
Proceedings of the
5th International Workshop on

Scripting and
Development for the
Semantic Web
(SFSW 2009)

Co-located with 6th European Semantic Web Conference

May 31 - June 4, 2008, Heraklion, Greece.

Workshop Chairs’ Message

SFSW 2009 - Workshop on Scripting and Development
for the Semantic Web

On the current Semantic Web there is an ever increasing need for
lightweight, flexible solutions for doing publishing, presentation,
transformation, integration and general manipulation of data for
supporting and making use of the increasing number of deployed open
linked datasets and publicly available semantic applications.
Communication and architectural standards such as AJAX, REST, JSON
already cater to this need of flexible, lightweight solutions, and they are
well supported by scripting languages such as PHP, JavaScript, Ruby,
Python, Perl, JSP and ActionScript.

This workshop is concerned with the exchange of tools, experiences and
technologies for the development of such lightweight tools, especially
focusing on the use of scripting languages. Last year's workshop focused
on the creation of Semantic Web data through social interactions as well
as applications that integrate socially-created data across communities.
Keeping in step with the increasing number of semantically enabled web-
sites for public consumption, this year's focus is bringing the semantic
web applications to the main-stream: everything from improving the user
experience for browsing and accessing data, through integrating with
existing non-semantic services, to quickly and cheaply porting such
services to using a Semantic Web architecture. The workshop will follow
the tradition and include a scripting challenge which will award an
industry sponsored prize to the most innovative scripting application.

We would like to thank the organizers of ESWC conference for
supporting the workshop. We especially thank all members of the SFSW
program committee for providing their expertise and giving elaborate
feedback to the authors and Talis for providing the Scripting Challenge
prize. Last but not least, we hope that you will enjoy the workshop and
the whole conference.

Chris Bizer, Freie Universität Berlin, Germany
Sören Auer, Universität Leipzig, Germany

Gunnar Aastrand Grimnes, DFKI, Germany

SFSW 2009 Program Committee

 Benjamin Nowack, semsol, Germany

 Bernhard Schandl, Universität Wien, Austria

 Bernhard Haslhofer, Universität Wien, Austria

 Claudia Müller, University of Potsdam, Germany

 Dan Brickley, The FOAF Project, UK

 Danny Ayers, Talis, UK

 David Aumüller, Universität Leipzig, Germany

 Eero Hyvönen, Helsinki University of Technology (TKK), Finland

 Eyal Oren, Free University Amsterdam, Netherlands

 Georgi Kobilarov, Freie Universität Berlin, Germany

 Giovanni Tummarello, DERI, NUI Galway, Ireland

 Gregory Williams, Rensselaer Polytechnic Institute, USA

 Harald Sack, HPI, Universität Potsdam, Germany

 Jens Lehmann, Universität Leipzig, Germany

 Knud Möller, DERI, NUI Galway, Ireland

 Leigh Dodds, Ingenta, United Kingdom

 Libby Miller, Joost, United Kingdom

 Markus Luczak-Rösch, Freie Universität Berlin, Germany

 Masahide Kanzaki, Keio University, Japan

 Michael Hausenblas, DERI, NUI Galway, Ireland

 Morten Høybye Frederiksen, MFD Consult, Denmark

 Richard Cyganiak, DERI, NUI Galway, Ireland

 Santtu Toivonen, Idean Enterprises, Finland

 Sebastian Dietzold, Universität Leipzig, Germany

 Stefan Dietze, KMi, The Open University, UK

 Tom Heath, Talis, UK

 Uldis Bojars, DERI, NUI Galway, Ireland

 Vlad Tanasescu, KMi, The Open University, UK

 Yves Raimond, BBC, UK

Table of Contents

Full Papers

Pierre-Antoine Champin
Tal4Rdf: lightweight presentation for the Semantic Web

Rob Styles, Nadeem Shabir and Jeni Tennison
A Pattern for Domain Specific Editing Interfaces - Using Embedded
RDFa and HTML Manipulation Tools

Eugenio Tacchini, Andreas Schultz and Christian Bizer
Experiments with Wikipedia Cross-Language Data Fusion

Laura Dragan, Knud Möller, Siegfried Handschuh, Oszkar Ambrus and
Sebastian Trueg
Converging Web and Desktop Data with Konduit

Short Papers

Jouni Tuominen, Tomi Kauppinen, Kim Viljanen and Eero Hyvönen
Ontology-Based Query Expansion Widget for Information Retrieval

Christoph Lange
Krextor -- An Extensible XML->RDF Extraction Framework

Stéphane Corlosquet, Richard Cyganiak, Axel Polleres and Stefan Decker
RDFa in Drupal: Bringing Cheese to the Web of Data

Mariano Rico, David Camacho and Oscar Corcho
Macros vs. scripting in VPOET

Norman Gray, Tony Linde and Kona Andrews
SKUA -- retrofitting semantics

Tal4Rdf: lightweight presentation for the Semantic
Web?

Pierre-Antoine Champin1,2

1LIRIS, Université de Lyon, CNRS, UMR5205,
Université Claude Bernard Lyon 1, F-69622, Villeurbanne, France

2CLARITY: Centre for Sensor Web Technologies,
CSI, University College Dublin, Ireland

pchampin@liris.cnrs.fr

Abstract. As RDF data becomes increasingly available on the Web, there is a
need to render this data in different formats, aimed at end-users or applications.
We propose Tal4Rdf, a template based language, implemented as an open-source
project and an online demo. Tal4Rdf uses intuitive path-based expressions for
querying RDF data, allows to easily generate any XML or textual output format,
using available and proven technologies. We believe it has the potential to become
a “scripting language for presentation”.

1 Introduction

More and more RDF data has become available in the recent years, thanks to different
efforts to export RDF from legacy databases [1] or existing Web content [2, 3], to tag
published content with machine-readable metadata [4, 5], or to ease the collaborative
and flexible authoring of RDF data [6, 7]. Furthermore, the Linked Data initiative1 ad-
vocates the interconnection of this growing amount of RDF data. It is expected that
processing, adaptation, aggregation of data from multiple sources become common
place on the Semantic Web. This creates a need for tools able to present open RDF
data to the end user. By “open”, we mean that those tools can not know in advance the
precise structure of the data, since RDF is by nature extensible. Another requirement
is the formatting to other machine-processable formats, like application-specific XML
or JSON. Indeed, adding RDF support in existing applications is not always feasible
(closed proprietary applications) or practical (lightweight embedded applications, see
also [8]).

Tal4Rdf (T4R), a lightweight template language for RDF, aims at providing the
underlying technology to help fulfill those requirements. It allows to render RDF data
in any XML or textual format, has an open-source implementation and an interactive
demo both available at http://champin.net/t4r/. It is based on TAL (Tem-
plate Attribute Language), an existing template language that we have already reused

? This work is supported by Science Foundation Ireland under grant 07/CE/I1147 and the French
National Research Agency (ANR) under project CinéLab (ANR-06-ANR-AM-025).

1 http://linkeddata.org/

successfully in the Advene framework [9], which makes us confident in the potential of
T4R as a “scripting language for presentation”.

In the next section we will present the TAL language. Section 3 will present the
rationale and basic features of T4R, focusing on the notion of path to retrieve RDF data.
In the next section, we will discuss features of T4R that are more related to the rendering
process. Section 5 compares T4R to related works, and the last section concludes and
gives some further research directions.

2 TAL

The Template Attribute Language or TAL [10] has been introduced in the Zope web
development framework2 for presenting data in HTML or any XML format. It is a
template language: the document specifying the rendering of the underlying data is a
mock-up of the expected result. TAL puts an emphasis on preserving the integrity of
the template with regard to the target format.

This is achieved by encoding the processing instructions in XML attributes with
a specific namespace (usually associated to the prefix tal:). Standard editors for the
target format can then be used to modify the presentation of the template without alter-
ing (or being altered by) the processing instructions. Furthermore, only minor changes
are required in such editors to provide ad-hoc management of the TAL attributes, this
functionality being orthogonal to the other features of the format. This approach has
been applied in the Advene project and could also be applied to T4R.

We present in Table 1 a subset of the processing instructions of TAL, in order to give
an overview of its capabilities. All TAL attributes use a common syntax for accessing
the underlying data: TALES (TAL Expression Syntax). TALES expressions are, in most
cases, slash-separated paths. The exact meaning of those paths depends on the underly-
ing data structure, but their similarity to file or URL paths makes them pretty intuitive.
Hence the idea of using TAL to query and render RDF data, as will be demonstrated in
the following sections.

TAL also has the advantage of being implemented in several popular scripting lan-
guages [11]. Hence T4R could easily be ported to those languages (the current imple-
mentation is in Python, and uses SimpleTAL3).

3 A path to query RDF

The rationale of using TAL for RDF rendering was that TALES paths could easily be
mapped to paths in the underlying RDF graph, hence providing an intuitive way of
querying RDF data. For example, using the FOAF vocabulary [12], a path retrieving
the homepages of the projects currently worked on by the people I know could be
represented by the path:

knows/currentProject/homepage

2 http://zope.org/
3 http://www.owlfish.com/software/simpleTAL/

<tag tal:content="x/y/z">... Replace the content of the tag by the evalu-
ation of x/y/z.

<tag tal:attributes="at x/y/z">... Add or replace attribute at in the tag, with
the evaluation of x/y/z as its value.

<tag tal:condition="x/y/z">... Remove the tag and its content if x/y/z
evaluates to False.

<tag tal:repeat="i x/y/z">... Assuming that x/y/z evaluates to a collec-
tion, variable i will iterate over it, and the
tag will be repeated for each value of i.

<tag tal:define="v x/y/z">... Creates a variable v with the evaluation of
x/y/z as its value.

Table 1. A summary of TAL processing instructions

meaning that, starting from the resource representing myself, T4R would need to tra-
verse in sequence three arcs labelled with knows, currentProject and homepage
respectively. The rest of this section describes the actual path syntax used in T4R, start-
ing from this example, and explains the rationale for its design. For a full BNF grammar
of the path syntax, see [15].

3.1 Namespaces

The motivating example above is a bit over-simplistic. In RDF, arcs (and resources)
are not labelled by plain terms, but by URIs, in order to avoid name clashes. We need a
way of concisely representing URIs as path elements. This problem is well known and a
common solution is to use CURIEs [13]. A CURIE is composed of a namespace prefix
and a suffix, separated by a colon. The namespace prefix is associated with a namespace
URI, and the CURIE is simply interpreted as the concatenation of the namespace with
the suffix. For example, if the namespace URI http://xmlns.com/foaf/0.1/
was assigned to the prefix foaf, then the CURIE foaf:knows would correspond to
URI http://xmlns.com/foaf/0.1/knows.

In T4R, namespaces prefix and URIs are associated by defining special variables
(using tal:define) of the form t4rns:prefix, in a way very similar to XML.
Note that it is recommended by [13] that CURIE prefixes should use XML namespaces
whenever available. There are several reasons why this is not done in T4R. First, T4R
aims at rendering non-XML formats, so we could not rely on XML namespaces in
all cases. Second, in XML templates, the namespaces used for querying the graph are
rarely the same as the ones used in the output format, so keeping them separate seems
to be a better practice. The final reason, though not sufficient in itself, is nevertheless
very pragmatic: not all TAL implementations give access to the XML namespace dec-
larations of the template.

In the following, we will assume that the appropriate namespaces have been de-
clared, with their usual prefix (t4rns:rdf for the RDF namespace, t4rns:foaf
for the FOAF vocabulary, etc.).

3.2 Simple Path

Using CURIEs, our intuitive example above, to retrieve the homepages of the current
projects of the people I know, becomes:

foaf:knows/foaf:currentProject/foaf:homepage

hardly more complicated that our initial proposal. The evaluation of this path on an
example dataset is illustrated in Figure 1.

Fig. 1. An example data graph; the highlighted arcs and resources represent the evaluation, start-
ing at #me, of the path foaf:knows/foaf:currentProject/foaf:homepage.

The first interesting thing to notice is that each node may have several values for the
same property, hence such a path expression evaluates to a collection of RDF nodes,
which can be iterated with the tal:repeat construct. It is also possible to keep only
a single node by appending the T4R operator any to this path (see 3.4). However, it is
not required when the result of the path is rendered as an element content of attribute.
Hence if the path above was used as is to fill the href attribute of a link, it would
render as one of the result URIs (the other would then be ignored), keeping the link
working4.

Another thing worth pointing out is that, since RDF data has a graph structure, the
path may discover the same node several times (cf. Figure 1). However, in T4R, each
node matching the path will appear only once, no matter how many times it was reached
through the path.

3.3 More complex paths

Sometimes, we are interested in the inverse of a given properties. This is possible by
appending :- to a CURIE. Hence, the path:

4 This tolerant behaviour, convenient for rapid prototyping of templates with open RDF data, can
nevertheless be changed to a stricter one, which is preferable for debugging complex templates.

foaf:activeProject/foaf:activeProject:-

will retrieve the people working on the same projects as myself (and yield only #paul
in the example of Figure 1).

Another frequent problem when querying RDF data in the open is that some prop-
erties from different vocabularies have a similar meaning (it even happens sometimes
in the same vocabulary). Since all variants are likely to be used in the data, queries
have to take all of them into account. A similar problem occurs when two properties
are defined to be inverse of each other, and can therefore be used indifferently (only by
changing the orientation of the arc). Managing this variability in common query lan-
guages, like SPARQL [14], can be pretty cumbersome. In T4R, the keyword or can be
used to elegantly solve that problem:

foaf:img/or/foaf:depiction/or/foaf:depicts:-

will retrieve all the images representing myself (according to the FOAF vocabulary).
One may argue that this problem can (or even should) be solved by inference rather

than the presentation layer; indeed, an inference engine will recognize that foaf:
depicts and foaf:img are, respectively, the inverse and a particular case of foaf:
depiction. Should T4R be backed by such an inference engine (which is a possible
use of T4R), the simple path foaf:depiction would be equivalent to the more
complex path above. However, in practice, inference capabilities are not always avail-
able nor easy to add (if for example the data is accessed through a SPARQL endpoint
without inference). Aiming to be usable as a lightweight solution, T4R must provide
means to cope as well as possible with the absence of inference. The T4R keyword or
is such a mean.

3.4 Operators

We have already encountered a T4R operator: any. Although all are not listed here
because of space limitations (the interested reader is referred to [15] for an exhaustive
list), let us just describe the three categories of operators:

– Node operators (such as any) transform a collection of nodes into another collec-
tion of nodes, hence may appear inside a path.

– Data operators transform a collection of nodes into a data values, hence may only
appear at the end of a path. Figure 2 illustrate the use of operators id (shortening a
URI to its last component) and count (counting the number of elements in a node
collection).

– Binary operators always appear between two paths; an example will be provided in
Section 4.3.

3.5 Relative and absolute paths

In all the examples given above, the path was evaluated relatively to an implicit resource
(the resource being described by the template). Each CURIE in the path, including the
first one, is interpreted as a property.

A path can also be evaluated relatively to the resource(s) stored in a variable (usually
resulting from the previous evaluation of another path). In this case, the first item of the
path is not a CURIE, but a variable name, for example

v/foaf:currentProject

Since variable names in T4R can not contain a colon, there is no possible ambiguity
with a CURIE5.

A third kind of paths are absolute paths. Those paths start with a slash, just like file
or URL absolute paths. The first CURIE of such a path is not interpreted as a property,
but as a resource. For example:

/foaf:Person/rdf:type:-

will retrieve all the instances of foaf:Person.

A simple example of the TAL language and the use of CURIE paths is given in Figure 2.
Further example from the online demo are illustrated in Figure 3.

<ul tal:define="global t4rns:foaf string:http://xmlns.com/foaf/0.1/">
<li tal:repeat="pe foaf:knows">

someone I know works on:

<li tal:repeat="pr pe/foaf:currentProject">

<a tal:attributes="href pr/foaf:homepage"
tal:content="pr/id">a project

and also worked on n
project(s) in the past.

Fig. 2. A template and its result when applied to the resource #me in the graph from Figure 1.

5 There is no possible ambiguity with a T4R operators either, because operators may not appear
as the first item of a path, while variables may only appear in first position.

Fig. 3. Four examples from the online demo. The same data is rendered (right column) using
HTML, SVG, HTML forms and JSON. The left column shows the unprocessed templates, which
are valid documents in their respective formats.

4 T4R templates and data sources

As any typical rendering engine, a T4R processor combines a presentation specification
(the template) with a data source (the RDF graph) into an output document. In this
section, we will discuss noteworthy features of those three parts.

4.1 RDF data sources

The RDF data source is provided to the T4R rendering engine as the URI of the resource
to be rendered with the template. This URI is actually used for two distinct purposes:

– identify the resource used to resolve relative paths, and
– locate the RDF data.

Since it is not always the case that the URI of a resource gives access to the RDF data
about that resource, it is possible to provide T4R with an alternative URL for retrieving
RDF data. This URL can point to an RDF document, but other kinds of data sources are
possible.

Follow your nose. The “Follow your nose” strategy consists in obtaining information
about a resource by retrieving data from its URI, and from other resources known to be
related to the former (e.g. with the rdfs:seeAlso property). That strategy has been
included in our T4R application: using the special URL fyn: for the data source, the
engine will retrieve data on demand from all intermediate resources involved in a path,
and their related resources. Since this can lead to retrieve a lot of data, the number of
queries that can be performed for one rendering can be bounded (this is the case for the
online demo).

SPARQL endpoint. With the trend of Linked Data gaining momentum, an increasing
number of data sources are available as SPARQL endpoints. Although our implemen-
tation does not yet provide support for SPARQL endpoint, we plan to add this feature
in a near future. Furthermore, the design of the implementation has been guided with
this aim: a path is not evaluated on the fly, but parsed until the end, then evaluated. That
way, a long path can be converted into a small number (ideally one) of SPARQL queries
rather than querying the SPARQL endpoint at each step of the path.

Inference-enabled data sources. As pointed out in section 3, T4R makes no assumption
about the inference capabilities of the underlying data sources, and purposefully aims at
making no such assumption. It is not impossible, however, to deploy T4R in a context
where RDF stores or SPARQL endpoints are known to have such inference capabilities,
shifting the burden of complex queries from the templates to the inference engine. Al-
though we have not implemented it yet, we have a back-end architecture making such
an evolution straightforward.

4.2 Output format

We have stated in section 2 that TAL was designed to produce HTML and XML docu-
ments, while we claimed in introduction that T4R is able to produce any textual docu-
ment. This deserves more explanation.

Although TAL is mainly based on XML attributes, it also recognizes a special XML
element: tal:block. This element is a placeholder for TAL attributes, but only its
content, not the tag, is rendered in the output document. Its use is not encouraged, since
it breaks the validity of the template with respect to the output format, but nevertheless
necessary in some situations to produce a valid output document.

The current approach of T4R for producing non-XML text-based output documents
is to:

– exclusively use tal:block elements in the body of the template,
– enclose it in an artificial XML element before processing, to make it a well-formed

XML document,
– remove that artificial XML element after processing.

This solution is not very elegant: processing instructions in the template are quite
verbose, requiring both the tal:block element and one of the TAL attributes. How-
ever, it was straightforward to implement and to use, and enlarges, almost for free, the
scope of T4R.

Proposing alternative syntaxes for integrating TAL processing instructions in spe-
cific non-XML languages is a possibility. However, the burden for the user of learning
another syntax may counteract the advantage of that syntax being more integrated to
the target language.

4.3 Modularity in templates

Modularity is a key to scalability, hence a desirable feature for any open and web-based
technology. T4R offers two levels of modularity: one at the path level, and one at the
template level.

Path level modularity is a mere consequence of a standard feature of TAL that we
have not presented yet: indirection. We saw that TAL allows the definition of variables.
A special use of variables is to evaluate their content as elements of a path. Assume the
following variable declaration:

IMG string:foaf:img/or/foaf:depiction/or/foaf:depicts:-

(note the TAL prefix string: indicating that the following text should not be evalu-
ated, but considered as a literal string). This variable can now be dereferenced in any
path using a leading question mark, avoiding the need to copy this long path multiple
times. For example, the path:

foaf:knows/?IMG

will retrieve all the images representing the people I know.
Template level modularity, on the other hand, is more specific to T4R. It is imple-

mented with the renderWith binary operator, which must be followed by a CURIE
path. For example, the following path:

foaf:knows/any/renderWith/lib:card.html

will use the resource template card.html, located at the URI associated with prefix
lib, to render one of the people I know. Since templates can be located anywhere on
the Web6, the number of retrieved templates can be bounded (like retrieved graphs with
the “Follow your nose” strategy) to prevent overloading of the rendering engine.

Note also that any CURIE path (or variable indirection) can be used after the
renderWith operator, allowing for complex selection of the template based on the
resource itself. For example, the following TAL sample:

tal:define = "p foaf:knows/any;
t p/rdf:type/ex:template_for:-/any/asPath"

tal:content = "p/renderWith/?t"

will store a person I know in variable p, then retrieve the URI of any template suitable
for one of the declared type of that person and store it in t7, then use indirection to
render p with that template.

5 Related works

The idea of using paths to query RDF is not new: see for example ARQ8, nSparql [16],
or RDF Template [17]. While the first two are general purpose query languages, RDF
Template aims at rendering RDF data to any XML document, making it very similar in
purpose to T4R. All those languages are more expressive than our path language, which
is constrained by the syntax of TALES, our underlying technology. While this limitation
could easily be lifted in theory, one of the rationale of T4R is to rely as much as possible
on the existing base of TAL, especially to make it straightforward to implement on ex-
isting TAL libraries. Hopefully, this will allow T4R to reach a broader acceptance than
RDF Template did (the project doesn’t seem to be active anymore). Furthermore, this
constraint on T4R has the virtue of keeping the templates relatively simple, enforcing
the separation between presentation and application logics. We believe that complex
queries should be stored outside the templates and invoked by them (a planned feature
for T4R) rather than mixed with presentation structure.

The reference in terms of RDF presentation is now Fresnel [18], a powerful RDF-
based language for expressing presentation knowledge for RDF. Fresnel offers a very
high level of modularity, distinguishing lenses, that group related information, from for-
mats, that organise this information into an abstract box model. How this box model is
rendered to concrete syntaxes is not in the scope of Fresnel and left to the implementa-
tions. Lenses and formats can be organized in groups, and more or less complex selec-
tors can be defined to allow an agent to automatically identify the lenses and formats

6 Templates do not have privileged access to the system, so we do not consider this feature to
be a major security issue. It is nevertheless possible that a malicious template consume an
excessive amount of CPU time, so limiting the CPU resource granted to external templates is
a planned feature.

7 The T4R operator asPath is used to convert the URI to an appropriate CURIE, in order to
make variable t suitable for dereference.

8 http://jena.sourceforge.net/ARQ/property_paths.html

suitable for a resource. This powerful architecture has already federated several appli-
cations, like HayStack9 and IsaViz10, being the evolution of their original stylesheet
formats [19, 20].

Compared to T4R, the strengths of Fresnel are also its weaknesses. Its model is quite
complex and not practical for rapid prototyping of templates. Furthermore, the mapping
from the abstract box model to concrete syntaxes being not specified in Fresnel, it is not
a “ready to use” solution for application developers. In fact, we believe that T4R could
be used to implement this missing step between Fresnel and concrete formats. Even
more, provided some ad-hoc mechanisms to implement Fresnel selectors, we believe
that (at least some part of) Fresnel could be implemented on top of T4R, following the
method outlined in the end of section 4.3, since Fresnel lenses and formats are expressed
in RDF. This would give an interesting hybrid rendering engine, allowing presentation
knowledge to be gradually and seamlessly migrated from quickly hacked templates to
cleanly designed lens and format groups.

6 Conclusion and future works

In this paper, we have presented Tal4Rdf (T4R), a language for rendering RDF data in
various XML and non-XML formats. Based on the proven TAL language, this uses an
intuitive path-based language for retrieving RDF data and integrates well with output
formats, both points providing it with a gentle learning curve and a suitability for rapid
development. An open-source implementation and online demo are available at http:
//champin.net/t4r/.

A number of planned or possible evolution have been presented in sections 4 and 5:
alternative syntaxes for non-XML formats, integration with SPARQL endpoints and
inference-enabled RDF back-ends, support for external queries and Fresnel selectors,
and a possible T4R-based implementation of Fresnel.

Another interesting lead would be a better integration with RDFa [5]. The starting
idea is that an HTML page containing RDFa is pretty similar to a T4R HTML template,
although RDFa attribute provide the RDF information rather than retrieving it from an-
other source. A first idea would be to convert such a page into a template, in order to
reuse its presentation with another set of data. Another idea, suggested by Niklas Lind-
ström, would be for T4R to automatically generate RDFa annotations when generating
HTML.

The author would like to thank the reviewers for their constructive remarks, includ-
ing references to some related works.

References

1. Bizer, C.: D2R MAP - language specification. (May 2003)
2. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: Dbpedia: A nucleus

for a web of open data. Lecture Notes in Computer Science 4825 (2007) 722

9 http://haystack.csail.mit.edu/
10 http://www.w3.org/2001/11/IsaViz/

3. Connolly, D.: Gleaning resource descriptions from dialects of languages (GRDDL). W3C
recommendation, W3C (September 2007) http://www.w3.org/TR/grddl/.

4. Khare, R.: Microformats: The next (Small) thing on the semantic web? Internet Computing,
IEEE 10(1) (2006) 75, 68

5. Adida, B., Birbeck, M.: RDFa primer. W3C working group note, W3C (October 2008)
http://www.w3.org/TR/xhtml-rdfa-primer/.

6. Buffa, M., Gandon, F.: SweetWiki: semantic web enabled technologies in wiki. Proceedings
of the international symposium on Symposium on Wikis (2006) 69–78

7. Krötzsch, M., Vrandečić, D., Völkel, M.: Semantic MediaWiki. In: The Semantic Web -
ISWC 2006. Volume 4273 of LNCS., Spinger (2006) 935–942

8. Community, N.: RDF JSON specification. http://n2.talis.com/wiki/RDF JSON Specification
(May 2009)

9. Aubert, O., Prié, Y.: Advene: an open-source framework for integrating and visualising
audiovisual metadata. In: Proceedings of the 15th international conference on Multimedia,
ACM New York, NY, USA (2007) 1005–1008

10. Zope: TAL specification 1.4. http://wiki.zope.org/ZPT/TALSpecification14 (May 2009)
11. Wikipedia contributors: Template attribute language - wikipedia, the free encyclopedia

(March 2009)
12. Brickley, D., Miller, L.: FOAF vocabulary specification. http://xmlns.com/foaf/spec/

(November 2007)
13. Birbeck, M., McCarron, S.: CURIE syntax 1.0. W3C working draft, W3C (March 2007)

http://www.w3.org/TR/2007/WD-curie-20070307/.
14. Prud’hommeaux, E., Seaborne, A.: SPARQL query language for RDF. W3C recommenda-

tion, W3C (2008) http://www.w3.org/TR/rdf-sparql-query/.
15. Champin, P.: Tal4Rdf v0.4 reference manual. Documentation, SILEX - LIRIS (May 2009)

http://champin.net/t4r/doc/reference.
16. Perez, J., Arenas, M., Gutierrez, C.: nSPARQL: a navigational language for RDF. In: Pro-

ceedings of the 7th International Conference on The Semantic Web, Springer (2008) 66–81
17. Davis, I.: RDF template language 1.0. http://www.semanticplanet.com/2003/08/rdft/spec

(March 2008)
18. Pietriga, E., Bizer, C., Karger, D., Lee, R.: Fresnel: A browser-independent presentation

vocabulary for RDF. In: Lecture Notes in Computer Science. Volume 4273., Athens, GA,
USA (November 2006) 158

19. Quan, D., Karger, D.: Xenon: An RDF stylesheet ontology, Chila, Japan (May 2005)
20. Pietriga, E.: Semantic web data visualization with graph style sheets. In: Proceedings of

the 2006 ACM symposium on Software visualization, ACM New York, NY, USA (2006)
177–178

A Pattern for Domain Specific Editing Interfaces
Using Embedded RDFa and HTML

Manipulation Tools.

Rob Styles1, Nadeem Shabir1, and Jeni Tennison2

1 Talis rob.styles@talis.com
2 Talis nadeem.shabir@talis.com

3 Jeni Tennison Consulting jeni@jenitennison.com

Abstract. Many applications have the need to provide end users with
editing capabilities. Often the nature of the domain and the user’s work-
flow require a specialised editing interface. This paper describes the ap-
proach taken to building a specialised editing interface for academic re-
source lists and extracts the core aspects to allow others to apply the
same pattern to their own applications. The solution described uses com-
monly available HTML manipulation tools and rdfQuery, a javascript
RDFa library, to maintain an RDF model embedded in the page. This
allows the application to provide a document style editing model over
RDF data.

1 A Tool for Managing Academic Resource Lists

Talis Aspire is a SaaS (Software as a Service) application for managing lists of
academic resources [1]. These resource lists are a key part of course content given
to students to help them study more effectively. It provides a reading interface
for students as well as a powerful editing interface for the lists’ maintainers. This
paper focusses on the approach used to implement the editing interface for list
maintainers and how that can be seen as a pattern for other domain specific
editing interfaces.

The view of the list when reading (Fig. 1) shows the list in the format students
are used to receiving, similar in structure to a document. This can be cleanly
printed for offline reference and each list, section and item have Cool URIs
[10] to allow for bookmarking. Each item then has additional information and
functionality behind simple links.

The editing view (Fig. 2) is used by academics and other faculty staff. Com-
mon tasks when editing lists are to add or remove particular items, to group
items together into sections and to annotate the items to provide additional
guidance to the students. The most common mental model of the resource list is
that of a document, with the associated mental models that come from editing
documents using typical office software.

This lead us to have a number of requirements for the editing interface.

Fig. 1. Talis Aspire: Student View of an Academic Resource List

Firstly, the mental model of a document requires that a number of edits can
occur before the user saves the document with an explicit ’save’ action. This
matches the model of typical office software.

Secondly, the document being edited should be visually the same as the
document when read, allowing the user to see what the result of their actions
will be.

Thirdly, the editing interface should be a dynamic experience, supporting
efficient editing with easy-to-use mechanisms for completing the common tasks.
In practice this would mean an AJAX interface.

Fourth, the application allows for concurrent editing, something not in most
people’s mental model of a document, so we wanted to make saves resilient,
where possible, to concurrent edits.

Fifth, the underlying data is stored as RDF and may be annotated and
augmented by data the application does not know about. Edits should not be
destructive to this data.

It is in this context that we set about designing a technical approach that
met all five goals and was as simple as possible to implement.

HTML representations of underlying data are usually specialised interfaces
designed to show the data in the best way for a human with a particular task to
perform. An editing interaction designed for the user must integrate the editing
function with this HTML representation and reflect changes the user makes in

Fig. 2. Talis Aspire: Editing View of an Academic Resource List

that representation. In situations where the data is posted back to the server to
update the underlying model the server can simply re-render the HTML based
on the new model. If a more dynamic editing interface is to be provided using
DHTML techniques then the HTML DOM must be manipulated directly and a
number of changes are submitted to the server in one go.

There are a number of mature libraries that allow for manipulation of the
DOM based on user input, including support for text editing, drag-and-drop,
enumerated options and more. Those the team felt familiar with are Prototype4,
JQuery5, Scriptaculous6 and YUI7. Any one of these libraries could provide the
basis of the editing facilities we aimed to provide.

The approach we developed uses client-side javascript to change a read-only
page into an editing mode. On switching into edit mode the first thing that
happens is that the page is parsed to extract a copy of the initial model, which
has been embedded in the page using RDFa [5]. This is kept as the starting point
from which to derive a list of changes. After the initial model has been captured
we use normal DHTML and AJAX libraries, in our case we used Prototype

4 http://www.prototypejs.org/
5 http://jquery.com/
6 http://script.aculo.us/
7 http://developer.yahoo.com/yui/

and Scriptaculous, to provide text editing, drag-and-drop re-ordering, removal
of elements and drag-and-drop of new items onto a list.

We arrived at our approach independently and later found a great deal of
inspiration in the work done on Ontowiki by Dietzold et al [6]. This work at-
tempted to provide generic editing tools for RDFa within a wiki page. The notion
of a suite of generic editing tools for RDFa is very appealing, but the user expe-
rience requirements for our application called for a specialised editing interface.
The intention was to provide editing of structured data while maintaining the
list view that users are accustomed to and would be expecting.

2 The Solution

The data underpinning Talis Aspire is stored as RDF in a Talis Platform Store
[7], making use of several ontologies including AIISO8, Resource List9, Biblion-
tology10, SIOC11and FOAF12.

Our solution for editing embeds RDFa within the page in such a way that
manipulation of the HTML DOM results in consistent and coherent changes to
the embedded model.

Server-side the pages are rendered by PHP from data stored natively as RDF
in a Talis Platform store. The application does content negotiation to return
HTML or rdf/xml to the client. If the response is HTML then RDFa is included
in the page markup.

The HTML manipulation during editing uses a combination of custom code
for edit dialogs and scriptaculous and prototype to provide drag-and-drop sup-
port.

The extraction of the model from RDFa within the page is performed by
rdfQuery13 which also uses JQuery for some page parsing tasks. Other libraries,
such as Ubiquity14 could be used as well, but our familiarity with jQuery and
prototyping experience with rdfQuery led us to select that.

Figure 3 shows a very much simplified diagram of the thin layer of application
code for Talis Aspire, above a Talis Platform Store, accessed via the internet by
both staff and students using standard browsers.

The key to the simplicity of this approach was to recognise that all we needed
for an editing session was a pair of before and after models. These models can
then be used to generate a changeset15 that persists the changes to underlying
storage. The structure of changesets is such that they also provide an ideal
mechanism for creating an auditable change history.

8 http://purl.org/vocab/aiiso
9 http://purl.org/vocab/resourcelist

10 http://bibliontology.com/
11 http://sioc-project.org/
12 http://www.foaf-project.org/
13 http://code.google.com/p/rdfquery/
14 http://code.google.com/p/ubiquity-rdfa/
15 http://n2.talis.com/wiki/Changeset Protocol

Fig. 3. Talis Aspire: Simplified Application Architecture

The changesets provide the equivalent of a Diff in source code configuration
management. It is easy to conceive how this could be used to provide a feature
to compare versions at some time in the future.

The client side code for saving a list is rather trivial, needing only to extract
the final model and package that along with the initial model for submission to
the server:

function saveListChanges() {
showModalLayer(’Saving list changes - please wait...’);
reindexSequences();
var newModel = toRDFXML();
var params = ’oldmodel=’ + oldModel + ’&newModel=’ + newModel;

new Ajax.Request(listUri,
{

method: ’post’,
parameters: {old_model: oldModel, new_model: newModel},
contentType: ’application/x-www-form-urlencoded; charset=UTF-8’,
onSuccess: function(transport)
{

redirect(listUri);
},
on409: function(transport)
{

alert(’Someone else has changed the data...’);
redirect(listUri);

},

onFailure: function(transport)
{

alert(’There was a problem... ’ + transport.responseText);
redirect(listUri);

}
});

}

Server-side we have code that uses ARC216 and Moriarty17 to generate the
changesets from the before and after models and submit to the underlying store.
This code is, again, small and relatively trivial. One of the reasons that the
changesets are easy to produce, reconcile and apply is that we do not use blanks
nodes. Blank nodes would require more knowledge of the model and use of inverse
functional properties. This would increase complexity.

Next we look at how this solution meets our stated goals.

2.1 Goal One: Explicit Save

Batching several edits from a single editing session together maintains a mental
model for the user that is consistent with that of a document. This was a key
factor in our user interaction design. Because edits are all held on the client until
the user explicitly submits them the application behaves as expected. The client
code is able to do this very simply as the model is embedded in the HTML, the
same actions that change the DOM also change the model.

2.2 Goal Two: WYSIWYG Editing

The use of the existing HTML, the same HTML as is rendered for the reader
view, gives us the same look and feel while editing as while reading. A few subtle
changes are made; links disabled and some editing interface elements discreetly
added.

By embedding the model within the HTML at read time we negate the need
for a separately rendered view for editing, requiring only that the client supports
javascript.

2.3 Goal Three: Dynamic Interface

We had to worry very little about finding or writing RDFa aware tools because
RDFa is embedded using attributes and non-RDFa aware tools simply ignore
attributes they don’t recognise. The interface is provided by commonly available
HTML manipulation libraries. This allowed us to provide a richer interface than
we would otherwise have been able to build.
16 http://arc.semsol.org/
17 http://code.google.com/p/moriarty/

2.4 Goal Four: Concurrent Editing

By having the client maintain both the before and after models for an editing
session it becomes possible to detect when different users have made changes
concurrently. It is not possible to detect this when submitting the after editing
model alone without the introduction of timestamps. This collision detection
allows the application to make appropriate choices about how it deals with the
conflict.

As the changeset is directly analogous to the diff patches generated by con-
figuration management tools it is clear that non-conflicting changes to the same
model can be reconciled and applied, while conflicting changes can be identified
and the three states, before editing, edit one and edit two, can be offered to the
user for the conflict to be resolved. We currently apply non-conflicting changes
and reject conflicting changes with the first set of changes submitted winning.

An alternative approach would have been to implement locking on lists during
editing. The benefits of concurrent editing for non-conflicting changes, and the
costs of implementing a lock cleanup and reclaim mechanism where lists have
been left locked unintentionally mad this unappealing.

2.5 Goal Five: Extensible Data

Because the solution uses the changeset protocol to update only the resources
and properties it knows about, rather than replacing resources and all of their
properties, data that the application doesn’t know about is left untouched. This,
again, comes from having both the before and after models available to calculate
a delta rather than simply performing a replacement.

2.6 Complication: RDF Sequences

The ordering and re-ordering of elements in the list posed a particular problem.
We model the order of items on lists using RDF Sequences.

<http://lists.broadminsteruniversity.org/lists/abf203>
sioc:name "Financial Accounting and Reporting" ;
resource:contains <http://lists.broadminsteruniversity.org/items/abf203-1>,
[...snip...] ;
a rdf:Seq, resource:List ;
rdf:_1 <http://lists.broadminsteruniversity.org/sections/abf203-1> ;
rdf:_2 <http://lists.broadminsteruniversity.org/items/abf203-9> ;
rdf:_3 <http://lists.broadminsteruniversity.org/sections/abf203-2> ;
rdf:_4 <http://lists.broadminsteruniversity.org/sections/abf203-3> ;
rdf:_5 <http://lists.broadminsteruniversity.org/sections/abf203-16> ;

We render these in the DOM using the explicit ordering predicates of rdf: 1,
rdf: 2 etc. The obvious implication of this is that now the re-ordering of the
DOM is no longer enough to create the equivalent re-ordering in the model.
We solved this by triggering a function to re-order the rdf:Seq predicates before
extracting the post-editing model.

function reindexSequences()
{
var containerCuries = new Array();

$$(’span[class="sequenceNumber"][rev="rdf:_0"]’).each(function(thingToReindex) {
containerCuries[containerCuries.length] = thingToReindex.readAttribute(’resource’);
});

containerCuries.uniq().each(function(containerToReindex) {
updateSectionSequences(containerToReindex);
});
}

One would expect that sequences can be rendered in the RDFa using the se-
quence dependant rdf:li element as shown by Hausenblas [8]. Unlike the RDF/XML
specification [9], however, the RDFa specification [4] does not state that rdf:li
should be treated as a special case. As rdfQuery supports the spec accurately it
doesn’t interpret them specially.

A change to the specification to bring it inline with RDF/XML would allow
the model to be re-ordered without changes to the predicates as the sequence is
implied by the order of occurrence of the elements within the DOM.

This is one of the complications that results from the immaturity of the
domain and the degree to which the specifications have yet to evolve and con-
solidate.

2.7 Complication: Importance of @Rev Attribute

The model uses a number of paired forward and inverse properties. These are
used to provide optimisations for querying and convenience when navigating the
data as linked data. When an item is removed from a list it is therefore necessary
to remove not only the links from the item itself to other elements but also the
links from other elements to the item. One example of this is the reference from
the list to all of the items it contains, regardless of the level of nesting - this is
provided so that the list and all its contents can be retrieved by a single sparql
query.

The way we achieved consistency between the DOM editing and the model
is through the use of the @rev attribute. This allows us to co-locate statements
that reference the item as an object with the item itself in the DOM. This means
that removing the item from the DOM also removes the statements that referred
to it. This technique removed the need for us to write code to detect statements
that had lost their children by the removal of the resource they referenced.

Alternatively we could have made the decision not to render these triples
in the RDFa and to use reasoning in the changeset generator or other code
to correctly manipulate the model. This would make the RDFa smaller and
possibly easier to manipulate at the cost of requiring consuming apps to infer
the additional properties from the schema.

As stores become better at reasoning and inference we should see the need
for these additional predicates lessen.

2.8 Complication: Ignoring Some Changes to the Graph

The final complication we had to deal with is that some aspects of the model
are used widely in the graph. The list itself, its sections and its items are a
tree structure. Many items can refer to the same underlying academic resource,
however. Within the HTML DOM the academic resource will be rendered as
child elements of the list item that refers to it. If several list items refer to the
same academic resource then the resource will be listed several times.

The problem arises when we wish to delete an item from a list. What we
want to delete is the item on the list, i.e. the reference to the underlying aca-
demic resource and not the academic resource itself. When the same resource is
referenced many times within the same list this does not present an issue as the
triples describing the academic resource within the model remain even after one
of the items is deleted.

When the academic resource is referenced only once on the list the removal of
the item from the HTML DOM also results in the removal of academic resource
and would result in a changeset being created to delete the academic resource
from the underlying store. As academic resources can be referenced by many lists
this deletion would result in other lists referencing a deleted academic resource.

Our solution is to never delete academic resources. This requires introducing
knowledge of the model to the code that calculates differences between the before
and after models. This is acceptable to us as specialised editing interfaces such as
this one are expected to understand the model and limit themselves to changing
only those things they are responsible for.

2.9 Complication: Performance

The Talis Aspire product works with lists that may contain references to sev-
eral thousand resources, leading to tens of thousands of triples being embedded
within a single HTML+RDFa page. Parsing the RDFa in such a page is a sub-
stantial task, and the initial beta version of rdfQuery that we used took tens
of seconds to process the very largest of these pages, especially in Microsoft
Internet Explorer. This proved to be a useful use-case for the optimisation of
rdfQuery, which now parses these pages in just over a second in most cases,
which is adequate for our purposes.

2.10 Additional Benefit: Re-Use of Data

One of the most attractive things about this approach was that it supported and
was supported by our desire to publish RDFa in the pages. With very little out
there to consume RDFa and the fact that we already supported content nego-
tiation there was little justification to invest the effort in publishing the RDFa

within the HTML. This approach provided both the simplest implementation
for editing as well as a sound reason for including RDFa – which we expect to
have additional benefits in future.

2.11 Additional Benefit: Re-Use of Code

Very little bespoke code was written for management of editing. Almost all of
the bespoke code was written to support specific user interactions during editing.
Had RDFQuery supported RDF sequences we would have had to write only the
code to post the before and after models to the server.

3 Future Work

There are a number of opportunities to simplify the pattern still further as the
RDFa spec evolves and as RDF stores and libraries become more capable. We
aim to track the situation and make changes as the arise and offer benefit.

There are also opportunities to extend the functionality of the client-side code
using the capabilities of rdfQuery more effectively. We currently use it to simply
extract the model from the page before and after editing, but it is capable of
much much more. It would be possible to use rdfQuery to generate other views of
the model from the RDFa, such as a list of sections within the editing interface,
counts of items and indicators where the same resource is referenced multiple
times. These kinds of interface additions are made much easier by having access
to the machine readable model in the client-side code.

4 Conclusion

Embedding RDFa within pages provides benefits for the publication of structured
data. Beyond that it can also be used to provide a coherent representation of
the model that supports editing using tools that are not aware of RDF. The
use of these tools can make the provision of specialised, browser-based editing
interfaces substantially easier to implement than traditional approaches that
involve maintaining a model independently of the HTML DOM.

The client-side, dynamic nature of this approach provides several other ben-
efits beyond implementation simplicity, including a reduction in server interac-
tions and the ability to detect and reconcile concurrent edits.

References

[1] Clarke, C.: A Resource List Management Tool for Undergraduate Students
based on Linked Open Data Principles. In Proceedings of the 6th European
Semantic Web Conference, Heraklion, Greece, 2009.

[2] Halb, W., Raimond, Y., Hausenblas, M.: Building Linked Data For
Both Humans and Machines Workshop for Linked Data on the
Web (2008) http://events.linkeddata.org/ldow2008/papers/06-halb-raimond-
building-linked-data.pdf

[3] Tennison, J.: RDFa and HTML5: UK Government Experience
http://broadcast.oreilly.com/2008/09/rdfa-and-html5-uk-government-e.html

[4] Adida, B., Birkbeck, M., McCarron, S., Pemberton, S.: RDFa in XHTML:
Syntax and Processing http://www.w3.org/TR/rdfa-syntax/

[5] Adida, B., Birkbeck, M.: RDFa Primer: Bridging the Human and Data Webs
http://www.w3.org/TR/xhtml-rdfa-primer/

[6] Dietzold, S., Hellmann, S., Peklo M.: Using JavaScript RDFa Widgets for
model/view separation inside read/write websites In Proceedings of the 4th
Workshop on Scripting for the Semantic Web, Tenerife, Spain, 2008.

[7] Leavesley, J. and Davis, I.: Talis Platform: Harness-
ing Sophisticated Mass Collaboration on a Global Scale.
http://www.talis.com/platform/resources/assets/harnessing sophisticated mass.pdf

[8] Hausenblas, M.: Writing Functional Code with RDFa
http://www.devx.com/semantic/Article/39016

[9] Beckett, D.: RDF/XML Syntax Specification (Revised)
http://www.w3.org/TR/rdf-syntax-grammar/

[10] Berners-Lee, T.: Cool URIs don’t change
http://www.w3.org/Provider/Style/URI

Experiments with Wikipedia Cross-Language
Data Fusion

Eugenio Tacchini
1

, Andreas Schultz
2

 and Christian Bizer
2

1

 Università degli Studi di Milano,
Dipartimento di Tecnologie dell'Informazione,

Via Bramante 65-26013 Crema (CR), Italy
eugenio.tacchini@unimi.it

2

 Freie Universität Berlin
Web-based Systems Group

Garystr. 21 - D-14195 Berlin, Germany
aschultz@mi.fu-berlin.de, chris@bizer.de

Abstract. There are currently Wikipedia editions in 264 different languages.
Each of these editions contains infoboxes that provide structured data about the
topic of the article in which an infobox is contained. The content of infoboxes
about the same topic in different Wikipedia editions varies in completeness,
coverage and quality. This paper examines the hypothesis that by extracting
infobox data from multiple Wikipedia editions and by fusing the extracted data
among editions it should be possible to complement data from one edition with
previously missing values from other editions and to increase the overall quality
of the extracted dataset by choosing property values that are most likely correct
in case of inconsistencies among editions. We will present a software
framework for fusing RDF datasets based on different conflict resolution
strategies. We will apply the framework to fuse infobox data that has been
extracted from the English, German, Italian and French editions of Wikipedia
and will discuss the accuracy of the conflict resolution strategies that were used
in this experiment.

Keywords: Wikipedia, DBpedia, Web of data, data fusion, information quality
evaluation

1 Introduction

Different Wikipedia language versions can describe the same type of objects in
different ways, using different infobox templates1, providing different and often
conflicting information about the same topic. As an example, the English version of
Wikipedia currently states that the city of Munich has a population of 1,356,594

1 http://en.wikipedia.org/wiki/Category:Infobox_templates

people while according to the German version the population of the same city is
1,315,476.

Handling these differences by applying data fusion algorithms can increase the
information quality [1] of the resulting knowledge base if compared to the knowledge
base derived from single Wikipedia editions: in the previous example it would be
desirable for a user who enquires about the population of Munich to get the value
provided by the German edition, which is more up-to-date, instead of the value
provided by the English one. To get these results we need good heuristics which help
recognize the correct dataset (Wikipedia edition) to choose from.

This paper examines the hypothesis that by extracting infobox data from multiple
Wikipedia editions and by fusing the extracted data among editions it should be
possible to complement data from one edition with previously missing values from
other editions and to increase the overall quality of the extracted dataset by choosing
property values that are most likely correct in case of inconsistencies among editions.

The work is structured as follows: we review related work in section 2; we give an
overview of the DBpedia information extraction architecture, which we used to
extract infobox data from different Wikipedia editions, in section 3; section 4
describes the data fusion framework that was used to merge data between editions.
Section 5 presents the results of our experiments with applying different conflict
resolution strategies to merge data between Wikipedia editions and estimates the
accuracy of the fused datasets by comparing them to external “trusted” data.

2 Related Work

Data fusion is the process of merging multiple records representing the same real-
world object into a single, consistent, and clean representation [3]. Beside of identity
resolution, data fusion involves choosing the values that are most likely correct out of
conflicting values within different data sets by applying conflict resolution strategies.

Data fusion is mainly addressed in the database research field. An overview of the
field is given by Bleiholder and Naumann in [3].

In order to develop conflict resolution strategies for the Wikipedia use case, we
reviewed existing work on Wikipedia information quality assessment. In [5] two
metrics are used as a simple measure for the reputation of an article: Rigor (total
number of edits of an article) and Diversity (total number of unique editors); the
authors also verify that these measures positively change if an article gets a press
citation. In [6] a rich citation-based trust evaluation is implemented. In [7] a list of
quality metrics such as number of registered user edits, article length, currency,
number of unique editors are applied to compute the quality of an article; as an
experiment, the computed quality is used trying to recognize the featured Wikipedia
articles. In [8] a Bayesian network model is used to compute the trust of an article,
based on who edited the article (unregistered user, registered user or administrators)
and on the status of the article (normal, to be cleaned, featured).

3 Infobox Data Extraction

The DBpedia project2 extracts structured information from Wikipedia and makes this
information available on the Web of Data [2]. Over 2.6 million Wikipedia entities are
currently described in RDF [9], published according to the Linked Data principles
[10, 11] and queryable via SPARQL [12].

Besides free text, Wikipedia articles contain structured information in the form of
links, geo-coordinates, categories, links between different language versions of an
article and infobox-templates which contain facts in a table like fashion. The aim of
the DBpedia extraction framework3 is to parse this information and to transform it
into a consistent structural form, namely RDF. Wikipedia data dumps offered by the
Wikimedia Foundation serve as the main data source in the extraction process.

We have used the DBpedia information extraction framework to extract infobox
data from English, German, Italian and French editions of Wikipedia. The extraction
framework also solves several problems that would otherwise hinder the fusion of the
different language versions.

At first a common ontology has to be established for all participating sources. For
this purpose we used the already existing DBpedia ontology4 and we applied the
mapping based approach of the extraction framework to the Wikipedia versions which
we needed for our experiments. The main idea is to map infobox-templates coming
from different Wikipedia editions which describe the same concept to the same class
of the ontology and to map template properties to ontology properties.

The next step is to establish unique URIs of resources among the different
Wikipedia editions; this step can be seen as the linking or duplicate detection step
done in data integration. The employed approach to generate DBpedia URIs is to take
the unique article name and prepending the DBpedia specific namespace
(http://dbpedia.org/resource/) to it; however, article names can differ among language
editions, so the Wikipedia interlanguage links5 are exploited to identify every
resource by the URI of its English-edition equivalent (if existent) in order to achieve
unique identifiers.

An advantage of the afore-mentioned mapping-based approach is that it handles a
third problem regarding data fusion, the representation of literals. Literals can be
found in all kinds of formats and units, strongly depending on the language edition.
The canonization of these values is part of the DBpedia extraction framework and
facilitates an easier handling in the fusion process.

For our experiments the following language versions of Wikipedia were extracted
and mapped to the common ontology: German, Italian and French, while the English
version was already mapped to the DBpedia ontology and extracted6.

2 http://wiki.dbpedia.org/
3 http://wiki.dbpedia.org/Documentation
4 http://wiki.dbpedia.org/Ontology?v=1cwu
5 http://en.wikipedia.org/wiki/Help:Interlanguage_links
6 http://download.wikimedia.org/backup-index.html Versions of the Wikipedia dumps: en

08.10.2008, de 11.10.2008, it 30.10.2008, fr 17.10.2008

4 Data Fusion Framework

We have developed a framework for fusing RDF data from local and remote RDF
data sources. The framework conducts two basic steps: 1. query each source to get the
required data, and 2. apply a strategy to merge the data from the different sources.
Strategies apply different heuristics and thus lead to different outcomes. Provenance
information in the resulting dataset is preserved by distributing the outcome to
different named graphs [13], one for each source.

For our experiments we developed several strategies for the complementation and
conflict resolution of the source data, ranging from a simple union with duplicate
elimination to quality based conflict resolution. Table 1 and 2 summarize the
strategies. The strategies are partitioned in augmentation and quality related
strategies. The goal of the former is solely a quantitative one, whereas the latter,
choosing on the base of a quality evaluation process, focuses on increasing the quality
of the resulting dataset, albeit they often also augment it. It should be noted that in
every single execution of a strategy the data for one property of exactly one entity of
the specified class is processed.

 Table 1. Augmentation based strategies
Onevalue This strategy chooses the first value it comes across only. A

check order of the sources can be defined.
Union All values from all sources are taken for the resulting dataset.

 Table 2. Quality based strategies

Democratic The choice is based on the number of sources which
share the same value for the same object
instance/property couple. It is also possible to assign a
weight for each source.

Geographic The choice is based on the provenance information of
the examined entity.

Edits number The choice is based on the number of edits a page has
received since its creation.

Filtered edits number Same as above but the edits marked as "Minor" by the
users are not taken into consideration.

Unique editors number The choice is based on the number of different users
who edited a page since its creation.

Accesses number The choice is based on the number of visits a page has
received since its creation or in general since a
starting date

Last update date time The choice is based on the date and time of the most
recent edit a page has received

We will explain the quality based strategies in more detail as follows:

Democratic: This strategy is useful if many sources exist and/or the data of these

sources overlap to a high degree. All candidate values are handled like in a majority

decision: the value that gets the most votes - in this case, appears in the most sources
– will be chosen. Additionally the user can define a weight for each source, that
affects the ranking.

Geographic provenance strategy: The idea behind this strategy is the assumption

that the information of concepts that are localized - like cities for example - is better
maintained by people who are located near this concept. The term “location” could
also be expanded in a broader or more abstract sense like “intellectual proximity” or
“cultural proximity”. For this strategy it has to be clearly defined how to categorize
the entities and the sources, so the information is chosen by the source that falls into
the same category of the entity. An example is to categorize cities by their "country
property" (e.g. locatedIn) and choose the information from the source of the same
country, in our case the suitable DBpedia language edition.

Wikipedia based quality strategies: The Wikimedia Foundation and other

institutions offer metadata7 for each page that include various statistics gathered about
the changes that occur. The idea is to use these statistics to compute a quality ranking
of the data from different sources, in our case, for the different language versions of
an article in DBpedia. So this is a Wikipedia/DBpedia specific strategy. Table 2
shows all the implemented approaches for computing scores from this metadata which
could be alternatively chosen; for the first four cases holds: the higher the number, the
higher the score; for the last one, pages having more recent updates get higher score.

The developed data fusion famework provides for applying different fusion

strategies to different properties of an entity. All aspects of the fusion process can be
defined in a XML configuration file. The different configuration options are
explained in the following.

The data sources are defined under the element source as shown in the example
below:

<source id="dbpedia-en" type="sparql-endpoint"
augment="true">

 <url>http://localhost/sparql</url>

 <graph>dbpedia-en</graph>

</source>

7 sources of the Wikipedia quality indicators:
 - Accesses numbers: http://wikistics.falsikon.de/dumps.htm (July, August and September)
 - Other indicators:
 http://download.wikimedia.org/itwiki/20081030/itwiki-20081030-stub-meta-history.xml.gz
 http://download.wikimedia.org/enwiki/20081008/enwiki-20081008-stub-meta-history.xml.gz
 http://download.wikimedia.org/dewiki/20081206/dewiki-20081206-stub-meta-history.xml.gz
 http://download.wikimedia.org/frwiki/20081201/frwiki-20081201-stub-meta-history.xml.gz

The id attribute is the unique name of the source; the type characterizes the access
method that, in this version, is limited to SPARQL-endpoints. The optional augment
attribute, if set for one source, makes sure that entities from other sources not present
in the augmented one will be ignored. This attribute was set for the English DBpedia
dataset for all our experiments: an entity from a non-English dataset not available in
the English dataset was therefore ignored.

Besides attributes source-elements have two sub-elements: url and graph, which
define the URL of the SPARQL-endpoint and optionally the named graph containing
the data.

An optional default setup of fusion strategies is possible under the element
strategy-config and can be used to set default configurations for each strategy for later
reuse. Such a definition of a strategy element has the following structure:

<strategy-config>

 <strategy type="single-value" name="democratic">

 <args>

 <arg id="dbpedia-en" value="3" />

 <arg id="dbpedia-de" value="2" />

 <arg id="dbpedia-it" value="2" />

 <arg id="dbpedia-fr" value="2" />

 </args>

 </strategy>

 …

</strategy-config>

Types can be set to single-value or set-value, which practically means that for a
specific property only one value per entity should be chosen or a set of values. Birth
date of a person is an example for the single value case, whereas band members
would be a candidate for the set-value case. An optional args element defines the
strategy arguments in an associative array fashion and is used to set up the strategy.
Fusion strategies are applied to properties of specific classes:

<class URI=”http://dbpedia.org/ontology/Film”>

 <property URI=" http://dbpedia.org/ontology /runtime">

 <strategy type="single-value" name="democratic" />

 </property>

</class>

In this case no arguments are supplied to the strategy and in this way the default

configuration - only if defined beforehand - is used.

5 Experiments

In order to test our framework, we applied it to different classes of objects extracted
from Wikipedia infoboxes, selecting specific properties for each class. We evaluated
the information quality of our resulting dataset comparing it with the information
extracted from sources external to Wikipedia which we assume to be accurate. As our
goal was to improve the English dataset (which is the one currently used by DBpedia
to answer queries), the same evaluation was also performed on this dataset only
(without applying data fusion); in this way we could verify if the fusion process
impacted positively on the information quality level. This is the general approach we
used for the experiments, in order to easily get the results, for some classes additional
or different steps were done. Three of the experiments we did are described in details
in the following paragraphs.

5.1 Dataset augmentation using a simple UNION operator

The first experiment focused on the use of the union operator applied to object
properties. We chose to extract the starring property of Wikipedia articles about
movies. The strategy was thus to just merge starring information coming from
different Wikipedia editions in order to produce a resulting movies-actors dataset
which was more complete than the one provided by the English edition only.

We extracted, using the DBpedia extraction framework, the value of the starring
property for all the articles that used the “Infobox Film” template in the English
version. Analogue templates are used by the German (Infobox Film), Italian (Film)
and French (Infobox Cinéma (film)) versions; all the infobox templates included the
starring property and this allowed for extracting its value from the four different
language versions.

At the end of the process we managed to extract starring information for 30,390
movies and 118,897 movie-actor triples for the English version of Wikipedia, 7,347
movies and 42,858 movie-actor triples from the German version, 6,759 movies and

31,022 movie-actor triples from the Italian version, 1,171 movies and 3,739 movie-
actor triples from the French version.

We then used our framework to produce a new dataset of movies which includes
the starring values from all four starting dataset and we get a dataset composed by
143,654 movie-actor triples, augmenting the English dataset by 20.82%.

We then created a dataset composed only of the movie-actor triples added to the
English dataset and compared this dataset with the IMDB database8, which provides,
among other data, for each movie, the list of actors who played a role in it.

In order to link DBpedia extracted movies and actors with the corresponding
IMDB entries we used movie titles and actor names. In this example the linking
process couldn't be accurately done like in the following experiments because movie
titles and actor names in the IMDB dataset are not unique and are expressed in a
format that differs from the one of DBpedia.

After this linking procedure we got 11,224 movie-actor triples and 61% of them
are positively verified by the IMDB database check. The result of the experiment is
positive because we expanded the dataset and most of the movie-actor triples were
correct.

5.2 Data fusion using different information quality indicators

The second experiment we did focused on the use of the Wikipedia-based information
quality indicators implemented in the framework. We took into consideration
Wikipedia articles about minor planets; in particular we extracted the values of the
orbital eccentricity property. This is a property whose values we could check from the
MPC Orbit (MPCORB) Database9, a public database which contains orbital elements
for more than 200,000 minor planets. The strategy was thus to fuse information
coming from different Wikipedia editions using some of the implemented quality
indicators proposed in literature in order to produce a resulting planets dataset whose
information quality was higher than the one provided by the English edition only, i.e.
whose orbital eccentricity values were closer to the ones provided by the MPCORB
database.

We extracted, using the DBpedia extraction framework, the value of the
eccentricity property for all the articles belonging to the “planets” class i.e. the articles
that uses the “Infobox Planet” template in the English version. Analogue, though not
identical, templates are used by the German (Infobox Asteroid), Italian (Corpo
celeste) and French (Infobox Planète mineure) versions; all the infobox templates
included the eccentricity property and this allowed to extract its value for the four
different language versions.

At the end of the process we managed to extract eccentricity information for
11,682 planets from the English version of Wikipedia, 11,251 planets from the Italian
version, 2,502 planets from the German version and 267 planets from the French
version.

8 ftp://ftp.fu-berlin.de/pub/misc/movies/database/, data retrieved 2009 Feb. 23
9 http://www.cfa.harvard.edu/iau/MPCORB.html, vers. 2009 Feb. 5

The subset of planets we took into consideration for the experiment was composed
of all the planets included in both the English and MPCORB dataset and at least in
one of the other datasets. In order to link DBpedia extracted planets with the
MPCORB planets we used the name of the planet, which is unique. The final dataset
was composed by 11,033 planets.

We then built an “ideal” selection of planets, choosing, for each planet, the data
coming from the language version whose eccentricity value is closest to the one
provided by the MPCORB dataset; this ideal selection was composed of 9.937 planets
extracted from the English version, 962 from the Italian version, 127 from the
German version and 7 from the French version. Using this selection it was possible to
improve the quality of the data (measured as the sum of the absolute differences
between the eccentricity value provided by DBpedia and the MPCORB's eccentricity
value) by 17.47% in respect to a selection which just chose all values from the
English version.

We then tried five different data quality indicators in order to see which one
performed better and thus were able to create a selection which is as close as possible
to the “ideal” selection; the results are shown in Table 3.

Table 3. Second experiment, performance of the information quality indicators tested

I.Q. indicator Percentage of planets correctly selected
Edits number 10.16%
Filtered edits number 69.49%
Unique editors number 11.28%
Accesses number 19.43%
Last update date time 42.38%

The evaluation of the articles using the number of filtered edits is the one that

performed better; 69.49% could be considered a good results but in this case, in which
in more than 90% of the articles the information quality is higher in the English
version (see “ideal” selection above), the final performance is worse in comparison to
an approach which chooses all values from the English version so the final result for
this experiment can't be considered positive. The information quality indicators
proposed in most of the literature seem to work not very well, at least for this class of
objects; one of the reason for poor performances of two of the edits-related indicators
could be that we assumed that each edit operation added the same value to an article
but, depending on author, size/type of content and other parameters the operation can
increase (or, in some cases, decrease) the quality of an article at various levels. There
are some parameters which can help us from this point of view (e.g. the minor
parameter that we use for the filtered edits indicator) but we also have to take into
consideration that the decision on marking an edit operation as minor is left to its
author so in some cases the attribute could be unreliable.

5.3 Data fusion based on geographic provenance

The third experiment we did focused on the use of a promising information quality
indicator: the geographic provenance. Our hypothesis was that for the class of objects
that have a geographic provenance or localization (e.g. cities or people), data should
be more accurate if taken from the Wikipedia version of the country they are related
to. We took into consideration Wikipedia articles about cities; in particular we
extracted the population data of Italian cities. We chose to focus on Italian cities
because a public and up-to-date database providing data about cities population is
available from the ISTAT (the national statistical institute of Italy) Web site10.

We extracted, using the DBpedia extraction framework, the value of the population
property for all the articles that used the “Infobox CityIT” template in the English
version. The analogue template used for the Italian version (the only non-English
version considered in this experiment) was “Comune”.

In order to link DBpedia cities with ISTAT database's cities we used the ISTAT
code, which is a unique identifier assigned to Italian cities; we got that code from the
Geonames database dump11 through the DBpedia - Geonames links dataset12.

At the end of the process we managed to extract population information for 7,095
Italian cities from the English version of Wikipedia and 7,055 Italian cities from the
Italian version.

The subset of cities we took into consideration for the experiment was composed
of all the cities included in the English dataset and also in both the ISTAT and the
Italian dataset. The final dataset was composed of 6,499 cities.

Following our initial hypothesis, we argued that Wikipedia articles about Italian
cities were more accurate in the Italian Wikipedia Version. We thus compared
population data of both the English and the Italian datasets with the data provided by
ISTAT and these were the results: for 59% of the cities Italian data was more accurate
(closer to ISTAT data); for 13% of the cities the quality was the same in both the
datasets and for the remaining cities (28%) English data was more accurate. The final
result for this experiment can be considered positive because the information quality
of the resulting dataset is better in respect to an approach which chooses all values
from the English version. This result confirmed our initial hypothesis; for articles
with strong geographic localization characteristics as cities data should be more
accurate if taken from the Wikipedia version of the provenance country.

10 http://demo.istat.it/bilmens2008gen/index02.html, data retrieved 2009 Feb. 13
11 http://download.geonames.org/export/dump/IT.zip, data retrieved 2009 Feb. 13
12 http://downloads.dbpedia.org/3.2/links/links_geonames_en.nt.bz2, data retrieved 2009 Feb.

16

6 Conclusions and Future Work

We presented the first version of a framework which is able to perform data fusion
among different RDF datasets and which provides several conflict resolution
strategies. We tested the framework in the Wikipedia/DBpedia domain, fusing data
extracted from different Wikipedia language versions and we demonstrated that in
some cases it is possible to increase the quality of the extracted information compared
to extracting from the English Wikipedia edition only.
The results of the experiments were not always positive. As the quality of data within
the English Wikipedia edition is already relatively high, it was difficult to improve
data from the English edition with data from other editions. On the other hand, as the
datasets that were extracted from other editions were relatively sparse, the solution
proposed should work much better for augmenting a non-English Wikipedia version
with the information extracted from the English version.

The geographic provenance of a DBpedia object is a promising indicator for
quality evaluation, so one of the directions for future works will be an improvement
of its implementation. An improvement of the other indicators is also desirable,
especially in the direction of allowing to express the score with an higher level of
granularity: as an example consider the possibility to have the last update date
referred not to the whole page but to a fragment of it (a row of an infobox), this would
give us the possibility to evaluate the currency of a single property instead of the
currency of the page. We also have to proceed in the direction of fusing more
Wikipedia editions; we tested our framework with four editions but adding other
language versions can add more (potentially good) sources and in this way improve
the information quality of the final dataset.

References

1. Bizer, C.: Quality-Driven Information Filtering in the Context of Web-Based Information
Systems. PhD thesis, Freie Universität Berlin (2007)

2. Auer, S., Bizer, C., Lehmann, J., Kobilarov, G., Cyganiak, R., Ives, Z.. Dbpedia: A nucleus
for a web of open data. Proceedings of ISWC07 (2007)

3. Bleiholder, J. and Naumann, F. 2008. Data fusion. ACM Comput. Surv. 41, 1 (Dec. 2008),
1-41. DOI= http://doi.acm.org/10.1145/1456650.1456651

4. Naumann, F., Bilke, A., Bleiholder, J, Weis, M.: Data Fusion in Three Steps: Resolving
Schema, Tuple, and Value Inconsistencies. IEEE Data Engineering Bulletin 29(2):21-31
(2006)

5. Lih, A.: Wikipedia as Participatory Journalism: Reliable Sources? Metrics for Evaluating
Collaborative Media as a News Source. Proceedings of the Fifth International Symposium
on Online Journalism (2004)

6. McGuinness, D. L., Zeng, H., Pinheiro da Silva, P., Ding, L., Narayanan, D., Bhaowal, M.:
Investigations into trust for collaborative information repositories. Workshop on the Models
of Trust for the Web (MTW’06) (2006)

7. Stvilia, B., Twidale, M. B., Smith, L. C., Gasser, L.: Assessing information quality of a
community-based encyclopedia. In: Proceedings of the International Conference on
Information Quality - ICIQ 2005. Cambridge, MA. 442-454 (2005)

8. Zeng, H., Alhoussaini, M.A., Ding, L., Fikes, R., McGuinness, D.L.: Computing trust from
revision history. Intl. Conf. On Privacy, Security and Trust (2006)

9. Beckett, D.: RDF/XML Syntax Specification (Revised). W3C Recommendation.
http://www.w3.org/TR/rdf-syntax-grammar/ (2004)

10. Berners-Lee, T.: Linked data. http://www.w3.org/DesignIssues/LinkedData.html (2006)
11. Bizer, C., Cyganiak, R, Heath, T.: How to publish linked data on the web,

http://sites.wiwiss.fu-berlin.de/suhl/bizer/pub/LinkedDataTutorial/ (2007)
12. Prud'hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. W3C

Recommendation. http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/ (2008)
13. Carroll, J., Bizer, C., Hayes, P., Stickler, P.: Named Graphs. Journal of Web Semantics, Vol.

3, Issue 4, p. 247-267 (2005)

Converging Web and Desktop Data with
Konduit

Laura Drăgan1, Knud Möller1, Siegfried Handschuh1, Oszkár Ambrus1, and
Sebastian Trüg2

1 Digital Enterprise Research Institute, National University of Ireland, Galway
firstname.lastname@deri.org

2 Mandriva S.A., France
strueg@mandriva.com

Abstract. In this paper we present Konduit, a desktop-based platform
for visual scripting with RDF data. Based on the idea of the semantic
desktop, non-technical users can create, manipulate and mash-up RDF
data with Konduit, and thus generate simple applications or workflows,
which are aimed to simplify their everyday work by automating repetitive
tasks. The platform allows to combine data from both web and desktop
and integrate it with existing desktop functionality, thus bringing us
closer to a convergence of Web and desktop.

1 Introduction

With the Semantic Web gaining momentum, more and more structured data
becomes available online. The majority of applications that use this data today
are concerned with aspects like search and browsing. However, a greater benefit of
structured data is its potential for reuse: being able to integrate existing web data
in a workflow relieves users from the investment of creating this data themselves.
On the other hand, when it comes to working with data, users still rely on
desktop-based applications which are embedded in a familiar environment. Web-
based applications either simply do not exist, or have shortcomings in terms of
usability. They can only access web data, and do not integrate with data that
users might already have on their own desktop, let alone with other applications.
Even considering that it may be beneficial for users to publish some desktop data
online, releasing all their data on the web may raise significant privacy issues.
Instead, what is needed is a way of accessing structured web data from the
desktop, integrate it with existing desktop-data and applications and work with
both in a unified way.

The Semantic Desktop through projects such as Nepomuk now opens up new
possibilities of solving this problem of integrating data and functionality from
both web and desktop. On the Semantic Desktop, data is lifted from application-
specific formats to a universal format (RDF) in such a way that it can be inter-
linked across application boundaries. This allows new ways of organizing data,
but also new views on and uses of arbitrary desktop data. What is more, be-
cause desktop data is now available in a web format, it can also be interlinked and

processed together with genuine web data. While the unified data model makes
this scenario easier than it previously was, implementing it would ordinarily
still require an experienced developer, who would use a full-edged programming
language to create applications that manipulate and visualize RDF data. With
current tools, casual or naive users would not be able to perform such tasks.

In this paper, we present an approach for mashing up RDF data, which can
originate from either the web or, through the Semantic Desktop, from arbitrary
desktop applications. While the individual components that make up our ap-
proach are not new in themselves, we believe that the combination is new and
opens up possibilities that have not been available before.

2 Background

Our work is based on and influenced by several existing technologies, such as
the Semantic Desktop, Unix pipes, scripting languages, visual programming &
scripting and dataflow programming. In the following we will describe these
technologies.

Our approach assumes that we are working on a semantic desktop [1],
rather than a conventional one. As discussed earlier, this means that data in
application-specific formats has been lifted to a uniform data format, such as
RDF or, in the case of the Nepomuk project [3], to an extension such as NRL3

(in the remainder of this paper, we mean a semantic representation language
when we say RDF). Representing desktop data in a uniform format means that
it can be interlinked and processed in a uniform way across the desktop, but also
that it can be interlinked and processed with web data in the same way.

For our application the implementation of choice of the Semantic Desktop is
Nepomuk-KDE4, developed during the Nepomuk project as part of the K desk-
top environment. However, also more mainstream products, such as Spotlight
technology of Mac OS X are a step towards a unified view on all desktop data.

The concept of pipes has been a central part of UNIX and its derivatives
since 1973, when it was introduced by M. Doug McIlroy. The basic idea of
pipes is that individual processes or programs can be chained into a sequence
by connecting them through the operating systems standard streams, so that
the stdout of one process feeds into its successor’s stdin. In this way, tasks which
require the functionality from different applications or data from different sources
can elegantly be combined into a single workflow.

Scripting languages such as Perl and Unix shell allow rapid application
development and a higher level of programming. They represent a very different
style of programming as compared to system programming languages like C or
Java, mainly because they are designed for “gluing” applications [8]. The libraries
provided by most scripting languages are highly extensible, new components
being added as the need for them arises. Being weakly typed is another defining
characteristic of scripting languages that Konduit employs.
3 http://www.semanticdesktop.org/ontologies/nrl/ (26/02/2009)
4 http://nepomuk.kde.org (26/02/2009)

http://www.semanticdesktop.org/ontologies/nrl/
http://nepomuk.kde.org

As a form of end-user programming, visual programming (VP) is tar-
geted at non-experts who want to be able to automate simple processes and
repetitive tasks, without having to learn the complexities of a full-fledged pro-
gramming language. In visual programming users construct the program not by
writing source code, but instead by arranging and linking visual representations
of components such as data sources, filters, loops, etc. In other words, “a visual
programming system is a computer system whose execution can be specified
without scripting” [5] — “scripting” here in the traditional sense of writing lines
of source code.

Recently, VP has gained some popularity in the form of Yahoo Pipes5. In al-
lusion to UNIX Pipes, Yahoo Pipes allows the user to visually compose workflows
(or pipes) from various ready-made components. Inputs and outputs are mostly
news feed-like lists of items. Being a Web application, Yahoo Pipes is limited in
that it operates on Web data only, in formats such as RSS or Atom. Another
application that supports a wider range of (Semantic) Web data standards and
also tightly integrates with the SPARQL query language is SparqlMotion6. Be-
cause of the simplicity and typical small-scale scope of software like Yahoo Pipes,
SparqlMotion and also Konduit, they are often being tagged with the term visual
scripting instead of VP.

Closely related to our approach are the Semantic Web Pipes [6], which ap-
ply the Yahoo Pipes look and feel and functionality directly to Semantic Web
data. Also here, SPARQL is an integral component to define the functionality of
the individual building blocks. A crucial difference between SparqlMotion and
Semantic Web Pipes on the one hand and Konduit on the other is that they
have a clear focus on Web data and do not integrate desktop data or application
functionality.

The concept of designing workflows by chaining a set of components through
their inputs and outputs is related to a form of programming called dataflow
programming (e.g., [7]). Unlike the more conventional paradigm of imperative
programming, a program in dataflow programming does not consist of a set of
instructions which will essentially be performed in sequence, but instead of a
number of interconnected “black boxes” with predefined inputs and outputs.
The program runs by letting the data “flow” through the connections. As soon
as all inputs of a particular component are valid, a component is executed.

2.1 Related Work

Apart from those mentioned above, there are a number of other systems which
are related to Konduit. WebScripter [9] is an application that allows users to
create reports in a spreadsheet-like environment from distributed data in the
DAML (DARPA Agent Markup Language) format. Unlike our approach, Web-
Scripter is based on the now more or less extinct DAML, and offers neither a

5 http://pipes.yahoo.com/ (26/02/2009)
6 http://composing-the-semantic-web.blogspot.com/2007/11/

sparqlmotion-visual-semantic-web.html (26/02/2009)

http://pipes.yahoo.com/
 http://composing-the-semantic-web.blogspot.com/2007/11/sparqlmotion-visual-semantic-web.html
 http://composing-the-semantic-web.blogspot.com/2007/11/sparqlmotion-visual-semantic-web.html

visual composition environment nor the option to connect to desktop functional-
ity. Potluck [4] is a web-based platform for visually mixing structured data from
different sources together, even if the data does not conform to the same vocab-
ulary or formatting conventions. An important restriction is the fact that only
data from sites which are hosted using the Exhibit7 platform can be merged.
Potluck is geared towards data integration, and therefore does not offer any of
the workflow capabilities we implement in Konduit.

3 Konduit Components and Workflows

With Konduit we want to allow casual users to build simple programs in or-
der to perform and automate everyday tasks on RDF data. Konduit provides a
collection of useful components ready for immediate use. The components offer
individual units of functionality and are represented visually as blocks. They
are connected through input and output slots, and in this way the flow of the
program is defined. In order to keep simple the task of connecting components,
the only data that flows through the workflow is RDF. This condition insures
that each component always fulfils the minimal requirement for dealing with
its input. Obviously, components may be specialized with respect to the actual
vocabulary on which they can operate and will decide at runtime if and how it
deals with the incoming RDF. By neither allowing different kinds of data (e.g.,
text, numbers, lists, images, etc.), nor typing the RDF data with respect to the
vocabularies they use, we stay very close to the original UNIX pipes concept,
where data is always an untyped bytestream on the one of the standard streams
stdin or stdout, and where it is up to each process or program how to handle
it (see Fig. 1). Konduit is implemented as a desktop-based application for the

process processbyte
streamst

do
ut

st
di
n processbyte

streamst
do
ut

st
di
n

process process

ou
tp
ut

in
pu
t

process

ou
tp
ut

in
pu
t

Fig. 1: Unix pipes and RDF pipes

Linux desktop environment KDE4, and is based on Plasma8. The architecture
is plugin-based, so that each component is realised as a plugin into the Kon-
duit platform. Technically, Konduit plugins are also so-called “Plasma applets”.
Therefore designing and implementing new ones is quite straightforward (from
the point of view of a KDE developer); and although all existing Konduit plugins
have been written in Qt/C++, to write new ones can be done using the Ruby,

7 http://simile.mit.edu/exhibit/
8 http://plasma.kde.org/ (26/02/2009)

http://simile.mit.edu/exhibit/
http://plasma.kde.org/

Python or Java bindings of Qt. We expect that new plugins will be developed
by external power users, as the need for them arises. As Plasma applets, the
Konduit plugins can be loaded and used as independent applications directly on
the desktop, without being restricted to the Konduit workspace. The workspace
is not unlike a drawing canvas, on which the components can be dropped from
a lateral toolbar. On this “drawing area” the user can connect the input slots to
output slots of different components, move the blocks around, set their param-
eters and in this way build small applications.

Konduit makes use of the semantic desktop features that come as part of
Nepomuk implementation in KDE4, especially the Soprano RDF framework9.
Soprano is also used to store the saved workflows and black boxes as RDF in a
repository (with the given connections and values for configuration parameters).

3.1 Components

Formally, a component is defined by the following parameters: (i) a set of RDF
input slots I, (ii) a set of RDF output slots O, (iii) a set of parameters P which
allow for user input in the workflow, (iv) a unit of functionality F , which works
on the input I and generates the output O. The parameters P influence the
behaviour of F .

Definition 1. Component = (I, O, P, F)

The number of input and output slots is not fixed and can be 0 or more. De-
pending on the number of slots, components can be grouped in three categories:
sources, sinks, and ordinary components. Sources are components that do not
have any inputs. They supply the workflow with data. Because the data graphs
can be merged, there can be more than one source for any workflow. Typical
examples of sources are connectors to RDF stores, file (URL) input components,
or converters from other, non-RDF formats. Sinks are components that do not
have any outputs. They represent the final point(s) of any workflow. Examples
of sink components are application adaptors, serializers (file output components)
and visualizers. Unlike in dataflow programming where a component is run as
soon as all inputs are valid, the Konduit workflows are activated from a sink
component, usually by clicking on an activation button.

Ordinary components, can be further classified according to the kind of func-
tionality F they contain.

– Merger - combines the input graphs into a single output graph
– Duplexer - duplicates the input graph to two outputs.
– Transformer - applies a transformation on the input graph and outputs

the resulting graph.

An important aspect of our approach is directly tied to the fact that all
inputs and outputs are RDF graphs. As a result, any workflow can itself become

9 http://soprano.sourceforge.net/ (26/02/2009)

http://soprano.sourceforge.net/

a component, meaning that workflows can be built recursively. In this way, it is
possible to create a library of specialised components (which we call blackboxes),
based on the combination of basic components. We will pick this idea up again
in Sect. 3.2.

Sources. Sources are a special type of components that do not have any input
slots. There is always at least a source at the start of any workflow.

There is a dedicated source component for reading data from the local Nepo-
muk RDF repository. This source extracts the desktop data according to a
SPARQL construct query given as parameter. The Nepomuk source element
has a variant that is meant to help the user create the SPARQL query in a
friendlier way, by the means of a smart wizard, with autocompletion and sug-
gestions. Another basic source component is the file input source, which takes

Fig. 2: Konduit Nepomuk Source that finds all the data about the tags from the
local Nepomuk repository.

a URL as a parameter. The URL can point to a file (network is transparent so
the path can be local or remote) or to a SPARQL endpoint (see Fig. 3). This
component takes as parameter the expected serialization of the graph. For pars-
ing it uses the parsers made available by the Soprano library. There are several

Fig. 3: The three uses of the Konduit File Input Source.

components that transform non-RDF data to RDF. The literal input takes any
text given as parameter and transforms it to a RDF graph containing exactly
one triple:

<http://www.konduit.org/elements/LiteralValue/data>
<http://www.w3.org/2000/01/rdf-schema#comment>

"string data"^^<http://www.w3.org/2001/XMLSchema#string>

The literal file input creates the same kind of triple, using as the string value
the content of the file given as parameter.

Transformers. The most basic and simple transformer component is the filter
element. It changes the input graph according to a SPARQL construct query
given as parameter. The filter element can be saved with fixed queries and thus
create specialized converters from one vocabulary to another. Another useful
transformer is the duplicate remover component, which as the name suggests,
outputs each unique triple from the input graph exactly once and discards all
the duplicates.

Visualizers. The visualizer components display the RDF data received as input
in various forms. So far there are only two components of this type: the data
dump sink which shows the graph as quadruples in a separate window; and the
data table sink which creates tables for each class of resource found in the input
graph, each table having on each row one data for one instance in the graph.
The columns are given by the properties of the class shown in each table.

Application adaptors. Application adaptors call the functionality of an ex-
ternal application or protocol with the data given in the input graph.

One such adaptor is the mailer element. It takes as input several graphs of
data: one of foaf:Persons with mbox and name, one with the list of files to attach
to the sent emails, a template for the message and a subject.

Another adaptor is the scripter element which passes the input RDF graph
as input to a script available on the desktop. There is no restriction regarding
the nature of the script or the language in which it is written, as long as it is
executable, it takes RDF as input and it outputs RDF as well. The serialization
for the input and output must be the same and it can be specified as a parameter.

3.2 Workflows

A workflow is defined by specifying (i) a set of components C, (ii) a function f
defined from the set of all the inputs of the components of C to the set of all the
outputs of the components of C and the nil output. The function f shows how
the components of C are connected. The inputs that are not connected have a
nil value of f ; the outputs that do not represent a value of f are not connected.

Definition 2. Workflow = (C, f) where f : inputs(C) → outputs(C) ∪ { nil }

Workflows can be saved and reused. Saving a workflow implies saving all the
components that have at least one connection to the workflow, as well as their
existing connections, parameters and layout. There is no restriction that the
components should be completely connected, so there can be input or output
slots that remain open. A saved workflow can be reopened and modified by
adding to it or removing components, or changing connection or parameters and
thus obtaining different workflows with minimum effort.

Even the simple workflows can have numerous components, the more complex
ones having tens of components can become too big to manage in the workspace
provided by the application. To aid the user with handling large and complex
workflows, we added modularization to Konduit. Workflows can thus be saved
as reusable components, which we call blackboxes and which are added to the
library of available elements. Blackboxes can be used afterwards in more complex
workflows. This can be done recursively as more and more complexity is added.
The inputs and outputs of blackboxes must be marked in the original workflow
by special input and output components (as illustrated in Fig. 4).

Fig. 4: Looking inside a tri-merger black-box created by concatenating two
merger elements.

4 Use Case

The following example illustrates what Konduit can do for the user of a semantic
desktop.

John is a music enthusiast. He enjoys having his music collection organized,
and if he likes an artist he will try to find that artist’s entire discography. When-
ever he discovers a new singer he creates a file with that singer’s discography and

marks which albums or songs he owns and which he does not. This task requires
usually many searches - on the web as well as on John’s own computer. Some
of the common problems he runs into are: on the web the information he needs
is spread across several web pages which need to be found; on his computer the
music files are spread over several folders, and he would have to manually check
each file to mark it as owned.

This example highlights a number of important aspects that our approach
addresses, and illustrates how a tool such a Konduit can be used:

– Accessing and processing desktop data: John uses the semantic desktop of-
fered by Nepomuk on KDE4 so he has his music library metadata stored in
the Nepomuk repository and can therefore be processed by Konduit.

– Accessing and processing web data: Services10 expose their data as RDF,
which means that our system can use it.

– Merging desktop and web data: Since both kinds of data sources use a unified
data model, Konduit can simply mash both together.

– Using desktop functionality: Since our approach is desktop-based, we can
easily access and integrate the functionality of arbitrary desktop applications
or run local scripts that are normally executable on the desktop (with the
restriction of taking as input and outputting RDF).

Three main parts of the workflow stand out: preparation of the data found
online, preparation of the data found locally on John’s desktop and the genera-
tion of the file. For the first two parts we create sub-workflows which we save as
blackboxes and use them in the final workflow. Both blackboxes take as input
the name of the artist and output album and track data, one from the desktop
and the other from the web.

Desktop data. To access the local music metadata we need a Nepomuk source
component. It will return the graph of all songs found in the Nepomuk repository,
with title, artist, album, track number and the URL of the file storing the song.
This graph needs to be filtered so that only the songs by the specified author
remain. For it we use a filter element.

Web data. We use the SPARQL endpoint provided by the musicbrainz service11

to retrieve music information. To connect to it we need a file input source with
a query that takes data about artists, albums and tracks. The graph returned
by the source has to be filtered by the artist name. This is done with a filter
component that has also the function of a vocabulary converter, as it takes in
data described using the Music Ontology 12 and creates triples containing the
same data described with the Xesam ontology 13.

10 such as http://dbtune.org/musicbrainz/
11 http://dbtune.org/musicbrainz/sparql
12 http://purl.org/ontology/mo/
13 http://xesam.org/main/XesamOntology

http://dbtune.org/musicbrainz/
http://dbtune.org/musicbrainz/sparql
http://purl.org/ontology/mo/
http://xesam.org/main/XesamOntology

Fig. 5: The entire discography generator workflow.

Running the script. The scripter will take as input a graph constructed from
the two subgraphs: one containing the data about the artist extracted from the
web and the other the data about the artist available on the desktop. Both graphs
contain xesam data. The merged outputs are first passed through a duplicate
remover component to eliminate the redundant triples. The script takes the
resulting graph of albums and tracks for the given artist and generates a file
containing the discography. The RDF output of the script contains the path
to the generated file, and is used by a File Open component to display the
discography in the system default browser. The final workflow is depicted in
Fig. 5 and the generated discography file in Fig. 6. A more detailed description
of the workflow, including the SPARQL queries that are used and the script can
be found at [2]

5 Discussion and Future Work

In this section, we will discuss a number of issues related to our conceptual
approach in general, as well as to our Konduit implementation in particular.

We have argued that we restrict the kind of data that can flow within a
workflow to be only RDF. By only allowing one kind of data, we keep the model
simple and elegant. However, in reality we will often want to deal with other
kinds of data (text, URLs, images, etc). At the moment, we handle these cases
through component parameters, but this solution often feels rather awkward.
We plan to study further whether adding support for other types than RDF will
justify the increase in complexity.

Currently we do not have support for control flow components (loops, boolean
gates, etc). On the one hand, including such features would certainly make our
approach much more versatile and powerful and may be an interesting line of
development for the future.

Fig. 6: The generated discography page for The Cardigans.

Some of the basic components available for Konduit require previous knowl-
edge of writing SPARQL queries. Since the queries given as parameters to the
source and filter elements can influence the performance of the entire workflow,
we recognize the need for a smart query editor that is suitable for naive users.
Our solution to support end users in creating queries is based on autocomple-
tion, however, in order to make the system more accessible, we think it will be
necessary to introduce a different kind of interface, which would abstract away
from the actual syntax altogether and model the query on a higher level. Such
an interface would possibly still be of a graphical nature, but without simply
replicating the SPARQL syntax visually. Alternatively or additionally, a natural
language interface would be promising direction for further research.

6 Conclusion

We have presented an approach for enabling casual, non-technical users to build
simple applications and workflows from structured data. To simplify the building
process, we have chosen a visual scripting approach, which is inspired by software
such as Yahoo Pipes. We expect that users will benefit mostly from our approach
if they operate in a Semantic Desktop-like environment, where they will have
access to the data and functionality they are used to and have to work with on

a daily basis. However, our approach and implementation also enable users to
integrate data and functionality from their desktops with data from the Web,
thus representing a step towards the convergence of those two domains.

Acknowledgements

The work presented in this paper was supported (in part) by the Ĺıon project supported

by Science Foundation Ireland under Grant No. SFI/02/CE1/I131 and (in part) by the

European project NEPOMUK No FP6-027705.

References

1. S. Decker and M. R. Frank. The networked semantic desktop. In C. Bussler,
S. Decker, D. Schwabe, and O. Pastor, editors, WWW Workshop on Application
Design, Development and Implementation Issues in the Semantic Web, May 2004.

2. L. Dragan and K. Möller. Creating discographies with Konduit, 2009. http://

smile.deri.ie/konduit/discography.
3. T. Groza, S. Handschuh, K. Möller, G. Grimnes, L. Sauermann, E. Minack, C. Mes-

nage, M. Jazayeri, G. Reif, and R. Gudjonsdottir. The NEPOMUK project — on
the way to the social semantic desktop. In T. Pellegrini and S. Schaffert, editors,
Proceedings of I-Semantics’ 07, pages pp. 201–211. JUCS, 2007.

4. D. F. Huynh, R. C. Miller, and D. R. Karger. Potluck: Semi-ontology alignment for
casual users. In K. Aberer, K.-S. Choi, N. Noy, D. Allemang, K.-I. Lee, L. Nixon,
J. Golbeck, P. Mika, D. Maynard, R. Mizoguchi, G. Schreiber, and P. Cudré-Maroux,
editors, 6th International Semantic Web Conference and 2nd Asian Semantic Web
Conference, ISWC+ASWC2007, Busan, Korea, volume 4825 of LNCS, pages 903–
910, Heidelberg, November 2007. Springer.

5. T. Menzies. Visual programming, knowledge engineering, and software engineering.
In Proc. 8th Int. Conf. Software Engineering and Knowledge Engineering, SEKE.
ACM Press, 1996.

6. C. Morbidoni, D. L. Phuoc, A. Polleres, and G. Tummarello. Previewing semantic
web pipes. In S. Bechhofer, editor, Proceedings of the 5th European Semantic Web
Conference (ESWC2008), Tenerife, Spain, volume 5021 of LNCS, pages 843–848.
Springer, June 2008.

7. L. Orman. A multilevel design architecture for decision support systems. SIGMIS
Database, 15(3):3–10, 1984.

8. J. K. Ousterhout. Scripting: Higher Level Programming for the 21st Century.
In IEEE Computer Magazine, March 1998. http://home.pacbell.net/ouster/

scripting.html.
9. B. Yan, M. R. Frank, P. Szekely, R. Neches, and J. Lopez. WebScripter: Grass-roots

ontology alignment via end-user report creation. In D. Fensel, K. Sycara, and J. My-
lopoulos, editors, 2nd International Semantic Web Conference, ISWC2003, Sanibel
Island, FL, USA, volume 2870 of LNCS, pages 676–689, Heidelberg, November 2003.
Springer.

http://smile.deri.ie/konduit/discography
http://smile.deri.ie/konduit/discography
http://home.pacbell.net/ouster/scripting.html
http://home.pacbell.net/ouster/scripting.html

Ontology-Based Query Expansion Widget for
Information Retrieval

Jouni Tuominen, Tomi Kauppinen, Kim Viljanen, and Eero Hyvönen

Semantic Computing Research Group (SeCo)
Helsinki University of Technology (TKK) and University of Helsinki

http://www.seco.tkk.fi/
firstname.lastname@tkk.fi

Abstract. In this paper we present an ontology-based query expansion
widget which utilizes the ontologies published in the ONKI Ontology
Service. The widget can be integrated into a web page, e.g. a search
system of a museum catalogue, enhancing the page by providing a query
expansion functionality. We have tested the system with general, domain-
specific and spatio-temporal ontologies.

1 Introduction

In information retrieval systems the relevancy of search results depends on the
user’s ability to represent her information needs in a query [1]. If the vocabularies
used by the user and the system are not the same ones, or if the shared vocab-
ulary is used in different levels of specificity, the search results are usually poor.
Query expansion has been proposed to solve these issues and to improve infor-
mation retrieval by expanding the query with terms related to the original query
terms. Query expansion can be based on corpus, e.g. analyzing co-occurences of
terms, or on knowledge models, such as thesauri [2] or ontologies [1]. Methods
based on knowledge models are especially useful in cases of short, incomplete
query expressions with few terms found in the search index [1, 2].

We have implemented a web widget providing query expansion functionality
to web-based systems as an easily integrable service with no need to change
the underlying system. The widget uses ontologies to expand the query terms
with semantically related concepts. The widget extends the previously devel-
oped ONKI Selector widget, which is used for selecting concepts especially for
annotation purposes [3].

The user does not have to be familiar with the ontologies used in content
annotations by utilizing the autocompletion search feature of the widget, as the
system suggests matching concepts as the user is writing the query string. Also,
to help the user to disambiguate concepts the ONKI Ontology Browsers [4] can
be used to get a better understanding of the semantics of the concepts, e.g. by
providing a concept hierarchy visualization.

The query expansion widget supports Semantic web and legacy systems1,
i.e. either the concept URIs or the concept labels can be used in queries. In
1 By legacy systems we mean systems that do not use URIs as identifiers.

legacy systems cross-language search can be performed, if the used ontology
contains concept labels in several languages. In addition to the widget, the query
expansion service can also be utilized via JavaScript and Web Service APIs. The
query expansion widget and the APIs are available for public use as part of
the ONKI Ontology Service2 [4]. The JavaScript code needed for integrating
the widget into a search system can be generated by using the ONKI Widget
Generator3.

The contribution of this paper is to present an approach to perform query
expansion in systems cost-effectively, not to evaluate how the chosen query ex-
pansion methods improve information retrieval in the systems.

2 Ontologies used for Query Expansion

The ONKI query expansion widget can be used with any ontology published in
the ONKI Ontology Service. The service contains some 60 ontologies at the time
of writing. Users are encouraged to submit their own ontologies to be published
in the service by using the Your ONKI Service4. In the following, we describe
how we have used different types of ontologies for query expansion.

2.1 Query Expansion with General and Domain-specific Ontologies

For expanding general and domain-specific concepts in queries we have used The
Finnish Collaborative Holistic Ontology KOKO5 which consists of The Finnish
General Upper Ontology YSO [5] and several domain-specific ontologies expand-
ing it. To improve poor search results caused by using vocabularies in different
levels of specificity in queries and in the search index we have used the transitive
is-a relation (rdfs:subClassOf 6) for expanding the query concepts with their sub-
classes. So for example, when selecting a query concept publications, the query
is expanded with concepts magazines, books, reports and so on.

Using other relations in addition or instead of the is-a relation in query expan-
sion might be beneficial. When considering general associative relations, caution
should be exercised as their use in query expansion can lead to uncontrolled
expansion of result sets, and thus to potential loss in precision [6, 7]. In case of
a legacy system (not handling URIs, using labels instead) the use of alternative
labels of concepts (synonyms) may improve the search. The relations used in the
query expansion of an ontology can be configured when publishing the ontology
in the ONKI Ontology Service.

2 http://www.yso.fi/
3 http://www.yso.fi/onkiselector/
4 http://www.yso.fi/upload/
5 http://www.seco.tkk.fi/ontologies/koko/
6 Defined in the RDFS Recommendation, http://www.w3.org/TR/rdf-schema/

2.2 Query Expansion with the Spatio-temporal Ontology SAPO

A spatial query can explicitly contain spatial terms (e.g. Helsinki) and spatial
relations (e.g. near), but implicitly it can include even more spatial terms that
could be used in query expansion [8]. For example, in a query “museums near
Helsinki” not only Helsinki is a relevant spatial term, but also its neighboring
municipalities. Spatial terms – i.e. geographical places – do not exist just in
space but also in time [9, 10]. This is especially true for museum collections where
objects have references to places from different times. This sets a requirement to
utilize also relations between historical places and more contemporary places in
query expansion. To provide these mappings we used a spatio-temporal ontology
SAPO (The Finnish Spatio-temporal Ontology) [11].

In SAPO regional overlap mappings are expressed as depicted in Figure 1,
where example Turtle RDF7 statements8 express that the region of the latest
temporal part of place sapo:Joensuu — i.e. the one valid from the beginning of
year 2009 — overlaps the region of the temporal part of sapo:Eno of years 1871–
2008. The temporal part of the place simply means the place during a certain
time-period such that different temporal parts might have different extensions
(i.e. borders) [11].

sapo:Joensuu(2009-)
sapo:begin

"2009-01-01" ;
sapo:overlaps

sapo:Eno(1871-2008) ,
sapo:Pyhaselka(1925-2008) ,
sapo:Joensuu(2005-2008) .

Fig. 1. Overlap mappings between
temporal parts of places.

sapo:Joensuu
sapo:unionof

sapo:Joensuu(1848-1953) ,
sapo:Joensuu(1954-2004) ,
sapo:Joensuu(2005-2008) ,
sapo:Joensuu(2009-) ;

sapo:overlapsAtSomeTime
sapo:Eno ,
sapo:Pyhaselka ,
sapo:Tuupovaara ,
sapo:Pielisensuu ,
sapo:Kiihtelysvaara .

Fig. 2. A place is a union of its tempo-
ral parts. Moreover, places may have
overlapped other places at some time.

For example, the place sapo:Joensuu is a union of four temporal parts, defined
in the example depicted in Figure 2. However, annotations of items likely utilize
places rather than their temporal parts. For this reason the model uses property
sapo:overlapsAtSomeTime to explicate that e.g. a place sapo:Joensuu has — at
some point in the history — overlapped together five different places (sapo:Eno
and four others). In other words, e.g. at least one temporal part of sapo:Joensuu
has overlapped at least one temporal part of sapo:Eno. We have used this more
generic property sapo:overlapsAtSomeTime between places for query expansion.

7 http://www.dajobe.org/2004/01/turtle/
8 The example uses the following prefix - sapo: http://www.yso.fi/onto/sapo/

3 A Use Case of the Query Expansion Widget

We have created a demonstration search interface9 consisting of the original
Kantapuu.fi search form10 and integrated ONKI widgets for query expansion.
Kantapuu.fi is a web user interface for browsing and searching for collections of
Finnish museums of forestry, using simple matching algorithm of free text query
terms with the item index terms. The ontologies used in the query expansion are
the same ones as used in annotation of the items11, namely The Finnish General
Upper Ontology YSO, Ontology for Museum Domain MAO12 and Agfiforest On-
tology AFO13. For expanding geographical places the Finnish Spatio-temporal
Ontology SAPO is used.

When a desired query concept is selected from the results of the autocomple-
tion search of the widget or by using the ONKI Ontology Browser, the concept is
expanded. The resulting query expression is the disjunction of the original query
concept and the concepts expanding it, formed using the Boolean operation OR.
The query expression is placed into a hidden input field, which is sent to the
original Kantapuu.fi search page when the HTML form is submitted.

An example query is depicted in Figure 3, where the user is interested in old
publications from place Joensuu. User has used the autocompletion feature of the
widget to input to the keywords field a query term “publicat”, which has been
autocompleted to the concept publications, which has been further expanded to
its subclasses (their Finnish labels). Similarly, the place Joensuu has been added
to the field place of usage and expanded with the places it overlaps.

The result set of the search contains four items, from which two are magazines
used in place Eno and the rest two are cabinets for books used in place Joensuu.
Without using the query expansion the result set would have been empty, as the
place Eno and the concept books were not in the original query.

4 Discussion

When implementing the demonstration search interface for the Kantapuu.fi sys-
tem with ONKI widgets we faced some challenges. If a query concept has lots
of subconcepts, the expanded query string may become inconveniently long, as
the concept URIs/labels of the subconcepts are added to the query. This may
cause problems because the used HTTP server, database system or other soft-
ware components may set limits to the length of the query string. With lengthy
queries the system may not function properly or the response times of the system
may increase.

9 http://www.yso.fi/kantapuu-qe/
10 http://www.kantapuu.fi/, follow the navigation link “Kuvahaku”.
11 To be precise, the ontologies are based on thesauri that have been used in annotation

of the items.
12 http://www.seco.tkk.fi/ontologies/mao/
13 http://www.seco.tkk.fi/ontologies/afo/

Fig. 3. Kantapuu.fi system with integrated ONKI widgets.

Future work includes user testing for finding out if users consider the query
expansion of the concepts and places useful. Also, systematic evaluation of the
search systems used would be essential to find out if the query expansion im-
proves the information retrieval, and specifically which semantic relations im-
prove the results the most. The user interface of the query expansion widget
needs further developing, e.g., the user should be able to select/unselect the
suggested query expansion concepts.

Acknowledgements

We thank Ville Komulainen for his work on the original ONKI server and Leena
Paaskoski and Leila Issakainen for cooperation on integrating the ONKI query
expansion widgets into the Kantapuu.fi system. This work has been partially

funded by Lusto The Finnish Forest Museum14 and partially by the IST funded
EU project SMARTMUSEUM15 (FP7-216923). The work is a part of the Na-
tional Semantic Web Ontology project in Finland16 (FinnONTO) and its follow-
up project Semantic Web 2.017 (FinnONTO 2.0, 2008-2010), funded mainly by
the National Technology and Innovation Agency (Tekes) and a consortium of 38
private, public and non-governmental organizations.

References

1. Voorhees, E.M.: Query expansion using lexical-semantic relations. In: Proceed-
ings of the 17th annual international ACM SIGIR conference on Research and
development in information retrieval, Dublin, Ireland (July 3-6 1994) 61–69

2. Wang, Y.C., Vandendorpe, J., Evens, M.: Relational thesauri in information re-
trieval. Journal of the American Society for Information Science 36(1) (1985)
15–27

3. Viljanen, K., Tuominen, J., Hyvönen, E.: Publishing and using ontologies as mash-
up services. In: Proceedings of the 4th Workshop on Scripting for the Semantic
Web (SFSW 2008), 5th European Semantic Web Conference 2008 (ESWC 2008),
Tenerife, Spain (June 1-5 2008)

4. Viljanen, K., Tuominen, J., Hyvönen, E.: Ontology libraries for production use:
The Finnish ontology library service ONKI. In: Proceedings of the 6th European
Semantic Web Conference (ESWC 2009). (May 31 - June 4 2009)

5. Hyvönen, E., Viljanen, K., Tuominen, J., Seppälä, K.: Building a national semantic
web ontology and ontology service infrastructure—the FinnONTO approach. In:
Proceedings of the 5th European Semantic Web Conference (ESWC 2008). (June
1-5 2008)

6. Tudhope, D., Alani, H., Jones, C.: Augmenting thesaurus relationships: Possibili-
ties for retrieval. Journal of Digital Information 1(8) (2001)

7. Hollink, L., Schreiber, G., Wielinga, B.: Patterns of semantic relations to improve
image content search. Journal of Web Semantics 5(3) (2007) 195–203

8. Fu, G., Jones, C.B., Abdelmoty, A.I.: Ontology-based spatial query expansion in
information retrieval. In: In Lecture Notes in Computer Science, Volume 3761, On
the Move to Meaningful Internet Systems: ODBASE 2005. (2005) 1466–1482

9. Kauppinen, T., Hyvönen, E.: Modeling and reasoning about changes in ontology
time series. In Kishore, R., Ramesh, R., Sharman, R., eds.: Ontologies: A Handbook
of Principles, Concepts and Applications in Information Systems. Integrated Series
in Information Systems, New York, NY, Springer-Verlag, New York (NY) (January
15 2007) 319–338

10. Jones, C., Abdelmoty, A., Fu, G.: Maintaining ontologies for geographical informa-
tion retrieval on the web. Volume 2888., Sicily, Italy, Springer Verlag (November
2003) 934–951

11. Kauppinen, T., Väätäinen, J., Hyvönen, E.: Creating and using geospatial ontology
time series in a semantic cultural heritage portal. In: S. Bechhofer et al.(Eds.):
Proceedings of the 5th European Semantic Web Conference 2008 ESWC 2008,
LNCS 5021, Tenerife, Spain. (June 1-5 2008) 110–123

14 http://www.lusto.fi
15 http://smartmuseum.eu/
16 http://www.seco.tkk.fi/projects/finnonto/
17 http://www.seco.tkk.fi/projects/sw20/

Krextor – An Extensible XML→RDF Extraction
Framework

Christoph Lange

Computer Science, Jacobs University Bremen, ch.lange@jacobs-university.de

Abstract. The semantics of an XML-based language can be specified by
mapping an XML schema to an ontology, thus enabling the wide range
of XML applications to contribute to the Semantic Web. The Krextor
XML→RDF extraction framework proposes a practical solution to this
problem, novel in its extensibility. We present its architecture and show
how it can easily be extended to support additional input and output
languages.

1 Introduction: Semantic Markup and RDF

In the well-known and hotly debated layer cake architecture of the Semantic Web
(see [9] for a survey of its different incarnations), XML has always been placed
below RDF. This must not be misunderstood in a way that XML should only be
used for encoding higher-layer formalisms like RDF or OWL in a standardized way
(e. g. RDF/XML [5]). Other XML-based languages can also be given a semantics,
and by that, we are not just considering XML’s inherent semantics of a tree
structure, identifiers, and cross-references. Semantic XML languages are widely
used for domain-specific and general-purpose applications. The key difference of
an XML document compared to an RDF graph is its sequential order – suited for
the way humans read. Style languages like CSS and XSL further help presenting
XML to non-technical readers. Schema languages allow for defining the syntax of
new XML languages for any domain. A well-engineered XML schema1 can lead to
a much more concise and intuitive knowledge representation than an RDF graph,
as it does not force authors to break all statements down to triples; compare
the direct XML serialisation of OWL [18] to its RDF/XML serialisation. Given
adequate editors, both authoring XML and RDF can be made easy for domain
experts – but our own experience in the domain of mathematics shows that many
more domain experts are familiar with domain-specific markup languages than
with Semantic Web standards.

The semantics of XML languages is usually defined in a human-readable
specification and hard-coded into applications. Therefore, XML has often been
blamed for not being sufficiently semantic. We argue against that and bridge the
semantic gap by improving the extraction of RDF from XML. XML languages

1 The lowercase term “schema” is used in the general sense here, not referring to the
particular schema language XML Schema.

having a well-defined formal semantics in terms of RDF already exist. Obvious
examples are XML representations for RDF and ontologies themselves. Then,
there is RDFa [1] for embedding RDF into the widely-supported but non-semantic
XHTML. Less formal alternatives, such as microformats, can also be considered
semantic if an RDF semantics has been specified for them and there is a way of
obtaining RDF from such documents, e. g. by a GRDDL link from the document
to the implementation of a translator to RDF. For data-centric XML languages,
e. g. XML representations of relational databases, it is also straightforward
to specify an RDF semantics. Finally, there are semantic markup languages –
XML languages with a formal semantics that have explicitly been designed for
knowledge representation. Consider, for example, OMDoc (Open Mathematical
Documents), which is developed in our group [12]. While the formal core of
OMDoc (symbol declarations, modular theories, proof objects) has a model-
and proof-theoretic semantics that is much more expressive than Semantic Web
ontologies (see [20]), we have specified an OWL-DL semantics for large parts
of OMDoc’s semi-formal structural aspects (document structure, mathematical
statements, structured proofs; see [13]).

A widened connection between the XML and RDF layers of the layer cake
has most notably been suggested by Patel-Schneider and Siméon, who developed
a unified model theory for both [19]. However, the benefit of that approach is
rather theoretical, as it makes impractically restrictive assumptions about the
XML structure (see [17] for details). Moreover, XML and RDF have evolved in
parallel for years and gained a wider tool support each. Therefore, we take the
more practical approach of extracting RDF from XML on the level of syntax
and thus giving XML languages an RDF semantics by providing 1. rules that
translate XML to RDF and, if needed, 2. an ontology providing the vocabulary
for the extracted RDF.

2 The Krextor XML→RDF Extraction Framework

The Krextor XML→RDF extraction framework originated from the need to
manage OMDoc documents in a Semantic Web application [14,13]. Having
modeled an OWL-DL ontology for OMDoc, an OMDoc→RDF extraction was
needed, which we hard-coded in XSLT from scratch, after an older, hard-coded
Java implementation had proven to be too unflexible to maintain. The RDF
was output in the RXR notation (Regular XML RDF [4]), from which it was
parsed by a Java library. Later, the same was required for OpenMath content
dictionaries, a language similar to OMDoc. This led to the decision to create
a generic XSLT-based framework (cf. fig. 1) that allows developers to define
translations (“extraction modules”) from any XML language to RDF more easily
than in pure XSLT, as will be shown in the following.

A generic module provides convenience templates and functions for defining
extraction rules in a way that abstracts from the concrete output format and
instead defining the semantics of XML structures on a high level, in terms of
resources and properties. Krextor’s generic “representation” of XML is a transient

one; the generic module is just a step in the pipeline, grouping extracted data into
triples and forwarding them to the selected output module. Supported output
formats, besides RXR, are: RDF/XML [5], the text notation Turtle [6], and,
thanks to the Saxon XSLT processor [11], a direct interface to Java, for a more
efficient integration into applications. In RDF/XML and Turtle output, the triples
are grouped by common subjects and predicates. This is achieved by first obtaining
RXR and then transforming it to the notation desired using XSLT grouping –
a compromise between efficiency and a clean separation of concerns. Syntactic
sugar, offered by some RDF notations, has only partly been implemented. At the
moment, there is no support for author-defined namespace prefixes, “anonymous”
blank nodes (bnodes) without identifiers, and RDF containers or collections in
the output. Semantically, that does not make a difference. After all, our target
“audience” are not humans, who usually do not want to read raw RDF, but
applications that further process the RDF and conveniently prepare it for users –
as, e. g., the semantic wiki SWiM does [13]. Nevertheless, some syntactic sugar
remains on our agenda, as it facilitates testing Krextor during development.

Krextor is available as a collection of XSLT style sheets, with an optional Java
wrapper for direct integration into applications. For scripting and debugging,
there is a shell script frontend, reading XML from the standard input and writing
RDF in the desired notation to the standard output.

OMDoc
+RDFa

OMDoc/OWL
+RDFa

XHTML
+RDFa

OpenMath

my XML
+RDFa?

my Microformat

generic
representation

RXR

your format

Java
callback

RDF/XML

Turtle

?
?

input format

output format

Fig. 1. Krextor’s extraction process and modules

Besides the input formats mentioned so far, Krextor also supports RDFa –
embedded in XHTML or other host languages, such as Open Document2, and
in the following section, we will show how it can be extended to microformats.
Moreover, we are working on a translation from OMDoc to OWL, implemented as
a Krextor extraction module, which allows for authoring Semantic Web ontologies
with integrated documentation and in a more modular way (see [16] for details).

2 See http://rdfa.info/2008/03/13/rdfa-support-coming-in-odf-12/
and stay tuned for Open Document 1.2 ,

http://rdfa.info/2008/03/13/rdfa-support-coming-in-odf-12/

Thus, Krextor can even be used as a bridge from the XML layer into the ontology
layer of the Semantic Web cake. To add an input format, one has to provide
XSLT templates that map XML structures of the input to calls of Krextor’s
generic templates, as shown in the following section. We follow the paradigm
of making easy things easy and hard things possible – an inexpensive claim,
actually, but considerable efforts have been made to implement convenience
templates and functions for common extraction tasks, which are easier to use
than plain XSLT. There are predefined templates for creating a resource that
is instance of some class and for adding literal- or URI-valued properties to
the current resource. Several ways of generating resource URIs are provided,
including fragment URIs of the form “document’s URI” # “fragment’s xml:id”,
but an extraction module can also implement its own URI generator(s). (The
latter has been done for OMDoc, which uses a document/theory/symbol URI
pattern [16].) The information that the developer has to provide explicitly is
kept at a minimum level: When no subject URI for a resource is given, Krextor
auto-generates one using the desired generation function. When no object value
for a property is given, it is taken from the currently processed XML attribute or
element. As an alternative for very simple formats, where XML elements directly
map to ontology classes and properties, a declarative mapping can be given as
annotated literal XML. For complex input formats like the above-mentioned
OMDoc, the full computational power of XSLT can be used, at the expense of
readability. A new output module merely has to implement one template for
low-level RDF generation, accepting the parameters subject (URI or bnode ID),
subject type (URI or bnode), predicate (URI), object, object type (URI, bnode
ID, or literal), language, and datatype. More complex output modules can be
realized by post-processing output from existing output modules.

3 Use Cases and Applications

One application area of Krextor is the semantic wiki SWiM [13]. Mathematical
documents can be imported and edited in their original formats, which allows for
building on existing tool support. An RDF outline is only extracted from them
after storing them in the database; the RDF plus the background knowledge from
the ontologies then powers semantic services – currently navigation, querying, and
problem-solving assistance [13,15]. OMDoc particularly needs complex extraction
rules: Its mathematical symbols have their own URI schema, and it can mix formal
and informal knowledge. The RDF graph extracted from a full-featured OMDoc
document consists of two parallel trees, one tree of the mathematical structure,
and one of the rhetorical structure, interwoven via an annotation ontology.
Despite this complexity, 21 out of the 44 templates in the extraction module
for OMDoc have completely been implemented using Krextor’s convenience
templates only. 15 make use of additional XPath constructs, 5 use additional,
more complex XSLT constructs, and 3 use both. OMDoc as a frontend for OWL
ontologies, as mentioned above and detailed in [16], will eventually be integrated
into SWiM. The extraction of OWL from special OMDoc documents has also

been implemented using Krextor. In these documents, ontologies are modeled
as mathematical theories, resources are declared as symbols having definitions,
axioms, and theorems. Many of these mathematical statements are modeled in
a way that is more familiar to people with a logics background: the range and
domain of a property is, e. g., represented by a single relation type declared for
the property symbol [16]. The OMDoc→OWL module makes considerably more
use of XPath and XSLT than the above-mentioned module that obtains the
structure of OMDoc documents as RDF, but still it paid off to implement it
within Krextor, as part of the required functionality could be shared with the
former module.

We exemplify Krextor’s extensibility, a major design goal, by an extraction
module for a simple language, the hCalendar microformat [7], using the RDF
Calendar vocabulary [8]. The extraction rules for an event and its start date are
given in listing 2, which is considerably shorter than an equivalent implementation
in plain XSLT. The first template matches any element of class “vevent” and
creates an instance of the ical:Vevent class from it. When a child link annotated as
the URI of the event is present, its target is used to identify the event; otherwise,
a bnode is created for the event. The second template matches any element
of class “dtstart” and adds an ical:dtstart property of datatype xsd:date to the
current resource. Krextor’s convenience templates automatically take care of
recursing to child elements, keeping track of the current resource, and reading
the values of properties if they are given in a reasonable place, such as the text
content of an element. Given the following sample input, Turtle output can be

<stylesheet version="2.0">
<!-- we generate resource URIs ourselves -->
<param name="autogenerate-fragment-uris" select="()"/>
<template match="*[@class=’vevent’]">
<!-- Take URL property if given, otherwise create a bnode -->
<variable name="subject" select="a[@class=’url’]/@href"/>
<call-template name="krextor:create-resource">
<with-param name="subject" select="$subject"/>
<with-param name="blank-node" select="not($subject)"/>
<with-param name="type" select="’&ical;Vevent’"/>

</call-template></template>
<template match="*[@class=’dtstart’]">

<call-template name="krextor:add-literal-property">
<with-param name="property" select="’&ical;dtstart’"/>
<with-param name="datatype" select="’&xsd;date’"/>

</call-template></template> <!-- ... and so on ... -->

Fig. 2. A hCalendar extraction module

obtained e. g. by calling krextor hcalendar..turtle infile.xhtml on
the command line:

<div class="vevent">
ESWC
starts on 2009-05-31.</div>

<http://www.eswc2009.org>
a <http://www.w3.org/2002/12/cal/ical#Vevent> ;
<http://www.w3.org/2002/12/cal/ical#dtstart>

"2009-05-31"^^<http://www.w3.org/2001/XMLSchema#date> .

4 Related Work and Conclusion

Swignition’s [10] architecture is very similar to Krextor’s. For end-users and
web developers, it offers much richer features, including support for many mi-
croformats, other legacy ways of embedding RDF into HTML, and GRDDL
links. For knowledge engineers or developers who quickly want to define an RDF
translation from a new XML language, Krextor performs better, being extensible
by additional input formats with much less lines of code than the Swignition Perl
library. So far, GRDDL is only “supported” by Krextor in the obvious sense that
it facilitates the XSLT-based implementation of an XML→RDF translation that
can then be linked to a schema or to documents using GRDDL; automatically
choosing the right extraction module by interpreting GRDDL annotations in the
input document is not yet supported. Both systems approach integration into
semantic applications differently: Swignition comes with a TCP/IP interface,
whereas Krextor features a Java API and benefits from the wide support for
XSLT. The authors of XSDL [17] have done substantial theoretical elaboration
on a semantics-preserving translation of XML into RDF and provide a concise
declarative syntax mapping XML to OWL-DL. To the best of our knowledge,
XSDL has not been implemented, though. As its syntax uses XML and XPath,
we consider it feasible to prove the theoretical results the authors have obtained
for Krextor as well by rewriting XSDL definitions into equivalent Krextor ex-
traction modules. This would also make XSDL usable as a convenient input
language for Krextor, making extraction modules look less like XSLT and XPath.
XSPARQL [2] mixes SPARQL into XQuery, resulting in a query language that
fully breaks the boundaries between XML and RDF. It avoids the necessity of
first converting from one representation into the other. However, persistently
storing the result of such a conversion is often desired in applications, whereas
the current implementation of XSPARQL focuses on one-time queries.

Conclusion: The Krextor framework supports many XML→RDF conversion
tasks and can easily be extended by additional input and output formats and
integrated into semantic applications. Thereby, we have opened new paths from
the XML layer of the Semantic Web architecture to the RDF and higher layers.
When designing new ontologies, knowledge engineers can now take the creative
challenge of developing a convenient XML syntax for domain-specific knowledge
and provide a Krextor extraction module that translates this XML to RDF
in terms of these ontologies. We will continue using Krextor for mathematical
markup but are also interested in proving its extensibility on other semantic
markup languages. A future research direction that we want to explore is adding

extraction rules as annotations to XML schema languages like RELAX NG [21],
thereby unifying two tasks that belong together but have been separated so far:
specifying the syntax and the semantics of an XML language.

Acknowledgments: The author would like to thank Richard Cyganiak for providing
him with a Java-based RDFa test suite, and several reviewers for constructive
feedback.

References

1. B. Adida, M. Birbeck, S. McCarron, and S. Pemberton. RDFa in XHTML: Syntax
and processing. Recommendation, W3C, 2008.

2. W. Akhtar, J. Kopecký, T. Krennwallner, and A. Polleres. XSPARQL: Traveling
between the XML and RDF worlds – and avoiding the XSLT pilgrimage. In
Bechhofer et al. [3].

3. S. Bechhofer, M. Hauswirth, J. Hoffmann, and M. Koubarakis, editors. 5th European
Semantic Web Conference, volume 5021 of LNCS. Springer, 2008.

4. D. Beckett. Modernising semantic web markup. In XML Europe, 2004.
5. D. Beckett. RDF/XML syntax specification. Recommendation, W3C, 2004.
6. D. Beckett. Turtle – terse RDF triple language, 2007.
7. T. Çelik. hCalendar. Microformat specification, Technorati, 2008.
8. D. Connolly and L. Miller. RDF calendar. Interest Group Note, W3C, 2005.
9. A. Gerber, A. v. Merwe, and A. Barnard. A functional semantic web architecture.

In Bechhofer et al. [3].
10. T. A. Inkster. Swignition. http://buzzword.org.uk/swignition/, 2009.
11. M. Kay. Saxonica: XSLT and XQuery processing. http://www.saxonica.com.
12. M. Kohlhase. OMDoc – An open markup format for mathematical documents.

Number 4180 in LNAI. Springer, 2006.
13. C. Lange. SWiM – a semantic wiki for math. knowledge. In Bechhofer et al. [3].
14. C. Lange. Krextor. http://kwarc.info/projects/krextor/, 2009.
15. C. Lange, T. Hastrup, and S. Corlosquet. Arguing on issues with mathematical

knowledge items in a semantic wiki. In J. Baumeister and M. Atzmüller, editors,
LWA (Lernen, Wissensentdeckung und Adaptivität), volume 448, 2008.

16. C. Lange and M. Kohlhase. A mathematical approach to ontology author-
ing and documentation. In Mathematical Knowledge Management, LNAI.
Springer, 2009. https://svn.omdoc.org/repos/omdoc/trunk/doc/blue/
foaf/mkm09.pdf.

17. S. Liu, J. Mei, A. Yue, and Z. Lin. XSDL: Making XML semantics explicit. In
C. Bussler, V. Tannen, and I. Fundulaki, editors, SWDB, volume 3372, 2004.

18. B. Motik and P. F. Patel-Schneider. OWL web ontology language: XML serialization.
Working draft, W3C, Dec. 2008.

19. P. F. Patel-Schneider and J. Siméon. The Yin/Yang web: A unified model for XML
syntax and RDF semantics. IEEE TKDE, 15(4), 2003.

20. F. Rabe. Representing Logics and Logic Translations. PhD thesis, Jacobs University
Bremen, 2008.

21. RELAX NG. http://www.relaxng.org/.

http://buzzword.org.uk/swignition/
http://www.saxonica.com
http://kwarc.info/projects/krextor/
https://svn.omdoc.org/repos/omdoc/trunk/doc/blue/foaf/mkm09.pdf
https://svn.omdoc.org/repos/omdoc/trunk/doc/blue/foaf/mkm09.pdf
http://www.relaxng.org/

RDFa in Drupal: Bringing Cheese to the Web of
Data

Stéphane Corlosquet, Richard Cyganiak, Axel Polleres and Stefan Decker

Digital Enterprise Research Institute
National University of Ireland, Galway

Galway, Ireland
{firstname.surname}@deri.org

Abstract. A large number of websites are driven by content manage-
ment systems (CMS), which manage not only textual content but also
structured data related to the site’s topic. Exposing this information to
the Web of Data has so far required considerable expertise in RDF mod-
elling and programming. We present a plugin for the popular CMS Dru-
pal that enables high-quality RDF output with minimal effort from site
administrators. This has the potential of greatly increasing the amount
and topical range of information available on the Web of Data.

1 Introduction

Semantic Web technologies have matured to the point where they are increas-
ingly being deployed on the Web. Large amounts of RDF data can now be
accessed over the Web as Linked Data. This data is used by a variety of clients,
such as RDF data mashups that integrate information from various sources,
search engines that allow structured queries across multiple sites and datasets,
and data browsers that present a site’s content in new ways.

But the traditional Web still dwarfs this emerging Web of Data. Thus, the
task of “RDFizing” existing websites, which contain structured information such
as events, personal profiles, ratings, tags, and locations, is important and of
high potential benefit. The recently finished RDFa[1] standard supports this by
allowing RDF to be embedded into existing HTML pages.

The Web features some huge websites with millions of pages and users. But
a lot of the Web’s interest and richness is in the “long tail”, in smaller special-
interest websites, such as cheese reviews, which will be our example for this
demonstration. Our goal is to make domain data from such sites available as
RDF. This is challenging for several reasons:

No dedicated development staff. Smaller websites usually run off-the-shelf
software, such as CMS, wikis, or forums. Site operators cannot build the
RDF support themselves, it has to be provided by the software or plugins.

Per-site schemas. The domain schema differs from site to site. The mapping
from the site’s schema to RDF vocabularies or ontologies cannot be pre-
defined by a software developer; it must be defined by the site operator.

No ontologists. Site administrators will have little interest in learning the de-
tails of RDF and description logics. The process of configuring RDF support
has to be simple and straightforward, or else it won’t be used.

We show a practical and easy-to-use system that overcomes these challenges
and allows the publication of high-quality RDF data from websites that run on
off-the-shelf content management systems. It targets the popular Drupal CMS.

2 Drupal and the Content Construction Kit

We will start by briefly introducing Drupal1 and some of its terminology. Drupal
is a popular open-source content management system (CMS). It is among the top
three open-source CMS products in terms of market share[5]. Drupal facilitates
the creation of websites by handling many aspects of site maintenance, such as
data workflow, access control, user accounts, and the encoding and storage of
data in the database.

A site administrator initially sets up the site by installing the core Drupal
Web Application and choosing from a large collection of modules that add spe-
cific functionality to the site. Site administrators need a fair bit of technical
knowledge to choose and configure modules, but usually do not write code; this
is done by module developers instead. After the site has been set up, Drupal
allows non-technical users to add content and handle routine maintenance of
the site.

Each item of content in Drupal is called a node. Nodes usually correspond to
the pages of a site. Nodes can be created, edited and deleted by content authors.
Some modules extend the nodes, for example a comment module adds blog-style
comment boxes to each node.

Another example is the Content Construction Kit (CCK), one of the most
popular modules used on Drupal sites. It allows the site administrator to define
types of nodes, called content types, and to define fields for each content type.
Fields can be of different kinds such as plain text fields, dates, email addresses,
file uploads, or references to other nodes. When defining content types and fields,
the site administrator provides the following information:

– label, ID, and description for content types and fields,
– fields can be optional or required,
– fields can have a maximum cardinality,
– fields that reference other nodes can be restricted to nodes of a certain type.

For example, for a cheese review website, the site administrator might define
content types such as Cheese, Review, and Country of Origin. The Cheese type
might have fields such as description, picture, and source of milk.

Thus, site administrators use the CCK to define a site-specific content model,
which is then used by content authors to populate the site. The focus of the work
we are presenting here is to expose this CCK content as RDF on the Web.
1 http://drupal.org/

3 Weaving Drupal into the Web of Data

Given a Drupal CCK content model consisting of content types, fields, and nodes
that instantiate the types, what would be a good way of representing it in RDF?
We consider the following features desirable for the RDF output which are in
line with the Linked data principles and best practices [3, 4]:

Resolvable HTTP URIs for all resources, to take advantage of existing tools
that can consume Linked Data style RDF content.

Re-use of published ontology terms. To support sites of arbitrary subject
matter, we cannot in any way pre-define the RDF classes and properties
that should be used to express the data. The site administrator has to select
them when setting up the content model. But to enable queries across sites,
it is necessary that the sites use the same (or mapped) vocabularies. This
requires that both sites import vocabulary terms from somewhere else.

Expressing Drupal constraints in OWL. Constraints that are defined on
the types and fields (domains, ranges, cardinalities, disjointness) should be
automatically published as RDF Schema or OWL expressions.

Auto-generate terms where necessary. Re-use of published ontology terms
is important for interoperability, but not always possible or practical, as there
might be no existing ontology term matching a type or field, or finding them
is too hard.

Safe vocabulary re-use. Mixing the content model constraints with constraints
of a published ontology might have unintended semantic effects, especially
since most site administrators will not be familiar with the details of OWL
semantics. For example, a carelessly applied cardinality constraint could af-
fect the definition of a shared vocabulary term, rendering data published
elsewhere inconsistent. The system must prevent such effects as far as pos-
sible.

These features strike a balance between preserving as much information as
possible from the original content model, keeping the barrier to entry low, and
enabling interoperability between multiple data publishers and consumers.

3.1 Site Vocabularies for Basic RDF Output

When the module is first enabled, it defaults to auto-generating RDF classes
and properties for all content types and fields. Thereby it provides zero-effort
RDFa output for a Drupal site, as long as no mappings to well-known public
vocabularies are required.

An RDFS/OWL site vocabulary document that describes the auto-generated
terms is automatically generated. The definitions contain label, description, and
constraints taken from the CCK type/field definitions. The HTML views of all
nodes contain RDFa markup for the type and all shown fields, using the auto-
generated classes and properties.

3.2 Mapping the Site Data Model to Existing Ontologies

To map the site data model to existing ontologies, the site administrator first
imports the ontology or vocabulary. We assume that it has been created using
a tool such as Protégé2, OpenVocab3, or Neologism4, and published somewhere
on the Web in RDF Schema or OWL format.

For every content type and field, the site administrator can choose a class or
property it should be mapped to. Mappings are expressed as subclass/subproperty
relationships. For instance, if the field description on type cheese is mapped
to Dublin Core’s dc:description, then a triple site:cheese Description
rdfs:subPropertyOf dc:description would be added to the site vocabulary.

This subclassing is a simple way of minimizing unintended conflicts between
the semantics of local and public terms. Per OWL semantics, constraints imposed
on the local term by the content model will not apply to the public term. This
ensures safe vocabulary re-use[2].

It must be stressed that this mapping step is optional, and the main benefit
of the Web of Data – exposing site data for re-use by third parties – is realized
by the default mapping.

4 The User Experience

This section describes our cheese review site from a user point of view, and shows
an example of what can be done to reuse the RDFa data.

Cheese and reviews. Figure 1 shows a cheese entry and its user review. Using
the Content Construction Kit, we defined a type (1) cheese with fields for the
name of the cheese, the source of the milk, the country of origin, a picture and
a description and (2) cheese review with fields for the title of the review, a
reference to the cheese being reviewed and the review.

Fig. 1. A cheese with a review. Users can create new cheese entries and add reviews.

2 http://protege.stanford.edu/
3 http://open.vocab.org/
4 http://neologism.deri.ie/

Content type and field mapping. The module adds a “Manage RDF mappings”
page to the CCK interface as shown in Figure 2 (left). For a given content type,
it offers to map the type to an RDF class and each field to an RDF prop-
erty. We have mapped the Cheese type and its fields to previously imported
RDF terms. In order to ease the mapping process and prevent confusion be-
tween classes and properties, the module will only display RDF classes or RDF
properties where appropriate. Moreover an AJAX autocomplete search through
the imported terms allows the user to quickly identify the most relevant terms
for each mapping. These measures help to make the mapping process a fairly
straightforward task that does not require deep understanding of the Semantic
Web principles.

Fig. 2. RDF mappings management (left) and Exhibit view (right).

Exhibit view. Next we show a simple example of using the site’s RDFa data.
Exhibit5 now supports RDFa natively and it is easy to setup a basic faceted
browsing interface on top of an RDFa page. In our example, Exhibit allows
filtering of the cheese types via several facets, as shown in Figure 2 (right).

5 Conclusion and Future Work

The presented system differs from existing approaches in several ways. SIOC
exporters and similar fixed-schema RDF generators cannot deal with the case
where the site schema and its mapping into RDF terms are defined by the site
administrator at setup time. Database-level RDF exporters, such as Triplify6,
require understanding of database technologies and of the application’s internal
database schema. Semantic MediaWiki7 and similar systems address a different
use case: all content authors, rather than just the site administrator, collabora-
tively define the structure of the site. We address the common case where the
site’s basic structure should not be changed by individual content authors.
5 http://simile.mit.edu/exhibit/
6 http://triplify.org/
7 http://semantic-mediawiki.org/wiki/Semantic MediaWiki

The presented system is a working prototype8. The module used for the pro-
totype and discussed in this paper is available on drupal.org9. Further planned
improvements include the use of the semantics of imported ontologies (e.g. do-
main, range and disjointness constraints) to restrict the selection of available
classes and properties in the RDF mapping UI.

Another issue remains for the larger RDF community to solve: a complex part
of the process of generating high-quality RDF is the task of finding and choosing
good vocabularies and ontologies. There are some services that support this task,
but they are not sufficient and this task remains difficult for non-experts. This
is a major problem that the community needs to address in order for the Web
of Data to succeed.

6 Acknowledgements

The work presented in this paper has been funded in part by Science Foundation
Ireland under Grant No. SFI/08/CE/I1380 (Lion-2), the European FP6 project
inContext (IST-034718) and the European Union under Grant No. 215032
(OKKAM).

References

1. B. Adida, M. Birbeck, S. McCarron, and S. Pemberton (eds.). Rdfa in xhtml:
Syntax and processing, Oct. 2008. W3C Recommendation, available at http://

www.w3.org/TR/rdfa-syntax/.
2. A. P. Aidan Hogan, Andreas Harth. Saor: Authoritative reasoning for the web. In

ASWC 2008, pages 76–90, 2008.
3. D. Berrueta and J. P. (eds.). Best practice recipes for publishing rdf vocabular-

ies, Aug. 2008. W3C Working Group Note, available at http://www.w3.org/TR/

swbp-vocab-pub/.
4. C. Bizer, T. Heath, K. Idehen, and T. Berners-Lee, editors. Linked Data on the

Web (LDOW2008), Apr. 2008.
5. R. Shreves. Open source cms market share. White paper, Water & Stone. http:

//waterandstone.com/downloads/2008OpenSourceCMSMarketSurvey.pdf.

8 A demo site is online at http://drupal.deri.ie/cheese/.
9 http://drupal.org/project/rdfcck

Macros vs. scripting in VPOET ∗

Mariano Rico1, David Camacho1, Óscar Corcho2

1 Computer Science Department, Universidad Autónoma de Madrid, Spain †
{mariano.rico, david.camacho}@uam.es

2 Ontology Engineering Group, Departamento de Inteligencia Artificial,
Universidad Politécnica de Madrid, Spain

ocorcho@fi.upm.es

Abstract. We present our experience on the provision and use of macros
for the management of semantic data in semantically-enabled web appli-
cations. Macros can be considered as a lightweight version of scripting
languages, mostly oriented to end users instead of to developers. We have
enabled the use of macros in a wiki-based application named VPOET,
oriented to web designers, and have confirmed through evaluations that
macros satisfy a wide audience.

1 Introduction

VPOET 3 [1] is a semantic web application aimed at web designers (i.e. client-
side web specialists) without any knowledge in Semantic Web. It allows them
to create web templates to display semantic data (output templates) or to re-
quest information from users that is then converted into semantic data (input
templates).

These templates are shared and reused by the web designers community,
and can be used by third parties easily. Any developer can request VPOET
templates by means of simple HTTP messages (GET and POST), created in
any programming language, sent to a specific VPOET servlet. The response to
these messages is a piece of client code (HTML, CSS, Javascript). A typical
request is “render the semantic data at URL Z by using the output template
X created by designer Y”, which can be codified as a HTTP GET message by
means of the following URL:

http://URL-to-servlet/VPoetRequestServlet?action=renderOutput
&designID=X&provider=Y&source=Z.

An additional argument could specify a specific individual in the data source.
In this case, only the individual is rendered. This is a real example using semantic
data provided by W3C:
∗We would like to thank Roberto García for his collaboration concerning Rhizomic.
†This work has been partially funded by the Spanish Ministry of Science and In-

novation under the project HADA (TIN2007-64718), METEORIC (TIN2008-02081),
and DEDICON (TIC-4425)

3See http://ishtar.ii.uam.es/fortunata/Wiki.jsp?page=VPOET

http://ishtar.ii.uam.es/fortunata/Wiki.jsp?page=VPOET

http://ishtar.ii.uam.es/fortunata/servlet/VPoetRequestServlet?
action=renderOutput&
designID=FOAFOutputConditionalGraphics&
provider=mra68&
source=http:/www.w3.org/People/Berners-Lee/card&
indvID=http://www.w3.org/People/Berners-Lee/card#i

Unlike other templates systems based on scripting languages (shown in next sec-
tion), VPOET provides web designers with simple macros to embed in the template
source code. A 20 min. tutorial 4 is enough to start creating templates. The experi-
mental evaluation [2] shows that web designers, in a wide skills range, from amateur
to professionals, are satisfied with these macros. We argue that macros is a well known
concept for web designers, while the current systems are oriented to developers.

2 Scripting Templates. A Comparative Use Case
This section describes briefly some representative semantic web applications that han-
dle templates to present semantic data, such as semantic wikis, semantic browsers,
and semantic portals. We have selected one representative application or infrastruc-
ture from each group: Semantic Media Wiki, Fresnel (used by the Longwell browser),
and Rhizomer (used by the Rhizomik portal) respectively.

Semantic Media Wiki allows users create templates employing an ad hoc syntax
with parsing functions 5. The left part of table 2 shows the source code of a template 6,
and the right part of the figure shows the renderization of semantic data by using this
template. The creator of a template must know the wiki syntax, basics of programming,
and basics of ontology components.

Fresnel [3] is a template infrastructure for semantic data, used by a faceted seman-
tic web browser named Longwell. However, as table 3 (top) shows, the Fresnel syntax 7

requires skills in semantic web technologies that severely limit the number of designers
available.

Rhizomer [4] is an infrastructure to browse and edit semantic data. The presen-
tation of RDF data is achieved by means of Extensible Stylesheet Language Transfor-
mations (XSLT). As one can see in table 3 (middle), web designers require additional
skills in XSLT programming.

Table 1 summarizes the features of these templates and the competencies required
to the creators of templates for the semantic applications considered. The current
state of the art is oriented to developers with competencies in both Semantic Web
Technologies and Web Client technologies. Therefore, it does not provide web designers
with authoring tools to create attractive an reusable templates for semantic data. There
must be a balance between expressiveness, to address RDF features (e.g. multi-valued
properties, or properties with no value) and complexity, in order to reduce the required
level of competencies.

4See http://ishtar.ii.uam.es/fortunata/Wiki.jsp?page=VPOETTutorial
5A template source code and usage example can be found at http://en.wikipedia.

org/wiki/Template:Infobox_Settlement
6Edit page http://semanticweb.org/wiki/Template:Person to see the template

source code between <includeonly> and </includeonly>. Note: the code previous to
this block shows an usage example.

7See http://www.w3.org/2005/04/fresnel-info/manual/

http://ishtar.ii.uam.es/fortunata/servlet/VPoetRequestServlet?up_action=renderOutput&up_designID=FOAFOutputConditionalGraphics&up_provider=mra68&up_source=http://www.w3.org/People/Berners-Lee/card&up_indvID=http://www.w3.org/People/Berners-Lee/card%23i
http://ishtar.ii.uam.es/fortunata/servlet/VPoetRequestServlet?up_action=renderOutput&up_designID=FOAFOutputConditionalGraphics&up_provider=mra68&up_source=http://www.w3.org/People/Berners-Lee/card&up_indvID=http://www.w3.org/People/Berners-Lee/card%23i
http://ishtar.ii.uam.es/fortunata/servlet/VPoetRequestServlet?up_action=renderOutput&up_designID=FOAFOutputConditionalGraphics&up_provider=mra68&up_source=http://www.w3.org/People/Berners-Lee/card&up_indvID=http://www.w3.org/People/Berners-Lee/card%23i
http://ishtar.ii.uam.es/fortunata/servlet/VPoetRequestServlet?up_action=renderOutput&up_designID=FOAFOutputConditionalGraphics&up_provider=mra68&up_source=http://www.w3.org/People/Berners-Lee/card&up_indvID=http://www.w3.org/People/Berners-Lee/card%23i
http://ishtar.ii.uam.es/fortunata/servlet/VPoetRequestServlet?up_action=renderOutput&up_designID=FOAFOutputConditionalGraphics&up_provider=mra68&up_source=http://www.w3.org/People/Berners-Lee/card&up_indvID=http://www.w3.org/People/Berners-Lee/card%23i
http://ishtar.ii.uam.es/fortunata/servlet/VPoetRequestServlet?up_action=renderOutput&up_designID=FOAFOutputConditionalGraphics&up_provider=mra68&up_source=http://www.w3.org/People/Berners-Lee/card&up_indvID=http://www.w3.org/People/Berners-Lee/card%23i
http://ishtar.ii.uam.es/fortunata/Wiki.jsp?page=VPOETTutorial
http://en.wikipedia.org/wiki/Template:Infobox_Settlement
http://en.wikipedia.org/wiki/Template:Infobox_Settlement
http://semanticweb.org/wiki/Template:Person
http://www.w3.org/2005/04/fresnel-info/manual/

SMW Fresnel Rhizomik VPOET
Programming Lan-
guage

Wiki syntax,
Programming,
HTML/CSS

OWL, Fresnel
ont., CSS

XSLT,
OWL/XML

HTML, CSS,
Javascript,
macros

Allows
Template reusing
Conditional rendering
Images
Dynamics (Web 2.0)

No
Yes
No
No

Yes
Yes
No
No

Yes
Yes
Yes
Yes

Yes
Yes
Yes
Yes

Oriented to Average pro-
grammers

Semantic Web
developers +
CSS

Semantic Web
developers +
XSLT

Web designers
+ Macros

Competencies
Sem. Web Techs.
Web Client Techs.
Other

Low
Low
Wiki syntax

High
High
High

Very high
Very high
XSLT

Low
Low-Very high

Pros Medium re-
quirements

Pure OWL Generic solu-
tion

Low require-
ments

Cons Error prone
syntax

Too complex for
a web designer

Too complex for
a web designer

Table 1. Features of some frameworks to create a template

{| cellspacing="0" cellpadding="5" style="position:relative; margin: 0 0 0.5em 1em;
border-collapse: collapse; border: 1px solid #aaa; background: #fff; float: right;
clear: right; width: 20em"

! colspan="2" style="background: #86ba0c; color: white" |<span style="font-size: 80%;
float: right; ">{{#ask: [[{{FULLPAGENAME}}]]

| format=vcard
| ?Name
| ?Affiliation=organization
| ?Email
| ?Foaf:phone=workphone
| ?Homepage
| searchlabel=vCard
}} [[Name::{{{Name|{{PAGENAME}}}}}]]
|-
{{#ifeq:{{{Picture|}}}|||{{Tablelongrow|Value=[[Image:{{{Picture

}}}|150px|{{{Name|{{PAGENAME}}}}}]]|Color=white}}}}
|-
{{#ifeq:{{{Email|}}}|||{{Tablelongrow|Value={{Mailbox|{{{Email

}}}}}|Color=#e4f8b6}}}}
|-
{{#ifeq:{{{Affiliation|}}}|||{{Tablerow|Label=Affiliation:|

Value=[[member of::affiliation::{{{Affiliation}}}]]}}}}
|-
{{#ifeq:{{{Homepage|}}}|||{{Tablerow|Label=Homepage:|

Value=[[homepage::http://{{{Homepage}}}|{{{Homepage label|
{{{Homepage}}}}}}]]}}}}

|-
{{#ifeq:{{{Phone|}}}|||{{Tablerow|Label=Phone:

Value=[[foaf:phone::{{{Phone}}}]]}}}}
<!-- *** Events *** -->
{{Tablelongrow|Align=Left|Font size=80%|

Value={{#ask:[[has PC member::{{PAGENAME}}]]
| format=list
| sort=start date | order=desc
| sep=,_
| intro=PC member of:_ }}|Color=#e4f8b6}}
|-
{{Tablelongrow|Align=Left|Font size=80%|

Value={{#ask:[[has OC member::{{PAGENAME}}]]
| format=list
| sort=start date | order=desc
| sep=,_
| intro=OC member of:_ }}|Color=#e4f8b6}}
|-
{{#ifeq:{{{FOAF|}}}|||{{Tablerow|Label=See also:|
Value=[[see also::{{{FOAF}}}|FOAF]]}}|Color=white}}
|}[[Category:Person]]

Table 2. Template in Semantic Media Wiki. Left: template code. Right: ren-
dering an example.

:foafGroup rdf:type fresnel:Group ;
fresnel:stylesheetLink <http://www.example.org/example.css> ;
fresnel:containerStyle "background-color: white;"

^^fresnel:stylingInstructions ;

:foafPersonFormat rdf:type fresnel:Format ;
fresnel:classFormatDomain foaf:Person ;
fresnel:resourceStyle "background-color: gray;"

^^fresnel:stylingInstructions ;
fresnel:group :foafGroup .

:nameFormat rdf:type fresnel:Format ;
fresnel:propertyFormatDomain foaf:name ;
fresnel:propertyStyle "border-top: solid black;"

^^fresnel:stylingInstructions ;
fresnel:labelStyle "font-weight: bold;"

^^fresnel:stylingInstructions ;
fresnel:group :foafGroup .

:urlFormat rdf:type fresnel:Format ;
fresnel:propertyFormatDomain foaf:homepage ;
fresnel:propertyFormatDomain foaf:mbox ;
fresnel:value fresnel:externalLink ;
fresnel:propertyStyle "border-top: solid black;"

^^fresnel:stylingInstructions ;
fresnel:labelStyle "font-weight: bold;"

^^fresnel:stylingInstructions ;
fresnel:group :foafGroup .

:depictFormat rdf:type fresnel:Format ;
fresnel:propertyFormatDomain foaf:depiction ;
fresnel:label fresnel:none ;
fresnel:value fresnel:image ;
fresnel:propertyStyle "border-top: solid black;"

^^fresnel:stylingInstructions ;
fresnel:group :foafGroup .

<?xml version="1.0"?>
<?xml-stylesheet href="./xsltdoc.xsl" type="text/xsl" media="screen"?>
<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">
<xsl:import href="rdf2html-functions.xsl"/>
<xsl:param name="language">en</xsl:param>
<xsl:output media-type="text/xhtml" version="1.0" encoding="UTF-8"

indent="yes"/>
<xsl:strip-space elements="*"/>
<xsl:template match="/">

<xsl:apply-templates select="rdf:RDF"/>
</xsl:template>
<xsl:template match="rdf:RDF">

<html lang="en" xmlns="http://www.w3.org/1999/xhtml">
<head>

<meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"/>

<title>Rhizomik - ReDeFer - RDF2HTML</title>
<link href="http://rhizomik.net/style/rhizomik.css" type="text/css"

rel="stylesheet" />
<link href="http://rhizomik.net/style/rhizomer.css" type="text/css"

rel="stylesheet" />
</head>
<body>

<!-- div id="browser">
back - go to... -
forward

</div -->
<xsl:if test="count(child::*)=0">

<p>No data retrieved.</p>
</xsl:if>
<xsl:for-each select="child::*">

<xsl:sort select="@rdf:about" order="ascending"/>
<xsl:call-template name="rdfDescription"/>

</xsl:for-each>
... 224 lines more ...
</xsl:stylesheet>

<table border="0" cellpadding="0" cellspacing="0">
<tr>
<td></td>
<td background="OmemoBaseURL/attach/Mra68Graphics/xample_body_upper_pat.gif"></td>
<td>
</td>

</tr>
<tr>
<td background="OmemoBaseURL/attach/Mra68Graphics/

xample_body_left_patt.gif"></td>
<td>
<table border="0" cellpadding="0" cellspacing="0">
<tr><td colspan=2>OmemoConditionalVizFor(title, mra68,

SimpleFOAFOutput.title)OmemoConditionalVizFor(name, mra68,
SimpleFOAFOutput.name)</td></tr>

<tr><td colspan=2>OmemoConditionalVizFor(givenname, mra68,
SimpleFOAFOutput.givenname)</td></tr>

<tr><td colspan=2>OmemoConditionalVizFor(family_name, mra68,
SimpleFOAFOutput.family_name)</td></tr>

<tr><td colspan=2>OmemoConditionalVizFor(homepage, mra68,
SimpleFOAFOutput.homepage)</td></tr>

<tr><td colspan=2>OmemoConditionalVizFor(depiction, mra68,
SimpleFOAFOutput.depiction)</td></tr>

<tr><td colspan=2>OmemoConditionalVizFor(knows, mra68,
SimpleFOAFOutput.knows)</td></tr>

</table>
</td>

<td background="OmemoBaseURL/attach/Mra68Graphics/
xample_body_right_patt.gif"></td>

</tr>
<tr>

<td width="17" style="font-size: 2px"><img src="OmemoBaseURL/
attach/Mra68Graphics/xample_body_eii.gif"> </td>

<td background="OmemoBaseURL/attach/Mra68Graphics/
xample_body_bottom_pat.gif"></td>

<td width="17" style="font-size: 2px"><img src="OmemoBaseURL/
attach/Mra68Graphics/xample_body_eid.gif"> </td>

</tr>
</table>

Table 3. Template examples: Fresnel (top), Rhizomic (middle) and VPOET
(bottom).

Macro Arguments Explanation
OmemoGetP propName It is replaced by the property value

propName
OmemoBaseURL No arguments It is replaced by the URL of the server

where VPOET is running
OmemoConditionalVizForpropName,

designerID,
designID

It renders the property propName only if it
has a value, using the template indicated
by (designerID, designID)

OmemoGetLink relationName,
designerID,
designID

It is replaced by a link capable of display-
ing components of the type pointed by the
relation relationName using the template
indicated by (designerID, designID)

Table 4. Main macros available for web designers in VPOET.

VPOET reduces the requirements needed to create templates, lowering the adop-
tion barrier for web designers. VPOET “speaks”the web designers language, i.e. client
side languages such as HTML, CSS and javascript, not requiring competencies in se-
mantic web technologies or additional programming languages. Web designers use sim-
ple macros (see table 4) embedded in the source code, with the additional benefit of
being capable of detecting errors in the macros in “development time”(checks in ev-
ery modification of the template) and in “runtime”(checks in every template usage).
The information about the structural components of a given ontology component are
provided to web designers by OMEMO8, another application that generates simpli-
fied versions of a given ontology, specifically oriented to web designers. By reading the
information provided by OMEMO, web designers can know the sub-components of a
given ontology component, requiring only basics of semantic web technologies such as
class, property, value or relation.

Table 3 (bottom) shows an example of VPOET template source code (left part),
and the rendering of that code inside a Google Page by using VPOET templates
in a Google Gadget named GG-VPOET 9. In this example one can see the macro
OmemoConditionalVizFor, which renders a given property only if the property has
a value. The rendering is transfered to a specified template, which uses the macro
OmemoGetP to render the property value. As properties use to be multi-valuated, a mech-
anism based in PPS (pre-condition, post-condition, and sep-arator) has been added to
the macro OmemoGetP. For example, let us assume a semantic data source with individ-
uals having the property FOAF:depiction with values {url1, url2,..., urlN}. If a web
designer wants to create a VPOET template, like the one shown in bottom of table 3,
which renders multiple values of this property with HTMLcode like this:

....

she can use the conditional rendering provided by OmemoConditionalVizFor typing:
OmemoConditionalVizFor(urlprop, mra68, SimpleFOAFOutput.depiction)

8See http://ishtar.ii.uam.es/fortunata/Wiki.jsp?page=OMEMO
9See http://ishtar.ii.uam.es/fortunata/Wiki.jsp?page=VPOETGoogleGadget

http://ishtar.ii.uam.es/fortunata/Wiki.jsp?page=OMEMO
http://ishtar.ii.uam.es/fortunata/Wiki.jsp?page=VPOETGoogleGadget

which renders the property by means of the template SimpleFOAFOutput.depiction
(created by designer mra68). The code of the template uses OmemoGetP in its 3 argu-
ments flavor OmemoGetP(pre, post, sep) to code the template like this:
OmemoGetP(,
)

Another common requirement are “nested properties”, e.g. displaying only FOAF:name
for FOAF:knows objects. This can be achieved by means of the macro OmemoGetP in its 5
arguments flavor OmemoGetP(relation, propPref, pre, post, sep. A simple (multi-
values separated by
) codification could be:
OmemoGetP(knows, name„,
)

But, if additionally you want to associate a link to the value, you have to use the
macro OmemoGetLink. The final template code would be like this:
OmemoGetP(knows, name„,
)
This macro is replaced in runtime by a link capable of displaying ontology components
of the type pointed by the relation knows, i.e. a FOAF:Person. In the current imple-
mentation, clicking the link would “change to a new page”, but it can be modified to
place the client code in a new DOM object in the same page by using AJAX.

3 Conclusions and further work

Our experience in VPOET shows that, in the context of templates creation, macros
provides web designers with a friendly environment, requiring lower competencies than
other equivalent frameworks such as Semantic Media Wiki, Rhizomer, or Fresnel. An
additional advantage of VPOET templates is that these templates can be used easily
by other developers skilled in any programming language due to the simplicity of the
HTTP messages involved.

An initial small set of macros were obtained from the analysis of the semantic
templates in Semantic Media Wiki. The experiments [2] carried out with fifteen real
users confirmed that a that small number of macros satisfied the needs of most web
designers. These users suggested, by filling detailed questionnaires, new macros or
additional parameters for the existing ones.

Our current work is focused on providing web designers with new features such as
creation of containers to handle individuals sets in a more attractive way. The current
implementation lists individuals in a simple sequence. Probably, this will require new
macros or modifications to the existing ones.

References

1. Rico, M., Camacho, D., Corcho, Ó.: VPOET: Using a Distributed Collaborative
Platform for Semantic Web Applications. In proc. IDC2008. SCI 162, pp. 167–176.
Springer (2008)

2. Rico, M., Macías, J.A., Camacho, D., Corcho, Ó.: Enabling Web Designers to Han-
dle Semantic Data in Web Applications. Submitted to Journal of Web Semantics
(2009)

3. Pietriga, E., Bizer, C., Karger, D., Lee, R.: Fresnel: A Browser-Independent Pre-
sentation Vocabulary for RDF. In proc. ISWC. LNCS 4273, pp. 158Ű-171. Springer
(2006)

4. García, R., Gil, R.: Improving Human–Semantic Web Interaction: The Rhizomer
Experience. In proc. SWAP’06. CEUR-WS 201, pp. 57–64. (2006)

SKUA – retrofitting semantics

Norman Gray12, Tony Linde1 and Kona Andrews3

1 Department of Physics and Astronomy, University of Leicester, UK,
2 Department of Physics and Astronomy, University of Glasgow, UK

3 Institute for Astronomy, University of Edinburgh, UK

Abstract. The Semantic Web promises much for software developers,
but because its claimed benefits are rather abstract, there is little ob-
vious incentive to master its unfamiliar technology. In contrast, many
‘Social Web’ applications seem rather trivial, and not obviously useful
for astronomy.
The SKUA project (Semantic Knowledge Underpinning Astronomy) is
implementing a service which will realise the benefits of both these web
technologies. This RESTful web service gives application authors ready
access to simple persistence, simple (social) sharing, and lightweight
semantics, at a low software-engineering cost. The SKUA service al-
lows applications to persist assertions (such as bookmarks and ratings),
and share them between users. On top of this, it provides lightweight,
astronomy-specific, semantics to enhance the usefulness and retrieval of
the users’ data.

1 Introduction

For all its current fashionability, we can identify at least two reasons why the
Semantic Web excites little interest among astronomical software developers.
Firstly, there is so far no well-known ‘killer app’ for the semantic web, and
the use-cases sometimes brandished in support of the Semantic Web’s promise –
involving machines booking hospital appointments, or comparing prices ([1], and
see http://www.w3.org/2001/sw/) – are not obviously relevant to astronomical
applications development. Secondly, even when a potential application is dimly
discernable – and everyone can agree it must somehow be useful for a machine
to ‘know’ that a black hole is a type of compact object – there are multiple
barriers of novel terminology, standards and technology to be overcome before
an idea can be turned into a useful software product. This can be a significant
technology hurdle for an application developer who may be rationally sceptical
about the practical utility of semantic web technologies.

In the SKUA project (http://myskua.org) we are developing an infrastruc-
ture which addresses both of these concerns. The SKUA infrastructure provides a
mechanism for persisting and sharing a flexible range of application state, includ-
ing annotations (of which we give examples below), in a way which lets applica-
tions transparently take advantage of lightweight semantic knowledge within the
SKUA system. That is, we are helping application developers painlessly ‘retrofit’

lightweight semantics to their existing applications at those points where they
already persist some data, or could do. By combining the social aspects of the
annotation sharing and the lightweight semantics, the SKUA infrastructure can
be regarded as a simple ‘Web 3.0’ application, to the extent that that term
represents the anticipated melding of Web 2.0 applications with Semantic Web
technologies.

2 The SKUA infrastructure

The SKUA infrastructure consists of a network of assertion services, each node of
which is an RDF triple store and SPARQL endpoint [2], currently implemented
using Jena; these are referred to as SACs, or ‘Semantic Annotation Collections’,
and can be either on separate servers or logically distinct entities on a single
server. These are the objects to which applications write per-user state informa-
tion – ‘assertions’ – such as annotations (‘this paper is good’), or preferences (‘I’m
interested in pulsars’). The annotations can then be retrieved using a SPARQL
query by the same application, by another instance of the same application, or
by a cooperating application.

The infrastructure also allows these assertions to be shared between users,
in such a way that an application’s SPARQL query against its ‘local’ service is
forwarded to the services it federates to (see Fig. 1). This is näıve federation, in
which the SAC simply forwards the query to its peers, which potentially forward
it in turn, with the results merged before being returned to the caller; thus the
final result is the union of the query results to the various nodes, rather than the
result of the query over the union of the nodes. Though limited, we believe this
model is reasonable in this case, since the information in the various nodes is
likely to be both simple and relatively homogeneous. Thus if, in Fig. 1, user ‘u1’
shares the assertion that ‘paper X is good’, then when an application belonging
to user ‘u3’ looks for good papers, it picks up the corresponding assertion by
‘u1’. This query federation will be permitted only if the user making the asser-
tion explicitly allows it (which is important in the case where the assertion is
something like ‘the author of paper Y is clearly mad’).

Our permissions model is very simple. Each SAC is a personal utility, concep-
tually more like a USB stick with a PIN than a service with a username/password
pair. Each SAC is configured with a list of the SACs to which it should forward
queries, and a list of the SACs from which it should accept forwarded requests.
Here, the SACs identify themselves when making a delegated query, and do not
do so with any delegated credentials from the user on whose behalf they are
making the query. This model is easy to implement, we believe it is easy for
humans to reason with, and since SACs and users have a close relationship, a
user’s SAC is an adequate proxy for the user themself. This federation model
supports both a tree-like and a peer-to-peer network, or anything in between,
while allowing a client application to ignore this structure and query only the
user’s personal SAC. The trust model is simple-minded, and keeping private my
opinion about ‘the author of paper Y’ depends on my friends not federating

u3
u1

u2

pals

global

App AppAppApp

Personal

Group

World

@base <http://blah/my-sac>.

@prefix s:

<http://myskua.org/claimtypes/1.0/>.

@prefix dc:

<http://purl.org/dc/elements/1.1/>.

<#b1>

a s:bookmark;

s:ref [

a s:webpage;

s:url <http://www.w3.org/2001/sw/>;

dc:title "SemWeb @ W3C";

s:extended "The W3C nexus"

];

s:tag "semanticweb", "rdf";

s:time "2008-01-21T18:11:58Z".

Fig. 1. SKUA’s sharing architecture: on the left we show the relationships, both peer-
to-peer and hierarchical, between annotatation stores, with double-headed arrows in-
dicating read-write relationships with applications, and the single-headed arrows in-
dicating the federation of queries between services; and on the right we illustrate a
potential annotation type, in this case a URL bookmark, using the Turtle notation for
RDF [3].

carelessly. User interface details will help couple the user’s mental model to the
actual model, but only experience can tell us if the trust model is fundamentally
too simple in fact.

Since federation consists only of passing on a SPARQL query, a SAC can
federate to any SPARQL endpoint. We have not yet discovered how useful this
will be in practice.

Although we have observed that the nodes have astronomy-specific knowl-
edge built in, this is only due to astronomy-specific TBox information uploaded
at configuration time, and though this project is specifically motivated by as-
tronomy, the architecture is nonetheless general.

2.1 Interfaces

The SKUA SACs are updated and queried via a RESTful API.
The various annotations are modelled as fragments of RDF which are each

named by a URL; these are referred to as ‘claims’ within a SAC. Although the
project has defined a lightweight ontology for claims, the RDF which composes
a claim is unrestricted. Claims are created by posting the RDF to the SAC
URL, which responds with a freshly-minted URL naming the claim, which can
of course be retrieved in the obvious fashion, with a get. The contents of the SAC
can also be queried by posting a SPARQL query to the SAC URL. Individual
claims can be replaced by putting fresh RDF to the claim URL. There is no
cross-reference between the various claims – at least in the applications we have
envisaged so far – so little scope for linked-data cross-linking.

The network of federations, and the type of reasoning available (using any of
the reasoners available in Jena, or none), is controlled by SAC metadata, also in
the form of RDF. This is set when the SAC is created, and may be later adjusted
using the Talis Changeset Protocol (http://n2.talis.com/wiki/Changeset_
Protocol).

The API is described in a WADL specification available at (http://myskua.
org/doc/qsac/). Independently of any (debatable) use of this specification for
generating client code, we find it useful for generating the interface documenta-
tion and generating support for regression tests.

2.2 Implementation

The SAC is implemented using Jena (http://jena.sourceforge.net) and SISC
(http://sisc-scheme.org/), and runs as a web service either standalone (using
Jetty), or within a Tomcat container. Essentially all of the application logic is
written in Scheme, which allows for rapid development and which, being almost
entirely functional, is well-suited for web applications.

The SKUA software is available at http://skua.googlecode.com. The cur-
rent version, at the time of writing, supports updating, persistence, querying
and federation; vocabulary-aware querying is available but undocumented; easier
sharing and security are in development; and the design of a more sophisticated
authorisation model awaits deployment experience.

3 Example applications

An important aim of the SKUA project is to develop applications which use the
project’s infrastructure, both as a way of validating the approach, and for their
intrinsic usefulness. As well, we are cooperating with the developers of existing
applications to support them in adding SKUA interfaces where appropriate.

In particular, we are developing Spacebook [4], as an adaptation of the my-
Experiment code-base ([5], see also http://myexperiment.org/). This allows
scientists to share digital objects of various kinds, supporting the development of
communities. Spacebook builds on this by adding integration with AstroGrid’s
Taverna workflows, and lets users tag resources using the SKUA infrastructure.

As well, we have adapted the AstroGrid registry browser, VOExplorer [6].
The International Virtual Observatory Alliance (IVOA, http://www.ivoa.net)
is a consortium of virtual observatory projects, defining and deploying consistent
interfaces for accessing astronomical data services. These service resources – im-
age archives and catalogues – are registered in an IVOA registry, and VOExplorer
is one of a small number of user-facing applications which allow astronomers to
browse the registry, and search within it, including the free-text keyword fields
included in the curation metadata.

For each Registry entry, VOExplorer displays title, description, curation and
other information, and provides a simple interface for the user to specify a high-
light colour, notes about the resource, an alternative title, and tags (see Fig. 2).

Fig. 2. Annotation panels for Spacebook (left) and VOExplorer (right)

In its original, default, mode, the application persists this information to a local
file, but it can also be configured to persist the information to a SKUA SAC;
this is not yet the default because SACs have not yet been deployed sufficiently
broadly to make this useful to most users.

Users can tag resources using any tags they please, but if they attach key-
words from one of the existing IVOA vocabularies [7] a subsequent search on
the SKUA store is able to take advantage of the lightweight semantics asso-
ciated with these keywords. For example, if a user annotates a resource with
aakeys:Ephemerides, they can later make a SPARQL query for terms which
have AstrometryAndCelestialMechanics as a broader term, and in doing so
pick up resources tagged with Astrometry, CelestialMechanics, Eclipses,
Ephemerides, Occultations, ReferenceSystems or Time.

The Paperscope application (http://paperscope.sourceforge.net/) is a
utility for searching and browsing ADS (http://adswww.harvard.edu/), which
is the principal bibliographic database for astronomy and astrophysics. Like VO-
Explorer, Paperscope has a simple tagging interface, and like VOExplorer, it was
originally limited to a single machine. We have started work on extending the
application to use the SKUA RDF nodes as a simple persistence service, using
the existing UI and interaction model.

Both the VOExplorer and Paperscope applications were provided with tag-
ging support rather as an afterthought, and in both cases this was barely devel-
oped because the tagging could not be shared. Replacing the simple file-handling
code with the barely-more-complicated SKUA interface, without changing the
user interfaces at all, means that the applications can immediately share anno-
tations and take advantage of the lightweight vocabulary reasoning which the
SAC provides. It is in this sense that we claim that the semantic technologies
have been retrofitted to the applications, giving them an immediate injection of

semantic functionality with minor investment in implementation code, and so
allowing the authors to experiment with the user-oriented functionality which
this semantic technology prompts.

We emphasise that we are not expecting users to write SPARQL queries for
themselves, but instead expect applications to issue them on the user’s behalf,
based on simple query templates. To support this extra functionality, application
developers need make no major commitments to semantic web technologies, and
need only manage HTTP transactions using (readily templatable) RDF such as
that in Fig 1, and basic SPARQL queries.

4 Conclusion

We have described a simple architecture for storing and sharing simple RDF
annotations of external resources, using a RESTful interface to a SPARQL end-
point. The interface is such that application developers have a low barrier to
entry, and need make few technology commitments before reaping the benefit
of simple semantic enhancement of their applications. We are deploying support
for the architecture in a number of existing applications.

Acknowledgements

The SKUA project is funded by the UK’s Joint Information Systems Committee
(http://www.jisc.ac.uk).

References

1. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American
(May 2001)

2. Prud’hommeaux, E., Seaborne, A.: SPARQL query language for RDF. W3C Can-
didate Recommendation (June 2007)

3. Beckett, D.: Turtle - terse RDF triple language. W3C Team Submission (January
2008)

4. Linde, T., Gray, N., Andrews, K.: Spacebook: resource sharing for astronomers using
SKUA technology. In Bohlender, D., Dowler, P., Durand, D., eds.: Astronomical
Data Analysis Software & Systems, XVIII, PASP (2009)

5. De Roure, D., Goble, C.: myExperiment – a web 2.0 virtual research environment.
In: International Workshop on Virtual Research Environments and Collaborative
Work Environments, Edinburgh. (2007)

6. Tedds, J.A., Winstanley, N., Lawrence, A., Walton, N., Auden, E., Dalla, S.: VO-
Explorer: Visualising data discovery in the virtual observatory. In Argyle, R.W.,
Bunclark, P.S., Lewis, J.R., eds.: Astronomical Data Analysis Software and Systems,
XVII. Volume 394. (2007) 159

7. Gray, A.J.G., Gray, N., Hessman, F.V., Martinez, A.P.: Vocabularies in the virtual
observatory. IVOA Proposed Recommendation (2008)

	Proceedings
	full_1
	full_2
	full_3
	full_4
	short_1
	short_2
	Krextor -- An Extensible XMLRDF Extraction Framework
	Christoph Lange

	short_3
	short_4
	Macros vs. scripting in VPOET
	Mariano Rico, David Camacho, Óscar Corcho

	short_5

