 5. It clearly emerges that DLVDB is much more
effective than DLV in aggregating data for increasing input sizes; this can
be justified by the fact that DLVDB exploits DBMS aggregation functions
during the grounding.

5We fixed the number of depots to 50.

(a) (b)

Figure 2: Results for (a) Int2Bin, (b) HammingDistances.

4.3 Testing on data transformation problems

We tested the capability to improve usability and efficiency of DLVDB via
functions for a typical real world problem, namely data transformation.
Data transformation is particularly relevant, e.g. in data integration, to
uniform data formats among different sources.

In particular, we considered the problem of transforming integer num-
bers in their binary representation. This task can be encoded both in pure
datalog and in datalog with functions (see the on-line Appendix [1]). We
then designed a test program, named Int2Bin, aiming simply at transform-
ing integers stored in an input table to binaries. We defined two variants
of Int2Bin, one with and one without function calls. In order to measure
the scalability of DLVDB in this test, we considered output binary numbers
having 5 to 16 bits. Obtained results are shown in Figure 2(a).

The figure clearly shows the significant advantage of using functions in
this context. In fact, the execution time of Int2Bin with functions is almost
constant because it requires a fixed number of function calls (one for each
mark to convert), independently of the number of bits. To the contrary,
the standard datalog version must generate all the binary numbers in the
admissible range; this explains the exponential growth of the response time.

4.4 Testing on string similarity computation

String similarity computation is an important task in several application
areas. In particular, in Bioinformatics, it is essential for measuring several
parameters between portions of DNA or proteins and to identify frequently
repeated patterns. ASP (with some extensions) has already been exploited
also in this context, see e.g. [12].

In this test, we considered the computation of the Hamming distance
between pairs of strings, which is at the basis of several similarity measures.
It is defined as the number of positions in which the corresponding symbols
of two strings of the same length are different. This problem is inherently
procedural and, even if a declarative solution for it is possible, this is quite

unnatural.
We then considered the following problem, referred as HammingDis-

tances in the following: given a set of strings compute the Hamming dis-
tance between each string pair. Note that, in classical ASP, in order to
properly compute the hamming distance, strings must be represented as a
set of pairs (POS, CHAR); to the contrary, a function-based solution can
directly handle the whole string.

We then designed two encodings for the problem, one using functions
and one not; specifically, in the former case input strings are represented as
string(ID,S), whereas in the latter case, strings are expressed as string(ID,
CHAR, POS). Note that we did not count the time for converting the strings
from one format to the other in our tests. In both cases, the output has
the form hd(ID1, ID2, H). The complete encodings can be found in the
Appendix [1].

Results are shown in Figure 2(b) for increasing numbers of input strings.
The gain provided by DLVDB is similar to that we have observed in the
previous test, thus confirming the advantage of using functions to solve
procedural sub-tasks.

5 Conclusions

In this paper we shown how efficiency and usability of DLP systems can
be improved for their exploitation in real world applications. Specifically,
we presented some enhancements to the DLVDB system devoted to improve
both its expressiveness and its efficiency.

Our extensive experimental evaluation showed that proposed improve-
ments make DLVDB particularly suited for data intensive applications and
that DLVDB can exemplify the usage of DLP for those problems character-
ized by both declarative and procedural components.

As for future work we plan to further improve the program evaluation
techniques, especially in answering user queries. In this context, we plan to
exploit query unfolding techniques and query distribution approaches.

References

[1] http://www.mat.unical.it/terracina/rcra08/Appendix.pdf.

[2] F. Calimeri, S. Cozza, and G. Ianni. External sources of knowledge and value
invention in logic programming. Annals of Mathematics and Artificial Intelli-
gence, 50:333–361, 2007.

[3] T. Dell’Armi, W. Faber, G. Ielpa, N. Leone, and G. Pfeifer. Aggregate Func-
tions in Disjunctive Logic Programming: Semantics, Complexity, and Imple-
mentation in DLV. In Proc. of the 18th Int. Joint Conference on Artificial
Intelligence (IJCAI) 2003, pages 847–852, Acapulco, Mexico, 2003.

[4] N. Leone et al. The infomix system for advanced integration of incomplete and
inconsistent data. In Proc. of 24th ACM SIGMOD International Conference on
Management of Data (SIGMOD 2005), pages 915–917, Baltimore, Maryland,
USA, 2005. ACM Press.

[5] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. Clasp : A conflict-
driven answer set solver. In Int. Conference on Logic Programming and Non-
monotonic Reasoning (LPNMR), Tempe, AZ, USA, pages 260–265, 2007.

[6] M. Gebser, T. Schaub, and S. Thiele. GrinGo : A new grounder for answer set
programming. In Int. Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR), Tempe, AZ, USA, pages 266–271, 2007.

[7] E. Giunchiglia, Y. Lierler, and M. Maratea. Answer set programming based
on propositional satisfiability. Jornal of Automated Reasoning, 36(4):345–377,
2006.

[8] T. Janhunen, I. Niemelä, D. Seipel, P. Simons, and J. You. Unfolding partiality
and disjunctions in stable model semantics. TOCL, 7(1):1–37, 2006.

[9] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello.
The DLV System for Knowledge Representation and Reasoning. ACM Trans.
Comput. Log., 7(3):499–562, July 2006.

[10] N. Leone, P. Rullo, and F. Scarcello. Disjunctive Stable Models: Unfounded
Sets, Fixpoint Semantics and Computation. Information and Computation,
135(2):69–112, 1997.

[11] I. Niemelä, P. Simons, and T. Syrjänen. Smodels: A System for Answer Set
Programming. In Proc. of the 8th Int. Workshop on Non-Monotonic Reasoning
(NMR’2000), Colorado, USA, April 2000.

[12] L. Palopoli, S. Rombo, and G. Terracina. Flexible pattern discovery with (ex-
tended) disjunctive logic programming. In Proc. of 15th International Sympo-
sium on Methodologies for Intelligent Systems (ISMIS 2005), pages 504–513,
Saratoga Springs, New York, USA, 2005. Lecture Notes in Artificial Intelli-
gence (3488), Springer-Verlag.

[13] T. Syrjänen. Lparse 1.0 user’s manual, 2002. http://www.tcs.hut.fi/

Software/smodels/lparse.ps.gz.

[14] G. Terracina, E. De Francesco, C. Panetta, and N. Leone. Enhancing a DLP
system for advanced database applications. In Proc. of International Confer-
ence on Web Reasoning and Rule Systems (RR 2008), Karlsruhe, Germany,
2008. Lecture Notes in Computer Science, Springer.

[15] G. Terracina, N. Leone, V. Lio, and C. Panetta. Experimenting with recursive
queries in database and logic programming systems. Theory and Practice of
Logic Programming (TPLP), 8(2):129–165, 2008.

