
Configuring Semantic Web Interfaces
by Data Mapping

Michiel Hildebrand
CWI Amsterdam

Michiel.Hildebrand@cwi.nl

Jacco van Ossenbruggen
CWI/VU University Amsterdam
Jacco.van.Ossenbruggen@cwi.nl

ABSTRACT
We demonstrate how to develop Web-based user interfaces
for Semantic Web applications using commonly available,
off-the-shelf Web widget libraries. By formally defining the
underlying data model that is assumed by these widgets, Se-
mantic Web application developers can use familiar RDF
constructs to map their own data to the model implemented
by the Widgets. As an example, we briefly describe the in-
terface model underlying our own framework, and provide
concrete examples showing how it has been used to create
Semantic Web applications in two different domains. We
conclude by discussing the advantages and limitations of our
approach.

Author Keywords
Interface design, heterogeneous data, ClioPatria, YUI

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation: Miscellaneous

INTRODUCTION
Semantic Web data is typically rich in interconnections and
highly heterogeneous. Designing user interfaces for applica-
tions that use this type of data is intrinsically hard. Design-
ing interfaces for highly diverse data tends to lead to overly
generic interfaces that do not communicate the richness of
the data to the end user. On the other hand, interfaces that
communicate this richness effectively tend to work well for
only a set of fixed schemas and not for the entire dataset.
Finding a sweet spot that balances these two forces is not
trivial, especially if one takes into account that most Seman-
tic Web developers are not UI specialists, and often have
even little affinity with UI design. The problem is even deep-
ened because many Semantic Web developers tend to build
UIs from scratch, as the fixed data model that is assumed
by many off-the-shelf UI toolkits seems to conflict with the
heterogeneity of their data.

In this paper, we argue that for a wide range of applications,
such a sweetspot can be identified and formally modeled in

Workshop on Visual Interfaces to the Social and the Semantic Web
(VISSW2009), IUI2009, Feb 8 2009, Sanibel Island, Florida, USA. Copy-
right is held by the author/owner(s)

RDFS or OWL. By building standard interface components
on top of this model, building an initial interface can be as
easy as mapping the application’s data model to this inter-
face model.

This approach has the advantage that it leverages the sig-
nificant amount of design, implementation and testing effort
already invested in today’s Web UI toolkits, and we believe
that reuse of these commonly available toolkits will, in gen-
eral, lead to better interfaces than interfaces that are designed
and implemented from scratch by a (small) Semantic Web
research team.

In addition, it replaces the traditional configuration and tai-
loring that is needed to adapt a generic interface to a lo-
cal dataset by a straight forward RDF data mapping task,
a skill most Semantic Web developers will have. By pro-
viding default mappings, it is even possible to provide a no-
configuration, first crude version of a user interface, very
early in the application development life cycle. This will
give RDF data developers the “instant gratification” that has
made many Web 1.0 and 2.0 applications so popular. It also
encourages them to, during their data modeling and data de-
velopment tasks, think about how their data will be used in
the end-user applications, and how their modeling decisions
may impact the interface.

Finally, while our approach provides pre-packaged solutions
for common tasks, it does not prohibit application develop-
ers to go beyond those solutions in order to add more ad-
vanced or more application specific interface components. It
is built to be extended or to build other layers on top of it.

This paper is structured as follows. In the next section, we
discuss related work and compare it to the approach pro-
posed in this paper. As an example user interface model
and its binding to a Web UI toolkit, we discuss the interface
model upon which the ClioPatria [12] interface components
are built, and how these components are implemented on top
of the Yahoo! User Interface (YUI) library. We show how
this model can be used to easily create two interfaces, one
in the cultural heritage domain and one in the news domain.
We provide some details of the current implementation and
in the last section, we discuss the pros and cons of our ap-
proach.

RELATED WORK
Modeling part of the user interface in RDF is in itself not
new. Fresnel [7] is a good example of an RDF vocabulary

1

that can be used to specify the presentation details of RDF
data. Fresnel provides vocabularies for the selection and for-
matting of the data. A Fresnel engine generates a tree struc-
ture with selected resources and formatting information. The
actual visualization of this tree is left to the application or
widget. Our interface widgets depend on configurable search
functionality on the server, for example, vocabulary-based
prefix search for autocompletion, faceted queries and graph
search. This functionality goes beyond Fresnel’s selection
vocabulary. Our approach targets the configuration of the
server-side search algorithms instead of providing a vocabu-
lary for selection. Furthermore, the visualized data often be-
comes part of the widget’s interactive behavior, for example,
extra information for a result needs to be shown in a popup,
trees need to be dynamically extended and facets may be
interactively removed or added. Fresnel’s formatting vocab-
ulary is not suited for describing this type of interaction. We
propose a method that takes the widget’s functionality as the
starting point and provides a means to configure the widget’s
selection, organization and visualization methods. An inter-
face model captures these configuration dimensions and by
providing mappings to domain specific data a developer can
fully exploit the widget’s behavior for a specific task.

Simile’s faceted browser Longwell supports Fresnel for the
visualization of the results [9]. In addition, the set of facets
displayed in the interface can be defined in a configuration
file in RDF. The individual facets are, however, not config-
urable. Simile’s Exhibit [3] provides a more extended vo-
cabulary to define the visualization and organization of the
facet values. The content of a facet in Exhibit is defined
by a property that refers to a key in the native JSON for-
mat. This prevents the use of RDFS reasoning facilities, such
as rdfs:subPropertyOf. Our approach combines the reason-
ing facilities of a server-side triple store with a lightweight
client-side widget.

Web interface widgets have become a standard in web devel-
opment. The choice among JavaScript libraries is numerous
and all provide a convenient abstraction of low-level issues,
such as cross-browser support. Interface widgets for seman-
tic content are also available. Eetu Mäkelä et. al. provide
several interface widgets that work on top of their ontology
service infrastructure ONKI [5]. Example widgets are au-
tocompletion and faceted navigation. They also so seem to
strive for easy configuration of the widgets, but have not pre-
sented a clear model for this.

The approach of semantic widgets is also used by the Se-
mantic Web company Mondeca 1.

COMBINING THE YAHOO! USER INTERFACE LIBRARY
WITH THE CLIOPATRIA INTERFACE MODEL
In many domains there is a central role for persons, loca-
tions, times and artifacts. Sometimes these are modeled to-
gether as an event. For example, in the cultural heritage do-
main works of art are created by persons at a specific time
1http://www.mondeca.com/index.php/en/
intelligent topic manager/applications/
semantic portal semantic widgets

Figure 1. Autocompletion suggestions of historical persons. Under-
neath the name a short biography is displayed. This contains the na-
tionality, role/profession and birth/death date. Note that for the first
person listed, only the profession is available in the data. The abbrevi-
ation RMA, shown to the right, indicates the thesaurus source.

and location. In a figurative art it may also be important
to know which persons, times and locations are depicted.
News images are also made on a specific time and place by
a specific photographer and depict an event often involving
persons, times and locations. Persons, locations and times
are thus good candidates for a central model which is suffi-
ciently generic, while sufficiently specific to answer the clas-
sic who, where and when questions to the end user. Man-
made artifacts also play a central role in many domains and
their specific properties can often be abstracted from by us-
ing, for example, a general vocabulary such as Dublin Core.
In addition, different domains often deploy their own set of
specific thesaurus concepts that describe the properties of
events. We found that SKOS provides a sufficiently rich and
abstract model to describe these concepts and their relations.

Within the semantic search and annotation framework ClioPa-
tria [12] we have developed several interface widgets. When
deploying ClioPatria in a specific application domain we use
persons, locations, times, artifacts and thesaurus concepts as
an intermediate model between the interface model and the
domain specific details of the underlaying RDF data. In the
following paragraphs we explain the configuration dimen-
sions of two interface widgets, autocompletion and faceted
navigation, and show how this can be captured in an RDF
interface model. In the next section we show how the in-
termediate model sketched above can be mapped to these
widget’s interface models.

Example 1: Autocompletion
Autocompletion is an interface feature that allows users to
type only a few characters instead of a full word or phrase.
After the user has entered the first characters, the system re-
sponds by completing the word or phrase. If the characters
typed in so far can be completed in more than one way, most
interfaces present a list of multiple options. The user can
than either select one of the options from the list, or con-
tinue typing to narrow down the number of options.

In context of the Semantic Web autocompletion is useful to
quickly find a resource by one of its labels2. In previous
work we argued that for different tasks and data sets au-
tocompletion widgets require a different configuration [1].
The screenshots in Fig. 1 and Fig. 2 show autocompletion
2For sake of simplicity we do not consider finding resources by a
label of a related resource.

2

http://www.mondeca.com/index.php/en/intelligent_topic_manager/applications/semantic_portal_semantic_widgets
http://www.mondeca.com/index.php/en/intelligent_topic_manager/applications/semantic_portal_semantic_widgets
http://www.mondeca.com/index.php/en/intelligent_topic_manager/applications/semantic_portal_semantic_widgets

Figure 2. Autocompletion suggestions of thesauri concepts. Results
from both IconClass and WordNet are shown, each presented in
a separate group. A secondary panel shows more information for the
highlighted term (“[45K] siege, position war”), including the hierarchi-
cal structure the term is part of. The hierarchy contains the term itself
in bold, its ancestors and the direct children.

suggestions of historical persons and thesauri concepts. In
the next section we discuss the configurations of these two
widgets, here, we focus on the main differences between
these two widgets. First, the widgets suggest a different type
of resource (e.g. persons and concepts), thus, requiring a
different selection of the right RDF resources. Second, the
persons are organized in an alphabetically ordered list, while
the concepts are grouped by different thesauri and ranked ac-
cording to popularity. Finally, the individual suggestions are
visualized differently in each widget. The suggested persons
are shown with extra biographical information, whereas, the
concepts are shown within their hierarchy.

The two examples are built on top of the YUI autocomple-
tion widget. The YUI widget contains several client side
configuration parameters, it supports custom functions for
result formatting, construction of remote data requests and
it provides many event handlers. Although this is sufficient
to configure the widget for an RDF data source, we experi-
enced that it required extensive JavaScript programming to
obtain the appropriate configurations. For example, visualiz-
ing different types of information requires the configuration
of the server request as well as the client side JavaScript for-
matting functions.

An interface model for an autocompletion widget provides a
single focal point for the configuration of a widget and only
requires Semantic Web modeling skills. Note, we do not
claim that this is a complete model for autocompletion, we
merely want to illustrate that it is possible to define an inter-
face model for an autocompletion widget in RDF. The model
we present is for an extended version of the YUI autocom-
pletion widget. We added support for clustered presentation
of search results, a secondary display that is shown when
the user hovers over a suggestion, a single configurable re-
sult formatting function and support for easy configuration

:AutocompletionWidget

:sort (exact || inlink
 || rdf:Property)
:group (rdf:Property)
:smush true || false
:max integer

:target rdfs:Class
:match (rdf:Property)

:selection :organization :visualization

:preLabel (rdf:Property)
:altLabel (rdf:Property)
:subLabel (rdf:Property)
:postLabel (rdf:Property)

:primaryDisplay

:secondaryDisplay

:image rdf:Property
:description rdf:Property
:tree rdf:Property

Figure 3. Interface model for ClioPatria’s thesaurus concept autocom-
pletion widget. All organization and visualization properties are op-
tional.

of the server side search algorithm.

An interface model for the RDF concept autocompletion wid-
get is shown in Fig. 3. The widget contains three main con-
figuration properties that correspond with the three phases of
the search process: selection, organization and visualization.
For the selection of the appropriate resource it should be
known what type of resources should be selected and which
literals should be used to find these resource? The first is
configured by providing an rdfs:Class for :target3. The
second requires the definition of a collection of RDF label
properties for :match. The order of the properties indi-
cates which property has preferences in case the same re-
source is found by multiple labels. The selected resources
can then be organized in a list or in groups of different lists.
The grouping is performed on the values of the RDF prop-
erties provided for :group. The resources in the list can
be ordered according to several criteria and are defined in a
collection as a value of :sort. The built in constant, ex-
act puts all resources with an exact matching label before
resources with partial matching labels. Another built in con-
stant is inlink that sorts the resources by the number of in-
coming links they have in the graph. Further sorting criteria
are the display labels (explained in the next paragraph) or
any rdf:Property. The number of results that are returned can
be limited by defining :max. In a grouped organization the
maximum applies to the number of items within a group. Fi-
nally, resources that are defined as equivalent (owl:sameAs
or skos:exactMatch) are shown as a single suggestion when
:smush is set to true.

The results are visualized in a primary and secondary display
panel. The primary display contains all suggestions, while
the secondary display is shown when the user hovers over
one of these. The default display format of these panels,
as shown in Fig. 4, is fixed. The primary display contains
3The properties and classes used in the interface models
are contained in our own namespace http://e-culture.
multimedian.nl/ns/interface/. In this paper we omit
this namespace and simply write a colon.

3

http://e-culture.multimedian.nl/ns/interface/
http://e-culture.multimedian.nl/ns/interface/

postLabelpreLabelLabel (altLabel)
subLabel

image
description

tree
node

node

Figure 4. Layout of an autocompletion result. Primary display with
a preLabel, the label itself, an alternative label between brackets, a
postLabel aligned on the right side and a subLabel on a second line.
The secondary panel provides additional space for larger content, such
as images, descriptions and trees.

place markers for four labels besides the matching label it-
self. The developer defines which labels are shown by map-
ping domain specific properties to the properties of the in-
terface model (e.g. mapping skos:broader to :subLabel).
If the default display format is not sufficient a new format-
ting function can be created in the JavaScript widget, which
might also require updates to the interface model.

Example 2: Faceted browsing
Facet browser interfaces provide a convenient way to nav-
igate through a wide range of data collections. Originally
demonstrated in the Flamenco system [13], facet browsing
has also become popular in the Semantic Web community
thanks to MUSEUMFINLAND [4] and other systems [3, 6,
9]. An individual facet highlights one dimension of the un-
derlying data. Often, the values of this dimension are hi-
erarchically structured. By visualizing and navigating this
hierarchy in the user interface, the user is able to specify
constraints on the items selected from the repository.

The facet browser we developed within ClioPatria, /facet,
could be applied to any RDF dataset [2]. By considering the
Class and Property hierarchy as special facets the user could
configure the interface to her needs. In the Class facet the
user selects the target resources (e.g. documents or persons)
and from the Property facet she selects the facets she wants
to navigate (e.g. creator and subject for documents or birth-
place and birthdate for persons). This approach provides an
instant interface for Semantic Web engineers. Presenting the
raw data is, however, not suited for end user applications. In
the project HealthFinland it was demonstrated that through
careful user studies a more user-friendly configuration of the
facets can be achieved [10].

Consider a faceted interface on a collection of documents.
Each individual facet contains the values within one dimen-
sion. For example, one facet might display all the creators,
whereas, another might display the subject categories. On an
RDF data source this type of value selection corresponds to
the values of a particular RDF property (e.g. dc:creator and
dc:subject). Other selection criteria are also possible, such
as all instances of a particular Class. In a similar fashion

:Facet

:sort (exact || rdf:Property)
:group (rdf:Property)
:smush true || false
:max integer

:target (rdfs:Class)
:property rdf:Property

:selection :organization

:preLabel (rdf:Property)
:altLabel (rdf:Property)
:subLabel (rdf:Property)
:postLabel (rdf:Property)

:FacetNavigation

:FacetView

:relation rdf:Property
:root (rdfs:Resource)

:Facet

:visualization

:hierarchy

rdfs:Class

:target :facets

:Facet

:FacetView

Figure 5. Interface model for ClioPatria’s faceted navigation widget.

as the autocompletion suggestions, different types of facet
values require different methods of organization. The cre-
ators might be best organized in an alphabetically ordered
list, while the hierarchical structure is important for the sub-
ject categories. Also the visualization of facet values shows
similarities with the autocompletion widget. Adding extra
information in the display may help to disambiguate similar
values. In addition, specific types of values (e.g. geograph-
ical locations and dates) are suited for alternative visualiza-
tion (geographical map and timeline).

When the number of defined facets is too large to be shown
in the interface, it has to be defined which facets are shown.
In Longwell a facet view can be defined as a collection of
facets for a particular target. The facets defined in this view
are shown, while all other facets are collapsed and available
on requested. An alternative method is to allow multiple
views and allow the user to select the most appropriate view.
For example, the creation view contains all facets that cover
the creation of a document, whereas, the content view con-
tains the facets about the topic. In either solution, a view
defines which facets are selected for display.

As an example we describe a possible model for a faceted
navigation widget. A screenshot of this widget, used for a
collection of news items, is shown in Fig. 6. The widget dis-
plays multiple facets that are defined in a facet view and al-
lows the selection of alternative views. The individual facets
are built on top of the autocompletion widget, which allows
re-use of its organization and visualization methods. In ad-
dition, it allows autocompletion within each facet. Again,
we make the disclaimer that our purpose is not to provide
a complete model for faceted navigation, but merely to il-
lustrate that it is possible to define an interface model for a
faceted navigation widget in RDF.

An interface model for a faceted navigation widget is shown

4

Figure 6. Faceted interface of the NewsML demonstrator. Four facets are active: document type, creation site, event and person. The
value “photo” is selected from the document type facet. The full query also contains the keyword “Zidane”, as is visible in the header above the
results.

in Fig. 5. The widget can contain multiple facet views, that
each apply to the resources of a particular Class. Each facet
view contains an RDF list of facets. A facet is configurable
in the selection of facet values, the organization and visual-
ization of these values. At the moment our widget only sup-
ports the selection of facet values from an rdf:Property. The
configuration of the organization and visualization is similar
to that of the autocompletion widget. In addition, the facet
values can be organized hierarchically, meaning that initially
only the root values of the hierarchy are shown and after se-
lection of one of these its children become available.

CONFIGURING INTERFACE WIDGETS: A MAPPING TASK
Given an interface model the configuration of a Semantic
Web application becomes a task of mapping the right prop-
erties and classes to this model. In practice, this often means
first finding a suited intermediate model for the domain. For
example, in terms of persons, locations and times. Second
mapping this intermediate model to the widget’s interface
model. We illustrate the mapping task with two use cases:
configuring autocompletion components for a cultural her-
itage annotation application and configuring faceted naviga-
tion for a news application.

Use case 1: Rijksmuseum annotation user experiment
Within the MultimediaN E-Culture project [8] we developed
a prototype interface for the subject annotation performed at
the Rijksmuseum in Amsterdam, the Netherlands. The pro-
fessional annotators of the Rijksmuseum describe thousands
of artworks a year by assigning terms from controlled vocab-

ularies. Finding the right term is complicated because the
vocabularies used are large, very detailed, contain similar
terms (or even duplicates) and often the annotator does not
know exactly how to spell a term. We experienced that au-
tocompletion helps professional annotators to find the right
terms, but only when the widget is properly configured.

In an extensive study with these professionals we gathered
the requirements for term search from multiple thesauri. Dur-
ing an iterative process of prototyping and discussion we
tested several configurations of autocompletion widgets. A
screenshot of the interface of the final prototype is shown in
Fig. 7. On the right side the interface contains three auto-
completion fields to lookup terms from thesauri and a free
text field to input dates. One of the results of the study is
that the three autocompletion fields all required a different
configuration.

The interface model for the autocompletion widget, as de-
scribed in the previous section, is based on our findings at the
Rijksmuseum. We acknowledge that a single study might
not be sufficient to determine a complete interface model
that applies to other domains. On the other hand, all three
autocompletion fields required different features and config-
urations. Furthermore, the three fields cover generic types
of resources (persons, thesaurus concepts and locations) that
are very likely to be used in other domains as well.

We first introduce the vocabularies used in the annotation in-
terface, before describing the configuration of the person and

5

Figure 7. Interface of the Rijksmuseum subject annotation interface. The four annotation fields in the right column are configured to support effective
search in different thesauri.

concept autocompletion fields. We used three thesauri with
persons: Getty’s United List of Artist Names4 (ULAN), DB-
Pedia’s RDF version of person data5 from Wikipedia (WP)
and the Rijkmuseum’s own people thesaurus. All three the-
sauri were mapped to the generic “Person” scheme of ULAN.
For places we also used, Getty’s Thesaurus of Geographic
Names6 (TGN) and aligned it with the Rijksmuseum’s place
thesaurus. We used SKOS for the geographical contain-
ment relations in combination with location-specific proper-
ties from TGN. The concepts used in this domain were also
modeled or mapped to SKOS. In addition to the Rijksmu-
seum’s events thesaurus we added the RKD IconClass7

thesaurus and, as a source for more general terms, W3C’s
RDF version of Princeton’s WordNet8.

Autocompletion on persons
Listing 1 shows the configuration of the autocompletion wid-
get in the Who field. The selection is restricted to resources
of type ulan:Person. Note, the class of persons in the Ri-
jkmuseum thesaurus and DBPedia people are subclasses of
ulan:Person. We only consider literal values of skos:prefLabel
and rdfs:label, where preference is given to the skos:prefLabel

4http://www.getty.edu/research/conducting
research/thesauri/ulan/
5http://dbpedia.org/
6http://www.getty.edu/research/conducting
research/thesauri/tgn/
7http://www.iconclass.nl/
8http://www.w3.org/2006/03/wn/wn20/

as this is first in the list. The results are organized alphabeti-
cally on the label and first showing all resources with an ex-
actly matching label. The professionals at the Rijksmuseum
explicitly indicated that they expect alphabetical ordering for
a list of person names. As the autocompletion field gives ac-
cess to the resources from different overlapping vocabularies
it turned out essential to smush equivalent results to a single
suggestion.

The primary display contains three labels in addition to the
matching label. The :altLabel is only shown in case the
match was not found an a skos:prefLabel. Thus, when a hit
is found by a skos:altLabel it’s skos:prefLabel is also shown.
The :endLabel contains the value of the skos:inScheme
property. Thus indicating the thesaurus the term comes from.
The professional annotators requested this information as
terms are suggested from their own as well as other the-
sauri. The :subLabel shown beneath the main label is
composed out of the values of four properties. Together
these compose a short biography of the person. The anno-
tators use this information to disambiguate similar persons
from one another. The secondary display contains an image
depicting the person and a longer biography.

6

http://www.getty.edu/research/conducting_research/thesauri/ulan/
http://www.getty.edu/research/conducting_research/thesauri/ulan/
http://dbpedia.org/
http://www.getty.edu/research/conducting_research/thesauri/tgn/
http://www.getty.edu/research/conducting_research/thesauri/tgn/
http://www.iconclass.nl/
http://www.w3.org/2006/03/wn/wn20/

: P e r s o n A u t o c o m p l e t e
a : Autocomple te ;
: l a b e l ” s e a r c h p e r s o n ”@en ;
: l a b e l ” zoek p e r s o o n ”@nl ;
: s e l e c t i o n [

: t a r g e t u l a n : Pe r so n ;
: match (skos : p r e f L a b e l r d f s : l a b e l)

] ;
: o r g a n i z a t i o n [

: s o r t (” e x a c t ” ” l a b e l ”) ;
: smushing ” t r u e ”

] ;
: p r i m a r y D i s p l a y [

: s u b L a b e l (
u l a n : r o l e
u l a n : n a t i o n a l i t y
u l a n : b i r t h D a t e
u l a n : d e a t h D a t e

) ;
: a l t L a b e l skos : p r e f L a b e l ;
: p o s t L a b e l skos : inScheme

] ;
: s e c o n d a r y D i s p l a y [

: d e s c r i p t i o n u l a n : b i o g r a p h y ;
: image v r a : s u b j e c t

] .

Listing 1. Person autocompletion allows autocompletion on instances
of ulan:Person. The results are sorted first on exact matches and then
alphabetically on the matching label. Results that are defined as equiv-
alent (skos:exactMatch or owl:sameAs) are smushed. Each result is
displayed with extra information. The primary display contains a short
biography composed out of the values different properties and it con-
tains the thesaurus source. The secondary display contains a full de-
scription and an artwork that depicts the person.

: Concep tAutocomple t e
a : Autocomple te ;
: l a b e l ” s e a r c h c o n c e p t ”@en ;
: l a b e l ” zoek c o n c e p t ”@nl ;
: s e l e c t i o n [

: t a r g e t [
owl : unionOf (

i c : Concept ;
wn : S y n s e t ;
rma : Event

)
] ;
: ma tchLabe l (skos : p r e f L a b e l r d f s : l a b e l) ;

] ;
: o r g a n i z a t i o n [

: s o r t (” e x a c t ” ” i n l i n k ”) ;
: g roup skos : inScheme

] ;
: p r i m a r y D i s p l a y [

: s u b L a b e l skos : b r o a d e r
] ;
: s e c o n d a r y D i s p l a y [

: d e s c r i p t i o n skos : n o t e ;
: image v r a : s u b j e c t

] .

Listing 2. Concept autocompletion allows autocompletion on instances
of skos:Concept. The results are sorted first on exact matches and then
on the number of inlinks. The suggestions from the same thesaurus are
grouped together. In the secondary display a tree is shown with the all
ancestors and direct children of the result.

Autocompletion on thesaurus concepts
Listing 2 shows the configuration of the autocompletion wid-
get in the What field. We only describe the configurations

that are different from the Who field. The target is defined as
an owl:union of three classes, iconclass and wordnet terms
and the events from the Rijksmuseum thesaurus. The re-
sources from the three thesauri are each shown in a separate
group. The Rijksmuseum wanted to give preference to terms
from IconClass and only use WordNet as a backup. Organiz-
ing the results in different groups allowed the annotators to
easily compare terms from the different thesauri to one and
other. Within each group the results are ordered by the num-
ber of links that are pointing to the resource. Intuitively, this
means that the popular resources are shown first.

Use case 2: K-Space Semantic News Browser
ClioPatria is used to support search and browsing of news
items [11]. These news items are described with multime-
dia standards, news codes from the IPTC standard and ad-
ditional metadata from various thesauri modeled (mapped)
to SKOS. The additional metadata is acquired through ex-
traction of named entities such as persons, organizations and
locations, from the textual stories. The extracted named en-
tities are mapped to existing resources available on the Web,
such as locations from Geonames, and persons from DBPe-
dia. The data set in this use case consists of news items from
2006, including the World Cup football.

A screenshot of the faceted interface from ClioPatria is shown
in Fig. 6. The top part contains four facets: document
type, creation site, event and person. The re-
sult viewer, visible below the facets, contains news items
related to the keyword “zidane”. The current query is shown
in the header of the result viewer. The user can extend the
query by selecting values from the facets. In this case the
value “photo” is selected from the document type facet.
The other facets only contain values that correspond with
the current result set. Note, this prevents the user from con-
structing queries that lead to an empty result set.
: C r e a t i o n S i t e

a : F a c e t ;
: l a b e l ” c r e a t i o n s i t e ”@en ;
: t a r g e t (newsml : newsItem) ;
: p r o p e r t y newsml : l o c C r e a t e d ;
: h i e r a r c h y [

a : H i e r a r c h y ;
: l a b e l ” Geonames l o c a t i o n h i e r a r c h y ”@en ;
: r e l a t i o n geo : p a r e n t F e a t u r e ;
: r o o t geo : World

] .
: D e p i c t e d P e r s o n

a : F a c e t ;
. . .

: ContentView
a : FacetView ;
: l a b e l ” c o n t e n t ”@en ;
: l a b e l ” c o n t e n t ”@nl ;
: t a r g e t (newsml : newsItem ;
: f a c e t s
(: DocumentType

: D e p i c t e d E v e n t
: D e p i c t e d P e r s o n
: C r e a t i o n S i t e

) .

Listing 3. Excerpt of the facet and facet view configuration for a news
demonstrator

7

RDF store

API

web application
generator

Server Client

"static HTML"

JS widget 1

JS widget 2

JS widget n

controller

Figure 8. Simplified overview of the ClioPatria architecture, based
on server-side generation of application pages with parameterized
JavaScript widgets. Widgets request data from the server using AJAX
and communicate with other widgets through a central controller.

Listing 3 shows an excerpt of the facet and facet view con-
figuration for a news demonstrator. The creationSite facet
applies to instances of the class NewsItem, as indicated by
the value of the :facetTarget property. This facet will
display values from the property newsml property locCre-
ated. As the values are part of a geographical containment
hierarchy, this is used for the organization. In the screenshot
of Fig. 6 the creationSite facet it is visible that initially only
the children of the hierarchy root (e.g. World) are shown
(e.g. Europe, Africa and Asia). When one of these values
is selected, the children available through the hierarchyRe-
lation, geo:parentFeature, become available. Four facets are
grouped into a facet view that covers the content of news
items. In a similar fashion other facets can be grouped into
views on the production and document characteristics. The
facet view menu shown in the screenshot on the top left al-
lows the user to select one of these facet views.

IMPLEMENTATION
The interface models have been implemented within the open
source semantic search and annotation ClioPatria framework 9.
The overall architecture of ClioPatria is described in [12],
here we focus on the parts that are relevant for the inter-
face model. Figure 8 shows a simplified overview of the
ClioPatria architecture. Server-side the system has a single
triple store that contains all RDF data including the interface
models and the mappings between the domain specific data
and these models. In response to a request from the user the
server generates an HTML page with static HTML and pa-
rameterized JavaScript widgets. ClioPatria uses the interface
mappings to generate the appropriate parameter settings for
the widgets. For example, the JavaScript initialization func-
tion of the Who field in the annotation application would be
generated as:

9http://e-culture.multimedian.nl/software/
ClioPatria

<script type="text/javascript">
var WhoField = new YAHOO.mazzle.AutoComplete(

"elInput",
"elContainer",
"/api/autocomplete",
{ callback: {fn:addTag, args:["person"]},

filter:[type:"ulan:Person"],
match:[skos:prefLabel, rdfs:label],
sort:["exact", "label"],
smushing:true,
info:{

altLabel:"skos:prefLabel",
subLabel:[

"ulan:role", "ulan:nationality",
"ulan:birthDate", "ulan:deathDate"

],
postLabel:"skos:inScheme",
description:"ulan:biography",
image:"vra:subject"

}
});

</script>

The widgets populate themselves by requesting JSON data
from the server through one of the HTTP APIs. The con-
figuration of the widget determines what information is re-
quested. Widgets within a single web application commu-
nicate with each other through a controller, which is itself
a JavaScript component. For example, selecting a value in
one facet sends an update message to the controller that up-
dates the internal state and tells the registered components to
update themselves. A client-side widget can also be used in-
dependent of ClioPatria’s web application generator and the
RDF interface model by manually defining the JavaScript
function in a static HTML page.

CONCLUSION AND FUTURE WORK
We have shown how we can use RDF to model the interface
widgets of a specific Web application, an abstract intermedi-
ate data model, and the mapping between these two models.
We argue that this approach can provide developers with an
interface early in the development cycle of a Semantic Web
application. As long as the chosen widgets, associated inter-
face model and intermediate model prove to be sufficiently
rich, all the developer needs to do is to provide the mappings
(in RDF) between his own data model and the intermedi-
ate model, using skills that Semantic Web developers can be
safely assumed to possess. This approach also allows Se-
mantic Web UIs to be built on top of existing Web tool kits,
without sacrificing the heterogeneity and semantic richness
of the underlying data.

A first drawback of our approach is that our interface models
are typically specific for a given interface widget or toolkit.
If the same RDF data needs to be displayed the same way
in multiple interfaces, a vocabulary such as Fresnel, that ab-
stracts from the interface technology used, might be a bet-
ter alternative. In our applications, we have aimed to fully
exploit the functionality of the interface widgets, and have
traded the advantages of extra functionality against general-
ity. Other developers might make a different trade off.

A second drawback surfaces when a given set of widgets and
the associated interface model provides insufficient function-

8

http://e-culture.multimedian.nl/software/ClioPatria
http://e-culture.multimedian.nl/software/ClioPatria

ality. Then, extensions will require traditional Web scripting
skills to develop extensions to widget set, typically involv-
ing a mix of HTML, CSS and JavaScript. But it also requires
skills to be able to model these extensions in RDF or OWL,
and this combination of skills might be hard to find.

For future work, we would improve upon our current inter-
face model and its implementation. The current implemen-
tation is realized as an integral part of the ClioPatria server
framework, and we are investing ways to be able to apply
the same approach to create interfaces on top of arbitrary
SPARQL endpoints.

ACKNOWLEDGEMENTS
The dataset used in the NewsML demonstrator has been kindly
provided by AFP. We like to thank all members of the Mul-
timediaN E-Culture Project for creating an environment that
allows experimenting with Semantic Web technologies in a
real life setting. In particular, we like to thank Jan Wiele-
maker for the cooperative development on ClioPatria and
the inspiring feedback. We also like to thank our colleagues
Raphaël Troncy and Michiel Kauw-A-Tjoe for the contribu-
tions to ClioPatria and setting up the news demonstrator.

This research was supported by the MultimediaN project
funded through the BSIK programme of the Dutch Govern-
ment and by the European Commission under contract FP6-
027026, Knowledge Space of semantic inference for auto-
matic annotation and retrieval of multimedia content — K-
Space.

REFERENCES
1. M. Hildebrand, J. van Ossenbruggen, A. Amin,

L. Aroyo, J. Wielemaker, and L. Hardman. The design
space of a configurable autocompletion component.
Technical Report INS-E0708, CWI, November 2007.

2. M. Hildebrand, J. van Ossenbruggen, and L. Hardman.
/facet: A Browser for Heterogeneous Semantic Web
Repositories. In The Semantic Web - ISWC 2006, pages
272–285, November 2006.

3. D. Huynh, D. Karger, and R. Miller. Exhibit:
Lightweight structured data publishing. In 16th
International World Wide Web Conference, Banff,
Alberta, Canada, 2007. ACM.

4. E. Hyvönen, M. Junnila, S. Kettula, E. Mäkelä,
S. Saarela, M. Salminen, A. Syreeni, A. Valo, and
K. Viljanen. MuseumFinland — Finnish museums on
the semantic web. Journal of Web Semantics,
3(2-3):224–241, October 2005.

5. E. Mäkelä, K. Viljanen, O. Alm, J. Tuominen,
O. Valkeapää, T. Kauppinen, J. Kurki, R. Sinkkilä,
T. Känsälä, R. Lindroos, O. Suominen, T. Ruotsalo, and
E. Hyvönen. Enabling the semantic web with
ready-to-use web widgets. In Proceedings of the First
Industrial Results of Semantic Technologies Workshop,
ISWC2007, November 11 2007.

6. m.c. schraefel, D. A. Smith, A. Owens, A. Russell,
C. Harris, and M. L. Wilson. The evolving mSpace
platform: leveraging the Semantic Web on the Trail of
the Memex. In Proceedings of Hypertext 2005, pages
174–183, Salzburg, 2005.

7. E. Pietriga, C. Bizer, D. R. Karger, and R. Lee. Fresnel:
A browser-independent presentation vocabulary for rdf.
In I. F. Cruz, S. Decker, D. Allemang, C. Preist,
D. Schwabe, P. Mika, M. Uschold, and L. Aroyo,
editors, International Semantic Web Conference,
volume 4273 of Lecture Notes in Computer Science,
pages 158–171. Springer, 2006.

8. G. Schreiber, A. Amin, L. Aroyo, M. van Assem,
V. de Boer, L. Hardman, M. Hildebrand,
B. Omelayenko, J. van Ossenbruggen, A. Tordai,
J. Wielemaker, and B. J. Wielinga. Semantic annotation
and search of cultural-heritage collections: The
multimedian e-culture demonstrator. J. Web Sem.,
6(4):243–249, 2008.

9. SIMILE. Longwell RDF Browser.
http://simile.mit.edu/longwell/, 2003-2005.

10. O. Suominen, K. Viljanen, and E. Hyvönen.
User-centric faceted search for semantic portals. In
Proceedings of the European Semantic Web Conference
ESWC 2007, Innsbruck, Austria. Springer, June 4-5
2007.

11. R. Troncy. Bringing the iptc news architecture into the
semantic web. In A. P. Sheth, S. Staab, M. Dean,
M. Paolucci, D. Maynard, T. W. Finin, and
K. Thirunarayan, editors, International Semantic Web
Conference, volume 5318 of Lecture Notes in
Computer Science, pages 483–498, Berlin Heidelberg,
November 2008. Springer.

12. J. Wielemaker, M. Hildebrand, J. van Ossenbruggen,
and G. Schreiber. Thesaurus-based search in large
heterogeneous collections. In A. P. Sheth, S. Staab,
M. Dean, M. Paolucci, D. Maynard, T. W. Finin, and
K. Thirunarayan, editors, International Semantic Web
Conference, volume 5318 of Lecture Notes in
Computer Science, pages 695–708, Berlin Heidelberg,
November 2008. Springer.

13. K.-P. Yee, K. Swearingen, K. Li, and M. Hearst.
Faceted Metadata for Image Search and Browsing. In
CHI ’03: Proceedings of the SIGCHI conference on
Human factors in computing systems, pages 401–408,
Ft. Lauderdale, Florida, USA, 2003. ACM Press.

9

	Introduction
	Related Work
	Combining the Yahoo! User Interface Library with the ClioPatria Interface Model
	Example 1: Autocompletion
	Example 2: Faceted browsing

	Configuring interface widgets: a mapping task
	Use case 1: Rijksmuseum annotation user experiment
	Autocompletion on persons
	Autocompletion on thesaurus concepts

	Use case 2: K-Space Semantic News Browser

	Implementation
	Conclusion and Future Work
	Acknowledgements
	REFERENCES

