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Abstract. We present an approach to the combination of an arbitrary
number of image features to produce more sophisticated features for
anatomical landmark detection. The combination was done using reser-
voir networks. The results were compared to Gabor wavelet features on
single point detection in 2D slices of MR image data to show behavior
and potential quality of the combined features.

1 Introduction

The automatic detection of anatomical landmarks in medical data is a challeng-
ing task [1, 2]. Many computer assisted procedures in modern medicine use
landmarks e. g. for intraoperative registration in navigated surgery. They can
also serve as starting points in image segmentation for automatic diagnosis. Re-
cently, a landmark detection techniqe for CT data has been proposed [3], that
is based on a bunch graph matching [4] with Gabor wavelet features [5], which
are used frequently for recognition tasks in computer vision. This method, how-
ever, failed in our experiments on MR image data, which is probably because
the Gabor features are not adequate in this case.

The graph matching algorithm performs a global search for several landmarks
at once by combining them in a pre-defined topology. This initial global search
leads to a starting position for each landmark, which should be already close
to the correct position. Thus, features are needed that produce local similarity
maxima at the correct target positions within a limited area. A global similarity
maximum for the correct point is not a requirement, because a global search for
possible regions in which certain points are located is solved by the consideration
of topology during the bunch graph matching.

In our approach we started with the extraction of features from an input
image. Afterwards, these features served as input for a two-dimensional recurrent
neural network as a processing unit. This network was composed of 4 identical
neuron layers. Each layer processed the input in a different direction. One point
was processed at a time by feeding its scalar feature values – i.e. the elements
of the feature tensors at that given point – into the network. This way of image
processing using recurrent neural networks has been introduced recently [6]. In
contrast to that approach, however, we use a different network type, introduced
as echo state networks [7] or liquid state machines [8]. The basic idea of this
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network concept is to use a comparably large recurrent network and randomly
initialize the interconnection weights, which remain untrained. This principle is
referred to as reservoir computing.

For comparison of two points or landmarks, a similarity measure was then
applied to the network’s outputs corresponding to these points.

2 Materials and methods

2.1 Image data

For our experiments we used T2 weighted MRT sequences of 4 different patient
vertebrae. For faster calculation slices were rescaled to a resolution of 128× 128
pixels, where 1 pixel corresponds to 1 mm.

2.2 Feature extraction

We considered a two-dimensional image I ∈ RN×M , where N is the height and M
the width of the image. In the first step, we extracted F feature tensors F1 . . .FF

with Ff ∈ RN×M×Lf , where Lf is the length of the f -th feature response. Before
features were fed into the neural network, they were normalized to accomodate
for different scales. In our experiments we extracted Gabor wavelet features on
5 scales with 8 orientations, and used the local gray level as a second type of
feature.

2.3 Feature integration by a reservoir network

Each of the 4 network layers is a time-discrete network model with a state
vector x ∈ RX , where X is the number of neurons, which was set to 100 in our
experiments. The state update equation at time step t is given by

x(t + 1) = W · g(diag(a)x(t) + b) + Wuu(t) . (1)

The matrix W ∈ RX×X gathers the weights of the connections. The vector
u(t) resembles the external input at time step t and Wu is the input weight
matrix. The activation function g is applied component-wise to the vector x(t)
to calculate the firing rates of the neurons and is given by

g(x) =
1

1 + exp(−x)
. (2)

The vectors a,b ∈ RX allow for adjustment of a neuron’s firing rate. Before the
network was used for image interpretation, weights were initialized by drawing
uniformly from [-0.02, 0.02] and a and b were optimized by intrinsic plasticity [9],
which drives the firing rate distribution of the network towards an exponential
distribution with fixed mean µ and maximizes the neurons’ output entropy under
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the constraint of the fixed mean. Plasticity was performed by presenting a typical
input image once and update a and b in every time step t according to

∆bi(t) = ζ ·
(

1−
(

2 +
1
µ

)
g(xi(t)) +

1
µ

g(xi(t))2
)

, (3)

∆ai(t) = ζ ·
(

1
a

+ xi(t)−
(

2 +
1
µ

)
xi(t)g(xi(t)) +

1
µ

xi(t)g(xi(t))2
)

, (4)

where µ is the target mean and ζ the learning rate. We use µ = 0.2 and ζ = 0.001
in our experiments.

Using update equation (1) we then collected X neuron states for each layer
at each point of the image. Every time step t resembles one point of the image
if they are sequentially fed into the network. These neuron states defined a
combined feature tensor X ∈ RN×M×4X .

2.4 Similarity measure and experimental setup

To compare two points P1 = (x1, y1) and P2 = (x2, y2) we calculated their
similarity S as the reciprocal of the squared error of the respective features:

S([X ]x1y1 , [X ]x2y2) =
1∑

k ([X ]x1y1k − [X ]x2y2k)2
(5)

The task in our experiments was to calculate similarities for 6 distinct landmarks
of a labelled vertebra in a target image, by calculating the respective similarities
for every point in the target image using either Gabor wavelet features only, or
Gabor wavelet features and the local gray level combined by the neural network.
Fig. 1 shows the points that were to be detected and the test image.

Fig. 1. The labelled image on the left hand side shows the points that were to be
detected in the image on the right hand side.
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3 Results

We display the results by overlaying similarity images and input images to show
where high similarities are present (see Fig. 2). For better viewability we applied
a threshold to the similarity images to only show the location of local similarity
maxima. The threshold was selected in a way that 99% of the gray values in the
similarity image were below the threshold. For both experiments local similarity
maxima were at least close to the correct location for points 1, 2, 4, and 5. The
Gabor wavelets did not produce a maximum near the correct locations for points
3 and 6, while the network processed features were able to detect those points.

4 Discussion

The results show that Gabor wavelet similarity pictures usually produce broad
maxima, which correspond to the Gaussian nature of the Gabor wavelets, while
the inclusion of gray level as a second feature and the processing by the recurrent

(a) Point 1 (b) Point 2

(c) Point 3 (d) Point 4

(e) Point 5 (f) Point 6

Fig. 2. Similarity images for the six points (marked by arrows) of the labelled image.
Results for Gabor wavelets are on the left hand side, results for the neural network
integration are on the right hand side.
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network results in locally bounded maxima. Our experiments indicate that com-
bination of several feature types using a neural network might enable a bunch
graph matching algorithm to work on MR data as well as it does on CT data.
The improvement over Gabor wavelets alone is based on the combination process
by the reservoir, which basically does two things: First, it transforms the original
features into random higher-dimensional, and potentially higher-order features,
and second, it integrates context into the feature vector of a single point, i.e.
features of neighboring points are considered as well. The size and influence of
the considered context is implicit within the random weights of the network.

A problem with this approach, however, is the large amount of calculation
time required by the neural network as complexity grows quadratically with
network size X. This is bothersome, because much larger reservoirs, which are
commonly used in reservoir computing, usually produce even better results.

Even though feature quality is hard to judge based on our limited experi-
ments, the results are promising and motivate further research in this direction.
In the next step we will expand our evaluation to more data sets as well as to
different MR sequences. Performance might further be improved by using even
more than two feature types. Additionally, supervised training of the reservoir
might overcome the problems with the small network size.
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