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ABSTRACT
The dynamic social network visualizer “DySoN” (Dynamic
Social Networks) aims at understanding patterns and struc-
tural changes in dynamic social networks that evolve over
time via an interactive visualization approach.
As an alternative and supplementation to the numerous other
approaches to visualization of social network data and as an
attempt to overcome some of the drawbacks of these ap-
proaches, DySoN interactively visualizes streaming event
data of social interactions by an interactive three-dimensional
model of interpolated NURBS ”tubes”, representing activ-
ity and social proximity within a given set of actors during
a given time period by using three dimensions of temporal
information mapping: spatial density (tube distance), tube-
color and tube-diameter.
We use a self assembled large collaboration network of Jazz
musicians with a straightforward semantics for the computa-
tion of relation strengths for the evaluation of the approach.
We also discuss applications of the concept for awareness
services in mobile peer to peer social networks, which ex-
hibit a vivid measurable social micro dynamics in time and
space.

Author Keywords
Mobile Dynamic Social Networks, Awareness Services

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation: Miscellane-
ous—Optional sub-category

MOTIVATION & OBJECTIVES
Social relations and social structures respectively are clearly
of a dynamical nature. Many dynamical aspects of social
relations investigated by social science are rather long term
which is partly due to the properties of the investigation in-
struments such as questionnaires. In many cases the dy-
namic model of these properties of social relations (such
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as the dynamics of relation-type or relation-intensity) is a
time-averaged view of a faster underlying relational dynam-
ics. For example we might view the intensity of a friendship
relation which is instantiated in time and space only four
times in the last month as less strong in that month com-
pared to a month where the same friendship was instantiated
eight times. With a more fine granular time view (e.g. weeks
or days), the four times of seeing your friend may be concen-
trated in a short time interval, e.g. two days, while the rest
of the month there was no interaction at all, thus yielding
high intensity in these two days and very low intensity for
the other 28 days of the month. Thus the different underly-
ing time granularities may give rise to the notions of social
micro- and macro-dynamics and social micro- and macro-
contexts respectively. In that view the social macro-context
dynamics is determined by or at least strongly related to the
the underlying social micro-context(s).

With respect to a rather small time and space granularity,
everybody has an idea of such social micro-contexts or dy-
namic social structures, at least unconsciously, because some
of the mechanisms that organize mankind into groups and
hierarchies can be observed in real life when people form
changing patterns with their bodies in time and space while
interacting socially. In order to get an abstract view of re-
lationships and their instantiations between actors in a so-
cial network, one can build upon these ”physical patterns”
which may be measured and modeled mathematically, es-
pecially when considering mobile interaction schemes with
community- or social network platforms [32]. Besides such
physical expressions of social relations a wealth of other
highly dynamical features or indicators of social relations
exist that may be modeled (see section ).

However dynamical the social network model or social con-
text may be: One of the most basic awareness class ser-
vice which can be built upon such a dynamic social network
model is a visualization which allows to intuitively recog-
nize social distance and group structures. There is a clear
demand for methods and software tools, that are able to ana-
lyze and visualize the evolution of networks [50, p. 1208ff].
Limited by visual and geometric constraints, a few basic
metaphors for temporal or dynamic graphs and networks
have been developed so far, including line graphs with sum-
mary statistics, series or animations of 2D- or 3D-snapshots,
graph overlays, node position tracing and 2,5D or 3D-models
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with a temporal z axis. But the requirements regarding the
aspects of visualization in general once formulated by Bran-
des [5, p. 7ff] - substance, design and algorithm - can still not
be regarded as solved issues and thus still need to be worked
on. We aim at proposing a solution to dynamic social net-
work analysis that on the hand maintains the mental map
well over time and thus allows a quick overview of the dy-
namics of the relations in a set of people (thus avoiding the
clutter of some older approaches) as well as an interactive
UI that allows to focus on more specific aspects and analyze
them in more depth.

Such a method should take the language of social patterns
mentioned before and carry it forward into the temporal di-
mension, and it should combine the “big picture” with ex-
act metrics of the development of a social network during
a given period of time, following Ben Shneiderman’s “Vi-
sual Information-Seeking Mantra”: “Overview first, zoom
and filter, then details-on-demand” [55]. Thus such an ap-
proach has to be able to adequately mediate between the so-
cial macro dynamics and micro dynamics.

The main objective of this paper is to discuss such an in-
teractive visualization approach and to verify the suitability
of the technology used and of its visual metaphor by case
studies.

The application should allow to inspect structures of social
networks from the “connectedness perspective”, as defined
by Brandes [5, p. 33]. It is intended to support awareness in
communities and in (mobile) social networks with dynami-
cally changing relations and to give quick visual answers to
questions on varying time- (and thus space-)scales like the
following: Which are central, important or prominent actors
and which are peripheral? How does the centrality of actors
develop over time? Are there long-lasting partnerships be-
tween actors? Are there visible structures in the network?
How do structures evolve? How do actor attributes correlate
with visible network structures?

Proposing convincing approaches as possible solutions to
these questions would allow a user to effectively analyze a
social environment (e.g. personal or professional) and main-
tain an overview of the dynamics within such an environ-
ment. An interesting field of application are e.g. open inno-
vation processes in dynamically evolving fields (such as life
sciences) where many actors are involved and such questions
can be asked with respect to e.g. co-invention-activities.

RELATED WORK
There are various approaches to graph drawing (see [47, 30]
for a good overview) and social network visualization in
general (classic examples are e.g. [36, 5, 15, 57, 43, 38, 31,
42]. Furthermore there are also many approaches to visual-
ization of dynamic graphs (related to our work are e.g. [12,
13, 7, 17, 16, 8, 27, 6, 20, 23, 24, 14, 18, 1, 9, 25, 19, 29]
and general time related data (good overview: [2])(related
to our work are especially [45] and (as a general paradigm)
Hgerstrands space-time-paths [33]) (works that are inspired
by that paradigm: [44, 61, 60, 54, 49])). Furthermore (partly

based on all this previous work) some approaches on dy-
namic social network visualization (roughly related to our
approach are e.g. [11, 10, 22, 52, 59, 46] have been pro-
posed. We have compiled a more detailed review of the cited
related work in [35].

PARADIGMS & DESIGN RATIONALS
In order to work towards the the goals defined in section ,
we will combine and adapt several existing techniques in a
unique way and add some new ideas:

Space-time path We apply Hgerstrand’s “space-time path”
principle [33] to social networks. Euclidean distances in the
two spatial dimensions are derived from social proximity
data which in our Jazz musician network is deduced from
co-recordings. Similar approaches are used in physics when
visualizing world-lines of particles in special relativity the-
ory.

Force-directed layout Social structures in a given time-
slice is visualized by a force-directed layout mechanism, as
demonstrated for example by Krempel [41] [42] [43], Dekker
[15] and others. We use a modified version of the Frucht-
erman-Reingold algorithm [28], which will be adapted to
support our notion of the “crowd” metaphor following [48].
This original metaphor assumes that most activity within
a large group takes place in an inner circle which is sur-
rounded by the outer fringe with passive people. Important
metrics for this arrangement are the diameter of the circle
and the thickness of the ring, permeability and sharpness of
the borders, and the space between rings, if there are several
ones. This crowd metaphor can be assumed to apply to so-
cial micro-contexts (covering small space-time-”intervals”)
as well as macro-contexts (covering larger space-time-”in-
tervals”) and although it has been stated for groups, it can
be used to intuitively visualize general social structures or
networks.

Stacked graphs The inherent temporal graph structure is in-
spired by “combined”, “stacked” or “stratified” graph layout
methods as shown by Erten et al. [23] [24] and Dwyer and
Eades [20] [19] and others. Where time is represented by the
third dimension of a 3D vizualization.

Mental map We use strategies from dynamic graph draw-
ing inspired by solutions described by Branke [8], Diehl et
al. [17][16] and Brandes [5] to minimize changes between
subsequent layouts and to preserve the “mental map” [21]
so that the evolution of structures can be followed through
time. preserving the mental map between time slices is one
of the key problems in dynamic graph visualization.

Tube metaphor We introduce the “tube” metaphor, an en-
hancement of the “worm” metaphor, which was introduced
by Mathews and Roze [45], and enhanced by Dwyer and
Eades [20] [19] and Ware et al. [56] to implement the space-
time path. Instead of aggregated cones or simple inter-tem-
poral edges we use tubular shapes extruded from interpola-
ted NURBS curves to achieve a better compliance with the
continuity principle of Koffka’s “Gestalt Theory” [40] (cited
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after [37]).

(a) Stack of weighted
graphs.

(b) Straight intertempo-
ral edges.

(c) Interpolated in-
tertemporal edges.

(d) Tubular intertempo-
ral edges.

Figure 1. 2.5D Graph stack without and with intertemporal edges.
(Time-Dim.:in z-Direction)

Abstraction from nodes and edges The tube metaphor used
will abstract completely from graph edges to prevent occlu-
sion, to help focus on the structure and to reveal pure spatio-
temporal movement (spatial proximity corresponds to social
proximity). Omitting the edges for an increased overview is
a quite common technique (see e.g. [51]).

(a) Tube-only display (b) Color mapping

(c) Color and radius mapping

Figure 2. Tube-only model without and with mapping of degree cen-
trality onto temporal axis.

Continuous-time model Temporal attributes are represented
by a simplified continuous-time model, where social events
are aggregated according to rules, similar to (but admittedly
not as flexible as) the model suggested by Bender DeMoll

and McFarland [4] [50]. We thus realize a simple way of
mediating between social micro- and macro dynamics. For
a more fine grained mediation the stack of rules for event
aggregation need to be refined further and made adjustable
to the specific social domain.

Time-line and section view A simplified time-line-based
approach is used to show two-dimensional layouts of indi-
vidual “frames” or “time-slices”, similar to the “phase plot”
mechanism by Bender DeMoll and McFarland [3].

Temporal attribute mapping One network-related attribute
can be mapped to the nodes’ spatial coordinates (see above).
Two additional syntactic or semantic actor attributes can be
mapped to the temporal extension of the tubes, one by a
continuous color gradient and the other by radius transition.
Similar approaches have already been suggested [19, p. 101].

Interactive GUI An interactive, explorative three-dimensi-
onal user interface built of a Java3D universe is used, com-
bined with a tabular database view and a two-dimensional
graph layout. Interactivity is a crucial feature of dynamic so-
cial network visualization since zooming and change of per-
spective are necessary in order to complete one’s overview
of the development of a social structure. For a detailed dis-
cussion of the features of the GUI see [35].

DEFINITIONS, ASSUMPTIONS & REALIZATION
Our uni-modal dynamic social network model is a temporal
multi-graph G(t) = (V,E(t)) with a set of actors V and
an undirected, weighted time dependent set of edges E(t)
which are known at discrete points in time E(ti) and are
then interpolated. Each G(ti) is called a time slice. Each
pair of nodes can be connected by an arbitrary number of
edges. The weights of the edges are normalized to one via
wnorm(e) = w(e)/wmax and will be interpreted as ”social
proximity” values. Furthermore we assume that every node
has a profile which can be modeled as an attribute value pair
list. Such node profiles may contain attributes with slow dy-
namics (such as long term interests, fields of study, name,
sex etc.) as well as attributes with fast dynamics (context
parameters) such as location, current activity etc.
From a more abstract point of view the edges also have a pro-
file which contains such elements as the weight of the edge at
a given point in time and the history of instantiation events
of the underlying social relation over time. Thus the edge
weights of a social macro-dynamics perspective are aggre-
gated via domain specific rules from social micro-dynamics
(specific social events or instantiations of social relations re-
spectively).

It is clear that that there are two main perspectives, which
can be applied when analyzing social structures: the view-
point of connectedness (relational view) and the viewpoint
of profile (entity view) Brandes’ view [5, p. 32ff].

The profile viewpoint is realized in our approach by the con-
cept that two real valued attributes (if existing) can be addi-
tionally visualized in our ”‘tube-only” model via color and
radius of the tubes. The connectedness perspective is at-
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tributed in our approach through the weight of the edges,
which corresponds to social proximity. There are numerous
approaches in literature for computing social proximity, for
example either by considering the number of different paths
between two actors [34, ch. 7, p. 9], from the calculation of
geodesic path length[34, ch. 7, p. 14] or as a combination of,
e.g., weighted adjacency and geodesic distance [15].
The current version of DySoN assumes that the edge weights
(w(e(ti)) (in the sense of a social macro-context) are be
computed by accumulating social events (in the sense of a
social micro-context) that take place in [ti−1, ti] involving
the adjacent actors {vl, vm} of e. We assume that these
events are situative instantiations of longer lasting social re-
lations. Naturally, as has been discussed before, the domain
of application dictates what a good distinction between the
social micro context (social ”events”) and the social macro-
context (longer lasting social relations) should be. The nest-
ing of social dynamic tiers can be broken down to very fine
space and time granularities: E.g. from a precise modeling
of single communication acts between two people on a party
as elementary events of micro-context, continuing with a tier
that aggregated the events from the previous layer and views
the event of visiting the party alongside the events of visit-
ing the zoo together two days later as elementary events and
finally a layer that aggregates these events over a month and
views months of intense interaction as elementary events.
Each tier (coarser time / space granularity) aggregates re-
lation instantiations (events) from a lower tier (finer time /
space granularity).
The investigation of this type of modeling is subject to cur-
rent research of one of the authors. We aim at investigating
the modeling assumption that the intensity and other aspects
of higher tier relations can be readily deduced from the prop-
erties of lower tier relation events.

It is possible to substitute social proximity with (profile-
)similarity depending on the application domain. Analo-
gous to the nesting of social proximity with respect to time
and space granularity (social micro- / macro-context) one
can use for the similarity calculation profile parameters with
high dynamics (such as current micro-location) or averaged
variants of these (e.g. coarse area of usual ”residence”).
Again as in the case of relational dynamics we assume that
the macro-tier contains averages of the next lower micro-
tier. Some Profile elements with very slow dynamics (such
as name) that are not averaged versions of related profile el-
ements with higher dynamics are often less useful for simi-
larity calculations.

One of the main goals for the relative layout of the planar
graphs corresponding to each time slice is that the layout of
consecutive time slices is supposed to preserve the ”‘men-
tal map” [21] as much as possible. This paradigm inter-
feres with mapping the social distances as exactly as pos-
sible. We solve these conflicting demands by using a modi-
fied Fruchterman-Rheingold [28] (FR) layout algorithm for
each slice as a compromise, also because it is easy to adapt
to our purposes (edge weights as measures of social prox-
imity). We furthermore use the standard approach of us-
ing the resulting layout of slice ti as initial layout for the

Fruchterman-Reingold application for the next slice at ti+1.
Other algorithms like Kamada and Kawai [39], would be less
suited for us because of their usage of the graph-theoretical
path distance. While Kamada-Kawai is in fact in use for
social network visualization in some applications, the path
length between two nodes is less obvious to interpret that
the weight of the individual relation. We assume that the ap-
plication domain for a dynamic social network visualization
implies a highly directly connected social network where
two nodes are very likely to be directly connected.
In order to further preserve the mental map, we assume that a
node should remain at it is current position as far as possible
if its degree does not change substantially, so we introduce
an additional attractive force from the nodes position dur-
ing the FR-run to its position in the previous time slice with
a strength proportional to its degree change. Using relative
weight changes instead of degree changes (weights drop to /
raise from zero) would be another possibility.

The original FR algorithm uses a ”spring-paradigm” between
nodes to compute a suitable layout, which uses a repulsive
force fr = −k2/δ and an attractive force fa = δ2/k be-
tween two nodes, where δ is the euclidean distance between
them and k (being roughly analogous to the spring constant
or ”natural length of the spring” is a simple function of the
visualization canvas dimensions w and h and some experi-
mental constant c). The forces are directed along the vec-
tor from node one to node two. We modify the original
approach by several means. First we introduce our edge
weights by proportionally strengthening the attractive force
f ′a = fa ∗ w(e). The second modification introduces an
additional attractive gravitational force (inspired by [26]) to
the center of the slice canvas. This accounts for the effect
occurring with pure FR, that isolated nodes are pushed to
the canvas borders by the lack of attractive force. In order
to emphasize the impact of centrality, our additional attrac-
tive gravitational force is fg = δ2 ∗ (deg(v) + d)/k where
deg(v) is the degree of v, δ its distance to the center and d
an additional steering parameter.

The complexity of the original FR algorithm has been stated
as Θ(|V |2 + |E|) [28, p. 1138] and our complete layout al-
gorithm can be shown [35] to have an overall complexity of
O(|V |2s) where s is the number of time slices. So our mod-
ifications to not add substantially to the overall time com-
plexity. It may be worthwile to study the effects of intro-
ducing node ”inertia” for mental map preservance and using
the result layout from the previous time slice as the starting
layout for the modified FR algorithm in the current layout
with respect to the number of iterations it takes the modi-
fied FR-Algorithm to converge in each time slice. One can
expect a substantially decreased number of iterations, since
we start from a ”good previous solution” and limit the ”node
mobility”.

Having computed the positions of each node in each time
slice, these points have to be interpolated with a suitable
smooth curve (∈ C2 (see [58] for an easy motivation)) which
is the center of the tube for that particular node (actor). We
evaluated interpolation polynomials, Bezier curves and sim-
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Figure 3. Decay of the Miles Davis Band in the early seventies.

ple B-splines for the purpose and found severe drawbacks for
each [35] and arrived at NURBS (Non Uniform Rational B-
Splines) [53] of degree 3 as the best choice for our problem.
See [35] on how we compute knot points and control points
or these curves. We then build our tube surfaces as cylindri-
cal NURBS surfaces around the interpolation curves.

Concerning the ”profile” dimensions color and radius we
chose (for the current prototype) to visualize node degree
with color and radius, because n our paradigm the edges are
missing completely. The color paradigm is to chose ”hot
colors for (nodes) tubes with a high node degree (these are
perceived to be ”socially active” in the given time slice) and
also to give them larger radii the more connected they are.
[35] describes the details of these calculations.

STUDY: THE JAZZ-NETWORK
As a first step to verify the suitability of the approach we col-
lected an extensive dataset on musical collaborations in Jazz
and checked from our own pre-existing knowledge of the
Jazz-scene whether the tool was able to fulfill the goals. We
crawled on of the numerous publicly available, Wiki-style
(socially crafted) discography data-base Discogs (www.dis-
cogs.com) with a snowball approach [34] and substituted
missing biographical data of the musicians by a supplemen-
tal crawling process of Wikipedia. This resulted in 96798
musicians who played on 224173 tracks on 37773 albums.
Thus the resulting social network is in fact a two mode net-
work (mode one: musicians, mode two: albums). Each mu-
sical co-contribution of two musicians for a track is viewed
as an event and accumulated to the temporal weight of the
respective edge in the respective time slice. Adding up these

contributions for a given time slice is the domain specific
heuristic rule, which connects social micro-dynamics (bro-
ken down to individual instantiations of social ”co-recording”
relations) and macro-dynamics (e.g. when applying a time
slice of one year. Depending on the domain of interest these
rules need to be adapted.

We made substantial efforts to avoid counting re-releases.
The color corresponds to the node degree as explained be-
fore and the tube radius is also set to reflect the node degree
to support the color coding.

Figure 3, for example, depicts the breakup of a band which
played together for some years. The involved musicians all
started solo careers and their own band projects after one
successful key recording with the band leader. You see the
effect that tubes are crossing here, though the clique has not
changed, which has to be addressed by improving the incre-
mental layout algorithm.
Figure 4 shows an actor, who has been central for some years
before relations to the other participating actors break. This
happened due to a couple of solo recordings, which do not
provide the actor with high centrality.
Our findings with several other examples were, that the sys-
tem was able to meaningfully visualize phenomena in the
Jazz scene over the last decades. A further evaluation would
have to empirically manifest this claim by doing an exten-
sive study with a set of Jazz experts.
Future research will also investigate the assumption that the
system’s basic design metaphors are also suitable for the
vizualization of social relations on a shorter time scale (e.g.
as part of awareness services in mobile social network appli-
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Figure 4. Actor with period of high degree centrality.

cations).

UI/PARAMETERS OF THE CURRENT DYSON APPLICA-
TION
Besides several mainteneance UI elements (e.g. for manip-
ulation the actor set), DySoN allows to interactively control
and manipulate the visualization in order to analyze certain
details. The user can turn and zoom the visualization in sev-
eral ways. Furthermore the geometry of the tubes can be
manipulated by e.g. setting the overall tube diameter (e.g.
depending on the number of actors). Lighting and color
models can also be adjusted: E.g. Degree Transparency is
one approach to improve the readability of the model (es-
pecially those with high numbers of actors and thus a high
density of tubes) by making those parts of the tubes trans-
parent, that represent a time period with a degree of less than
the value set by the Threshold slider. The amount of trans-
parency can be adjusted by the Opacity slider. Furthermore
the user can interactively determine the profile parameters
that are mapped to the radius and color temperature.
There a lot of other parameters which can be adjusted. See
[35] for details.

APPLICATION OF DYSON AS AWARENESS SERVICE EL-
EMENT IN MOBILE P2P SOCIAL NETWORKS
Existing social network platforms such as Facebook often
are mainly focused on long term social relations, thus at the
social macro-context. What is happening on a finer time
scale (except for some aspects such as Online-awareness etc)
is only covered by some platforms such as Twitter. But these
platforms often tend to focus on the individual user and ne-

glect a fine grained dynamic social network model and, in
general, the user has to take care for himself about modeling
his social relations. Truly mobile social network models and
services which are socially sensitive as well as context sensi-
tive will allow for semi-automatic detection and modeling of
social relations on all time / space scales (the social micro-
and macro-contexts) and will make intimate use of the re-
sulting ”multi-dynamic” social network. A possible service
could be e.g. a ”socio-context-cast” communication service
that allows to publish messages to certain combined social
and physical contexts (”Send a message to all persons that
attended Jim’s party yesterday”).
Because of the highly dynamic nature of social micro-contexts,
it is not reasonable to assume that continuously uploading
such information to a central social networking platform is
reasonable. Furthermore the more fine grained the collected
social information is, the more pressing are the privacy is-
sues connected with an unconstrained publication of such
data. Instead of such an Orwellian central platform, one
would switch to a decentralized social networking paradigm
such as NoseRub.
Clearly, awareness services are one of the key features of
such a mobile P2P style social networking framework. DySoN
can be used to visualize either social proximity (”what’s the
(micro-/meso-/macro-dynamics of my ‘friendship’ relations?”)
or social similarity (e.g. co-locatedness (”who is in my vicin-
ity?”)) on all time scales.
In order to do that, we have to work on heuristics that ag-
gregate the events on the micro-scale into social relationship
strengths (or proximity values) on the next higher level.
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SUMMARY, DISCUSSION AND FUTURE WORK
We discussed a novel method to visualize dynamic social
networks. A case study of collaborating Jazz musicians re-
vealed that the approach indeed matches the goals that were
formulated in section . On a more general level an empiri-
cal user study would have to be conducted. Since it is very
hard to measure the ”quality” of a visualization the design
of such a study would have to involve standardized data and
a comparison with other approaches which is difficult since
every existing other approach aims at slightly different as-
pects. Since the dynamics of social networks is coming more
more to the focus of attention (especially due to mobile in-
teraction paradigms), the problem of useful dynamic social
network visualization still remains an interesting topic for
the future.
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