
What Algorithms for Urban Routing on Mobile Devices?

Tristram Gräbener, Alain Berro, Yves Duthen
IRIT-UT1, UMR 5505, CNRS

Université de Toulouse
2 rue du doyen Gabriel Marty 31042 Toulouse Cedex 9, France

{tristram.grabener,alain.berro,yves.duthen}@irit.fr

Abstract: This article presents a model for the multimodal shortest path problem.
That model allows to use existing shortest path algorithm implementation and thus is
very efficient and optimal. The performances are well suited for a mobile device like
a smartphone.

We also present how multiobjective optimization improves the user interface by
presenting similar solutions without any user interaction.

Finally we present the architecture of our prototype and give some experimental
results.

Introduction

Today many mobile devices offer a GPS and a navigation system. However, those nav-
igation systems are mostly oriented for car drivers: when a pedestrian mode exists, it is
limited to the road network. It would be much more interesting to provide a complete
itinerary to the destination including public transportation and possibly others means of
transports like rental bikes. This problem is called multimodal shortest path.

However, such a system would be difficult to use as the user preferences are difficult
to model and annoying to input on a mobile device: the best itinerary will depend on
the user’s personality, the weather, the luggage he might carry etc. Therefore presenting
multiple solutions will allow the user to choose the most suited path with no need to enter
the preferences.

We present in the first section a model for multimodal path calculation and the situations
where good performances can be expected. The second sections presents multiobjective
optimization and how it can greatly simplify the interaction on mobile devices. Then we
present the architecture we developed for our prototype and some implementation details.

1 Multimodal transportation

Multimodal transportation consists in combining during a single itinerary multiple modes
of transportation. An example would be to take the bike until the subway station, the
subway and finally walk until the destination. Even if it becomes more and more popular

among users and transportation network planing, only little research has been carried out
about calculating optimal itineraries.

1.1 Graphs and paths

A valuated and oriented graph is a tuple G(N , E ,F) where N = {1, 2, . . . , n} is the set
of n nodes, E ⊆ N ×N the set of m = |E| edges and F = {Fij | (i, j) ∈ E} the m cost
functions associated to each edge.

A path p = (pi)i∈1,...,l is an ordered sequences of l = |p| nodes such that two successive
nodes are connected by an edge ∀i ∈ 1, . . . , l − 1, (pi, pi+1) ∈ E . The cost of a path is
calculated by applying the cost function of each arc F (p) = Fp1p2◦Fp2p3◦...◦Fpl−1pl

(t0).
Traditionally, an edge (i, j) has a constant weight wij . Hence the cost function is Fij(t) =
wij + t.

Modeling a road network as a graph is straightforward: the intersections are the nodes,
and street sections are the edges. The weight on the edges can be length of the link or the
travel time through that link.

Between a source s and a dwell t, out of all possible paths, the one that has smallest cost is
called shortest path. Many algorithms were developed to find the shortest path. The most
known is probably Dijkstra’s that runs in O(n ·m) [Dij59]. It is proven that it finds the
shortest path as long as cost functions are increasing. The formal proof and more general
conditions of optimality can be found in [GM]. By selecting carefully the datastructures,
it is possible to have the algorithm that runs in O(n · log n) [FT87].

1.2 Shortest path for public transport

Public transport are also modeled as a graph: every station is represented by a node and
an edge exists if there is a line directly connecting two station. In the literature, to handle
the waiting time at a station, it is usual to add a waiting time on every node to define it
when searching for the shortest path. This requires to use specific algorithms as it can be
more interesting to wait longer on a node (for example to catch a direct train instead of
an omnibus). A graph is said to be FIFO (first in, first out) if there is no such situation:
leaving earlier from a node guaranties to arrive earlier.

The figure1 depicts a non FIFO graph: to go the node 4, the fastest way is to use only
the car, while to reach the node 3, the fastest way is to use the subway. Therefore it an
algorithm like Dijkstra’s cannot be used.

An other approach is to split the day into q time intervals and to expand the graph to a time-
space graph. For every node of the original graph, q nodes a created. The edges in the
time-space graph exist if it is possible to go from a node to an other if there is a connection
that matches the time interval of both nodes. The Chrono-SPT algorithm presented in
[PS98] calculates the shortest path in O(q ·m). The strongest aspect of this algorithm is

1 2
Car 5

3

Subway 15

Car 20

4
Foot 10

Car 3

Figure 1: Non FIFO situation

to be able to implicitly handle the time-space graph and is quite memory efficient.

Both [ZW00] used that approach to solve the multimodal shortest path problem. This
approach allowed them to solve the problem with 100 time intervals and 1000 nodes in a
few seconds. A city like Toulouse has about 10000 nodes, and 100 time intervals represent
15 minutes.

As it is pointed out in [AOPS02], there is a significant difference between computing the
fastest and the minimum cost shortest path in a dynamic network. The fastest path can
be computed in polynomial time, while minimum cost is generally NP-hard. The intuition
behind this property is that, as the cost depends on the time, it is necessary to explore every
node at any time.

1.3 A model for multimodal shortest path

The model we present in this section allows to build a graph such that the FIFO con-
straint holds for the multimodal fastest path. With this transformation and by including
the waiting time in the cost functions, our model allows the use of traditional algorithms
and existing implementations.

One graph per transport mode Each transport mode is modeled by a different graph.
The pedestrian graph and the bicycle graph will be very similar but the cost functions
will be different. Also two trains using the same tracks, will be modeled as two different
graphs if they don’t mark the same stops. The nodes of two transport modes are connected
if it is physically possible to switch from one mode to an other. The cost function on that
connexion edge reflects the time needed to switch. There will be an edge in both directions
if it is possible to switch, for example, from foot to public transportation and vice versa.
By adding edges from the bike layer to the foot layer, but the not opposite, we model the
fact that it is possible to start the itinerary by bike and once it is left somewhere, it won’t
be possible to use it again. The figure2 represents such a graph.

Bike

Foot

Self-service bike

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

Figure 2: Multiple layer model

Including waiting time in cost function Instead of using separate waiting cost, we in-
tegrate the waiting time in the cost function. Given an edge e = (i, j), the cost function
would be Fe(t) = we(t) + de where de is the duration on that edge (duration between
two bus stops) and we(t) the waiting time at the instant t until the next bus on the stop
i. Considering that between two consecutive stops a bus won’t overtake the previous one,
this graph is FIFO. As the cost functions are increasing, it is possible to use the Dijkstra
algorithm to compute the shortest path.

If the execution of the cost function is in constant time, then the global complexity of
Dijkstra’s algorithm will remain O(n · log n).

Discussion This model allows a very versatile and precise modeling of any transport
mode. It allows to use a standard algorithms and thus use existing optimized implementa-
tions. First benchmarks prove the excellent performances of that approach.

However, this models requires more memory than a compact representation. The road map
of the urban region of Toulouse (about one million inhabitants) requires 100Mb of mem-
ory. Therefore this isn’t a real problem. The most restrictive condition is that only travel
time can be optimized. Indeed any other objective depends on time (is a bus available?
What will traffic be?) and thus breaking the FIFO constraint.

As it is impossible to ignore time, in order to handle other objectives at least two objectives
have to be taken in account, hence multiobjective optimization cannot be avoided.

2 Multiobjective optimization

2.1 Benefits for a better user interface

Someone on the street with a mobile phone that is looking for the fastest itinerary will not
want to spend time setting his preferences. Furthermore setting the preferences on a mobile
device can be easily annoying. Last not least, it is not possible to save the preferences as
they will be different on every use: if it is raining or if the user has heavy luggages, he

would prefer avoiding multiple changes and long walks; on the contrary, if the weather is
nice and he has some free time, he could enjoy walking even if it isn’t the fastest way.

The objectives that are the most likely to be optimized are: time, cost, pollution (for exam-
ple CO2 emissions), number of changes and comfort. It is not possible to optimize each
objective separately: the cheapest and less polluting will always be walking, but probably
not the preference of the user. Aggregating the objectives into a single one is not desirable
as it requires a precise configuration of the user.

Multiobjective optimization tries to optimize simultaneously all objective. The immediate
consequence is that there is not one optimal solution, but a set of equivalent solutions: no
solution beats any other solution on all objectives. This set is called the Pareto front.

Once the Pareto front is calculated, all solutions can be suggested to the user. According
to his preferences, the user will choose the ideal itinerary.

Multiobjective optimization is a great tool to make interaction easier between a navigation
system and the user as only the destination has to be entered. However calculating the
Pareto front is not trivial.

2.2 Algorithms

Because most multiobjective optimization problems are NP-difficult and because there is
not one, but multiples optima, most algorithms are based on genetic algorithms. More gen-
erally a population based algorithm is well suited to model the multiplicity of the solutions.
For a general presentation of this topic, the reader can refer to [CVVL02].

However genetic algorithm aren’t well suited for the point-to-point shortest path problem.
Indeed, the usual genetic algorithms operators (mutation and crossing) aren’t very natural
to adapt to shortest path. Most research on multiobjective shortest path has been carried
on exact algorithms. Several exact approaches are compared in [GM01].

Some others metaheuristics have been adapted to solve multiobjective problems like the
particle swarm optimization or the ant colony optimization ([CVVL02] and [ASG07].

Ant colony optimization has been used successfully on some multiobjective problems, but
not yet (to our knowledge) to the multiobjective shortest path problem. We believe that it
is an promising approach, as this metaheuristic is inspired by ants searching for shortest
paths.

3 Implementation and architecture

We created a prototype to demonstrate that our approach allows very fast itinerary calcu-
lations that scales well on bigger networks. The prototype is a web page where the user
only has to select the start, destination and start time. The calculated itinerary is shown on
a map detailing the transport modes to use.

Figure 3: Screen shot of the prototype

3.1 Data

In our prototype we support pedestrian and self-service bikes in urban area of Toulouse.
This bike rental system is available in most big cities in France and some other European
cities: with a subscription it is possible to take and deposit a bike on any station. Toulouse
has about 250 stations, and Paris about 1500.

The road network come from OpenStreetMaps1 while the bike stations are available as
XML files on the official website 2.

3.2 Implementation

On the client side (web-browser) we use OpenLayers, a javascript application, that allows
to display the pre-rendered cartography and arbitrary paths.

On the server side, we use the implementation of Dijkstra’s algorithm of the Boost Graph
Library in C++. A Ruby on Rails application communicates with the client through Ajax.
This allows an easy to use and reactive interface while minimizing the amount of data
exchanged.

An example of the interface can be seen on figure3: a calculated itinerary using two dif-
ferent transport modes can be seen.

1http://www.openstreetmap.org/
2http://www.velo.toulouse.fr/

0

50

100

150

200

250

300

0 10000 20000 30000 40000 50000 60000 70000

Times (ms)

Nodes of the road network

Average time

♦♦♦♦♦♦♦♦♦♦ ♦ ♦ ♦ ♦ ♦ ♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦

♦
Worst time

×××××
×××

×× ×
×
×

×

×××
×

×
×

×

×

×

×

×

×××
×××

×

×

××

××
×

××
×
×

×

××

×

×

×

×
×
×

Figure 4: Multimodal shortest path computation time

3.3 Benchmarks

The benchmark were made by running 1000 itinerary calculations by choosing random
start and destination nodes on 50 different graph sizes. This allows to test the average
performance and how it scales. The tests were run on a 1.66GHz laptop.

The graphs are squares centered on Toulouse having a width between 2 a 100km, repre-
senting from 361 nodes up to 62020. The results are displayed on figure4. We can see
that both the average and the worst running time out of 1000 calculations increase linearly
with the number of nodes.

Those results are significantly better than in previous works. Therefor there is good hope
to have an responsive software once we port our algorithm on a mobile device.

4 Future developments

The current models lacks of public transportations, and we hope to be able to include them
very soon. We also believe that the model could easily be expanded to greater regions, like
whole France. However this will require a bit of work in order to add heuristics that will
limit the exploration space. Going on a even larger scale (the world for example) will be
more problematic as it will not be possible to load all the data in memory.

While the current prototype works perfectly on a desktop computer, it has issues on mobile
devices as the user interface is not designed for devices without pointing device or with
touchscreen. We however don’t think that creating a mobile version of our interface will
be too difficult if the itinerary calculation is done on a remote server (approach used on
the iPhone or on Android). Running the calculation on the mobile device will be more
challenging as we get again a limited memory. Furthermore, or prototype requires about
15 seconds to build the graph. While it is negligible on a server (it is built only once and
then kept in memory), it will be annoying for a mobile user.

Last but not least, the implementation of a multiobjective shortest path algorithm and its
integration in our prototype would make difference with existing systems. As it also the
most interesting part from a research point of view, we currently focus on that part.

Conclusions

We presented in this article a representation model for the multimodal shortest path prob-
lem. It allows to match closely the reality and to use existing implementation of shortest
path algorithms. Benchmarks shows its excellent performances on realistic situations and
scales well.

We made a small introduction to multiobjective optimization and how it would help to
make simple user interfaces that match precisely user preferences without any interaction.
It is therefore a great tool for mobile devices where input possibilities are limited.

Acknowledgement

We would like to thank the company SODIT (http://www.sodit.eu) and the region
Midi-Pyrénées for their financial participation on this research topic. We also thank the
OpenStreetMap community for high quality of the maps they produce.

References

[AOPS02] R.K. Ahuja, J.B. Orlin, S. Pallottino, and M.G. Scutella. Minimum Time and Minimum
Cost-Path Problems in Street Networks with Periodic Traffic Lights. Transportation
Science, 36(3):326–336, 2002.

[ASG07] Ines Alaya, Christine Solnon, and Khaled Ghedira. Ant Colony Optimization for Multi-
objective Optimization Problems. In 19th IEEE International Conference on Tools with
Artificial Intelligence (ICTAI), pages 450–457. IEEE Computer Society, October 2007.

[CVVL02] C.A.C. Coello, D.A. Van Veldhuizen, and G.B. Lamont. Evolutionary Algorithms for
Solving Multi-Objective Problems. Kluwer Academic Publishers, 2002.

[Dij59] E.W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathe-
matik, 1(1):269–271, 1959.

[FT87] M.L. Fredman and R.E. Tarjan. Fibonacci heaps and their uses in improved network
optimization algorithms. Journal of the ACM (JACM), 34(3):596–615, 1987.

[GM] Michel. Gondran and Michel. Minoux. Graphs, dioı̈ds and semirings: new models and
algorithms. Springer.

[GM01] F. Guerriero and R. Musmanno. Label Correcting Methods to Solve Multicriteria Short-
est Path Problems. Journal of Optimization Theory and Applications, 111(3):589–613,
2001.

[PS98] S. Pallottino and M.G. Scutella. Shortest path algorithms in transportation models:
classical and innovative aspects. Kluwer Academic Publishers, 1998.

[ZW00] A. Ziliaskopoulos and W. Wardell. An intermodal optimum path algorithm for multi-
modal networks with dynamic arc travel times and switching delays. European Journal
of Operational Research, 125(3):486–502, 2000.

