
Identifying Algebraic Properties to Support
Optimization of Unary Similarity Queries?

Mônica Ribeiro Porto Ferreira1, Agma J. M. Traina1,
Ires Dias2, Richard Chbeir3, and Caetano Traina Junior1

1 Computer Science Dept., ICMC-Univ. of São Paulo, São Carlos-SP, Brazil,
2 Mathematics Dept., ICMC-Univ. of São Paulo, São Carlos-SP, Brazil,

3 LE2I Laboratory UMR-CNRS Univ. of Bourgogne, Dijon, France
{monika,agma,iresdias,caetano}@icmc.usp.br

{richard.chbeir}@u-bourgogne.fr

Abstract. Conventional operators for data retrieval are either based on
exact matching or on total order relationship among elements. Neither of
them is appropriate to manage complex data, such as multimedia data,
time series and genetic sequences. In fact, the most meaningful way to
compare complex data is by similarity. However, the Relational Algebra,
employed in the Relational Database Management Systems (RDBMS),
cannot express similarity criteria. In order to address this issue, we pro-
vide here an extension of the Relational Algebra, aimed at representing
similarity queries in algebraic expressions. This paper identifies funda-
mental properties to allow the integration of the unary similarity oper-
ators into the Relational Algebra to handle similarity-based operators,
either alone or combined with the existing (exact matching and/or rela-
tional) operators. We also show how to take advantage of such properties
to optimize similarity queries, including these properties into a similarity
query optimizer developed for a Similarity Retrieval Engine, which uses
an existing RDBMS to answer similarity queries.

Key words: similarity algebra, algebraic properties, query optimiza-
tion, unary similarity queries

1 Introduction

In 1970, Codd [1] introduced the relational model, which is the foundation for
most of the actual commercial DataBase Management Systems (DBMS). It is
based on the mathematical relation theory: the database is represented as a set
of relations, where each relation is a table with tuples (or rows) and attributes
(or columns). The domain of possible values for each attribute is restricted by
the data types.

Initially, the relational model supported only traditional data, i.e., numerical
and string data types. Elements of these types can be compared using exact
matching (= and 6=) and relational (<, >, ≤ and ≥) operators. Now, with the

? This work has been supported by FAPESP, CNPq and CAPES/Fulbright



2 Ferreira et al.

advent of multimedia and spatial applications, the Relational DBMS (RDBMS)
must be able to support new data types, operators and kinds of queries. Thus,
similarity emerges as the natural way to compare elements in complex domains,
such as images, audios, videos, genomic sequences, and time series, and con-
sequently handling operations based on similarity (or distance) between data
becomes a must. To illustrate this, let us take the following examples:

Q1: In a health-care information system: “Given a mammography exam
with images of left and right breast from cranio-caudal (RCC) and medio-lateral
oblique (RMLO) views of a patient, show the exams whose texture do not differ
more than 10 units from those in the exam”.

Q2: In a health-care information system: “Given a head tomography exam of
a patient showing a pathology, retrieve the 5 exams most similar not presenting
pathology, and that texture do not differ more than 5 units from those in the
exam”.

Q3: In Geographic Information Systems (GIS): “Find the 15 districts nearest
to ‘Arequipa’ that are not farther than 15 miles, and where the population having
between 21 and 64 year is greater than 65-year-old population and over”.

To solve similarity-based queries, several extensions of relational algebra have
been provided in the literature aimed at including the similarity functionality in
RDBMS from various perspectives. The first algebra to consider this issue has
been the Multi-Similarity Algebra (MSA), presented by Adali et al. [2]. It has
been designed to integrate different interpretations of similarity values coming
from multiple similarity implementation in a common framework. However, it
remains at a higher abstraction level and thus does not address the problem of
an “operational” algebra usable for modeling, optimizing, and processing queries
with similarity-based operations [3]. Therefore, it is not fully consistent to the
relational model.

Other works have associated similarity to uncertainty and provided fuzzy
logic-based methods to solve this [4, 5]. The problem of those approaches is
that they assume that complex data manipulation involves evaluation of their
similarity, but this does not mean that these data or the similarity evaluation
are uncertain or imprecise (as only exact match comparisons are useless in these
domains). In fact, it is possible to execute similarity queries resulting in either
approximated or exact answers.

Likewise, other approaches have been based on the notion of ranking, i.e.,
ordering among tuples or elements [6, 7]. It is true that they are consistent to
the relational model and can be applied to similarity queries considering the
distance functions as the ranking criterion, but they depend on ranking criteria
that are independent from queries, whereas the ranking criterion of a similarity
query varies with the query.

None of these previous works has addressed optimizations based on query
rewriting for the similarity-based select operators in complex expressions. Traina
et al. [8] proposed an extension of relational algebra considering complex sim-
ilarity queries with two or more similarity predicates combined with Boolean
operators. However, they have only treated queries with the same query element



Algebraic Properties for Unary Similarity Queries 3

(unique center), which is very restrictive and does not cover all cases occurring
in a RDBMS.

In this paper, we present the fundamental properties of a Similarity Algebra
aiming at integrating both unary similarity operators with the relational algebra,
which allows optimizing similarity queries in relational DBMS. The properties
allow handling queries including any number of query centers, and suitable to
support both similarity-based and traditional operators in the same query.

The remainder of this paper is structured as follows. Section 2 presents the
Similarity Algebra. Section 3 shows experimental results conducted to evaluate
the relevance of our approach. Finally, Section 4 concludes this paper and draws
our future steps.

2 Similarity Algebra
2.1 Preliminaries

In order to execute similarity queries in relational DBMS, it is necessary to
provide a measurement of how to quantify similarity between two elements.
Usually, it is done by defining a distance function d, which is the basis to
create a metric space M = 〈S, d〉, where S denotes the universe of valid el-
ements (domain) and d is a function d : S × S → R+ that expresses a
“distance” between elements of S. The distance function d must satisfy the
following properties: (i) symmetry: d(s1, s2) = d(s2, s1); (ii) non-negativity:
0 < d(s1, s2) < ∞, if s1 6= s2 and d(s1, s1) = 0; and (iii) triangular inequal-
ity: d(s1, s2) ≤ d(s1, s3) + d(s3, s2),∀s1, s2, s3 ∈ S .

An attribute is comparable by similarity only if it is associated to a simi-
larity measure d. Although distance functions can theoretically be assigned to
any attribute, they are of utter importance when applied to complex attributes.
Therefore, without loss of generality, we call complex attributes1 and, corre-
spondingly, its domains, those associated to distance functions, and the others
we call simple attributes.

Relations that have complex attributes should follow the same properties
and definitions of traditional relations. In this paper, we employ the following
notation to express relations. Let Ah ⊂ Ah be a simple attribute in a domain Ah
that allows comparisons using traditional operators; Sj ⊂Sj be an complex at-
tribute in a domain Sj in a metric space that allows comparisons using complex
operators; and T be an relation with any number of both simple and complex
attributes. That is, let T = {A1, . . . ,Am,S1, . . .Sp} be a relational schema, a rela-
tion T ⊂T is a set of elements represented as tuples T = {A1, . . . , Am, S1, . . . Sp},
which has for each tuple t = 〈a1, . . . , am, s1, . . . sp〉 values ah (1 ≤ h ≤ m) ob-
tained in the domain Ah and values sj (1 ≤ j ≤ p) obtained in the domain Sj .
Thus, let ti(Sj) (1 ≤ i ≤ n) be the value of the Sj complex attribute of the
ith tuple in the relation, and correspondingly let ti(Ah) be the value of the Ah
simple attribute. To alleviate the notation of handling several attributes in a
1 Distinctly from object-oriented models, we employ here the term “complex attribute”

to refer to those having a distance function assigned. Examples are images, audios,
geographical coordinates, genomaic sequences, etc.



4 Ferreira et al.

relation, in the remainder of the paper, we will use just S and S to refer to a
complex attribute Sj and its respective domain Sj , and A and A refer respec-
tively to a simple attribute Ah and its respective domain Ah whenever the focus
of the text is over only one attribute.

2.2 Unary similarity queries operations

Traditional selections follow the format σ(A θ a) T , where θ is a comparison oper-
ator valid in the domain A of the attribute A, and ‘a’ is either a constant taken
in the domain of A or the value of another attribute from the same domain of
A in the same tuple. Similarity selections follow the same format: σc (S θc sq) T ,
where σc represents a similarity selection, θc is a similarity operator valid in the
domain S of the attribute S and ‘sq’ is either a constant taken in the domain
of S or the value of another attribute from the same domain of S in the same
tuple.

There are two similarity operators commonly employed: range and k-nearest
neighbor. As their properties can be different from those of the traditional selec-
tion, we initially use the symbols σ̂ and σ̈ to represent range and kNN selections,
and θ̂ and θ̈ to represent range and kNN operators, respectively. They are de-
scribed as follows.

Definition 1. Range query - Rq: Let S be a complex attribute taken in domain
S over which the similarity condition is expressed, d be a distance function, ξ be
the similarity threshold and sq ∈ S be the query element. The query σ̂(S θ̂(d,ξ) sq)T
returns every tuple ti ∈ T such that d (ti (S) , sq) ≤ ξ. That is:

σ̂(S θ̂(d,ξ) sq) T = {ti ∈ T | d (ti (S) , sq) ≤ ξ} . (1)

Definition 2. k-Nearest Neighbor query - kNN : Let S be a complex at-
tribute taken in domain S over which the similarity condition is expressed, d be
a distance function, k ∈ N∗ be the similarity threshold and sq ∈ S be the query
element. The query σ̈(S θ̈(d,k) sq) T returns the tuples from T whose value of the
attribute S is one of the k elements in S nearest to the query element sq based
on the distance function d. That is:

σ̈(S θ̈(d,k) sq) T =T ′= {ti ∈ T | ∀ tj ∈ [T − T ′] , T ′ = ti=1,...,k,

d (ti (S) , sq) ≤ d (tj (S) , sq)} . (2)

2.3 Algebraic properties

The query optimizer of RDBMSs employs algebraic equivalences to rewrite
queries into equivalent expressions which are expected to be executed faster.
Selections are important operations because they reduce the size of relations.
In the subsections following, we identify algebraic properties useful to rewrite
expressions of both range operator θ̂ and k-nearest neighbor operator θ̈. Due to
space restriction, formal proofs of these properties are omitted here (they can
be found in Ferreira et al. [9]).



Algebraic Properties for Unary Similarity Queries 5

2.3.1 Range Selection - σ̂.

Properties 1 and 2 apply conjunctive and disjunctive conditions involving only
σ̂ operations, respectively.

Property 1. Conjunctions of θ̂ operators can be rewritten into a cascade of
individual σ̂ operations or a sequence of intersection operations, i.e.,

σ̂(S1 θ̂(d1,ξ1) sq1) ∧ (S2 θ̂(d2,ξ2) sq2) T = σ̂(S1 θ̂(d1,ξ1) sq1)
(
σ̂(S2 θ̂(d2,ξ2) sq2) T

)
=

(
σ̂(S1 θ̂(d1,ξ1) sq1)

T
)
∩

(
σ̂(S2 θ̂(d2,ξ2) sq2)

T
)
. (3)

A special case exists when sq1 = sq2, as follows.
Property 1.1. Special case where sq1 = sq2 = sq.(

σ̂(S θ̂(d,ξ1) sq) T
)
∩

(
σ̂(S θ̂(d,ξ2) sq) T

)
=

σ̂(S θ̂(d,ξ1) sq) ∧ (S θ̂(d,ξ2) sq) T = σ̂(S θ̂(d,min(ξ1,ξ2)) sq) T . (4)

Property 2. Disjunctions of θ̂ operators can be rewritten into a sequence of
union operations as follows.

σ̂(S1 θ̂(d1,ξ1) sq1) ∨ (S2 θ̂(d2,ξ2) sq2) T =(
σ̂(S1 θ̂(d1,ξ1) sq1) T

)
∪

(
σ̂(S2 θ̂(d2,ξ2) sq2) T

)
. (5)

A special case exists when sq1 = sq2, as follows.
Property 2.1. Special case where sq1 = sq2 = sq.(

σ̂(S θ̂(d,ξ1) sq) T
)
∪

(
σ̂(S θ̂(d,ξ2) sq) T

)
=

σ̂(S θ̂(d,ξ1) sq) ∨ (S θ̂(d,ξ2) sq) T = σ̂(S θ̂(d,max(ξ1,ξ2)) sq) T . (6)

Properties 3 and 4 explore the commutativity of σ̂ operation with its com-
position and traditional operation.

Property 3. The Rq selection operation commutes under its composition, i.e.,

σ̂(S1 θ̂(d1,ξ1) sq1)
(
σ̂(S2 θ̂(d2,ξ2) sq2) T

)
= σ̂(S2 θ̂(d2,ξ2) sq2)

(
σ̂(S1 θ̂(d1,ξ1) sq1) T

)
. (7)

Property 4. The Rq selection operation and the traditional selection operation
commute under their composition, i.e.,

σ̂(S θ̂(d,ξ) sq)
(
σ(A θ a) T

)
= σ(A θ a)

(
σ̂(S θ̂(d,ξ) sq) T

)
. (8)

As σ̂ operation is commutative with σ operation, Properties 1 and 2 can also
be employed for these operations. Therefore, we can use Properties 1 and 2 with
either the σ̂ operation only or σ̂ and σ operations.

The next set of properties involving σ̂ allows pushing range selection through
the traditional binary operators: union (∪), intersection (∩), difference (−), cross
product (×) and join (on). Property 5 shows that σ̂ is distributive over the set
binary operators ∪, ∩ and −. The relations T1 and T2 must be union compatible.



6 Ferreira et al.

Property 5. The operator σ̂ is distributive over the set binary operators ∪, −
and ∩ as follows.

Property 5.1. For union, the following expression holds:

σ̂(S θ̂(d,ξ) sq) (T1 ∪ T2) =
(
σ̂(S θ̂(d,ξ) sq) T1

)
∪

(
σ̂(S θ̂(d,ξ) sq) T2

)
. (9)

Property 5.2. For difference, the following expression holds:

σ̂(S θ̂(d,ξ) sq) (T1 − T2) =
(
σ̂(S θ̂(d,ξ) sq) T1

)
−

(
σ̂(S θ̂(d,ξ) sq) T2

)
=

(
σ̂(S θ̂(d,ξ) sq) T1

)
− T2 . (10)

Property 5.3. For intersection, the following expression holds:

σ̂(S θ̂(d,ξ) sq) (T1 ∩ T2) =
(
σ̂(S θ̂(d,ξ) sq) T1

)
∩

(
σ̂(S θ̂(d,ξ) sq) T2

)
=

(
σ̂(S θ̂(d,ξ) sq) T1

)
∩ T2

= T1 ∩
(
σ̂(S θ̂(d,ξ) sq) T2

)
. (11)

Regarding the binary join (on) and cross product (×) operators, σ̂ must be
distributed to the relation that has the complex attribute mentioned in the
condition. This is represented in Property 6.

Property 6. When the complex attribute mentioned in the range predicate be-
longs to only one of the joined relations, the operation σ̂ is distributive over on
or ×. Let T1 be the relation that has the complex attribute S. Thus:

σ̂(S θ̂(d,ξ) sq) (T1 θ T2) =
(
σ̂(S θ̂(d,ξ) sq) T1

)
θ T2 , (12)

for any θ =on or ×.

Properties 1 to 6 show that range selection shares the same algebraic equiv-
alences as the traditional selection. Moreover, Property 4 shows the commuta-
tivity property between similarity-based selections and traditional ones. This is
an important result, as it allows the RDBMS query optimizer to treat range
selection as traditional selection. Therefore, we can use the symbol σ instead of
σ̂ to represent range selections, only using θ̂ to represent the range operator,
without lost of generality.

2.3.2 k-Nearest Neighbor Selection - σ̈.

Distinctly from range and traditional selections, kNN selections have only three
properties to rewrite algebraic expressions. Property 7 regards the conjunctive
selection conditions, as follows:



Algebraic Properties for Unary Similarity Queries 7

Property 7. Conjunctions of θ̈ operators can be rewritten into a sequence of
intersection operations but they cannot be rewritten as a cascade of individual σ̈
operations, i. e.,

σ̈(S1 θ̈(d1,k1) sq1) ∧ (S2 θ̈(d2,k2) sq2) T =(
σ̈(S1 θ̈(d1,k1) sq1) T

)
∩

(
σ̈(S2 θ̈(d2,k2) sq2) T

)
; (13)

σ̈(S1 θ̈(d1,k1) sq1) ∧ (S2 θ̈(d2,k2) sq2) T 6=

σ̈(S1 θ̈(d1,k1) sq1)
(
σ̈(S2 θ̈(d2,k2) sq2) T

)
. (14)

A special case exists when sq1 = sq2, as follows.
Property 7.1. Special case where sq1 = sq2 = sq.(

σ̈(S θ̈(d,k1) sq) T
)
∩

(
σ̈(S θ̈(d,k2) sq) T

)
=

σ̈(S θ̈(d,k1) sq) ∧ (S θ̈(d,k2) sq) T = σ̈(S θ̈(d,min(k1,k2)) sq) T . (15)

For disjunctive conditions, Property 8 is valid.

Property 8. Disjunctions of θ̈ operators can be rewritten into a sequence of
union operations as follows (this property requires that the relation T is a set
because, in this way, duplications will be correctly eliminated):

σ̈(S1 θ̈(d1,k1) sq1) ∨ (S2 θ̈(d2,k2) sq2) T =(
σ̈(S1 θ̈(d1,k1) sq1) T

)
∪

(
σ̈(S2 θ̈(d2,k2) sq2) T

)
. (16)

A special case exists when sq1 = sq2, as follows.
Property 8.1. Special case where sq1 = sq2 = sq.(

σ̈(S θ̈(d,k1) sq) T
)
∪

(
σ̈(S θ̈(d,k2) sq) T

)
=

σ̈(S θ̈(d,k1) sq) ∨ (S θ̈(d,k2) sq) T = σ̈(S θ̈(d,max(k1,k2)) sq) T . (17)

The commutativity property should not be applied to θ̈ operator when query
elements sq1 and sq2 are distinct. However, the following property holds.

Property 9. For complex conditions, each selection should be executed sepa-
rately and the intersection (for conjunctions) or the union (for disjunctions) of
results must be returned, since the operator σ̈ is not commutative neither with
other selection operators nor with itself. That is, for conjunctive conditions:(

σ̈(S1 θ̈(d1,k1) sq1)
T

)
∩

(
σ̈(S2 θ̈(d2,k2) sq2)

T
)

=(
σ̈(S2 θ̈(d2,k2) sq2)

T
)
∩

(
σ̈(S1 θ̈(d1,k1) sq1)

T
)

; (18)



8 Ferreira et al.

and for disjunctive conditions:(
σ̈(S1 θ̈(d1,k1) sq1)

T
)
∪

(
σ̈(S2 θ̈(d2,k2) sq2)

T
)

=(
σ̈(S2 θ̈(d2,k2) sq2)

T
)
∪

(
σ̈(S1 θ̈(d1,k1) sq1)

T
)
. (19)

The same property can be employed combining either “σ̈ ∩ /∪ σ̂” or “σ̈ ∩ /∪σ”.

When query elements sq1 and sq2 are the same, there are special cases where
the kNN selection operation becomes commutative with range and self selection
operations. First, for a composition of kNN selection operation, this expres-
sion can be rewritten in the conjunction of kNN condition; therefore, only the
kNN selection with the smallest k condition needs to be executed. Second, for a
composition of kNN and range selection operation, this expression can also be
rewritten in the conjunction of kNN and range condition; then, the intersection
of the results from both basic operators should be executed. Finally, for the dis-
junction of range and kNN condition, the union of the results from both basic
operators needs to be executed.

For the set of properties involving traditional binary operators, no property
involving σ̈ exists, because σ̈ is not distributive over these operators.

As kNN selection operations accepts only three properties (7, 8 and 9) and
five special cases (over the same query element), they do not allow optimization
algorithms equivalent to traditional and range selections. Thus, specific opti-
mization algorithms should be implemented in the query optimizer to optimize
this kind of selection. The kAndRange and the kOrRange algorithms [8] are ex-
amples specifically created to handle the commutativity property of Range and
kNN query over the same query element.

3 Experimental Results

In this section, we present experiments comparing the evaluation of the similarity
queries both optimized and not optimized using the properties of the Similarity
Algebra presented in Section 2. To obtain the measurements, this algebra was
incorporated into the SIREN query optimizer. SIREN is a similarity retrieval
engine that allows expressing similarity queries in SQL and executing them [10].
We call the new version of SIREN able to perform optimization on queries in-
volving similarity as SIREN+O. The experiments analyze the performance of
SIREN and SIREN+O to execute similarity queries. As we will see here, the
first results show that the proposed algebra leads SIREN+O to perform faster
than SIREN.

The test framework was implemented in C++, and the experiments ran on
an AMD Athlon XP 3000+ processor with 1024MB of main memory, under the
Windows XP operational system. The RDBMS employed was Oracle 9i. Every
test was performed using both sequential scan and a Slim-tree index. Due to
space limitations, we only highlight here the performance regarding total time
(in milliseconds) as it summarizes the whole computational cost. Four data sets
were used:



Algebraic Properties for Unary Similarity Queries 9

– RCCMammography : a set of 658 medical images obtained from mammo-
grams of right breast with cranio-caudal view (CC). They were compared
using the texture distance function [11];

– RMLOMammography : a set of 695 medical images obtained from mammog-
raphy exams of right breast with medio-lateral oblique view (MLO). They
were also compared using the same texture distance function [11].

– MedImage: a set of 5,180 medical images obtained from three human body
parts (abdomen, cranium and thorax) by computerized tomographies (CT).
They were compared using the metric histogram distance function [12].

– PeruDistricts: a set of 1,829 Peruvian districts. They were compared using
the Euclidean distance function.

The first three sets were obtained from the Clinical Hospital at Ribeirão
Preto of the University of São Paulo and the last set was obtained from Peru
Instituto Nacional de Estad́ıstica e Informática (INEI).

The experiments evaluated the execution time of Queries Q1 over
RCCMammography and RMLOMammography data sets, Q2 over MedImage
data set and Q3 over PeruDistricts data set stated in Section 1. The queries
were performed 30 times and the values shown are the average of performing the
same query, but varying query elements sq.

Table 1 summarizes the results executing SIREN and SIREN+O using both
sequential scan and the Slim tree index, a well-known index structure for metric
data [13].

Query Q1 involves a traditional join and a range selection and it can be
algebraically expressed as σ̂(S θ̂(texture,0.1) sq) (RCC on RMLO). Property 6 was
employed to optimize the query. Its gain was about 30.39% using sequential scan
and 30.16% using a Slim-tree index.

Both Queries Q2 and Q3 involve traditional selection, range selection and
kNN selection. Therefore, Properties 4 and 9 as well as their special cases
should be used to optimize these queries. Q2 can be algebraically expressed as:
σ(pathology=‘N ′)

(
σ̂(S θ̂(texture,0.05) sq)

(
σ̈(S θ̈(texture,5) sq) (MedImage)

))
. The

gain obtained was about 64.68% using a Slim-tree index and 62.92% using
sequential scan.

Q3 can be expressed as: σ(adultpop > oldpop) (σ̂(S θ̂(Euclidean,15) sq)
(σ̈(S θ̈(Euclidean,15) sq)(PeruDistricts))), and the gain obtained was about
63.82% using sequential scan and 62.61% using a Slim-tree index.

SIREN SIREN+O
Sequential scan Slim tree Sequential scan Slim tree

Q1 354.70 331.20 246.90 231.30
Q2 948.50 765.60 351.70 270.40
Q3 604.70 443.20 218.80 165.70

Table 1. Performance of Queries Q1, Q2 and Q3 (total time in milliseconds).



10 Ferreira et al.

4 Conclusion

Nowadays, storing and retrieving multimedia data is a requirement that must be
provided by RDBMS. In order to allow query compilers to optimize a similarity
query execution, we presented here the properties holding for the unary similarity
operators, that is, for Range and k-Nearest Neighbor Selection operations. We
also presented the experiments conducted to show the performance obtained
with SIREN query optimizer using Similarity Algebra (SIREN+O) reducing
total time in up to 64% over the performance of queries in SIREN without the
algebra regardless of the usage of an index. As a follow-up of this paper, we are
currently working on the properties to extend the Similarity Algebra to support
similarity join. This will surely open the possibility to support the storage and
retrieval of complex data in RDBMS. We are also working on developing better
statistics that can be measured over data, to create heuristics able to control the
DBMS query optimizer for similarity queries.

References

1. Codd, E.F.: A relational model of data for large shared data banks. CACM 13(6)
(1970) 377–387

2. Adali, S., Bonatti, P., Sapino, M., Subrahmanian, V.: A multi-similarity algebra.
In: SIGMOD, ACM Press (1998) 402–413

3. Atnafu, S., Chbeir, R., Coquil, D., Brunie, L.: Integrating similarity-based queries
in image DBMSs. In: SAC, ACM Press (2004) 735–739

4. Belohlávek, R., Opichal, S., Vychodil., V.: Relational algebra for ranked tables
with similarity: properties and implementation. In: IDA. Volume 4723 of LNCS.,
Springer Verlag (2007) 140–151.

5. Ciaccia, P., Montesi, D., Penzo, W., Trombetta, A.: Imprecision and user prefer-
ences in multimedia queries: a generic algebraic approach. In: FoIKS. Volume 1762
of LNCS., Springer Verlag (2000) 50–71

6. Adali, S., Bufi, C., Sapino, M.L.: Ranked relations: query languages and query
processing methods for multimedia. MTAJ 24(3) (2004) 197–214

7. Li, C., Chang, K.C.C., Ilyas, I.F., Song, S.: RankSQL: query algebra and opti-
mization for relational top-k queries. In: SIGMOD, ACM Press (2005) 131–142

8. Traina-Jr., C., Traina, A.J.M., Vieira, M.R., Arantes, A.S., Faloutsos, C.: Efficient
processing of complex similarity queries in RDBMS through query rewriting. In:
CIKM, ACM Press (2006) 4–13

9. Ferreira, M.R.P., Traina-Jr., C., Traina, A.J.M., Dias, I.: Extending SQL to sup-
port unary similarity queries. Technical Report 325, ICMC/USP (2008)

10. Barioni, M.C.N., Razente, H.L., Traina, A.J.M., Traina-Jr., C.: SIREN: A simi-
larity retrieval engine for complex data. In: VLDB, ACM Press (2006) 1155–1158

11. Felipe, J.C., Traina, A.J.M., Traina-Jr., C.: Retrieval by content of medical images
using texture for tissue identification. In: CBMS, IEEE Computer Society (2003)
175–180

12. Traina, A.J.M., Traina-Jr., C., Bueno, J.M., Chino, F.J.T., Azevedo-Marques, P.:
Efficient content-based image retrieval through metric histograms. WWW 6(2)
(2003) 157–185

13. Traina-Jr., C., Traina, A.J.M., Seeger, B., Faloutsos, C.: Slim-trees: High perfor-
mance metric trees minimizing overlap between nodes. In: EDBT. Volume 1777 of
LNCS., Springer Verlag (2000) 51–65


