
International Conference on
Logic Programming ICLP 2008

Udine, Italy

9-13 December 2008

ICLP 2008 Workshop

ALPSWS 2008:
Applications of Logic Programming to the

(Semantic) Web and Web Services
12 December 2008

Proceedings

Editors:

J. de Bruijn, S. Heymans, D. Pearce, A. Polleres, and E. Ruckhaus

c© Copyright 2008 front matter by the editors; individual papers by the individ-

ual authors. Copying permitted for private and scientific purposes. Re-publication of

material in this volume requires permission of the copyright owners.

ii

Preface

This volume contains the papers presented at the third international workshop
on Applications of Logic Programming to the (Semantic) Web and Web Services
(ALPSWS2008) held on the 12h of December 2008 in Udine, Italy, as part of
the 24th International Conference on Logic Programming (ICLP 2008).

The advent of the Semantic Web promises machine readable semantics and a
machine-processable next generation of the Web. The first step in this direction
is the annotation of static data on the Web by machine processable information
about knowledge and its structure by means of Ontologies. The next step in this
direction is the annotation of dynamic applications and services invocable over
the Web in order to facilitate automation of discovery, selection and composition
of semantically described services and data sources on the Web by intelligent
methods; this is called Semantic Web Services.

Many workshops and conferences have been dedicated to these promising ar-
eas, mostly covering generic topics. The ALPSWS workshop series has a slightly
different goal. Rather that bringing together people from a wide variety of re-
search fields with different understandings of the topic, we have tried to focus on
the various application areas and approaches in this domain from the perspective
of declarative logic programming (LP).

The workshop provides a snapshot of the state of the art of the applications
of LP to the Semantic Web and to Semantic Web Services, with the following
main objectives and benefits:

– Bring together people from different sub-disciplines of LP to focus on tech-
nological solutions and applications from LP to the problems of the Web.

– Promote further research in this interesting application field.

The 2008 edition of ALPSWS includes work on the topic of integrating ontolo-
gies and rules, but also integration with machine learning. Furthermore, we can
see an interest in integration with database technology, a prerequisite for large-
scale adoption of Semantic Web technology. Then, two important challenges in
reasoning on the Web are addressed, namely combining open- and closed-world
reasoning and reasoning with large data sets. Finally, there is an application of
logic programming to service description and drug discovery.

November 2008 The Editors

iii

Workshop Organization

Organizing Committee

Jos de Bruijn
Stijn Heymans
Axel Polleres
David Pearce
Edna Ruckhaus

Programme Committee

Carlos Damasio
Thomas Eiter
Cristina Feier
Gopal Gupta
Claudio Gutierrez
Giovambattista Ianni
Uwe Keller
Markus Kroetzsch
Zoe Lacroix
Gergely Lukácsy
Wolfgang May
Enrico Pontelli
Hans Tompits
Alejandro Vaisman
Maria Esther Vidal
Gerd Wagner

Additional Reviewers

Aidan Hogan
Thomas Krennwallner
Francesco Ricca
Mantas Simkus

iv

Table of Contents

Full Papers

Upgrading Databases to Ontologies . 1
Gisella Bennardo, Giovanni Grasso, Nicola Leone, and Francesco Ricca

A Sound and Complete Algorithm for Simple Conceptual Logic Programs 15
Cristina Feier and Stijn Heymans

Combining Logic Programming with Description Logics and Machine
Learning for the Semantic Web . 29

Francesca Alessandra Lisi

A Semantic Stateless Service Description Language . 43
Piero Bonatti and Luigi Sauro

Large scale reasoning on the Semantic Web . 57
Balázs Kádár, Peter Szeredi and Gergely Lukácsy

Reasoning on the Web with Open and Closed Predicates . 71
Gerd Wagner, Adrian Giurca, Ion-Mircea Diaconescu, Grigoris Antoniou,
Anastasia Analyti and Carlos Damasio

Short Paper

A Preliminary Report on Answering Complex Queries related to Drug
Discovery using Answer Set Programming . 85

Olivier Bodenreider, Zeynep Coban, Mahir Doganay, Esra Erdem and Hilal
Kosucu

v

Upgrading Databases to Ontologies⋆

Gisella Bennardo, Giovanni Grasso, Nicola Leone, Francesco Ricca

Department of Mathematics, University of Calabria, 87036 Rende (CS), Italy
{lastname}@mat.unical.it

Abstract. In this paper we propose a solution that combines the advan-
tages of an ontology specification language, having powerful rule-based rea-
soning capabilities, with the possibility to efficiently exploit large (and,
often already existent) enterprise databases. In particular, we allow to “up-
grade” existing databases to an ontology for building a unified view of the
enterprise information. Databases are kept and the existing applications
can still work on them, but the user can benefit of the new ontological view
of the data, and exploit powerful reasoning and information integration
services, including: problem-solving, consistency checking, and consistent
query answering. Importantly, powerful rule-based reasoning can be carried
out in mass-memory allowing to deal also with data-intensive applications.

Kewwords: Ontologies, Rules, Databases, Answer Set Programming,
Information Integration, Consistent Query Answering.

1 Introduction

In the last few years, the need for knowledge-based technologies is emerging in sev-
eral application areas and, in particular, both enterprises and large organizations
are looking for powerful instruments for knowledge-representation and reasoning.
In this field, ontologies [1] have been recognized to be a fundamental tool. Indeed,
they are well-suited formal tools that provide both a clean abstract model of a
given domain and powerful reasoning capabilities. In particular, they have been re-
cently exploited for specifying terms and definitions relevant to business enterprises,
obtaining the so-called enterprise/corporate ontologies. Enterprise/Corporate on-
tologies can be used to share/manipulate the information already present in a
company; in fact, they provide for a “conceptual view” expressing at the inten-
sional level complex relationships among the entities of enterprise domains. In this
way, they can offer a convenient access to the enterprise knowledge, simplifying the
retrieval of information and the discovery of new knowledge through powerful rea-
soning mechanisms. However, enterprise ontologies are not widely used yet, mainly
because of two major obstacles: (i) the specification of a real-world enterprise on-
tology is an hard task; and, (ii) usually, enterprises already store their relevant
information in large databases. As far as point (i) is concerned, it can be easily
seen that developing an enterprise ontology by scratch would be a time-consuming
and expensive task, requiring the cooperation of knowledge engineers with domain
⋆ Supported by M.I.U.R. within projects “Potenziamento e Applicazioni della Program-

mazione Logica Disgiuntiva” and “Sistemi basati sulla logica per la rappresentazione
di conoscenza: estensioni e tecniche di ottimizzazione.”

1

experts. Moreover, (ii) the obtained specification must incorporate the knowledge
(mainly regarding concept instances) already present in the enterprise information
systems. This knowledge is often stored in large (relational) database systems, and
loading it again in the ontologies may be unpractical or even unfeasible. This hap-
pens because of the large amount of data to deal with, but also since databases
have to keep their autonomy (considering that many applications work on them).
In addition, when data residing in several autonomous sources are combined in a
unified view, inconsistency problems may arise [2, 12] that cannot be easily fixed.

In this paper we describe a solution that combines the advantages of an ontol-
ogy representation language (i.e., high expressive power and clean representation
of data) having powerful rule-based reasoning features, with the capability to ef-
ficiently exploit large (and, often already existent) enterprise databases. Basically,
if we are given some existing databases, we can analyze their schema and try to
recognize both entities and relationships they store. This information is exploited
for “upgrading” the database to an ontology. Here, ontology instances are “virtu-
ally” specified (i.e. they are linked, not imported) by means of special logic rules
which define a mapping from the data in the database to the ontology. The re-
sult is a unified ontological specification of the enterprise information that can be
employed, for browsing, editing and advanced reasoning. Moreover, possible incon-
sistent information obtained by merging several databases is dealt with by adopting
data-integration techniques.

We developed these solutions in OntoDLV [3–5], a system that implements a
powerful logic-based ontology representation language, called OntoDLP, which is
an extension of (disjunctive) Answer Set Programming [6–8] (ASP) with all the
main ontology constructs including classes, inheritance, relations, and axioms.1 On-
toDLP combines in a natural way the modeling power of ontologies with a power-
ful “rule-based” language allowing for disjunction in rule heads and nonmonotonic
negation in rule bodies. In general, disjunctive ASP, and thus OntoDLP, can rep-
resent every problem in the complexity class ΣP

2 and ΠP
2 (under brave and cautious

reasoning, respectively) [9].
Summarizing, the main contributions of this paper are:

– an extension of OntoDLP by suitable constructs, called virtual class and virtual
relation, which allows one to specify the extensions of ontology concepts/relations
by using data from existing relational databases;

– the design of a rewriting technique for implementing Consistent Query Answer-
ing (CQA) [2, 10–13] in OntoDLV. CQA allows for obtaining as much consistent
information as possible from queries, in case of global inconsistent information.

Moreover, we efficiently implemented the proposed extensions in the OntoDLV
system by allowing for the evaluation of queries in mass memory. In this way,
OntoDLV can seamlessly provide to the users both an integrated ontological view
of the enterprise knowledge and efficient query processing on existing data sources.

1 The term “Answer Set Programming” was introduced by Vladimir Lifschitz in his
invited talk at ICLP’99 to denote the declarative programming paradigm originally
described in [6]. Since ASP is the most prominent branch of logic programming in
which rule heads may be disjunctive, the term Disjunctive Logic Programming (DLP)
refers explicitly to ASP. OntoDLP takes its name from ontologies plus DLP.

2

2 The OntoDLP language

In this section we briefly overview OntoDLP, an ontology representation and rea-
soning language which provides the most important ontological constructs and
combines them with the reasoning capabilities of ASP. For space limitations we
cannot include a detailed description of the language. The reader is referred to [4,
5] for details. Moreover, hereafter we assume the reader to be familiar with ASP
syntax and semantics, for further details refer to [6, 14].

More in detail, the OntoDLP language includes, the most common ontology
constructs, such as: classes, relations, (multiple) inheritance; and the concept
of modular programming by means of reasoning modules. A class can be thought
of as a collection of individuals. An individual, or object, is any identifiable entity
in the universe of discourse. Objects, also called class instances, are unambiguously
identified by their object-identifier (oid) and belong to a class. A class is defined by
a name (which is unique) and an ordered list of typed attributes, identifying the
properties of its instances. Classes can be organized in a specialization hierarchy
(or data-type taxonomy) using the built-in is-a relation (multiple inheritance). The
following are examples of both class and instance declarations:

class person(name :string , father :person,mother :person, birthplace :place).
class employee isa {person}(salary : integer , boss :person).
john : person(name :“John”, father : jack ,mother :ann, birthplace :rome).

Relationships among objects are represented by means of relations, which, like
classes, are defined by a (unique) name and an ordered list of attributes. As in
ASP, logic programs are sets of logic rules and constraints. However, OntoDLP
extends the definition of logic atom by introducing class and relation predicates,
and complex terms (allowing for a direct access to object properties). Logic rules
can be exploited for defining classes and relations when their instances can be “de-
rived” (or inferred) from the information already stated in an ontology. This kind
of intensional constructs are called Collection classes and Intensional Relations.
Basically, collection classes collect instances defined by another class and perform
a re-classification based on some information which is already present in the ontol-
ogy; whereas, intentional relations are similar to (but more powerful of) database
views. Importantly, the programs (set of rules) defining collection classes (and in-
tensional relations) must be normal and stratified (see e.g., [15]). For instance, the
class richEmployee can be defined as follows:

collection class richEmployee(name :string){
E : richEmployee(name :N) :− E : employee(name :N, salary :S), S > 1000000.}

Moreover, OntoDLP allows for special logic expressions called axioms modeling sen-
tences that are always true. Axioms provide a powerful mean for defining/checking
consistency of the specification (i.e., discard ontologies which are, somehow, con-
tradictory or not compliant with the domain’s intended perception). For example,
we may enforce that a person cannot be father of himself by writing: :− X :
person(father :X).

In addition to the ontology specification, OntoDLP provides powerful reasoning
and querying capabilities by means of the language components reasoning modules
and queries. In practice, a reasoning module is a disjunctive ASP program conceived
to reason about the data described in an ontology. Reasoning modules are identified
by a name and are defined by a set of (possibly disjunctive) logic rules and integrity

3

constraints; clearly, the rules of a module can access the information present in the
ontology.

An important feature of the language is the possibility of asking conjunctive
queries, that, in general, can involve both ontology entities and reasoning modules
predicates. As an example, we ask for persons whose father is born in Rome as
follows: X : person(father :person(birthplace :place(name :“Rome”)))?

3 Virtual Classes and Virtual Relations

In this section we show how an existing database can be “upgraded” to an OntoDLP
ontology. In particular, the new features of the language, called virtual classes and
virtual relations, are described by exploiting the following example.

Suppose that a Banking Enterprise asks for building an ontology of its domain
of interest. This request has the goal of obtaining a uniform view of the knowledge
stored in the enterprise information system that is shared among all the enterprise
branches.

Table Attributes

Branch branch-name, branch-city, assets
Customer customer-name, social-security, customer-street, customer-city
Depositor customer-social-sec , account-number, access-date

Saving-account account-number, balance, interest-rate
Checking-account account-number, balance,overdraft-amount

Loan loan-number , amount, branch-name
Borrower customer-social-sec, loan-number
Payment loan-number , payment-number, payment-date, payment-amount

Table 1. The Banking Enterprise Database.

The schema of the existing database of the enterprise is reported in Table 1.
The first step that must be done is to reconstruct the semantics of the data stored
in this database. It is worth noting that, in general, a database schema is the
product of a previously-done modeling step on the domain of interest. Usually,
the result of this conceptual-design phase is a semantic data model that describes
the structure of the entities stored in the database. Likely, the database engineers
exploited the Entity-Relationship Model (ER-model) [17], that consists of a set
of basic objects (called entities), and of relationships among these objects. The
ER-model underlying a database can be reconstructed by reverse-engineering2 or
can be directly obtained from the documentation of the original project.

Suppose now that, we obtained the ER-model corresponding to the database
of Table 1. In particular, the corresponding ER diagram is shown in Figure 1.
From this diagram it is easy to recognize that the enterprise is organized into
branches, which are located into a given place and also have an asset and a unique
name. A bank customer is identified by its social-security number and, in addi-
tion, the bank stores information about customer’s name, street and living place.
Moreover, customers may have accounts and can take out loans. The bank offers
two types of accounts : saving-accounts with an interest-rate, and checking-accounts
with a overdraft-amount. To each account is assigned a unique account-number,
and maintains last access date. Moreover, accounts can be held by more than one
2 Note that, the reverse-engineering task is not trivial, and even automatic methods may

fail to reconstruct the original semantics [18].

4

customer

customer-name
customer-street

customer-city

social-security

borrower

account

account-number balance

loan-payments

payment

payment-number

payment-date

payment-amountdepositor

loan

loan-number amount

isa

savings-account

Interest-rate

checking-account
overdraft-amount

loan-branch

branch

branch-name
assets

branch-city

Fig. 1. The Banking Enterprise ER diagram

customer, and obviously one customer can have various accounts (depositors). Note
that, in the case of accounts, the ER-model exploits specialization/generalization
construct. A loan is identified by a unique loan-number and, as well as accounts,
can be held by several customers (borrowers). In addition, the bank keeps track
of the loan amount and payments and also of the branch at the loan originates.
For each payment the bank records the date and the amount; for a specific loan a
payment-number univocally identifies a particular payment.

All this information represents a good starting point for defining an ontology
that describes the banking enterprise domain.3 As a matter of fact, we can easily
exploit it both for identifying ontology concepts and for detecting the database
tables which store data about ontology instances. In practice, we can “upgrade”
the banking database to a banking ontology by creating an OntoDLP (base) class,
with name c, for each concept c in the domain; and by exploiting logic rules that
specify a mapping between class c and its instances “stored” in the database. A
class c defined by means of mapping rules is called virtual, because its instances
come from an external source; but, as far as reasoning and querying are concerned
they are like any other class directly specified in OntoDLP. More in detail, a virtual
class is defined by using the keywords virtual class followed by the class name,
and by the specification of class attributes; then, instances are defined by means
of rules containing special atoms that allows for accessing the source database.

First of all, external data sources are specified directly in OntoDLP, as instances
of the built-in class dbSource as follows:

db1 : dbSource(connectionURI :“http : //db.banking .com”, user :“myUser”,
password :“myPsw”).

Here, the object identifier db1 is used to identify the enterprise database. Note that
such a mechanism allows to build an ontology starting from one or more databases,
just specifying more dbSources; moreover, this source identification strategy is suf-
ficiently general to be (in the future) extended also to access other kind of sources
3 Note also that, our goal is not to provide a tool for reasoning on ER schemata; instead,

we allow the ontology engineer to design and “populate” an ontology that exploits data
about the instances that is stored in relational databases.

5

beside databases. Now, given the source identifier for the enterprise database, we
model the branch entity as follows:

virtual class branch(name :string , city :string , assets : integer){
f(BN) : branch(name :BN , city :BC , assets :A) :−

branch@db1(branch-name :BN , branch-city :BC , assets :A).}
The rule acts as mapping between the data contained in table branch and the

instances of class branch by exploiting a new type of atom, called sourced atom. A
sourced atoms consist of a name (branch), that identifies a table ”at” (@) a specific
database source (db1), and a list of attributes (that match the table schema).
Attributes can be filled in by constants or variables.

Note that, whereas databases store values, ontologies manage instances (which
are not values) that are uniquely identified by oids.4 We provided a specific so-
lution for facing with this problem, in which values appearing in the databases
are kept, someway, distinct from object identifiers appearing in the ontology. In
particular, functional object identifiers, suitably built from database values, are ex-
ploited for identifying ontology instaces. In our example, the head of the mapping
rule contains the functional term f(BN), that builds, for each instance of branch,
a functional object identifier composed of the functor f containing the value of the
name attribute stored in the table branch. In practice, if the branch table stores a
tuple (”Spagna”,”Rome”, 1000000), then the associated instance in the ontology
will be: f(”Spagna”) : branch(name :”Spagna”, city :”Rome”, assets :1000000). In
this way, the functional object identifier f(”Spagna”) is built from the data value
”Spagna”, keeping the data alphabet distinct from the one of object identifiers.

Note that name is a key for table branch. Because object identifiers in On-
toDLP uniquely identify instances, it is preferable to exploit only keys for defining
functional object identifiers. This simple policy ensures that we will obtain an ad-
missible ontology whenever the source database is unique and consistent; whereas,
if more than one source database is exploited for defining ontology entities, some
admissibility constraint for the ontology schema (like e.g. referential integrity con-
straints, unicity of object identifiers, etc. see [3])) might be violated. To face with
this problem our system supports data integration features which are described in
Section 4. Clearly, in order to ensure the maximum flexibility, the responsibility of
writing a “right” ontology mapping is left to the ontology engineer.

We say that a virtual class declared by means of sourced atoms is in logical
notation. We provided also an alternative notation for accessing database tables,
called SQL notation. In particular, the virtual class branch can be equivalently
defined as follows:

virtual class branch(name :string , city :string , assets : integer){
f(BN) : branch(name :BN , city :BC , assets :A) :−

[db1, ”SELECT branch-name AS BN , branch-city AS BC , assets AS A
FROM branch ”]}

Here, a special atom which contains an SQL query is used in the place of a
sourced one. Formally, a SQL atom consists of a pair [db object identifier, sql
query] enclosed in square brackets. The db object identifier picks out the database
on which the sql query will be performed.

Consider now the customer entity. Also here, we define a virtual class as follows:
4 This is the well-known impedance mismatch problem [19, 20].

6

virtual class customer(ssn :string ,name :string , street :string , city :string){
c(SSN) : customer(ssn :SSN ,name :N , street :S , city :C) :−

customer@db1(social-security :SSN , customer -name :N , customer -street :S ,
customer -city :C).}

The functional term c(SSN) is used here in order to assign to each instance a
suitable functional object identifier built on the social -security attribute value.
Note that, a fresh functor is used for each virtual class. In this way, functional
object identifiers belonging to different classes are kept distinct. In our example,
the customer and the branch class instances are made disjoint by using functor f
and c, respectively.

Following the same methodology, we define a virtual class for the loan entity:

virtual class loan(number : integer , loaner :branch, amount : integer){
l(N) : loan(number :N , loaner : f (L), amount :A) :−

loan@db1(loan-number :N , branch-name :L, amount :A).}

Note that, the loan class has an attribute (loaner) of type branch. In this case,
functional terms are carefully employed in order to maintain referential integrity.
As shown above, the mapping uses the functional term f(L) to build values for
the loaner attribute. Basically, since the branch class use the functor f to build its
object identifiers, then we also use the same functor where an object identifier of
branch is expected.

In the following, we exploit the same idea to model the payment entity:

virtual class payment(ref -loan : loan,number : integer , payDate :date,
amount : integer){

p(l(L), N) : payment(ref -loan : l(L),number :N , payDate :D , amount :A) :−
payment@db1(loan-number :L, payment-number :N , payment-date :D ,
payment-amount :A).}

Also in this case we deal with referential integrity constraints by using a proper
functional term l(L) where a loan object identifier is expected (ref -loan attribute);
moreover, since payments are identified by a pair (payment-number, relaive loan)
each instance of payment will be identified by a functional object identifier with
two arguments: one of these is a functional object identifier of type loan; and, the
other is the loan number.

As far as accounts are concerned, we know from the ER-model that they are
specialized in two types: saving-accounts and checking-accounts. This situation can
be easily dealt with by exploiting inheritance (see Section 2). Thus, we first define
a virtual class named account as follows:

virtual class account(number : integer , balance : integer).

and, then, we provide two virtual classes, savingAccount and checkingAccount,
namely, which are declared to be both subclasses of account :

virtual class savingAccount isa {account}(interestRate : integer){
acc(N) : savingAccount(number :N , balance :B , interestRate :I) :−

saving-account @db1(account-number :N , balance :L, interest-rate :I).}

7

virtual class checkingAccount isa {account}(overdraft : integer){
acc(N) : checkingAccount(number :N , balance :B , overdraft :I) :−

checking-account @db1(account-number :N , balance :L, overdraft-amount :I).}

In order to conclude our “upgrading” process, we have to model the relation-
ships holding among the concepts in the banking domain. To deal with this prob-
lem, OntoDLP allows for defining also virtual relations. For instance, the ER di-
agram of Figure 1 shows that customers and loans are in relationship through
borrower and depositor. Hence, we define two virtual relations as follows:

virtual relation borrower(cust :customer , loan : loan){
borrower(cust :c(C), loan : l(L)) :−

borrower@db1(customer -social-sec :C , loan-number :L).}
virtual relation depositor(cust :customer , account :account , , lastAccess :date){
depositor(cust :c(C), account :acc(A), lastAccess :D) :−

depositor@db1(customer -social-sec :C , account-number :A, access-date :d).}

It is worth noting that a virtual relation differs from a virtual class mainly
because tuples are not equipped with object identifiers.

4 Data Integration Features

In previous sections we showed how a existing database can be upgraded to an
OntoDLP ontology. Basically, the instances of ontology entities are virtually popu-
lated by means of special logic rules, which act as a mapping from the information
stored in database tables to ontology instances. In general, the ontology engineer
can obtain the data from several source databases, which are combined in a unified
ontological view. This is a typical data integration scenario [2] where either some
admissibility conditions on the ontology schema (e.g., referential integrity con-
straints, unicity of object identifiers, etc.), or some user-defined axioms might be
violated by the obtained ontology.5 In order to face with this problem, a possibility
is to fix manually either the information in the sources or the ontology specifica-
tion; but, if the ontology engineer can/does not want to modify the sources, then
it would be very useful to single out as much consistent information as possible for
answering queries. In our framework, we support both possibilities by offering the
following data-integration features:

– Consistency checking: verify whether the obtained ontology is consistent or not,
and, in the latter case, precisely detect tuples that violate integrity constraints
or user defined axioms;

– Consistent Query Answering (CQA) [2, 10–13]: compute answer to queries that
are true in every instance of the ontology that satisfies the constraints and
differs minimally from the original one.

In the field of data-integration several notions of CQA have been proposed (see [12]
for a survey), depending on whether the information in the database is assumed to
be correct and complete. Basically, the incompleteness assumption coincides with
5 It is easy to see that, our approach can be classified from a in data integration point

of view as GAV (Global As View) [2] integration system.

8

the open world assumption, where facts missing from the database are not assumed
to be false. Conversely, we assume that sources are complete. This choice, common
in data warehousing, is suitable in a framework like OntoDLP that is based on the
closed world assumption; and, as argued in [13], strengthen the notion of minimal
distance from the original information.6 There are two important consequences
of this choice: integrity restoration can be obtained by only deleting tuples (note
that the empty model is always a repair [13]); and, computing CQA for conjunc-
tive queries remains decidable even when arbitrary sets of denial constraints and
inclusion dependencies are employed [13].

More formally, given an OntoDLP ontology schema Σ and a set A of axioms or
integrity constraints, let O and Or be two ontology instances7, we say that Or is a
repair [13] of O w.r.t. A, if Or satisfies all the axioms in A and the instances in Or

are a maximal subset of the instances in O. Basically, given a conjunctive query Q,
consistent answers are those query results that are not affected by axioms violations
and are true in any possible repair [13]. Thus, given and ontology instance O and a
set of axioms A, a conjunctive query Q is consistently true in O w.r.t. A if Q is true
in every repair of O w.r.t. A. Moreover, if Q is non-ground, the consistent answers
to Q are all the tuples t such that the ground query Q[t] obtained by replacing the
variables of Q by constants in t is consistently true in O w.r.t. A.

Note that, as shown in [13] the problem of computing consistent answers to
queries (CQA) in the case of denial constraints and inclusion dependencies (such
kind of constraints are suficient to model every admissibility condition on an On-
toDLP schema[3, 4]) belongs to the ΠP

2 complexity class; thus, they can be imple-
mented by using disjunctive ASP.

In the next Section, we describe how the new features were implemented and
in particular we show how to build an ASP program that implements CQA for the
above mentioned kind of axtioms in the OntoDLV system.

5 Implementation

In this section, we first briefly describe the OntoDLV system [3]; and then, we
detail the implementation of the new features, namely: virtual classes/relations
and consistent query answering.

OntoDLV. OntoDLV is a complete framework that allows one to develop
ontology-based applications. Thanks to a user-friendly visual environment, on-
tology engineers can create, modify, navigate, query ontologies, as well as per-
form advanced reasoning on them. An advanced persistency manager allows one to
store ontologies transparently both in text files and internal relational databases;
while powerful type-cheking routines are able to analyze ontology specifications
and single out consistency problems. All the system features are made available to
6 It is worth noting that, in relevant cases like denial constraints, query results coincide

for both correct and complete information assumptions.
7 Here ontology instance refers to the unique set of ground instances modeled by an

ontology specification [3]. Note that, in our settingsOntoDLP axioms can model both
denial constraints (like functional dependencies) and inclusion dependencies (in the
latter case, negation as failure is exploited).

9

software developers trough an Application Programming Interface (API) that acts
as a facade for supporting the development of applications based on OntoDLP [21].
The core of OntoDLV is a rewriting procedure (see [4]) that translates ontologies,
axioms, reasoning modules and queries to an equivalent ASP program which, in
the general case, runs on state-of-the art ASP system DLV [14]. Importantly, if
the rewritten program is stratified and non disjunctive [6–8] (and the input ontol-
ogy resides in relational databases) the evaluation is carried out directly in mass
memory by exploiting a specialized version of the same system, called DLVDB [22].
Note that, since entity specifications are stratified and non-disjunctive, queries on
ontologies can always be evaluated in mass-memory (this is to say: “by exploit-
ing a DBMS”). This makes the evaluation process very efficient , and allows the
knowledge engineer to formulate queries in a language more expressive than SQL.
Clearly, more complex reasoning tasks (whose complexity is NP/co-NP, and up to
ΣP

2 /ΠP
2) are dealt with by exploiting the standard DLV system instead.

Virtual Classes and Virtual Relations. The implementation of virtual classes
and virtual relation has been carried out by properly improving the rewriting pro-
cedure and by extending the persistency manager in order to provide both storage
and manipulation facilities for virtual entities. More in detail, we implemented two
different usage modalities: off-line and on-line.

In the first, the relevant information is extracted from the sources by exploiting
SQL queries and, is stored into the internal data structures (basically, instances
are “imported” and stored by exploiting the persistency manager). In the latter,
queries are performed directly at the sources.

The off-line mode is preferable when one wants to migrate the database into
an ontology, or when parts of a proprietary database are one-time granted to third
parties. In fact, once the import is done, the source database can be disconnected,
since instances are stored into the OntoDLV persistency manager. Obviously, de-
pending on database size, the off-line modality could be time-consuming or even
unpractical. In addition, one may want to keep the information in the original
database (which is accessed by legacy applications), in order to deal with “fresh”
information. In those cases, the on-line mode is preferable.

In both on-line and off-line modes, queries on the ontology are performed di-
rectly on mass-memory by exploiting DLVDB [22]. To this end, we extended the
rewriter procedure in such a way that DLVDB mapping statements are properly
generated. Indeed, DLVDB takes as input both a logic program and a mapping
specification linking database tables to logic predicates.

Importantly, in order to avoid the materialization of the entire ontology for
evaluating an input query, an “unfolding” technique [2, 12] has also been integrated
into the Rewriter module. Basically, when we have a query q on the ontology,
every predicate of q is substituted with the corresponding query over the sources,
provided that suitable syntactic conditions are satisfied.

As an example, if we ask for the instances of virtual class branch of Section 3
the following mapping directive for DLVDB is generated by the rewriter procedure:

USEDB “http : //db.banking .com”:myUser:myPsw.
USE branch (branch-name, branch-city , assets)
MAPTO branchPredicate (varchar,varchar,integer).

10

The above directive specifies the database (USEDB) on which the SQL query
will be performed (may be the source database). Moreover, the listed attributes
of the table branch (USE) are mapped (MAPTO) on the logic predicate branch-
Predicate. In this case, branchPredicate is the predicate name used internally to
rewrite in standard ASP the class branch.

Implementation of CQA. In order to implement consistent query answering
we developed a new procedure in the OntoDLV system. Given an ontology O, this
procedure takes as input a conjunctive query Q, and a set of integrity constraints
A and builds both an ASP program Πcqa and a query Qcqa, such that: Q is con-
sistently true in O w.r.t. A iff Qcqa is true in every answer set of Πcqa, in symbols:
Πcqa |=c Qcqa (in other words Qcqa is cautious consequence of Πcqa).

Note that, this can be done in our settings since CQA belongs to the ΠP
2

complexity class [13]. However, we decided to support in the implementation only
a family of constraints in such a way that complexity of CQA stays in co-NP. In
particular, we consider constraints of the form:

(i) :− a1(t1), · · · , an(tn), σ(t1, . . . , tn). (ii) :− a1(t),not a2(t).

where ti is a tuple and σ(t1, . . . , tn) is a conjunction of comparison literals of the
form XθY , with θ ∈ {<,>,=, 6=} and X and Y are variables occurring in t1, . . . , tn.
In the database field constraints of type (i) are called denial constraints, whereas
constraints of type (ii) allow for modeling inclusion dependencies (see [23]).8 An
inclusion dependency is often denoted by Q[Y] ⊆ P [X] (where Q and P are rela-
tions) and it requires that all values of attribute Y in Q are also values of attribute
X in some instance of P . For example, if P and Q are unary this can be ensured
in OntoDLP by writing :− Q(X),not P (X). In particular, we allow only acyclic9

inclusion dependencies, since this assumption is sufficient to guarantee that CQA
is in co-NP, see [13].

It is worth noting that, the algorithm that builds Πcqa is evaluated in OntoDLV
together with the ASP program produced by the OntoDLV rewriter. Since the
rewriting process suitably replaces OntoDLP atoms by standard ASP atoms [4],
without loss of generality we adopt in the following the standard ASP notation for
atoms. Given a query Q, and a set of constraints A, Πcqa is built as follows:

1- for each constraints of the form (i) in A, insert the following rule into Πcqa:
a1(t1) ∨ · · · ∨ an(tn) :− a1(t1), · · · , an(tn), σ(t1, . . . , tn).

2- for each atom a(t) occurring in some axiom of A, insert into Πcqa a rule:
a∗(t) :− a(t),not a.

3- for all constraints of the form (ii) in A, insert the following rules in Πcqa:
a1(t) :− a∗1(t1),not a∗2(t).

4- for each a(t) occurring in some axiom of A insert into Πcqa the following rules:
ar(t) :− a∗,not a,not a.

8 Axioms of type (ii) can model inclusion dependencies under the assumption of complete
sources, where facts that are not in the ontology are considered to be false.

9 Informally, a set of inclusion dependencies is acyclic if no attribute of a relation R
transitively depends (w.r.t. inclusion dependencies) on an attribute of the same R.

11

Finally, Qcqa is built from Q by replacing atoms a(t) by ar(t), whenever a(t) occurs
in both Q and some constraint in A. The disjunctive rules (step 1) guess atoms to
be cancelled (step 2) for satisfying denial constraints, and rules generated by step
3, remove atoms violating also referential integrity constraints; eventually, step 4
builds repaired relations. Note that the minimality of answer sets guarantees that
deletions are minimized.

As an example consider two relations m(code), and e(code,name). Suppose that
the axioms are :− e(X,Y), e(X,Z), Y <> Z., :− e(X,Y), e(Z, Y), X <> Z. and
:− m(X),not code(X), where code(X) :− e(X,Y). requiring that both code and
name are keys for e and m[code] ⊆ e[code]. Suppose now that, the following facts are
true e(1, a), e(2, b), e(2, a),m(1),m(2); it can be easily verified that all the axioms
are violated and m(2) is consistently true. The program obtained by rewriting the
constraints is:

e(X, Y) ∨ e(X, Z) :− e(X, Y), e(X, Z), Y <> Z.
e(X, Y) ∨ e(Z, Y) :− e(X, Y), e(Z, Y), X <> Z.
e∗(X, Y) :− e(X, Y),not e(X, Y). m∗(X) :− m(X),not m(X).

code∗(X) :− code(X),not code(X). m(M) :− m∗(M),not code∗(M).
mr(X) :− m∗(X),not m(X),not m(X).
er(X, Y) :− e∗(X, Y),not e(X, Y),not e(X, Y).

and the two answer sets of this program both contain mr(2), thus, m(2)? is derived
to be consistently true.

6 Related Work

As a matter of fact, the problem of linking ontology to databases is not new [2].
Most of the available ontology systems and tools are able to deal with several
sources of information by exploiting different ontology languages (see [24, 25]).
Among them, the most closely related systems, which offer the possibility to import
relational databases into ontologies, are: the Ontobroker system [26, 27], and the
Neon tookit10. Both of them support a fragment of Flogic [28], and allows one to
link relational database to Flogic ontologies. Comparing our approach with the
above mentioned ones, we notice that, OntoDLV supports a rule-based language
(ASP programs under the answer sets semantics) that, is strictly more expressive in
the propositional case, and retains decidability in the general case (programs with
variables). This allows to directly exploit the obtained ontology specification for
solving complex reasoning tasks; moreover, the advanced data-integration features
supported by OntoDLV, like consistent query answering, are missing in the above
mentioned systems, which, instead, support also the integration of sources different
from databases.

Another related system is MASTRO [20], that allows for liking a set of pre-
existing data sources to ontologies specified in the description logic DL-LiteA. In
this approach, a very similar solution for creating object identifiers form database
values is used and, query answering on the obtained ontology is very efficient/scalable;
it can be performed in LogSpace in the size of the original database [29, 20]. In-
deed, satisfiability checking and query answering in DL-LiteA can be carried out

10 http://www.neon-toolkit.org/

12

by exploiting unfolding [20], where queries on the ontology are replaced by equiv-
alent SQL specifications on the databases containing the A-Box. This makes the
solution proposed in [20] very effective when dealing with large databases, and
complexity-wise cheaper than our approach. However, the language of OntoDLV
is rule-based and, thus, allows for specifying more complex queries. Indeed, On-
toDLP combines (in a decidable framework) ontologies with recursive rules and
non-monotonic negation. Importantly, when the specified logic program is stratified
and non-disjunctive, queries are unfolded, and computation is performed in mass-
memory by exploiting DLVDB [22]. Note that, since the language of DLVDB [22]
is strictly more expressive than SQL (thanks to recursion and stratified negation),
OntoDLV allows for the execution of more sophisticated queries w.r.t. [20].

Finally, since OntoDLP can be seen as an extension of disjunctive datalog with
object-oriented constructs, our work is related also to the techniques proposed in
the field of object-oriented databases for mapping relational data to object-views
(see e.g. [30, 31]).

7 Conclusion and Future Work

In this paper we proposed a solution that allows one to “upgrade” one or more
existing enterprice relational databases to an ontology. The result is the natural
combination of the advantages of an ontology language (clean high-level view of
the information and powerful reasoning capabilities) with the efficient exploitation
of large already-existent databases.

This was obtained by extending the OntoDLV language and system. In par-
ticular, we implemented virtual classes and virtual relations, two new modeling
constructs that allow the knowledge engineer to define the instances of an ontology
by means of special logic rules, which act as a mapping from the information stored
in database tables to concept instances. Moreover, in order to deal with consistency
problems that may arise when data residing in different sources are combined in
a unified ontological view [2], we developed in OntoDLVconsistent query answer-
ing [2, 10–13], so that the system is able to retrieve as much consistent information
as possible from the ontology.

Ongoing work concerns the analysis of performances of our system on real-life
and large scale databases.

References

1. Gruber, T. R..: A Translation Approach to Portable Ontology Specifications. Knowl-
edge Acquisition 5 (1993) 199–220”

2. Lenzerini, M.: Data integration: a theoretical perspective. In Popa, L., ed.: PODS
’02: Proc. of PODS, New York, USA, ACM (2002) 233–246

3. Ricca, F., Gallucci, L., Schindlauer, R., Dell’Armi, T., Grasso, G., Leone, N.: On-
toDLV: an ASP-based System for Enterprise Ontologies. JLC (2008) in print.

4. Ricca, F., Leone, N.: Disjunctive Logic Programming with types and objects: The
DLV+ System. Journal of Applied Logics 5 (2007) 545–573

5. Dell’Armi, T., Gallucci, L., Leone, N., Ricca, F., Schindlauer, R.: OntoDLV: an
ASP-based System for Enterprise Ontologies. In: Proceedings ASP07. (2007)

13

6. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive
Databases. New Generation Computing 9 (1991) 365–385

7. Gelfond, M., Leone, N.: Logic Programming and Knowledge Representation – the
A-Prolog perspective . Artificial Intelligence 138 (2002) 3–38

8. Minker, J.: Overview of Disjunctive Logic Programming. Annals of Mathematics and
Artificial Intelligence 12 (1994) 1–24

9. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive Datalog. ACM Transactions on
Database Systems 22 (1997) 364–418

10. Arenas, M., Bertossi, L.E., Chomicki, J.: Consistent Query Answers in Inconsistent
Databases. In Proceedings of PODS ’99), ACM Press (1999) 68–79

11. Lembo, D., Lenzerini, M., Rosati, R.: Source Inconsistency and Incompleteness in
Data Integration. In: Proc. of (KRDB-02), Toulouse France, CEUR Vol-54 (2002)

12. Bertossi, L.E., Hunter, A., Schaub, T., eds.: Inconsistency Tolerance. Volume 3300
of Lecture Notes in Computer Science. Springer (2005)

13. Chomicki, J., Marcinkowski, J.: Minimal-change integrity maintenance using tuple
deletions. Information and Computation 197 (2005) 90–121

14. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The
DLV System for Knowledge Representation and Reasoning. ACM Transactions on
Computational Logic 7 (2006) 499–562

15. Apt, K.R., Blair, H.A., Walker, A.: Towards a Theory of Declarative Knowledge.
Morgan Kaufmann Publishers, Inc., Washington DC (1988) 89–148

16. Smith, M.K., Welty, C., McGuinness, D.L.: OWL web ontology language guide. W3C
Candidate Recommendation (2003) http://www.w3.org/TR/owl-guide/.

17. Chen, P.P.: The Entity-Relationship Model - Toward a Unified View of Data. ACM
Transactions on Database Systems 1 (1976) 9–36

18. Markowitz, V.M., Makowsky, J.A.: Identifying Extended Entity-Relationship Object
Structures in Relational Schemas. IEEE Trans. Softw. Eng. 16 (1990) 777–790

19. Hull, R.: A survey of theoretical research on typed complex database objects. 15
(1987) 193–261

20. Poggi, A., Lembo, D., Calvanese, D., Giacomo, G.D., Lenzerini, M., Rosati., R.:
Linking Ontologies to Data. Journal of Data Semantics (2008) 133–173

21. Gallucci, L., Ricca, F.: Visual Querying and Application Programming Interface for
an ASP-based Ontology Language. In Proc. of SEA’07, AZ, USA, (2007). 56–70

22. Giorgio, T., Leone, N., Vincenzino, L., Panetta, C.: Experimenting with recursive
queries in database and logic programming systems. TPLP 7 (2007) 1–37

23. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley (1995)
24. Duineveld, A., Stoter, R., Weiden, M., Kenepa, B., Benjamins, V.: Wonder Tools? A

Comparative Study of Ontological Engineering Tools. JHCS 1 (2000) 1111–1133
25. Kalfoglou, Y., Schorlemmer, M.: Ontology mapping: the state of the art. Knowl.

Eng. Rev. 18 (2003) 1–31
26. Fensel, D., Decker, S., Erdmann, M., Studer, R.: Ontobroker: How to make the www

intelligent. In: In Proc. of (KAW98). (1998) 9–7
27. Sure, Y., Angele, J., Staab, S.: OntoEdit: Multifaceted Inferencing for Ontology

Engineering. Journal of Data Semantics 1 (2003) 128–152
28. Kifer, M., Lausen, G., Wu, J.: Logical foundations of object-oriented and frame-based

languages. Journal of the ACM 42 (1995) 741–843
29. Calvanese, D., Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable Rea-

soning and Efficient Query Answering in Description Logics: The DL-Lite Family.
Journal of Automated Reasoning 39 (2007) 385–429

30. Bancilhon F., Delobel C., Kanellakis P. C.: Building an Object-oriented Database
System: The Story of O2. Morgan Kaufmann (1992)

31. Abiteboul S., Bonner A.: Objects and Views. ACM SIGMOD (1991) 238–247
32. ODMG: Object Data Management Group: http://www.odbms.org/.

14

A Sound and Complete Algorithm for Simple
Conceptual Logic Programs?

Cristina Feier and Stijn Heymans

Knowledge-Based Systems Group, Institute of Information Systems
Vienna University of Technology

Favoritenstrasse 9-11, A-1040 Vienna, Austria
{feier,heymans}@kr.tuwien.ac.at

Abstract. Open Answer Set Programming (OASP) is a knowledge rep-
resentation paradigm that allows for a tight integration of Logic Pro-
gramming rules and Description Logic ontologies. Although several de-
cidable fragments of OASP exist, no reasoning procedures for such ex-
pressive fragments were identified so far. We provide an algorithm that
checks satisfiability in nexptime for the fragment of exptime-complete
simple conceptual logic programs.

1 Introduction

Integrating Description Logics (DLs) with rules for the Semantic Web has re-
ceived considerable attention over the past years with approaches such as De-
scription Logic Programs [10], DL-safe rules [16], DL+log [17], dl-programs [5],
and Open Answer Set Programming (OASP) [13]. OASP combines attractive
features from both the DL and the Logic Programming (LP) world: an open do-
main semantics from the DL side allows for stating generic knowledge, without
mentioning actual constants, and a rule-based syntax from the LP side supports
nonmonotonic reasoning via negation as failure.

Decidable fragments for OASP satisfiability checking were identified as syn-
tactically restricted programs, that are still expressive enough for integrating
rule- and ontology-based knowledge, see, e.g., Conceptual Logic Programs [12]
or g-hybrid knowledge bases [11]. A shortcoming of those decidable fragments
of OASP is the lack of effective reasoning procedures. In this paper, we take
a first step in mending this by providing a sound and complete algorithm for
satisfiability checking in a particular fragment of Conceptual Logic Programs.

The major contributions of the paper can be summarized as follows:

– We identify a fragment of Conceptual Logic Programs (CoLPs), called sim-
ple CoLPs, that disallow for inverse predicates and inequality compared to
CoLPs, but are expressive enough to simulate the DL SH. We show that

? This work is partially supported by the Austrian Science Fund (FWF) under the
projects Distributed Open Answer Set Programming (FWF P20305) and Reasoning
in Hybrid Knowledge Bases (FWF P20840).

15

satisfiability checking w.r.t. simple CoLPs is exptime-complete (i.e., it has
the same complexity as CoLPs).

– We define a nondeterministic algorithm for deciding satisfiability, inspired
by tableaux-based methods from DLs, that constructs a finite representation
of an open answer set. We show that this algorithm is terminating, sound,
complete, and runs in nexptime.

The algorithm is non-trivial from two perspectives: both the minimal model
semantics of OASP, compared to the model semantics of DLs, as well as the
open domain assumption, compared to the closed domain assumption of ASP,
pose specific challenges in constructing a finite representation that corresponds
to an open answer set. Detailed proofs and an extended example can be found
in [6].

2 Preliminaries

We recall the open answer set semantics from [13]. Constants a, b, c, . . ., variables
x, y, . . ., terms s, t, . . ., and atoms p(t1, . . . , tn) are defined as usual. A literal is
an atom p(t1, . . . , tn) or a naf-atom not p(t1, . . . , tn). For a set α of literals
or (possibly negated) predicates, α+ = {l | l ∈ α, l an atom or a predicate}
and α− = {l | not l ∈ α, l an atom or a predicate}. For a set X of atoms,
not X = {not l | l ∈ X}. For a set of (possibly negated) predicates α, we will
often write α(x) for {a(x) | a ∈ α} and α(x, y) for {a(x, y) | a ∈ α}.

A program is a countable set of rules α ← β, where α and β are finite sets
of literals. The set α is the head of the rule and represents a disjunction, while
β is called the body and represents a conjunction. If α = ∅, the rule is called a
constraint. Free rules are rules q(x1, . . . , xn) ∨ not q(x1, . . . , xn) ← for variables
x1, . . . , xn; they enable a choice for the inclusion of atoms. We call a predicate q
free in a program if there is a free rule q(x1, . . . , xn) ∨ not q(x1, . . . , xn) ← in the
program. Atoms, literals, rules, and programs that do not contain variables are
ground. For a rule or a program X, let cts(X) be the constants in X, vars(X) its
variables, and preds(X) its predicates with upreds(X) the unary and bpreds(X)
the binary predicates. A universe U for a program P is a non-empty countable
superset of the constants in P : cts(P) ⊆ U . We call PU the ground program
obtained from P by substituting every variable in P by every possible constant
in U . Let BP (LP) be the set of atoms (literals) that can be formed from a
ground program P .

An interpretation I of a ground P is any subset of BP . We write I |=
p(t1, . . . , tn) if p(t1, . . . , tn) ∈ I and I |= not p(t1, . . . , tn) if I 6|= p(t1, . . . , tn).
For a set of ground literals X, I |= X if I |= l for every l ∈ X. A ground rule
r : α ← β is satisfied w.r.t. I, denoted I |= r, if I |= l for some l ∈ α whenever
I |= β. A ground constraint ← β is satisfied w.r.t. I if I 6|= β. For a ground
program P without not , an interpretation I of P is a model of P if I satisfies
every rule in P ; it is an answer set of P if it is a subset minimal model of P .
For ground programs P containing not , the GL-reduct [7] w.r.t. I is defined as

16

P I , where P I contains α+ ← β+ for α ← β in P , I |= not β− and I |= α−. I is
an answer set of a ground P if I is an answer set of P I .

In the following, a program is assumed to be a finite set of rules; infinite
programs only appear as byproducts of grounding a finite program with an
infinite universe. An open interpretation of a program P is a pair (U,M) where
U is a universe for P and M is an interpretation of PU . An open answer set of
P is an open interpretation (U,M) of P with M an answer set of PU . An n-ary
predicate p in P is satisfiable if there is an open answer set (U,M) of P and a
(x1, . . . , xn) ∈ Un such that p(x1, . . . , xn) ∈ M .

We introduce some notations for trees as in [19]. For an x ∈ N∗0 1 we denote
the concatenation of a number c ∈ N0 to x as x · c, or, abbreviated, as xc.
Formally, a (finite) tree T is a (finite) subset of N∗0 such that if x · c ∈ T for
x ∈ N∗0 and c ∈ N0, then x ∈ T . Elements of T are called nodes and the empty
word ε is the root of T . For a node x ∈ T we call succT (x) = {x ·c ∈ T | c ∈ N0},
successors of x. The arity of a tree is the maximum amount of successors any
node has in the tree. The set AT = {(x, y) | x, y ∈ T,∃c ∈ N0 : y = x · c} denotes
the set of edges of a tree T . We define a partial order ≤ on a tree T such that for
x, y ∈ T , x ≤ y iff x is a prefix of y. As usual, x < y if x ≤ y and y 6≤ x. A (finite)
path P in a tree T is a prefix-closed subset of T such that ∀x 6= y ∈ P : |x| 6= |y|.
We call pathT (x, y) a finite path in T with x the smallest element of the path
w.r.t. the order relation < and y the greatest element. The length of a finite path
is the number of elements of the path. Infinite paths have no greatest element
w.r.t. <. A branch B in a tree T is a maximal path (there is no path which
contains it) which contains the root of T .

For programs containing only unary and binary predicates it makes sense to
define a tree model property : for a program P containing only unary and binary
predicates, if a unary predicate p ∈ preds(P) is satisfiable w.r.t. P then p is tree
satisfiable w.r.t. P . A predicate p is tree satisfiable w.r.t. P if there exists

– an open answer set (U,M) of P such that U is a tree of bounded arity, and
– a labeling function t : U → 2preds(P) such that

• p ∈ t(ε) and t(ε) does not contain binary predicates, and
• z · i ∈ U , i > 0, iff there is some f(z, z · i) ∈ M , and
• for y ∈ U , q ∈ upreds(P), f ∈ bpreds(P),

∗ q(y) ∈ M iff q ∈ t(y), and
∗ f(x, y) ∈ M iff y = x · i ∧ f ∈ t(y).

We call such a (U,M) a tree model for p w.r.t. P .

3 Simple Conceptual Logic Programs

In [12], we defined Conceptual Logic Programs (CoLPs), a syntactical fragment
of logic programs for which satisfiability checking under the open answer set
semantics is decidable. We restrict this fragment by disallowing the occurrence of
inequalities and inverse predicates, resulting in simple conceptual logic programs.
1 By N0 we denote the set of natural numbers excluding 0, and by N∗0 the set of finite

sequences over N0.

17

Definition 1. A simple conceptual logic program (simple CoLP) is a program
with only unary and binary predicates, without constants, and such that any rule
is a free rule, a unary rule

a(x) ← β(x),
(
γm(x , ym), δm(ym)

)
1≤m≤k

(1)

where for all m, γ+
m 6= ∅, or a binary rule

f (x , y) ← β(x), γ(x , y), δ(y) (2)

with γ+ 6= ∅.
Intuitively, the free rules allow for a free introduction of atoms (in a first-order

way) in answer sets, unary rules consist of a root atom a(x) that is motivated
by a syntactically tree-shaped body, and binary rules motivate a f(x, y) for a x
and its ‘successor’ y by a body that only considers atoms involving x and y.

Simple CoLPs can simulate constraints ← β(x),
(
γm(x, ym), δm(ym)

)
1≤m≤k

,
where ∀m : γ+

m 6= ∅, i.e., constraints have a body that has the same form as a
body of a unary rule. Indeed, such constraints ← body can be replaced by simple
CoLP rules of the form constr(x) ← not constr(x), body , for a new predicate
constr .

As simple CoLPs are CoLPs and the latter have the tree model property [12],
simple CoLPs have the tree model property as well.

Proposition 1. Simple CoLPs have the tree model property.

For CoLPs this tree model property was important to ensure that a tree
automaton [19] could be constructed that accepts tree models in order to show
decidability. The presented algorithm for simple CoLPs relies as well heavily on
this tree model property.

As satisfiability checking of CoLPs is exptime-complete [12], checking satis-
fiability of simple CoLPs is in exptime.

In [12], it was shown that CoLPs are expressive enough to simulate satisfia-
bility checking w.r.t to SHIQ knowledge bases, where SHIQ is the Description
Logic (DL) extending ALC with transitive roles (S), support for role hierarchies
(H), inverse roles (I), and qualified number restrictions (Q). For an overview of
DLs, we refer the reader to [1].

Using a restriction of this simulation, one can show that satisfiability check-
ing of SH concepts (i.e., SHIQ without inverse roles and quantified number
restrictions) w.r.t. a SH TBox can be reduced to satisfiability checking of a
unary predicate w.r.t. a simple CoLP. Intuitively, simple CoLPs cannot handle
inverse roles (as they do not allow for inverse predicates) neither can they han-
dle number restrictions (as they do not allow for inequality). As satisfiability
checking of ALC concepts w.r.t. an ALC TBox (note that ALC is a fragment
of SH) is exptime-complete ([1, Chapter 3]), we have exptime-hardness for
simple CoLPs as well.

Proposition 2. Satisfiability checking w.r.t. simple CoLPs is exptime-complete.

18

4 An Algorithm for Simple Conceptual Logic Programs

In this section, we define a sound, complete, and terminating algorithm for sat-
isfiability checking w.r.t. simple CoLPs.

For every non-free predicate q and a simple CoLP P , let Pq be the rules of
P that have q as a head predicate. For a predicate p, ±p denotes p or not p,
whereby multiple occurrences of ±p in the same context will refer to the same
symbol (either p or not p). The negation of ±p is ∓p, that is, ∓p = not p if
±p = p and ∓p = p if ±p = not p.

For a unary rule r of the form (1), we define degree(r) = |{m | γm 6= ∅}|.
For every non-free rule r : α ← β ∈ P , we assume that there exists an injective
function ir : β → {0, . . . , |β|} which defines a total order over the literals in β and
an inverse function lr : {0, . . . , |β|} → β which returns the literal with the given
index in β. For a rule r which has body variables x, y1, . . . , yk we introduce a
function varsetr : {x, y1, . . . , yk, (x, y1), . . . , (x, yk)} → 2{0,...,|β|} which for every
variable or pair of variables which appears in at least one literal in a rule returns
the set of indices of the literals formed with the corresponding variable(s).

The basic data structure for our algorithm is a completion structure.

Definition 2 (completion structure). A completion structure for a simple
CoLP P is a tuple 〈T, G, ct, st, rl, sg, nju, njb〉, where T is a tree which
together with the labeling functions ct, st, rl, sg, nju, and njb, represents a
tentative tree model and G = 〈V,E〉 is a directed graph with nodes V ⊆ BPT and
edges E ⊆ BPT

× BPT
which is keeps track of dependencies between elements of

the constructed model. The labeling functions are defined as following:

– The content function ct : T ∪AT → 2preds(P)∪not (preds(P)) maps a node of
the tree to a set of (possibly negated) unary predicates and an edge of the tree
to a set of (possibly negated) binary predicates such that ct(x) ⊆ upreds(P)∪
not(upreds(P)) if x ∈ T , and ct(x) ⊆ bpreds(P)∪not(bpreds(P)) if x ∈ AT .

– The status function st : {(x,±q) | ±q ∈ ct(x), x ∈ T ∪AT } → {exp, unexp}
attaches to every (possibly negated) predicate which appears in the content
of a node/edge x a status value which indicates whether the predicate has
already been expanded in that node/edge.

– The rule function rl : {(x, q) | x ∈ T ∪AT , q ∈ ct(x)} → P associates with
every node/edge x of T and every positive predicate q ∈ ct(x) a rule which
has q as a head predicate: rl(x, q) ∈ Pq.

– The segment function sg : {(x, q, r) | x ∈ T,not q ∈ ct(x), r ∈ Pq} → N
indicates which part of r justifies having not q in ct(x).

– The negative justification for unary predicates function nju : {(x, q, r) | x ∈
T,not q ∈ ct(x), r ∈ Pq} → 2N×T indicates by means of tuples (n, z) ∈ N×T
which literal lr(n) from r is used to justify not q in ct(x) in a node z ∈ T ,
or edge (x, z) ∈ AT .

– The negative justification for binary predicates function njb : {(x, q, r) | x ∈
AT ,not q ∈ ct(x), r ∈ Pq} → N gives the index of the literal from r that is
used to justify not q ∈ ct(x).

19

An initial completion structure for checking the satisfiability of a unary
predicate p w.r.t. a simple CoLP P is a completion structure with T = {ε},
V = {p(ε)}, E = ∅, and ct(ε) = {p}, st(ε, p) = unexp, and the other labeling
functions undefined for every input.

We clarify the definition of a completion structure by means of an example.
Take the program P :

r1 : f (x , y) ∨ not f (x , y) ←
r2 : a(x) ← f (x , y1), a(y1), f (x , y2)
r3 : b(x) ← not a(x)

A possible completion structure for this program P is as follows. Take a tree
T = {ε, ε1}, i.e., a tree with root ε and successor ε1, and take ct(ε) = {b,not a},
ct(ε, ε1) = {f}, and ct(ε1) = {not a, b}. Intuitively, we lay out the structure
of our tree model.

We take rl(ε, b) = r3 indicating that r3 is responsible for motivating the
occurrence of b in ε, set st(ε, b) = exp, and keep the status undefined for all
other nodes and edges in T .

In general, justifying a negative unary literal not q ∈ ct(x) (or in other
words, the absence of q(x) in the corresponding open interpretation) implies
that every rule which defines q has to be refuted (otherwise q would have to be
present), thus at least one body literal from every rule in Pq has to be refuted.
A certain rule r ∈ Pq can either be locally refuted (via a literal which can be
formed using x and some ±a ∈ ct(x)) or it has to be refuted in every successor
of x. In the latter case, if x has more than one successor, it can be shown that
the same segment of the rule has to be refuted in all the successors, whereby
a segment of a rule is one of {β, (γm ∪ δm)1≤m≤k} for unary rules (1). In the
example, in order to have not a ∈ ct(ε), we need that for all successors y1, y2,
either f ∈ ct(ε, y1), a ∈ ct(y1) does not hold, or f ∈ ct(ε, y2)) does not hold;
as y1 is not appearing in the second segment (and vice versa for y2), either for
all successors y, f ∈ ct(ε, y), a ∈ ct(y) does not hold, or for all successors y,
f ∈ ct(ε, y) does not hold, such that in our case sg(x, a, r2) = 1 (the segment
f(x, y1), a(y1)): the function sg picks up such a segment to be refuted, where
segments are referred to by the numbers 0 for β, and m for γm ∪ δm, 1 ≤ m ≤ k.

After picking a segment to refute a negative unary predicate, we need means
to indicate which literal in the segment, per successor, can be used to justify this
negative unary predicate. This can be per successor a different literal from the
segment such that nju(x, q, r) is a set of tuples (n, z) where z is the particular
successor (or x itself in case the negative unary predicate can be justified locally)
and n the position of the literal in the rule r. In the example, nju(x, a, r2) =
{(1, ε1)}, i.e., the literal a(y1) as not a ∈ ct(ε1). Note that if z = x the set
nju(x, q, r) would be a singleton set as no successors are needed to justify not q.

Rules that can deduce negated binary predicates are always local in the sense
that to justify a not q ∈ ct(x) for x ∈ AT one only needs to consider x.

In the following, we will show how to expand the initial completion structure
in order to prove satisfiability of a predicate, how to determine when no more

20

expansion is needed (blocking), and under what circumstances a clash occurs.
In particular, expansion rules will expand an initial completion structure to a
complete clash-free structure that corresponds to a finite representation of an
open answer set; applicability rules state the necessary conditions such that those
expansion rules can be applied.

4.1 Expansion Rules

The expansion rules will need to update the completion structure whenever in
the process of justifying a literal l in the current model a new literal ±p(z) has
to be considered. This means that ±p has to be inserted in the content of z in
case it is not already there and marked as unexpanded, and in case ±p(z) is
an atom, it has to be ensured that it is a node in G and furthermore, in case
l is also an atom, a new arc from l to ±p(z) should be created to capture the
dependencies between the two elements of the model. More formally:

– if ±p /∈ ct(z), then ct(z) = ct(z) ∪ {±p} and st(z,±p) = unexp,
– if ±p = p and ±p(z) /∈ V , then V = V ∪ {±p(x)},
– if l ∈ BPT

and ±p = p, then E = E ∪ {(l,±p(z))}.
As a shorthand, we denote this sequence of operations as update(l,±p, z); more
general, update(l, β, z) for a set of (possibly negated) predicates β, denotes ∀±a ∈
β, update(l,±a, z).

In the following, let x ∈ T and (x, y) ∈ AT be the node, respectively edge,
under consideration.

(i) Expand unary positive. For a unary positive predicate (non-free) p ∈
ct(x) such that st(x, p) = unexp,

– nondeterministically choose a rule r ∈ Pp of the form (1) that will motivate
this predicate: set rl(x, p) = r,

– for the β in the body of this r, update(p(x), β, x),
– for each γm, 1 ≤ m ≤ k, from r, nondeterministically choose a y ∈ succT (x)

or let y = x · s, where s ∈ N∗0 s.t. x · s /∈ succT (x) already. In the latter case,
add y as a new successor of x in T : T = T ∪{y}. Take a new constant c ∈ C
s.t. ∀z ∈ T : c /∈ t(z) and update the label t for the newly created node:
t(y) = c2. Next, update(p(x), γm, (x, y)) and update(p(x), δm, y).

– set st(x, p) = exp.

(ii) Expand unary negative. For a unary negative predicate (non-free) not p ∈
ct(x) and either

2 These constants keep track of the names of nodes in the tree, and will be useful
in constructing the corresponding open answer set in the proofs of soundness and
completeness; they have no role in the algorithm in itself

21

1. st(x,not p) = unexp, then for every rule r ∈ Pp of the form (1) nondeter-
ministically choose a segment m, 0 ≤ m ≤ k: sg(x, p, r) = m.
– If m = 0, choose a ±a ∈ β, and update(not p(x),∓a, x), nju(x, p, r) =
{(ir(±a(X)), x)}.

– If m > 0, for every y ∈ succT (x), (†) choose a ±ay ∈ γm ∪ δm, and set
nju(x, p, r) = {(ir(±ay(X, Ym)), y) | ±ay ∈ γm} ∪ {(ir(±ay(Ym)), y) |
±ay ∈ δm}. Next, update(not p(x),∓ay, (x, y)) if ±ay ∈ γm, and
update(not p(x), ∓ay, y) if ±ay ∈ δm.

After every rule has been processed set st(x,not p) = exp.
2. st(x,not p) = exp and for some r ∈ Pp, sg(x, p, r) 6= 0, and nju(x, p, r) = S

with |S| < |succT (x)|, i.e., not p has already been expanded, but for some
rule r it did not receive a local justification (at x), and meanwhile new
successors of x have been introduced. Thus, one has to justify not p in the
new successors as well.
For every r ∈ Pp of the form (1) such that sg(x, p, r) = m 6= 0 and for
every y ∈ succT (x) which has not been yet considered previously, repeat the
operations in (†) as above.

(iii) Expand binary positive. For a binary positive predicate symbol (non-
free) p in ct(x, y) such that st((x, y), p) = unexp: nondeterministically choose
a rule r ∈ Pp of the form (2) that motivates p by setting rl((x, y), p) = r, and
update(p(x, y), β, x), update(p(x, y), γ, (x, y)), and update(p(x, y), δ, y). Finally,
set st((x, y), p) = exp.

(iv) Expand binary negative. For a binary negative predicate symbol (non-
free) not p in ct(x, y) such that st((x, y),not p) = unexp, nondeterministically
choose for every rule r ∈ Pp of the form (2) an s from varsetr(X), varsetr(X,Y)
or varsetr(Y) and let njb((x, y), p, r) = s.

– If s ∈ varset(X) and ±a(X) = lr(s), update(not p(x, y),∓a, x),
– If s ∈ varset(X, Y) and ±f(X, Y) = lr(s), update(not p(x, y),∓f, (x, y)),
– If s ∈ varset(Y) and ±a(Y) = lr(s), update(not p(x, y),∓a, y)).

Finally, set st((x, y),not p) = exp.

(v) Choose a unary predicate. There is an x ∈ T for which none of ±a ∈
ct(x) can be expanded with rules (i-ii), and for all (x, y) ∈ AT , none of ±f ∈
ct(x, y) can be expanded with rules (iii-iv), and there is a p ∈ upreds(P) such
that p /∈ ct(x) and not p /∈ ct(x). Then, add p to ct(x) with st(x, p) = unexp
or add not p to ct(x) with st(x,not p) = unexp.

(vi) Choose a binary predicate. There is an x ∈ T for which none of
±a ∈ ct(x) can be expanded with rules (i-ii), and for all (x, y) ∈ AT none of
±f ∈ ct(x, y) can be expanded with rules (iii-iv), and there is a (x, y) ∈ AT

and a p ∈ bpreds(P) such that p /∈ ct(x, y) and not p /∈ ct(x, y). Then,
add p to ct(x, y) with st((x, y), p) = unexp or add not p to ct(x, y) with
st((x, y),not p) = unexp.

22

4.2 Applicability Rules

For a simple CoLP P , a universe U for P , a graph G = 〈V, E〉 with nodes
V ∈ BPU and E ∈ BPU ×BPU , and a set of constants C ⊆ U we denote by G(C)
the graph obtained from G by considering only those nodes V (C) ⊆ V which
have an element from C as a first argument (remember that nodes are unary
or binary literals) and the edges E(C) which already existed between the nodes
from V (C) in the initial graph. Formally, V (C) = {±p(x) | ±p(x) ∈ V ∧ x ∈
C} ∪ {±p(x, y) | ±p(x, y) ∈ V ∧ x ∈ C} and E(C) = E ∩ (V (C)× V (C)). When
U is a tree and C is a path in U , C = pathU (x, y), G(C) will contain those nodes
from G which have as arguments nodes from C or outgoing arcs in U from nodes
in C.

A second set of rules is not updating the completion structure under consid-
eration, but restricts the use of the expansion rules:

(vii) Saturation We will call a node x ∈ T saturated if

– for all p ∈ upreds(P) we have p ∈ ct(x) or not p ∈ ct(x) and none of
±a ∈ ct(x) can be expanded according to the rules (i-ii) or (v),

– for all (x, y) ∈ AT and p ∈ bpreds(P), p ∈ ct(x, y) or not p ∈ ct(x, y) and
none of ±f ∈ ct(x, y) can be expanded according to the rules (iii-iv) or (vi).

We impose that no expansions (i-vi) can be performed on a node from T until
its predecessor is saturated.

(viii) Blocking We call a node x ∈ T blocked if

– its predecessor is saturated,
– there are two ancestors y, z such that y < z < x, and ct(z) = ct(y), and
– Gy,z = 〈V (pathT (y, z)), E(pathT (y, z))∪{(a(z), a(y)) | a ∈ ct(z)}〉 is acyclic.

Note that ancestors y, z are saturated as well, by rule (vii).
Intuitively, if there is a pair of ancestor nodes that have equal content, and

if by adding connections from atoms formed using the lower node in the pair
to atoms formed using the higher node in the pair and the same predicate, no
cycles are created in a subgraph of G which has as nodes all nodes which have
as arguments nodes from the path or outgoing arcs from these nodes (the rest
of G is not relevant in this context), the current node can be blocked: one can
show that provided that the content of the higher node in the pair is justified,
the content of the lower node in the pair can be justified also without further
expansions. We call (y, z) a blocking pair and say that y blocks z; if no confusion
is possible with the blocked node x, we will usually also refer to z as a blocked
node and to y as the blocking node for a blocking pair (y, z). We impose that
no expansions (i-vi) can be performed on a blocked node from T .

23

(ix) Cyclic We call a node x ∈ T cyclic if

– its predecessor is saturated,
– there are two ancestors y, z such that y < z < x, and ct(z) = ct(y), and
– Gy,z contains a cycle.

The intuition is similar as with blocking, however, instead of being able to
reuse the justification of the higher node for the lower node, the presence of a
cycle in Gy,z is indicating that we would create an infinitely positive path in G
to motivate the higher node, when reusing the justification, which is, due to the
minimal model semantics, not allowed. We call (y, z) a cyclic pair, and, when no
confusion can arise, we designate z as a cyclic node as well. We impose that no
expansions (i-vi) can be performed on any node in T if it contains a cyclic node.

(x) Caching We call a node x ∈ T cached if

– its predecessor is saturated,
– there are two nodes y, z such that z < x and z 6≤ y and y 6≤ z (i.e., z is not

an ancestor of y nor is y an ancestor of z), and ct(z) = ct(y); we call the
pair (y, z) a caching pair and we say that y caches z; usually, if no confusion
is possible, we will also refer to z as a cached node and to y as the caching
node. Furthermore, there exists no caching pair (u, y).

We impose that no expansions can be performed on a cached node from T .
Intuitively, x is not further expanded, as one can reuse the (cached) justification
for y when dealing with z. The condition that there is no caching pair (u, y)
ensures that we do not replace the justification of z with that one of a node y
which at its turn is reusing the justification of some other node u. In particular,
this precludes a situation like y caches z and z caches y.

4.3 Termination, Soundness, and Completion

We call a completion structure contradictory, if for some x ∈ T and a ∈ upreds(P),
{a,not a} ⊆ ct(x) or for some (x, y) ∈ AT and f ∈ bpreds(P), {f,not f} ⊆
ct(x, y). A complete completion structure for a simple CoLP P and a p ∈
upreds(P), is a completion structure that results from applying the expansion
rules to the initial completion structure for p and P , taking into account the
applicability rules, such that no expansion rules can be further applied. Further-
more, a complete completion structure CS = 〈T, G, ct, st, rl, sg, nju, njb〉 is
clash-free if (1) CS is not contradictory, (2) t does not contain cyclic nodes, and
(3) G does not contain cycles.

We show that an initial completion structure for a unary predicate p and
a simple CoLP P can always be expanded to a complete completion structure
(termination), that, if p is satisfiable w.r.t. P , there is a clash-free complete com-
pletion structure (soundness), and, finally, that, if there is a clash-free complete
completion structure, p is satisfiable w.r.t. P (completeness).

24

Proposition 3 (termination). Let P be a simple CoLP and p ∈ upreds(P).
Then, one can construct a finite complete completion structure by a finite number
of applications of the expansion rules to the initial completion structure for p and
P , taking into account the applicability rules.

Proof Sketch. Assume one cannot construct a complete completion structure
by a finite number of applications of the expansion rules, taking into account the
applicability rules. Clearly, if one has a finite completion structure that is not
complete, a finite application of expansion rules would complete it unless succes-
sors are introduced. However, one cannot introduce infinitely many successors:
every infinite path in the tree will eventually contain two saturated nodes with
equal content and thus either a blocked or a cyclic pair, such that no expansion
rules can be applied to successor nodes of the blocked or cyclic node in the pair.
Furthermore, the arity of the tree in the completion structure is bound by the
predicates in P and the degrees of the rules. ut
Proposition 4 (soundness). Let P be a simple CoLP and p ∈ upreds(P). If
there exists a clash-free complete completion structure for p w.r.t. P , then p is
satisfiable w.r.t. P .

Proof Sketch. From a complete clash-free completion structure for p and
P we can construct an open answer set of P that satisfies p by unfolding the
completion structure. Intuitively, blocking pairs represent a state where the open
answer set contains some infinitely repeating pattern that consists of a finite
motivation for the literals in the blocking pair: the definition of a blocking pair
is such that when we replace the motivation for the blocked node (i.e., the subtree
below this node) by the subtree that motivates the blocking node in the pair, no
infinite positive path arises. As the subtree of the blocked node is a subtree of
the subtree of the blocking node, we need to repeat such a replacement infinitely.
Furthermore, cached nodes represent the situation that a motivation for a node
is being repeated elsewhere, such that also cached pairs will be removed by a
substitution of subtrees. One can show that such a construction results in a tree
model for the program. ut
Proposition 5 (completeness). Let P be a simple CoLP and p ∈ upreds(P).
If p is satisfiable w.r.t. P , then there exists a clash-free complete completion
structure for p w.r.t. P .

Proof Sketch. If p is satisfiable w.r.t. P then p is tree satisfiable w.r.t. P
(Proposition 1), such that there must be a tree model (U,M) for p w.r.t. P .

One can construct a clash-free complete completion structure for p w.r.t. P ,
by guiding the nondeterministic application of the expansion rules by (U,M)
and taking into account the constraints imposed by the saturation, blocking,
caching, and clash rules.

It is worth noting that the naive application of the rules according to (U,M)
does not work: the tree model might contain cyclic patterns that would result in
cyclic nodes in the completion structure. However, such patterns cannot occur

25

infinitely (this would contradict the minimality of an open answer set), such that
we can choose those expansion rules that bypass the cyclicity and immediately
choose the finite motivation for a certain node. ut

4.4 Complexity Results

Let CS = 〈T, G, ct, st, rl, sg, nju, njb〉 be a completion structure and CS ’
the completion structure constructed from CS by removing from T all subtrees
with roots y where (x, y) is some blocked, cyclic, or caching pair. The size of
each of these subtrees is at most k + 1, where k is bound by the amount n of
unary predicates q in P and the degrees of the rules Pq. Moreover, there are at
most mk such subtrees, where m is the amount of nodes in CS ′.

Assume CS ′ has more than 2n nodes, then there must be two nodes x 6= y
such that ct(x) = ct(y). If x < y or y < x, either (x, y) or (y, x) is a blocked or
cyclic pair, which contradicts the construction of CS ′. If x 6< y and y 6< x, (x, y)
or (y, x) is a caching pair, again a contradiction. Thus, CS ′ contains at most 2n

nodes, so m ≤ 2n. Since CS ′ resulted from CS by removing at most mk subtrees
of maximal size k+1 each, the amount of nodes in CS is m+m(k+1) ≤ (k+2)2n,
i.e., exponential in the size of P , such that the algorithm has to visit a number
of nodes that is exponential in the size of P .

The graph G has as well a number of nodes that is exponential in the size of
P . Since checking for cycles in a directed graph can be done in linear time, the
algorithm runs in nexptime, a nondeterministic level higher than the worst-case
complexity characterization (Proposition 2).

Note that such an increase in complexity is expected. For example, although
satisfiability checking in SHIQ is exptime-complete, practical algorithms run
in 2-nexptime [18]. Thanks to caching, however, we only have an increase to
nexptime.

5 Related Work

Description Logic Programs [10] represent the common subset of OWL-DL on-
tologies and Horn logic programs (programs without negation as failure or dis-
junction). As such, reasoning can be reduced to normal LP reasoning.

In [16], a clever translation of SHIQ(D) (SHIQ with data types) combined
with DL-safe rules (a rule is DL-safe if each variable in the rule appears in a
non-DL-atom, where a DL-atom is an atom with the predicate corresponding
to a DL-concept or DL-role) to disjunctive Datalog is provided. The translation
relies on a translation to clauses and subsequently applying techniques from
basic superposition theory.

Reasoning in DL+log [17] does not use a translation to other approaches,
but defines a specific algorithm based on a partial grounding of the program
and a test for containment of conjunctive queries over the DL knowledge bases.
Note that [17] has a standard names assumption as well as a unique names
assumption - all interpretations are over some fixed, countably infinite domain,

26

different constants are interpreted as different elements in that domain, and
constants are in one-to-one correspondence with that domain.

dl-programs [5] have a more loosely coupled take on integrating DL knowledge
bases and logic programs by allowing the program to query the DL knowledge
base while as well having the possibility to send (controlled) input to the DL
knowledge base. Reasoning is done via a stable model computation of the logic
program, interwoven with queries that are oracles to the DL part.

Description Logic Rules[14] are defined as decidable fragments of SWRL. The
rules have a tree-like structure similar to the structure of simple CoLPs rules.
Depending on the underlying DL, one can distinguish between SROIQ rules
(these do not actually extend SROIQ, they are just syntactic sugar on top of
the language), EL++ rules, DLP rules, and ELP rules [15]. The latter can be
seen as an extension of both EL++ rules and DLP rules, hence their name.

The algorithm presented in Section 4 can be seen as a procedure that con-
structs a tableau (as is common in most DL reasoning procedures), representing
the possibly infinite open answer set by a finite structure. There are several
DL-based approaches which adopt a minimal-style semantics. Among this are
autoepistemic[4], default[2] and circumscriptive extensions of DL[3][9]. The first
two extensions are restricted to reasoning with explicitly named individuals only,
while [9] allows for defeats to be based on the existence of unknown individuals.
A tableau-based method for reasoning with the DL ALCO in the circumscriptive
case has been introduced in [8]. A special preference clash condition is introduced
there to distinguish between minimal and non-minimal models which is based on
constructing a new classical DL knowledge base and checking its satisfiability.
It would be interesting to explore the connections between our algorithm and
the algorithm described there, in particular between our graph-cycle based clash
condition and the preference clash condition.

6 Conclusions and Outlook

We identified a decidable class of programs, simple CoLPs, and provided a non-
deterministic algorithm for checking satisfiability under the open answer set
semantics that runs in nexptime.

The presented algorithm is the first step in reasoning under an open answer
set semantics. We intend to extend the algorithm such that it can handle the
inverse predicates and inequalities of CoLPs, as well as constants. The latter
would enable combined reasoning with the DL SHOIQ (closely related to OWL-
DL) and expressive rules.

References

1. F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider,
editors. The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press, 2003.

27

2. F. Baader and B. Hollunder. Embedding defaults into terminological representation
systems. J. of Automated Reasoning, 14(2):149–180, 1995.

3. P. Bonatti, C. Lutz, and F. Wolter. Expressive non-monotonic description logics
based on circumscription. In Proc. of 10th Int. Conf. on Principles of Knowledge
Repr. and Reasoning (KR’06), pages 400–410, 2006.

4. F. M. Donini, D. Nardia, and R.Rosati. Description logics of minimal knowledge
and negation as failure. ACM Transactions on Comput. Logic, 3(2):177–225, 2002.

5. T. Eiter, G. Ianni, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Combining
answer set programming with description logics for the semantic web. Artificial
Intelligence, 172(12-13):1495–1539, 2008.

6. C. Feier and S. Heymans. A sound and complete algorithm for sim-
ple conceptual logic programs. Technical Report INFSYS RESEARCH
REPORT 184-08-10, KBS Group, Technical University Vienna, Austria,
October 2008. http://www.kr.tuwien.ac.at/staff/heymans/priv/projects/fwf-
doasp/alpsws2008-tr.pdf.

7. M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Programming.
In Proc. of ICLP’88, pages 1070–1080, Cambridge, Massachusetts, 1988.

8. S. Grimm and P. Hitzler. Reasoning in circumscriptive ALCO. Technical report,
FZI at University of Karlsruhe, Germany, September 2007.

9. S. Grimm and P. Hitzler. Defeasible inference with circumscriptive OWL ontolo-
gies. In Workshop on Advancing Reasoning on the Web: Scalability and Common-
sense, 2008.

10. B. N. Grosof, I. Horrocks, R. Volz, and S. Decker. Description logic programs:
combining logic programs with description logic. In Proc. of the World Wide Web
Conf., pages 48–57. ACM, 2003.

11. S. Heymans, J. de Bruijn, L. Predoiu, C. Feier, and D. Van Nieuwenborgh. Guarded
hybrid knowledge bases. Theory and Practice of Logic Programming, 8(3):411–429,
2008.

12. S. Heymans, D. Van Nieuwenborgh, and D. Vermeir. Conceptual logic programs.
Annals of Mathematics and Artificial Intelligence (Special Issue on Answer Set
Programming), 47(1–2):103–137, June 2006.

13. S. Heymans, D. Van Nieuwenborgh, and D. Vermeir. Open answer set programming
with guarded programs. ACM Transactions on Computational Logic (TOCL), 9(4),
October 2008.

14. M. Krötzsch, S. Rudolph, and P. Hitzler. Description logic rules. In Proc. 18th
European Conf. on Artificial Intelligence(ECAI-08), pages 80–84. IOS Press, 2008.

15. M. Krötzsch, S. Rudolph, and P. Hitzler. ELP: Tractable rules for OWL 2. In
Proc. 7th Int. Semantic Web Conf. (ISWC-08), 2008.

16. B. Motik, U. Sattler, and R. Studer. Query answering for OWL-DL with rules.
Journal of Web Semantics: Science, Services and Agents on the World Wide Web,
3(1):41–60, July 2005.

17. R. Rosati. DL+log: Tight integration of description logics and disjunctive datalog.
In Proc. of the Int. Conf. on Principles of Knowledge Representation and Reasoning
(KR), pages 68–78, 2006.

18. S. Tobies. Complexity Results and Practical Algorithms for Logics in Knowledge
Representation. PhD thesis, LuFG Theoretical Computer Science, RWTH-Aachen,
Germany, 2001.

19. M. Y. Vardi. Reasoning about the past with two-way automata. In Proc. 25th Int.
Colloquium on Automata, Languages and Programming, pages 628–641. Springer-
Verlag, 1998.

28

Combining Logic Programming with
Description Logics and Machine Learning

for the Semantic Web

Francesca A. Lisi and Floriana Esposito

Dipartimento di Informatica, Università degli Studi di Bari
Via E. Orabona 4, 70125 Bari, Italy
{lisi, esposito}@di.uniba.it

Abstract. In this paper we consider an extension of Logic Programming
that tackles the Semantic Web challenge of acquiring rules combined with
ontologies. To face this bottleneck problem we propose a framework that
resorts to the expressive and deductive power of DL+log and adopts the
methodological apparatus of Inductive Logic Programming.

1 Introduction

Combining rules and ontologies is a hot topic in the (Semantic) Web area as
testified by the intense activity and the standardization efforts of the Rules
Interchange Format working group at W3C. Yet the debate around a unified
language for (Semantic) Web rules is still open. Indeed, combining rules and
ontologies raises several issues in Knowledge Representation (KR) due to the
many differences between the underlying logics, Clausal Logics (CLs) [17] and
Description Logics (DLs) [1] respectively. Among the many recent KR proposals,
DL+log [23] is a very powerful framework that allows for the tight integration
of DLs and disjunctive Datalog with negation (Datalog¬∨) [7]. A point in
favour of DL+log is its decidability for many DLs, notably for SHIQ [12]. Since
the design of OWL has been based on the SH family of very expressive DLs [11],
SHIQ+log is a good candidate for investigation in the Semantic Web context.

The upcoming standard rule language for the Semantic Web, if well-founded
from the KR viewpoint, will be equipped with reasoning algorithms. In KR
tradition deductive reasoning is the most widely studied. Yet, other forms of
reasoning will become necessary. E.g., acquiring and maintaining Semantic Web
rules is very demanding and can be automated though partially by applying Ma-
chine Learning algorithms. In this paper, we consider a decidable instantiation
of DL+log obtained by choosing SHIQ for the DL part and Datalog¬ for the
CL part, and face the problem of defining inductive reasoning mechanisms on it.
To solve the problem, we propose to resort to the methodological apparatus of
that form of Machine Learning known under the name of Inductive Logic Pro-
gramming (ILP) [19]. We extend some known ILP techniques to SHIQ+ log¬

and illustrate them with examples relevant to the Semantic Web context.

29

The paper is organized as follows. Section 2 briefly introduces hybrid DL-CL
formalisms and ILP. Section 3 introduces the KR framework of DL+log. Section
4 defines the ILP framework for inducing SHIQ+log¬ rules. Section 5 provides
a comparative analysis of our proposal with related work. Section 6 concludes
the paper with final remarks.

2 Background

2.1 Logic Programming and Description Logics

Description Logics (DLs) are a family of KR formalims that allow for the spec-
ification of knowledge in terms of classes (concepts), binary relations between
classes (roles), and instances (individuals) [1]. Complex concepts can be defined
from atomic concepts and roles by means of constructors (see Table 1). E.g.,
concept descriptions in the basic DL AL are formed according to only the con-
structors of atomic negation, concept conjunction, value restriction, and limited
existential restriction. The DLs ALC and ALN are members of the AL fam-
ily. The former extends AL with (arbitrary) concept negation (or complement),
whereas the latter with number restriction. The DL ALCNR adds to the con-
structors inherited from ALC and ALN a further one: role intersection (see
Table 1). Conversely, in the DL SHIQ [12] it is allowed to invert roles and to
express qualified number restrictions of the form ≥ nS.C and ≤ nS.C where S
is a simple role (see Table 1).

A DL knowledge base (KB) can state both is-a relations between concepts
(axioms) and instance-of relations between individuals (resp. couples of individu-
als) and concepts (resp. roles) (assertions). Concepts and axioms form the TBox
whereas individuals and assertions form the ABox. A SHIQ KB encompasses
also a RBox which consists of axioms concerning abstract roles. The semantics
of DLs is usually defined through a mapping to First Order Logic (FOL) [2]. An
interpretation I = (∆I , ·I) for a DL KB consists of a non-empty domain ∆I

and a mapping function ·I . In particular, individuals are mapped to elements of
∆I such that aI 6= bI if a 6= b (Unique Names Assumption (UNA) [21]). Yet in
SHIQ UNA does not hold by default [10]. Thus individual equality (inequality)
assertions may appear in a SHIQ KB (see Table 1). Also the KB represents
many different interpretations, i.e. all its models. This is coherent with the Open
World Assumption (OWA) that holds in FOL semantics. The main reasoning
task for a DL KB is the consistency check that is performed by applying decision
procedures based on tableau calculus. Decidability of reasoning is crucial in DLs.

The integration of DLs and Logic Programming follows the tradition of KR
research on hybrid systems, i.e. those systems which are constituted by two or
more subsystems dealing with distinct portions of a single KB by performing
specific reasoning procedures [8], and gives raise to KR systems that will be
referred to as DL-CL hybrid systems in the rest of the paper. The motivation
for investigating and developing such systems is to improve on representational
adequacy and deductive power by preserving decidability. In particular, combin-
ing DLs with CLs can easily yield to undecidability if the interface between

30

Table 1. Syntax and semantics of DLs.

bottom (resp. top) concept ⊥ (resp. >) ∅ (resp. ∆I)
atomic concept A AI ⊆ ∆I

(abstract) role R RI ⊆ ∆I ×∆I

(abstract) inverse role R− (RI)−

(abstract) individual a aI ∈ ∆I

concept negation ¬C ∆I \ CI

concept intersection C1 u C2 CI
1 ∩ CI

2

concept union C1 t C2 CI
1 ∪ CI

2

value restriction ∀R.C {x ∈ ∆I | ∀y (x, y) ∈ RI → y ∈ CI}
existential restriction ∃R.C {x ∈ ∆I | ∃y (x, y) ∈ RI ∧ y ∈ CI}

at least number restriction ≥ nR {x ∈ ∆I | |{y|(x, y) ∈ RI}| ≥ n}
at most number restriction ≤ nR {x ∈ ∆I | |{y|(x, y) ∈ RI}| ≤ n}

at least qualif. number restriction ≥ nS.C {x ∈ ∆I | |{y ∈ CI |(x, y) ∈ SI}| ≥ n}
at most qualif. number restriction ≤ nS.C {x ∈ ∆I | |{y ∈ CI |(x, y) ∈ SI}| ≤ n}

role intersection R1 uR2 RI
1 ∩RI

2

concept equivalence axiom C1 ≡ C2 CI
1 = CI

2

concept subsumption axiom C1 v C2 CI
1 ⊆ CI

2

role equivalence axiom R ≡ S RI = SI

role inclusion axiom R v S RI ⊆ SI

concept assertion a : C aI ∈ CI

role assertion 〈a, b〉 : R (aI , bI) ∈ RI

individual equality assertion a ≈ b aI = bI

individual inequality assertion a 6≈ b aI 6= bI

them is not reduced. In [14] the family Carin of languages combining any DL
and HCL is presented. Among the many important results of this study, it is
proved that query answering in a logic obtained by extending ALCNR with non-
recursive Datalog rules, where both concepts and roles can occur in rule bodies,
is decidable. Query answering is decided using constrained SLD-resolution, i.e.
an extension of SLD-resolution with a modified version of tableau calculus. An-
other DL-CL hybrid system is AL-log [6] that integrates ALC [26] and Datalog
[4] by constraining the variables occurring in the body of rules with ALC con-
cept assertions. Constrained SLD-resolution for AL-log is decidable and offers a
complete and sound method for answering ground queries by refutation. Besides
decidability, another relevant issue is DL-safeness of hybrid DL-CL systems [22].
A safe interaction between the DL and the CL part of an hybrid KB allows to
solve the semantic mismatch between DLs and CLs due to the different inferences
that can be made under OWA and CWA respectively. In this respect, AL-log is
DL-safe whereas Carin is not.

31

2.2 Logic Programming and Machine Learning

The research area born at the intersection of Logic Programming and Machine
Learning, more precisely Concept Learning [18], is known under the name of
Inductive Logic Programming (ILP) [19]. From Logic Programming ILP has
borrowed the KR framework, i.e. Horn Clausal Logic (HCL). From Concept
Learning it has inherited the inferential mechanisms for induction, the most
prominent of which is generalization characterized as search through a partially
ordered space of hypotheses. According to this vision, in ILP a hypothesis is
a clausal theory (i.e., a set of rules) and the induction of a single clause (rule)
requires (i) structuring, (ii) searching and (iii) bounding the space of hypotheses.
First we focus on (i) by clarifying the notion of ordering for clauses. An ordering
allows for determining which one, between two clauses, is more general than
the other. Actually quasi-orders are considered, therefore uncomparable pairs
of clauses are admitted. One such ordering is θ-subsumption [20]: Given two
clauses C and D, we say that C θ-subsumes D if there exists a substitution
θ, such that Cθ ⊆ D. Given the usefulness of Background Knowledge (BK) in
ILP, orders have been proposed that reckon with it, e.g. Buntine’s generalized
subsumption [3]. Generalized subsumption only applies to definite clauses and
the BK should be a definite program. Once structured, the space of hypotheses
can be searched (ii) by means of refinement operators. A refinement operator is
a function which computes a set of specializations or generalizations of a clause
according to whether a top-down or a bottom-up search is performed. The two
kinds of refinement operator have been therefore called downward and upward,
respectively. The definition of refinement operators presupposes the investigation
of the properties of the various quasi-orders and is usually coupled with the
specification of a declarative bias for bounding the space of clauses (iii). Bias
concerns anything which constrains the search for theories, e.g. a language bias
specifies syntactic constraints on the clauses in the search space.

Induction with ILP generalizes from individual instances/observations in the
presence of BK, finding valid hypotheses. Validity depends on the underlying set-
ting. At present, there exist several formalizations of induction in clausal logic
that can be classified according to the following two orthogonal dimensions: the
scope of induction (discrimination vs characterization) and the representation of
observations (ground definite clauses vs ground unit clauses) [5]. Discriminant
induction aims at inducing hypotheses with discriminant power as required in
tasks such as classification. In classification, observations encompass both posi-
tive and negative examples. Characteristic induction is more suitable for finding
regularities in a data set. This corresponds to learning from positive examples
only. The second dimension affects the notion of coverage, i.e. the condition un-
der which a hypothesis explains an observation. In learning from entailment (or
from implications), hypotheses are clausal theories, observations are ground def-
inite clauses, and a hypothesis covers an observation if the hypothesis logically
entails the observation. In learning from interpretations, hypotheses are clausal
theories, observations are Herbrand interpretations (ground unit clauses) and a
hypothesis covers an observation if the observation is a model for the hypothesis.

32

3 Combining LP and DLs with DL+log

The KR framework of DL+log [23] allows for the tight integration of DLs [1]
and Datalog¬∨ [7]. More precisely, it allows a DL KB to be extended with
weakly-safe Datalog¬∨ rules. The condition of weak safeness allows to overcome
the main representational limits of the approaches based on the DL-safeness
condition, e.g. the possibility of expressing conjunctive queries (CQ) and unions
of conjunctive queries (UCQ)1, by keeping the integration scheme still decidable.
To a certain extent, DL+log is between AL-log [6] and Carin [14].

3.1 Syntax

Formulas in DL+log are built upon three mutually disjoint predicate alphabets:
an alphabet of concept names PC , an alphabet of role names PR, and an alphabet
of Datalog predicates PD. We call a predicate p a DL-predicate if either p ∈ PC

or p ∈ PR. Then, we denote by C a countably infinite alphabet of constant names.
An atom is an expression of the form p(X), where p is a predicate of arity n
and X is a n-tuple of variables and constants. If no variable symbol occurs in X,
then p(X) is called a ground atom (or fact). If p ∈ PC ∪ PR, the atom is called
a DL-atom, while if p ∈ PD, it is called a Datalog atom.

Given a description logic DL, a DL+log KB B is a pair (Σ, Π), where Σ is
a DL KB and Π is a set of Datalog¬∨ rules, where each rule R has the form

p1(X1) ∨ . . . ∨ pn(Xn)←
r1(Y1), . . . , rm(Ym), s1(Z1), . . . , sk(Zk),¬u1(W1), . . . ,¬uh(Wh)

with n, m, k, h ≥ 0, each pi(Xi), rj(Yj), sl(Zl), uk(Wk) is an atom and:

– each pi is either a DL-predicate or a Datalog predicate;
– each rj , uk is a Datalog predicate;
– each sl is a DL-predicate;
– (Datalog safeness) every variable occurring in R must appear in at least

one of the atoms r1(Y1), . . . , rm(Ym), s1(Z1), . . . , sk(Zk);
– (weak safeness) every head variable of R must appear in at least one of the

atoms r1(Y1), . . . , rm(Ym).

We remark that the above notion of weak safeness allows for the presence
of variables that only occur in DL-atoms in the body of R. On the other hand,
the notion of DL-safeness can be expressed as follows: every variable of R must
appear in at least one of the atoms r1(Y1), . . . , rm(Ym). Therefore, DL-safeness
forces every variable of R to occur also in the Datalog atoms in the body of
R, while weak safeness allows for the presence of variables that only occur in
DL-atoms in the body of R. Without loss of generality, we can assume that in a
DL+log KB (Σ,Π) all constants occurring in Σ also occur in Π.
1 A Boolean UCQ over a predicate alphabet P is a first-order sentence of the form
∃X.conj1(X) ∨ . . . ∨ conjn(X), where X is a tuple of variable symbols and each
conji(X) is a set of atoms whose predicates are in P and whose arguments are either
constants or variables from X. A Boolean CQ corresponds to a Boolean UCQ in the
case when n = 1.

33

Example 1. Let us consider a DL+log KB B (adapted from [23]) integrating the
following DL-KB Σ (ontology about persons)

[A1] PERSON v ∃ FATHER−.MALE
[A2] MALE v PERSON
[A3] FEMALE v PERSON
[A4] FEMALE v ¬MALE

MALE(Bob)
PERSON(Mary)
PERSON(Paul)
FATHER(John,Paul)

and the following Datalog¬∨ program Π (rules about students):

[R1] boy(X) ← enrolled(X,c1,bsc), PERSON(X), ¬girl(X)
[R2] girl(X) ← enrolled(X,c2,msc), PERSON(X)
[R3] boy(X)∨ girl(X) ← enrolled(X,c3,phd), PERSON(X)
[R4] FEMALE(X) ← girl(X)
[R5] MALE(X) ← boy(X)
[R6] man(X) ← enrolled(X,c3,phd), FATHER(X,Y)

enrolled(Paul,c1,bsc)
enrolled(Mary,c1,bsc)
enrolled(Mary,c2,msc)
enrolled(Bob,c3,phd)
enrolled(John,c3,phd)

Note that the rules mix DL-literals and Datalog-literals. Notice that the vari-
able Y in rule R6 is weakly-safe but not DL-safe, since Y does not occur in any
Datalog predicate in R6.

3.2 Semantics

For DL+log two semantics have been defined: a first-order logic (FOL) semantics
and a nonmonotonic (NM) semantics. In particular, the latter extends the stable
model semantics of Datalog¬∨ [9]. According to it, DL-predicates are still
interpreted under OWA, while Datalog predicates are interpreted under CWA.
Notice that, under both semantics, entailment can be reduced to satisfiability. In
a similar way, it can be seen that CQ answering can be reduced to satisfiability
in DL+log. Consequently, Rosati [23] concentrates on the satisfiability problem
in DL+log KBs. It has been shown that, when the rules are positive disjunctive,
the above two semantics are equivalent with respect to the satisfiability problem.
In particular, FOL-satisfiability can always be reduced (in linear time) to NM-
satisfiability. Hence, the satisfiability problem under the NM semantics is in the
focus of interest.

Example 2. With reference to Example 1, it can be easily verified that all NM-
models for B satisfy the following ground atoms:

34

– boy(Paul) (since rule R1 is always applicable for {X/Paul} and R1 acts like
a default rule, which can be read as follows: if X is a person enrolled in course
c1, then X is a boy, unless we know for sure that X is a girl);

– girl(Mary) (since rule R2 is always applicable for {X/Mary});
– boy(Bob) (since rule R3 is always applicable for {X/Bob}, and, by rule R4,

the conclusion girl(Bob) is inconsistent with Σ);
– MALE(Paul) (due to rule R5);
– FEMALE(Mary) (due to rule R4).

Notice that B |=NMFEMALE(Mary), while Σ 6|=FOL FEMALE(Mary). In other
words, adding rules has indeed an effect on the conclusions one can draw about
DL-predicates. Moreover, such an effect also holds under the FOL semantics of
DL+log-KBs, since it can be verified that B |=FOLFEMALE(Mary) in this case.

3.3 Reasoning

The problem statement of satisfiability for finite DL+log KBs relies on the fol-
lowing problem known as the Boolean CQ/UCQ containment problem2 in DLs:
Given a DL-TBox T , a Boolean CQ Q1 and a Boolean UCQ Q2 over the alpha-
bet PC∪PR, Q1 is contained in Q2 with respect to T , denoted by T |= Q1 ⊆ Q2,
iff, for every model I of T , if Q1 is satisfied in I then Q2 is satisfied in I. The
algorithm NMSAT-DL+log for deciding NM-satisfiability of DL+log KBs looks
for a guess (GP , GN) of the Boolean CQs in the DL-grounding of Π, denoted
as grp(Π), that is consistent with the DL-KB Σ (Boolean CQ/UCQ contain-
ment problem) and such that the Datalog¬∨ program Π(GP , GN) has a stable
model. Details of how obtaining grp(Π) and Π(GP , GN) can be found in [23].

The decidability of reasoning in DL+log, thus of ground query answering, de-
pends on the decidability of the Boolean CQ/UCQ containment problem in DL.
Consequently, ground queries can be answered by applying NMSAT-DL+log.

Theorem 1 [23] For every description logic DL, satisfiability of DL+log-KBs
(both under FOL semantics and under NM semantics) is decidable iff Boolean
CQ/UCQ containment is decidable in DL.

Corollary 1. Given a DL+log KB (Σ,Π) and a ground atom α, (Σ, Π) |= α
iff (Σ, Π ∪ {← α}) is unsatisfiable.

From Theorem 1 and from previous results on query answering and query con-
tainment in DLs, it follows the decidability of reasoning in several instantia-
tions of DL+log. Since SHIQ is the most expressive DL for which the Boolean
CQ/UCQ containment is decidable [10], we consider SHIQ+log¬ (i.e. SHIQ
extended with weakly-safe Datalog¬ rules) as the KR framework in our study
of ILP for the Semantic Web.

2 This problem was called existential entailment in [14].

35

4 Inducing SHIQ+log¬ Rules with ILP

We consider the task of inducing new SHIQ+log¬ rules from an already existing
SHIQ+log¬ KB. At this stage of work the scope of induction does not matter.
Therefore the term ’observation’ is to be preferred to the term ’example’. We
choose to work within the setting of learning from interpretations which requires
an observation to be represented as a set of ground unit clauses.

We assume that the data are represented as a SHIQ+log¬ KB B where the
intensional part K (i.e., the TBox T plus the set ΠR of rules) plays the role of
background knowledge and the extensional part (i.e., the ABox A plus the set
ΠF of facts) contributes to the definition of observations. Therefore ontologies
may appear as input to the learning problem of interest.

Example 3. Suppose we have a SHIQ+log¬ KB (adapted from [23]) consisting
of the following intensional knowledge K:

[A1] RICHuUNMARRIED v ∃ WANTS-TO-MARRY−.>
[R1] RICH(X) ← famous(X), ¬ scientist(X)

and the following extensional knowledge F :

UNMARRIED(Mary)
UNMARRIED(Joe)
famous(Mary)
famous(Paul)
famous(Joe)
scientist(Joe)

that can be split into FJoe = {UNMARRIED(Joe), famous(Joe), scientist(Joe)},
FMary = {UNMARRIED(Mary), famous(Mary)}, and FPaul = {famous(Paul)}.

The language L of hypotheses must allow for the generation of SHIQ+log¬

rules starting from three disjoint alphabets PC(L) ⊆ PC(B), PR(L) ⊆ PR(B),
and PD(L) ⊆ PD(B). More precisely, we consider linked3 and range-restricted4

weakly-safe Datalog¬ clauses of the form

p(X)← r1(Y1), . . . , rm(Ym), s1(Z1), . . . , sk(Zk),¬u1(W1), . . . ,¬uh(Wh)

where the unique literal p(X) in the head represents the target predicate, de-
noted as c if p is a Datalog-predicate and as C if p is a SHIQ-predicate. In
the following we provide examples for these two cases of rule learning, one aimed
at inducing c(X)← rules and the other C(X)← rules. The former kind of rule
will enrich the Datalog part of the KB, whereas the latter will extend the DL
part (i.e., the input ontology).
3 A clause H is linked if each literal li ∈ H is linked. A literal li ∈ H is linked if at least

one of its terms is linked. A term t in some literal li ∈ H is linked with linking-chain
of length 0, if t occurs in head(H), and with linking-chain of length d + 1, if some
other term in li is linked with linking-chain of length d. The link-depth of a term t
in li is the length of the shortest linking-chain of t.

4 A clause H is range-restricted if each variable occurring in head(H) also occur in
body(H).

36

Example 4. Suppose that the Datalog-predicate happy is the target predicate
and the set PD(Lhappy) ∪ PC(Lhappy) ∪ PR(Lhappy) = {famous/1} ∪ {RICH/1} ∪
{WANTS-TO-MARRY/2, LIKES/2} provides the building blocks for the language
Lhappy. The following SHIQ+log¬ rules

Hhappy
1 happy(X) ← RICH(X)

H
happy
2 happy(X) ← famous(X)

Hhappy
3 happy(X) ← famous(X), WANTS-TO-MARRY(Y,X)

belonging to Lhappy can be considered hypotheses for the target predicate happy.
Note that Hhappy

3 is weakly-safe.

Example 5. Suppose now that the target predicate is the DL-predicate LONER.
If LLONER is defined over PD(LLONER) ∪ PC(LLONER) = {famous/1, scientist/1} ∪
{UNMARRIED/1}, then the following SHIQ+log¬ rules

HLONER
1 LONER(X) ← scientist(X)

HLONER
2 LONER(X) ← scientist(X), UNMARRIED(X)

HLONER
3 LONER(X) ← ¬famous(X)

belong to LLONER and represent hypotheses for the target predicate LONER.

In order to support with ILP techniques the induction of SHIQ+log¬ rules,
the language L of hypotheses needs to be equipped with a generality order �,
and a coverage relation covers so that (L,�) is a search space and covers defines
the mappings from (L,�) to the set O of observations. The next subsections are
devoted to these issues.

4.1 The hypothesis ordering

The definition of a generality order for hypotheses in L can disregard neither the
peculiarities of SHIQ+log¬ nor the methodological apparatus of ILP. One issue
arises from the presence of NAF literals (i.e., negated Datalog literals) both in
the background knowledge and in the language of hypotheses. As pointed out in
[25], rules in normal logic programs are syntactically regarded as Horn clauses
by viewing the NAF-literal ¬p(X) as an atom not p(X) with the new predicate
not p. Then any result obtained on Horn logic programs is directly carried over
to normal logic programs. Assuming one such treatment of NAF literals, we
propose to adapt generalized subsumption [3] to the case of SHIQ+log¬ rules.
The resulting generality relation will be called K-subsumption, briefly �K, from
now on. We provide a characterization of �K that relies on the reasoning tasks
known for DL+log and from which a test procedure can be derived.

Definition 1. Let H1,H2 ∈ L be two hypotheses standardized apart, K a back-
ground knowledge, and σ a Skolem substitution for H2 with respect to {H1}∪K.
We say that H1 �K H2 iff there exists a ground substitution θ for H1 such that
(i) head(H1)θ = head(H2)σ and (ii) K ∪ body(H2)σ |= body(H1)θ.

37

Note that condition (ii) is a variant of the Boolean CQ/UCQ containment
problem because body(H2)σ and body(H1)θ are both Boolean CQs. The differ-
ence between (ii) and the original formulation of the problem is that K encom-
passes not only a TBox but also a set of rules. Nonetheless this variant can
be reduced to the satisfiability problem for finite SHIQ+log¬ KBs. Indeed the
skolemization of body(H2) allows to reduce the Boolean CQ/UCQ containment
problem to a CQ answering problem5. Due to the aforementioned link between
CQ answering and satisfiability, checking (ii) can be reformulated as proving
that the KB (T ,ΠR ∪ body(H2)σ ∪{← body(H1)θ}) is unsatisfiable. Once refor-
mulated this way, (ii) can be solved by applying the algorithm NMSAT-DL+log.

Example 6. Let us consider the hypotheses

Hhappy
1 happy(A) ← RICH(A)

H
happy
2 happy(X) ← famous(X)

reported in Example 4 up to variable renaming. We want to check whether
Hhappy

1 �K Hhappy
2 holds. Let σ = {X/a} a Skolem substitution for Hhappy

2 with
respect to K ∪ Hhappy

1 and θ = {A/a} a ground substitution for Hhappy
1 . The

condition (i) is immediately verified. The condition (ii) K ∪ {famous(a)} |=
RICH(a) is nothing else that a ground query answering problem in SHIQ+log.
It can be proved that the query RICH(a) can not be satisfied because the rule
R1 is not applicable for a. Thus, Hhappy

1 6�K Hhappy
2 . Since Hhappy

2 6�K Hhappy
1 , the

two hypotheses are incomparable under K-subsumption. Conversely, it can be
proved that Hhappy

2 �K Hhappy
3 but not viceversa.

Example 7. Let us consider the hypotheses

HLONER
1 LONER(A) ← scientist(A)

HLONER
2 LONER(X) ← scientist(X),UNMARRIED(X)

reported in Example 5 up to variable renaming. We want to check whether
HLONER

1 �K HLONER
2 holds. Let σ = {X/a} a Skolem substitution for HLONER

2 with
respect to K ∪ HLONER

1 and θ = {A/a} a ground substitution for HLONER
1 . The

condition (i) is immediately verified. The condition

(ii) K ∪ {scientist(a), UNMARRIED(a)} |= {scientist(a)}
is a ground query answering problem in SHIQ+log. It can be easily proved that
all NM-models for K ∪ {scientist(a), UNMARRIED(a)} satisfy scientist(a).
Thus, HLONER

1 �K HLONER
2 . The viceversa does not hold. Also it can be proved that

HLONER
3 is incomparable with both HLONER

1 and HLONER
2 under K-subsumption.

It is straightforward to see that the decidability of K-subsumption follows from
the decidability of SHIQ+log¬. It can be proved that �K is a quasi-order (i.e. it
is a reflexive and transitive relation) for SHIQ+log¬ rules, therefore the space
of hypotheses can be searched by refinement operators.
5 Since UNA does not necessarily hold in SHIQ, the (Boolean) CQ/UCQ containment

problem for SHIQ boils down to the (Boolean) CQ/UCQ answering problem.

38

4.2 The hypothesis coverage of observations

The definition of a coverage relation depends on the representation choice for
observations. An observation oi ∈ O is represented as a couple (p(ai),Fi) where
Fi is a set containing ground facts concerning the tuple of individuals ai. We
assume K ∩O = ∅.
Definition 2. Let H ∈ L be a hypothesis, K a background knowledge and oi ∈
O an observation. We say that H covers oi under interpretations w.r.t. K iff
K ∪ Fi ∪H |= p(ai).

Note that the coverage test can be reduced to query answering in SHIQ+log¬

KBs which in its turn can be reformulated as a satisfiability problem of the KB.

Example 8. The hypothesis H
happy
3 mentioned in Example 4 covers the observa-

tion oMary = (happy(Mary),FMary) because K ∪ FMary ∪H
happy
3 |= happy(Mary).

Indeed, all NM-models for B = K ∪ FMary ∪Hhappy
3 satisfy:

– famous(Mary) (trivial!);
– ∃ WANTS-TO-MARRY−.>(Mary), due to the axiom A1 and to the fact that

both RICH(Mary) and UNMARRIED(Mary) hold in every model of B;
– happy(Mary), due to the above conclusions and to the rule R1. Indeed, since
∃WANTS-TO-MARRY−.>(Mary) holds in every model of B, it follows that in
every model there exists a constant x such that WANTS-TO-MARRY(x,Mary)
holds in the model, consequently from rule R1 it follows that happy(Mary)
also holds in the model.

Note that H
happy
3 does not cover the observations oJoe = (happy(Joe),FJoe) and

oPaul = (happy(Paul),FPaul). More precisely, K ∪ FJoe ∪Hhappy
3 6|= happy(Joe)

because scientist(Joe) holds in every model of B = K ∪ FJoe ∪ Hhappy
3 , thus

making the rule R1 not applicable for {X/Joe}, therefore RICH(Joe) not deriv-
able. Finally, K ∪ FPaul ∪ Hhappy

3 6|= happy(Paul) because UNMARRIED(Paul)
is not forced to hold in every model of B = K ∪ FPaul ∪ Hhappy

3 , therefore
∃WANTS-TO-MARRY−.>(Paul) is not forced by A1 to hold in every such model.

It can be proved that Hhappy
1 covers oMary and oPaul, while Hhappy

2 all the three
observations.

Example 9. With reference to Example 5, the hypothesis HLONER
3 does not cover

the observation oMary = (LONER(Mary),FMary) because all NM-models for B =
K ∪ FMary ∪ HLONER

3 do satisfy famous(Mary). Note that it does not cover the
observations oPaul = (LONER(Paul),FPaul) and oJoe = (LONER(Joe),FJoe) for
analogous reasons. It can be proved that HLONER

2 covers oMary and oJoe while
HLONER

1 all three observations.

5 Related Work

Two ILP frameworks have been proposed so far that adopt a hybrid DL-CL
representation for both hypotheses and background knowledge. The framework

39

proposed in [24] focuses on discriminant induction and adopts the ILP setting
of learning from interpretations. Hypotheses are represented as Carin-ALN
non-recursive rules with a Horn literal in the head that plays the role of tar-
get concept. The coverage relation of hypotheses against examples adapts the
usual one in learning from interpretations to the case of hybrid Carin-ALN
BK. The generality relation between two hypotheses is defined as an extension
of generalized subsumption. Procedures for testing both the coverage relation
and the generality relation are based on the existential entailment algorithm
of Carin. Following [24], Kietz studies the learnability of Carin-ALN , thus
providing a pre-processing method which enables ILP systems to learn Carin-
ALN rules [13]. In [15], the representation and reasoning means come from
AL-log. Hypotheses are represented as constrained Datalog clauses. Note that
this framework is general, meaning that it is valid whatever the scope of induc-
tion is. The generality relation for one such hypothesis language is an adapta-
tion of generalized subsumption to the AL-log KR framework. It gives raise to a
quasi-order and can be checked with a decidable procedure based on constrained
SLD-resolution. Coverage relations for both ILP settings of learning from inter-
pretations and learning from entailment have been defined on the basis of query
answering in AL-log. As opposite to [24], the framework has been partially im-
plemented in an ILP system [16] that supports a variant of frequent pattern
discovery where rich prior conceptual knowledge is taken into account in order
to find patterns at multiple levels of description granularity.

Table 2. Comparison between ILP frameworks for DL-CL systems.

Learning in Carin-ALN [24] Learning in AL-log [15] Learning in SHIQ+log¬

prior knowledge Carin-ALN KB AL-log KB SHIQ+log¬ KB
ontology lang. ALN ALC SHIQ

rule lang. Horn clauses Datalog clauses Datalog¬ clauses
hypothesis lang. Carin-ALN non-recursive rules constrained Datalog clauses SHIQ+log¬ non-recursive rules
target predicate Horn literal Datalog literal SHIQ/Datalog literal

observations interpretations interpretations/implications interpretations
induction predictive predictive/descriptive predictive/descriptive

generality order extension of [3] to Carin-ALN extension of [3] to AL-log extension of [3] to SHIQ+log¬
coverage test Carin-ALN query answering AL-log query answering SHIQ+log¬ query answering
ref. operators no downward no

implementation no partially no
application no yes no

The ILP framework presented in this paper differs from [24] and [15] in several
respects as summarized in Table 2, notably the following ones. First, it relies on a
more expressive DL, i.e. SHIQ. Second, it allows for inducing definitions for new
DL concepts, i.e. rules with a SHIQ literal in the head. Third, it relies on a more
expressive yet decidable CL, i.e. Datalog¬. Forth, it adopts a tighter form of
integration between the DL and the CL part, i.e. the weakly-safe one. Similarities
also emerge from Table 2 such as the use of a semantic ordering for hypotheses
in order to accommodate ontologies in ILP. Note that generalized subsumption

40

is chosen for adaptation in all three ILP frameworks because definite clauses,
though enriched with DL and NAF literals, are still used.

6 Final Remarks

In this paper, we have proposed an ILP framework built upon SHIQ+log¬. In-
deed, well-known ILP techniques for induction have been reformulated in terms
of the deductive reasoning mechanims of DL+log. Notably, we have defined a de-
cidable generality ordering, K-subsumption, for SHIQ+log¬ rules on the basis
of the decidable algorithm NMSAT-SHIQ+log. We would like to point out that
the ILP framework proposed is suitable for inductive reasoning in the context of
the Semantic Web for two main reasons. First, it adopts the DL which was the
starting point for the design of the Web ontology language OWL. Second, it can
deal with incomplete knowledge, thus coping with a more plausible scenario of
the Web. Though the work presented in this paper can be considered as a fea-
sibility study, it provides the principles for inductive reasoning in SHIQ+log¬.
We would like to emphasize that they will be still valid for any other upcoming
decidable instantiation of DL+log, provided that Datalog¬ is still considered
for the CL part.

The Semantic Web offers several use cases for rules among which we can
choose in order to see our ILP framework at work. As next step towards any
practice, we plan to define ILP algorithms starting from the ingredients identified
in this paper. Tractable cases, e.g. the instantiation of DL+log with DL-Lite
(subset of SHIQ), will be of major interest. Also we would like to investigate
the impact of having Datalog¬∨ both in the language of hypotheses and in the
language for the background theory. The inclusion of the nonmonotonic features
of SHIQ+log full will strengthen the ability of our ILP framework to deal
with incomplete knowledge by performing an inductive form of commonsense
reasoning. One such ability can turn out to be useful in the Semantic Web, and
complementary to reasoning with uncertainty and under inconsistency. Finally,
we would like to study the complexity of K-subsumption.

References

1. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P.F. Patel-Schneider, edi-
tors. The Description Logic Handbook: Theory, Implementation and Applications.
Cambridge University Press, 2003.

2. A. Borgida. On the relative expressiveness of description logics and predicate
logics. Artificial Intelligence, 82(1–2):353–367, 1996.

3. W. Buntine. Generalized subsumption and its application to induction and redun-
dancy. Artificial Intelligence, 36(2):149–176, 1988.

4. S. Ceri, G. Gottlob, and L. Tanca. What you always wanted to know about datalog
(and never dared to ask). IEEE Transactions on Knowledge and Data Engineering,
1(1):146–166, 1989.

5. L. De Raedt and L. Dehaspe. Clausal Discovery. Machine Learning, 26(2–3):99–
146, 1997.

41

6. F.M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. AL-log: Integrating Datalog
and Description Logics. Journal of Intelligent Information Systems, 10(3):227–252,
1998.

7. T. Eiter, G. Gottlob, and H. Mannila. Disjunctive Datalog. ACM Transactions
on Database Systems, 22(3):364–418, 1997.

8. A.M. Frisch and A.G. Cohn. Thoughts and afterthoughts on the 1988 workshop
on principles of hybrid reasoning. AI Magazine, 11(5):84–87, 1991.

9. M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive
databases. New Generation Computing, 9(3/4):365–386, 1991.

10. B. Glimm, I. Horrocks, C. Lutz, and U. Sattler. Conjunctive query answering for
the description logic SHIQ. Journal of Artificial Intelligence Research, 31:151–
198, 2008.

11. I. Horrocks, P.F. Patel-Schneider, and F. van Harmelen. From SHIQ and RDF
to OWL: The making of a web ontology language. Journal of Web Semantics,
1(1):7–26, 2003.

12. I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for very expressive
description logics. Logic Journal of the IGPL, 8(3):239–263, 2000.

13. J.-U. Kietz. Learnability of description logic programs. In S. Matwin and C. Sam-
mut, editors, Inductive Logic Programming, volume 2583 of Lecture Notes in Arti-
ficial Intelligence, pages 117–132. Springer, 2003.

14. A.Y. Levy and M.-C. Rousset. Combining Horn rules and description logics in
CARIN. Artificial Intelligence, 104:165–209, 1998.

15. F.A. Lisi. Building Rules on Top of Ontologies for the Semantic Web with Inductive
Logic Programming. Theory and Practice of Logic Programming, 8(03):271–300,
2008.

16. F.A. Lisi and D. Malerba. Inducing Multi-Level Association Rules from Multiple
Relations. Machine Learning, 55:175–210, 2004.

17. J.W. Lloyd. Foundations of Logic Programming. Springer, 2nd edition, 1987.
18. T.M. Mitchell. Generalization as search. Artificial Intelligence, 18:203–226, 1982.
19. S.-H. Nienhuys-Cheng and R. de Wolf. Foundations of Inductive Logic Program-

ming, volume 1228 of Lecture Notes in Artificial Intelligence. Springer, 1997.
20. G.D. Plotkin. A note on inductive generalization. Machine Intelligence, 5:153–163,

1970.
21. R. Reiter. Equality and domain closure in first order databases. Journal of ACM,

27:235–249, 1980.
22. R. Rosati. Semantic and computational advantages of the safe integration of on-

tologies and rules. In F. Fages and S. Soliman, editors, Principles and Practice
of Semantic Web Reasoning, volume 3703 of Lecture Notes in Computer Science,
pages 50–64. Springer, 2005.

23. R. Rosati. DL+log: Tight integration of description logics and disjunctive datalog.
In P. Doherty, J. Mylopoulos, and C.A. Welty, editors, Proc. of Tenth International
Conference on Principles of Knowledge Representation and Reasoning, pages 68–
78. AAAI Press, 2006.

24. C. Rouveirol and V. Ventos. Towards Learning in CARIN-ALN . In J. Cussens
and A. Frisch, editors, Inductive Logic Programming, volume 1866 of Lecture Notes
in Artificial Intelligence, pages 191–208. Springer, 2000.

25. C. Sakama. Nonmonotonic inductive logic programming. In T. Eiter, W. Faber,
and M. Truszczynski, editors, Logic Programming and Nonmonotonic Reasoning,
volume 2173 of Lecture Notes in Computer Science, pages 62–80. Springer, 2001.

26. M. Schmidt-Schauss and G. Smolka. Attributive concept descriptions with com-
plements. Artificial Intelligence, 48(1):1–26, 1991.

42

A semantic stateless service description language

P. A. Bonatti and L. Sauro

Università di Napoli Federico II

Abstract. Complexity issues and the requirements on semantic web application
in the Life Science domains recently motivated a few works on stateless service
description languages [1, 5]. With stateless services, it is possible to reason about
the semantic relationships between inputs and outputs, while keeping matchmaking
and composition decidable. In this paper we extend the languages introduced in [1]
and [5] with more general forms of composition and other constructs. We provide
formal syntax and semantics and some preliminary results on the complexity of
service comparison. These complexity results rely on hybrid formalisms involving
both logic programming rules and description logics.

1 Introduction

The area of semantic web services is concerned with the declarative, knowledge based
specification of web service semantics applied to service matchmaking (i.e., finding a ser-
vice that matches a given specification), verification and automated composition. There
is a conspicuous literature on the topic, enriched by several competing standards, such as
OWL-S, WSMO, and WSDL-S.

When the semantic description involves dynamic behavioral aspects such as itera-
tions, the tasks of matchmaking and composition easily become undecidable. This mo-
tivated a few works on stateless services [1, 5], that behave like functions or database
queries. With stateless services, it is possible to move beyond a mere description of input
and output types and capture the relationships between inputs and outputs, while keeping
matchmaking and composition decidable. Stateless services are interesting because they
are common in the domain of Life Sciences [5]. Moreover, they can be paired with a
workflow language supporting procedural constructs like BPEL4WS with the purpose of
supporting the dynamic binding of atomic activities.

In this paper we extend the languages introduced in [1] and [5] with more general
forms of composition and other constructs. We provide formal syntax and semantics and
some preliminary results on the complexity of service comparison, a basic reasoning
task that underlies both matchmaking and composition (cf. [1]). These complexity re-
sults rely on hybrid formalisms involving both rules and description logics. The language
we adopt admits a graphic presentation (that may be appreciated by users with limited
programming skills) as well as textual representation that resembles relational query and
programming languages enough to be familiar to programmers.

We start with some examples (Sec. 2) followed by a brief summary of description
logic notions (Sec. 3). Then we formalize our service description logic language SDLfull

(Sec. 4). Service comparison is reduced to an intermediate logic programming formula-
tion and then to queries against description logic knowledge bases in Sec. 5, which allow
to derive complexity results (Sec.6).

43

2 A running example

Services receive input messages and return output messages. Such messages are struc-
tured objects (as in WSDL), consisting of a set of attribute-value pairs, such as

{street="Via Toledo", numb=128}.

Following [1], we assume that services can be like queries, that is, a single input message
may be mapped onto a set of homogeneously structured output messages. Formally this
means that a service can be abstracted by any set of pairs (min,mout), with multiple pairs
sharing the same min.

Now assume an underlying ontology defines the concepts Place, Map, Coord, and
Address, and that every Place has the attributes hasAddr, hasMap, hasCoord. In
turn each address has the attributes hasCity, hasStr and hasNum. Consider a service
Mapservice that takes input messages with attributes city and street, and returns the
map of the surrounding area in a message with the single field result. Mapservice can
be described in our language with the following expression:

select result:=hasMap from all Place
with hasAddr.hasCity = city, hasAddr.hasStr = street .

This description can be easily adapted to describe similar services. For example, a
specialized map service that works only for southern cities can be described by defining
a concept SouthernCity in the underlying ontology and restricting Mapservice with
the expression:

Mapservice restricted to SouthernCity(city) .
Portals can be described with unions. Given two map services for Europe and China,

called Euromap and Chinamap, a portal that covers both areas can be described by:
union (Euromap, Chinamap).
Intersections are supported, too. Now suppose that Euromap is more reliable than the

generic Mapservice, then it may be preferable to use Euromap when possible. This can be
done with conditionals (temporarily assume that Euromap and Chinamap have the same
input message type as Mapservice, with the city field):

if EuropeanCity(city) then Euromap else Mapservice .
A relevant task is composition, our framework supports composition through dataflow

graphs by which the output of some services can be fed as input to other services. For
example, let Addr2coor be a service that takes city and street and returns the as-
sociated coordinates lat and lon; then let Coor2map be a service that returns the map
associated to the given coordinates, called latitude and latitude by this service.
The composition of these two services can be specified with the dataflow graph in Fig. 1.
We support also a textual representation:

CompoundMap:
in city, street
out result
C := Addr2coor(in)
out := Coor2map(latitude:=C.lat, longitude:=C.lon) .

In order to combine different services it may be necessary to adapt and restructure
their inputs and outputs (e.g. consider the above example for conditionals when Euromap
and Chinamap have different input message types). Here is an example of a variant of

44

Fig. 1. A dataflow graph

Mapservice whose input city is forced to be Naples (a constant in the knowledge base),
and whose output is renamed:

RestructuredMapServ:
in street
out map
C := Mapservice (street:=in.street, city:=Naples)
out.map:=C.result .

In general we allow a message element to be fed as an input to multiple other services,
so dataflow graphs can be arbitrary DAGs. This was not allowed in [1]

Our framework allows to reason about different specifications. The basic reasoning
task is service comparison, that given two service descriptions S1 and S2 checks whether
all the input-output message pairs in the semantics of S1 are also in the semantics of S2;
in that case we write S1 vKB,Σ S2, where KB is the underlying ontology and Σ con-
tains the service definitions. By comparing services one may look for stronger or weaker
services (cf. [1]). If Addr2coor and Coor2map are correctly specified (say, with select
expressions), then our framework can verify that CompoundMapvKB,Σ Mapservice and
Mapservice vKB,Σ CompoundMap, thereby concluding that in the absence of a direct
implementation of Mapservice, an equivalent service can be obtained by composing the
implementations of Addr2coor and Coor2map as specified by CompoundMap (dynamic
service replacement). Service comparison can also be a basis for automated composition
that, however, lies beyond the scope of this paper.

Syntactically speaking, the service description language illustrated above lies some-
where in between relational algebra and a programming language. A major difference
with respect to both is that descriptions are linked to an ontology, so it is possible to
distinguish—say—a hash table that associates people with their age from another hash
table (with the same implementation) that associates people with their credit card num-
ber. Clearly, such differences are crucial for tasks such as service discovery and dynamic
binding of workflow activities to services. Procedural constructs cover assignments and
conditionals; only iterations are not supported, and this has a few advantages: (i) the
main reasoning tasks are decidable, (ii) the language is easier to use for people with no
programming background.

3 Preliminaries

The vocabulary of the description logics we deal with in this paper consists of the fol-
lowing pairwise disjoint countable sets of symbols: a set of atomic concepts At, a set of
individual names In, and a set of atomic roles AR, with a distinguished subset of names
AtR ⊆ AR denoting transitive roles.

45

A role is either an expression P or P−, where P ∈ AR. Let R range over roles. The
set of concepts is the smallest superset of At such that if C,D are concepts, then >, ¬C,
C uD, ∃.C, and ∃≤nR.C are concepts.

Semantics is based on interpretations of the form I = 〈∆I , ·I〉 where ∆I is a set of
individuals and ·I is an interpretation function mapping each A ∈ At on some AI ⊆ ∆I ,
each a ∈ In on some aI ∈ ∆I , and each R ∈ AR on some RI ⊆ ∆I ×∆I . Moreover,
if R ∈ AtR, then RI is transitive. The meaning of inverse roles is (R−)I = {〈y, x〉 |
〈x, y〉 ∈ RI} . Next we define the meaning of compound concepts. By] S we denote the
cardinality of S.

AIρ = AI (A ∈ At) >I = ∆I

(¬C)Iρ = ∆I \ CIρ (C uD)Iρ = CIρ ∩DI
ρ

(∃R.C)Iρ =
{
x | ∃y.〈x, y〉 ∈ RI ∧ y ∈ CIρ

}
(∃≤nR.C)Iρ =

{
x |] {y | 〈x, y〉 ∈ RI ∧ y ∈ CIρ } ≤ n

}
.

Other standard constructs (∀R.C, ⊥,t) can be derived from the above concepts.
A general concept inclusion (GCI) is an expression C v D where C and D are

concepts. A role inclusion is an expression R1 v R2 where R1 and R2 are roles. An
assertion is an atom like A(a) or P (a, b) where A ∈ At, R ∈ AR, and {a, b} ∈ In . A
TBox is a set of GCIs; a role hierarchy is a set of role inclusions; an ABox is a set of
assertions. Finally, a DL knowledge base (DL KB) is a triple 〈T ,H,A〉 consisting of a
TBox, a role hierarchy and an ABox.

An interpretation I satisfies a (concept or role) inclusion E1 v E2 iff EI
1 ⊆ EI

2 .
Moreover I satisfies an assertion A(a) (resp. P (a, b)) iff aI ∈ AI (resp. (aI , bI) ∈ P I).
A model of a DL KB is any I that satisfies all the inclusions and the assertions of the KB.

The above description logic is known as SHIQR+. By disallowing transitive roles
we get SHIQ. By disallowing ∃≤nR.C, transitive roles and role hierarchies one gets the
logic ALCI. ALC is obtained by further dropping inverse roles. The logic EL supports
only u, ∃R.>, and GCIs built from these constructs.

Moreover, there exists a rather different extension of ALC called DLR, supporting
n-ary relations (n > 2) that we will mention in the following but we do not report here
due to space limitations. Its definition and relevant results can be found in [3].

4 Syntax and semantics of SDLfull

Our service description language, called SDLfull , extends the DL vocabulary with an in-
finite supply of constants Nc, service names Ns, and message attribute names Na. SDLfull

describes functional and knowledge-based aspects of web-services. Therefore, as usual
functional programming languages, it does not define a service as a set of state variables
and a sequence of statements which update them, but as the functional composition of
stateless expressions that have to be evaluated.

Definition 1. The language of service expressions is the least set Expr containing:

– (service calls) all S ∈ Ns;
– (set operators) all expressions op(E1, . . . , En) such that {E1, . . . , En} ⊆ Expr and

op ∈ {union, intersection};

46

– (conditionals) all expressions ifL thenE1[elseE2] (the else clause is optional)
such that
• {E1, E2} ⊆ Expr, and
• L is a list of conditions of the form t = u, t 6= u, A(t), or ¬A(t), where
{t, u} ⊆ Nc ∪ Na

– (selections) all expressions select a1 := r1, . . . an := rn from allD withL, such
that
• ai ∈ Na (1 ≤ i ≤ n) ;
• ri is a role path (in the language of the underlying ontology) (1 ≤ i ≤ n) ;
• D is a concept (in the language of the underlying ontology);
• L is a list of bindings pi = ti (1 ≤ i ≤ m) where each pi is a role path (in the

language of the underlying ontology), and ti ∈ Nc ∪ Na;
– (message restructuring) all expressions a1 := t1, . . . an := tn such that ai ∈ Na and

ti ∈ Na ∪ Nc (1 ≤ i ≤ n) ;
– (restrictions) all expressions E restricted toL such that L is a list of conditions

(see conditionals above).

A service consists of a dataflow graph which evaluates data by means of functional
nodes. Each functional node represents a stateless expression which may have multiple
inputs and outputs denoted by parameter names. Edges in a dataflow graph are used to
connect the output of a functional node with the inputs of (possibly many) other func-
tional nodes. In order to specify which output is connected to which input, edges are also
labeled with attribute names and, as the inputs and the outputs of different expressions
may be labeled with different parameter names, edges do not connect directly two func-
tional nodes, but connect functional nodes with parameter nodes that are intended to fix
name mismatches.

Dataflow graphs are defined as follows:

Definition 2. A dataflow graph with name S is a tuple 〈S, NS , ES ,nameS , exprS〉where

– S ∈ Ns;
– NS is a finite set of nodes, partitioned into functional and parameter nodes, denoted

by fun(NS) and par(NS), respectively;
– ES is a finite set of edges; ES ⊆ (fun(NS)× par(NS)) ∪ (par(NS)× fun(NS));
– nameS : par(NS) ∪ ES → Na is a labelling function;
– exprS : fun(NS)→ Expr is a labelling function.

Moreover, dataflow graphs are required to be directed acyclic graphs (DAGs).

The parameter nodes with no incoming edges (resp. no outgoing edges) will be called the
input nodes (resp. output nodes) of the graph. In Fig. 1, ovals and small circles represent
functional and parameter nodes, respectively; input and output nodes are colored in gray.

The dependency graph of a set of dataflow graphs Σ is 〈Σ, E〉, where E is the set of
all pairs (G1, G2) such that the name of G2 occurs in the label of some functional node
in G1. We say that Σ is acyclic if its dependency graph is.

Definition 3. A service specification Σ is a finite, acyclic set of dataflow graphs with
mutually different names.

47

Edge labels should match the input/output message attributes of the service expres-
sions labeling functional nodes. This requirement is formalized in terms of typing. In this
paper we only deal with a structural form of typing (centred around message attribute
names); the problem of ensuring–say—that the connected input/output attributes lat
and latitude in Fig. 1 belong respectively to two “compatible” concepts C1 and C2

such that C1 v C2 has already been tackled in the literature (including [5]). We will deal
with it in the full paper.

Definition 4. A (message) type is a finite set T ⊆ Na

Definition 5. The input type of a dataflow graph G = 〈S,NS , ES ,nameS , exprS〉 with
respect to a specification Σ is the set

inΣ(G) = {nameS(n) | n is an input node of G} .

The output type of a dataflow graph G = 〈S,NS , ES ,nameS , exprS〉 with respect to a
specification Σ is the set

outΣ(G) = {nameS(n) | n is an output node of G} .

Definition 6. The input type of a service expression E with respect to a specification Σ,
denoted by inΣ(E), is recursively specified as follows:

– if E = S ∈ Ns, then inΣ(E) equals inΣ(G) where G has name S;
– inΣ(op(E1, E2)) = inΣ(E1) ∪ inΣ(E2);
– inΣ(ifC thenE1 elseE2) = inΣ(E1) ∪ inΣ(E2) ∪ {a ∈ Na | a occurs in C};
– inΣ(selectA from allD withR) = {a ∈ Na | a occurs in R};
– inΣ(a1 := t1, . . . an := tn) = Na ∩ {t1, . . . tn}.

The output type of a service expression E with respect to a specification Σ, denoted
by outΣ(E), is recursively specified as follows:

– if E = S ∈ Ns, then outΣ(E) equals outΣ(G) where G has name S;
– outΣ(op(E1, E2)) = outΣ(E1) ∩ outΣ(E2);
– outΣ(ifC thenE1 elseE2) = outΣ(E1) ∩ outΣ(E2);
– outΣ(select a1 := r1, . . . an := rn from allD withR) = {a1, . . . an};
– outΣ(a1 := t1, . . . an := tn) = {a1, . . . an}.

About the above definition: Intuitively, all input parameters have to be supplied in order
to call a service; therefore if the components of a compound service have different input
types, then the compound service must take their union to be sure that all component
services can be invoked. Symmetrically, the only outputs one can count on are those
returned by all the component services; this is why intersection is used here.

Definition 7. A specification Σ is well-typed iff for all dataflow graphs 〈S, NS , ES ,
nameS , exprS〉 ∈ Σ, and for all functional nodes k ∈ fun(NS),

– in(k) equals the set of labels of the incoming edges of k;
– out(k) contains the set of labels of the outgoing edges of k.

48

From now on we assume that all service specifications are well-typed unless stated oth-
erwise.

The semantics of service expressions and dataflow graphs is defined in terms of
worlds that specify the extension of concepts and roles, as well as the behavior of each
service. From a semantic perspective, a message is a partial function defined over the
message’s attributes, that returns for each attribute its value.

Definition 8. A ∆-message is a partial function m : Na → ∆ .

The message’s range ∆ will sometimes be omitted when irrelevant or obvious.
Now a world is simply a combination of a DL interpretation (that interprets the terms

defined in the underlying ontology) plus an interpretation of service names (i.e. atomic
services).

Definition 9. A world is a tupleW = 〈∆W , ·W , [·]W〉 such that

– 〈∆W , ·W〉 is an interpretation of the knowledge base;
– [·]W maps every service name S ∈ Ns on a set [S]W of ∆W -message pairs.

To ensure that service name evaluation reflects the given service specification, we have
to specify the semantics of the terms and expressions used in dataflow graph labels.

Definition 10. The evaluation tW(m) of a term t ∈ Nc ∪ Na with respect to a worldW
and a message m, is m(t) if t ∈ Na, and tW otherwise.

Definition 11. The evaluation EW(m) of a service expression E with respect to a world
W and a message m is recursively defined as follows:

– if E = S ∈ Ns, then EW(m) = {m′ | (m,m′) ∈ [S]W} ;
– union(E1, E2)W(m) = EW

1 (m) ∪ EW
2 (m) ;

– intersection(E1, E2)W(m) = EW
1 (m) ∩ EW

2 (m) ;
– (ifC thenE1 elseE2)W(m) = EW

1 (m) if CW(m) is true, EW
2 (m) otherwise;

moreover, CW(m) is true iff
• for all t¯ u in C, tW(m)¯ uW(m) holds (¯ ∈ {=, 6=}),
• and for all literals A(t) and ¬B(u) in C, tW(m) ∈ AW and uW(m) 6∈ BW ;

– (select a1 := r1, . . . an := rn from allD withR)W(m) is the set of all m′ such
that, for some x ∈ DW ,
• for all r ¯ t in R there exists y ∈ rW(x) such that y ¯ tW(m) holds (¯ ∈ {=

, 6=});
• m′(ai) ∈ rWi (x) (1 ≤ i ≤ n); m′ is undefined in every other case;

– (a1 := t1, . . . an := tn)W(m) = {m′} where the domain of m′ is a1, . . . an and
m′(ai) = m(ti) (1 ≤ i ≤ n) .

The evaluation of service compositions (i.e. dataflow graphs) is defined in a declar-
ative way: each parameter node must be assigned a value (an element of ∆W) in a way
that is compatible with the input-output behavior of each functional node:

Definition 12. The evaluation [G]W of a graph G = 〈S, NS , ES ,nameS , exprS〉 w.r.t.
W is the set of all ∆W -message pairs (min ,mout) such that for some function σ :
par(NS)→ ∆W , the following conditions hold:

49

– for all input nodes n ∈ NS , min(nameS(n)) = σ(n);
– for all output nodes n ∈ NS , mout(nameS(n)) = σ(n);
– min and mout are undefined for every other attribute name;
– for all n ∈ fun(NS), it must hold that mn

out ∈ exprS(n)W(mn
in), where mn

in and
mn

out are defined as follows: for all a ∈ Na,
• if there exists an edge (n′, n) with nameS(n′, n) = a, let mn

in(a) = σ(n′),
• if there exists an edge (n, n′′) with nameS(n, n′′) = a, let mn

out(a) = σ(n′′),
• mn

in and mn
out are undefined for all other inputs.

Definition 13. A world W is a model of a specification Σ with respect to a knowledge
base KB iff

1. 〈∆W , ·W〉 is a model of KB ;
2. for all names S of a dataflow graphs G ∈ Σ, [S]W = [G]W .

IfW is a model of Σ, then it is not hard to see that since Σ is acyclic (by definition),
[·]W is uniquely determined by 〈∆W , ·W〉 (i.e. service specifications are deterministic).

The next definition specifies when a service S1 is a weakening of S2 (equivalently, S2

is a strengthening of S1) [1]. These relations are the basis for service comparison.

Definition 14. S1 vKB,Σ S2 iff for all modelsW of Σ w.r.t. KB , [S1]W ⊆ [S2]W .

Roughly speaking, if S2 is a strengthening of S1, then for any given input, S2 returns
more answers than S1. See [1] for a discussion of the different applications of strength-
ening and weakening in our reference scenarios.

5 Service comparison

Definition 15. The service comparison problem is defined as follows: given KB , Σ, and
two service names S1 and S2, decide whether S1 vKB,Σ S2 .

By translating service specifications into logic programming rules, service subsump-
tion checking can be reduced to containment of unions of conjunctive queries (UCQ)
against DL knowledge bases. In turn, this problem can be reduced to the evaluation of
UCQs against DL knowledge bases.

5.1 Rules and queries

Consider rules like A ← L1, . . . , Ln where A is a logical atom, each Li is a literal (i.e.
either an atom or a negated atom), possibly of the form t = u or t 6= u. As usual, let
head(r) = A and body(r) = {L1, . . . , Ln} . We restrict our attention to function-free
rules only: terms will be restricted to constants in In and variables.

The predicates in body(r) may be defined in a DL knowledge base, i.e. unary and
binary predicates may belong to At and AR, respectively. If all the predicates occurring in
body(r) belong to At and AR and body(r) contains no occurrences of ¬, then we call r a
conjunctive query (CQ). A union of conjunctive queries (UCQ) is a set of CQs having the
same predicate name in the head. We add superscripts 6=, ¬ if the corresponding symbol

50

may occur in body(r); for example UCQ¬ denotes the unions of conjunctive queries that
may contain negative literals in the body.

Let P be a set of rules and I be an interpretation. Let an I-substitution be a sub-
stitution that replaces each constant a by aI , and each variable with an element of ∆I .
I-substitutions are a useful tool for defining the semantics of rules and queries.

Usually queries are evaluated against a knowledge base, and the answer is restricted
to the individual constants that explicitly occur in the ABox (e.g. see [8]). In particular, a
tuple c of constants is a certain answer of a CQ r against a DL KB K iff

– the constants in c occur in K; moreover, for some substitution σ defined on the vari-
ables of head(r),

– head(rσ) has the form p(c);
– for all models I of K, there exists an I-substitution θ such that every literal in

body(rσθ) is satisfied by I, that is,
• for all A(d) (resp. ¬A(d)) in body(r′σθ), d ∈ AI (resp. d 6∈ AI) ;
• for all P (d, e) (resp. ¬P (d, e)) in body(r′σθ), (d, e) ∈ P I (resp. (d, e) 6∈ P I) ;
• all literals d = e and d 6= e in body(r′σθ) are true.

The set of all certain answers of a CQ r against K will be denoted by c ans(r,K). For a
UCQ Q, let c ans(r,K) =

⋃
r∈Q c ans(r,K).

In this paper, we will also query the models of a knowledge base and introduce what
we call unrestricted answers, that are built from the domain elements of the models.1

This definition applies to all sets of rules (not only CQs and UCQs).
The I-reduct of P , PI , is the set of all rules r such that for some r′ ∈ P and some

I-substitution σ,

– all literals belonging to body(r′σ) whose predicate is in At ∪ AR ∪ {=, 6=} are satis-
fied by I;

– r is obtained from r′σ by removing from body(r′σ) all the literals whose predicate
is in At ∪ AR ∪ {=, 6=}.

Note that the I-reduct of a UCQ is always a set of facts.
We will denote by lm(PI) the least Herbrand model of PI . The unrestricted answer

to a predicate p in P against I is u ans(p,P, I) = {c | p(c) ∈ lm(PI)} .

5.2 The reduction

We proceed by illustrating the tranlation of service specifications into logic programs.
Syntactically, such programs are like queries, but have the unrestricted semantics, like our
service descriptions; so they provide a nice intermediate step for the complete reduction
of service comparison to certain answers. In order to simplify the presentation, we assume
that service specifications are normalized by replacing subexpressions with new services,

1 This notion differs from the many hybrid combinations of rules and DLs (see [7] for a survey).
The latter are still rather close to querying DL KBs and their answers are restricted to the con-
stants occurring in the rules or in the KB. Moreover, the purpose is different: those combination
are supposed to be knowledge representation formalisms, while our semantics is merely a tech-
nical device to link service comparison to query answering against DL KBs.

51

so that no constructs are nested (all subexpressions are service names). We use further
service names to guarantee that if a dataflow graph has more than one functional node,
then all nodes are labelled with service names only. Finally, we assume that message
attributes are renamed so that different functional nodes never share any message attribute
name. Clearly, the above normalizations take polynomial time.

Then for each service name S defined in the specification, we define an atom
pS(Xf1 , . . . , Xfm , Yg1 , . . . , Ygn), where pS is a fresh predicate symbol, and f1, . . . , fm

(resp. g1, . . . , gn) is the lexicografic ordering of in(S) (resp. out(S)). We denote the
above atom by HS .

Now each service S whose dataflow graph has multiple functional nodes with labels
S1, . . . , Sn, can be translated into one rule (HS ← HS1 , . . . ,HSn)σ, where the substitu-
tion σ unifies all variables Ygi and Xfj such that some parameter node has an incoming
edge labelled with gi and an outgoing edge labelled fj .

Next consider an S whose dataflow has a single functional node labelled E. If E
is union(S1, . . . , Sn) then S can be translated into n rules HS ← HSi (1 ≤ i ≤ n).
Symmetrically, if E = intersection(S1, . . . , Sn) then S can be translated into one
rule HS ← HS1 , . . . , HSn .

When E = if c1, . . . , cn thenS1 elseS2, S is translated into the rules HS ←
[c1], . . . , [cn], S1 and HS ← [c̄i], S2 (1 ≤ i ≤ n). Here each ci is a condition and
[ci] denotes its tranlation; c̄i denotes the complement of ci, e.g. if ci is x = y then c̄i

is x 6= y; if ci = A(x) then c̄i = ¬A(x). The translation [ci] consists in turning each
message attribute f into the corresponding variable Xf .

The translation of select a1 := r1, . . . , an := rn from allA with p1 = t1, . . .
pm = tm is HS ← A(Z), [a1 := r1], . . . , [an := rn], [p1 = t1], . . . , [pm = tm], where
Z is a fresh variable. Each [ai := ri] consists of the translation of the role path ri into
a conjunction of binary atoms (using fresh variables at the intermediate steps), plus the
atom Yai = V , where V is the last variable introduced in the translation of ri. Similarly,
each [pi = ti] consists of the translation of the role path pi plus u = V , where V is the
last variable introduced in the translation of pi, and u = ti if ti ∈ Nc, otherwise (i.e. if
ti ∈ Na) u = Xti .

Example 1. In our running example, a condition like hasAddr.hasStr=street is
translated into hasAddr(Z, V1), hasStr(V1, V2), Xstreet = V2 , where V1, V2 are
new variables.

Due to space limitations we omit the (straightforward) translation of message restructur-
ing and restrictions.

Let us denote the translation of a specification Σ with PΣ . The above translation is
pretty natural and it is not hard to see that it preserves the meaning of the given normal
specification under unrestricted query evaluation, as stated by the following theorem.

Theorem 1. Let Σ be a normalized service specification and let PΣ be its translation.
Let S be the name of a graph G ∈ Σ and f1, . . . , fm (resp. g1, . . . , gn) be the lexico-
graphic ordering of in(S) (resp. out(S)).

Then for all modelsW of Σ w.r.t. KB , (t1, . . . , tm, u1, . . . , un) ∈ u ans(pS , PΣ ,W)
iff for some message pair (m,m′) ∈ [S]W , m(fi) = ti and m′(gj) = uj (1 ≤ i ≤
m, 1 ≤ j ≤ n).

52

The above result can be reformulated in terms similar to query containment. For
all predicates pS1 and pS2 , let pS1 ⊆KB,Σ pS2 iff for all models W of Σ w.r.t. KB ,
u ans(pS1 , PΣ ,W) ⊆ u ans(pS2 , PΣ ,W).

Corollary 1. For all normalized specifications Σ, S1 vKB,Σ S2 iff pS1 ⊆KB,Σ pS2 .

6 Complexity results

In this section we exploit Theorem 1 and the many recent complexity results on certain
query answers against DL knowledge bases to derive a preliminary set of complexity
bounds for our service description language.

In order to illustrate decidable cases and complexity sources, we introduce a uniform
notation for the fragments of our service description language SDLfull :

– SD restricts the language by forbidding union, else, negative conditions (such as
r 6= t and ¬A(t)), and equality within conditions (equality is allowed in the with
clause of selections);

– superscripts u and e stand for union and else, respectively; when they are present,
the language supports the corresponding constructs;

– similarly, superscripts =, 6= and ¬ stand for conditions with equalities, disequalities
and concept complements, respectively;

– the superscript k imposes that the maximum nesting level of union and else is
bounded by a constant k.

For example, SDu, 6= stands for the sublanguage of SDLfull supporting union and condi-
tions with disequalities, but neither else nor negative conditions like ¬A(t). By SDk,u, 6=

we denote a similar language, where the nesting level of union is bounded by a constant
k.

In this preliminary paper, we adopt the following reduction to obtain a first set of
decidability results and complexity upper bounds:

1. Service comparison in Σ is reduced to unrestricted answer containment in PΣ by
Theorem 1; note that PΣ can be constructed in polynomial time from Σ;

2. unrestricted answer containment is further reduced to unrestricted containment of
CQ¬, 6=/UCQ¬,6= by unfolding PΣ ; unfolding means that whenever an atom B in the
body of some rule r unifies with the head of some rule r′, then B is replaced with
body(r′) (as in SLD resolution); the process is exhaustively repeated; if multiple
rules r1, . . . , rn unify with B, then r is replaced with all n possible rewritings; since
PΣ is acyclic (because Σ is), the unfolding process terminates, however it may in-
crease the size of PΣ exponentially when some predicates are defined by multiple
rules;

3. finally, if (the unfolding of) PΣ is positive (i.e., it contains no negations nor any
disequality), then unrestricted answer containment in the unfolded version of PΣ is
reduced to certain answering of CQs/UCQs against DL knowledge bases, see Theo-
rem 2 below.

Theorem 2 says that there exists a PTIME reduction of unrestricted CQ (resp. UCQ)
containment to the evaluation of certain answers of CQs (resp. UCQs) against DL knowl-
edge bases.

53

Theorem 2. Let Σ be a normalized specification and let PU
Σ be the unfolding of PΣ . For

i = 1, 2, let Qi be the definition of pSi , i.e. the set of rules r ∈ PU
Σ with pSi in head(r)

(where S1 and S2 are the names of two graphs in Σ).
If PΣ is positive, then checking whether pS1 ⊆KB,Σ pS2 can be reduced in poly-

nomial time to evaluating for all q ∈ Q1 an answer c ans(Q2,KBq), where KBq is
obtained from KB by binding the variables in q to fresh constants, and adding the in-
stantiated body to KB ’s ABox as a set of assertions.

More precisely, for each q ∈ Q1, one has to check whether the tuple of fresh constants
assigned to the variables in head(q) belongs to c ans(Q2,KBq). Basically, the reduction
is centred around a form of skolemization.

Note that this result is slightly different from the known relationships between query
answering and query containment, since pS1 ⊆KB,Σ pS2 is based on a nonstandard (un-
restricted) notion of evaluation, similar to the one used for service comparison.

The above reduction suffices to derive complexity bounds for positive PΣ . Note that
PΣ is positive when else, 6=, and ¬ are not supported, that is, in SDu and its fragments.
When Σ is formulated in SDu, then the unfolding of PΣ may be exponentially larger, as
the translation of unions into rules introduces predicates defined by multiple rules. It is
not hard to see, however, that SDk,u specifications lead to unfoldings that are only poly-
nomially larger than PΣ . Then the above reduction steps tell us that complexity of service
comparison within SDk,u and its fragments is bounded by the complexity of computing
certain answers against DL KBs; for SDu there is a further exponential explosion due to
unfolding.

The complexity of query answering is NP-complete for EL [9], EXPTIME-complete
for DLR [3], and co3NEXPTIME complete for SHIQ (cf. [6]). Moreover, query con-
tainment w.r.t. empty knowledge bases is NP-hard [4], and it is not difficult to see that
the complexity of the standard reasoning tasks inALC with general TBoxes (EXPTIME-
complete) provides a lower bound to CQ answering against ALC KBs, so the upper
bounds for EL and ALC are strict. These observations support the following theorem:

Theorem 3. The complexity of service comparison in SD(X) and SDk,u(X) is

– NP-complete for X = EL;
– EXPTIME-complete for X ranging from ALC to DLR;
– in co3NEXPTIME for X = SHIQ.

If the underlying description logic supports unrestricted negation (or equivalently,
atomic negation and GCI), then negative literals in rule and query bodies (if any) can be
internalized in the KB in a simple way: just replace each literal ¬A(t) with Ā(t) where
Ā is a fresh atom, and extend the TBox with the axioms Ā v ¬A and ¬A v Ā. Internal-
ization makes it possible to support constructs such as negated conditions, disequalities,
and else, that introduces negation implicitly through the translations [c̄i]. After remov-
ing negation from PΣ via internalization, we can exploit the available complexity results
for the extensions of ALC (that allow internalization).

Theorem 4. The complexity of service comparison in SD¬(X), and between SDk,e(X)
and SDk,u,e,¬(X) is

– in EXPTIME for X = EL;

54

– EXPTIME-complete for X ranging from ALC to DLR;
– in co3NEXPTIME for X = SHIQ.

Remark 1. EL does not support negation, therefore internalization is not possible. In the
above theorem we inherit the upper bound for ALC, but whether this is a tight bound is
still an open question.

From the above results, we derive upper complexity bounds for more general logics,
without any nesting bounds. In the absence of nesting bounds and in the presence of dis-
junctive constructs like unions and conditionals, the unfolding of PΣ may be exponential.

Theorem 5. The complexity of service comparison in SDu,e,¬(X) is

– in 2-EXPTIME for X = EL;
– in 2-EXPTIME for X ranging from ALC to DLR;
– in 4-EXPTIME for X = SHIQ.

Also in this case, whether these bounds are tight is still an open question.
Currently, we do not know whether SDLfull or even its fragment SD 6= are decidable.

There exist some undecidability results for CQs and UCQs with disequalities, and we
conjecture they can be carried over to service comparison. This will be a subject for
future work.

EL ALC
DLR SHIQ

SD, SDk,u NP-complete EXPTIME-complete in co3NEXPTIME
SD¬ (in EXPTIME) EXPTIME-complete in co3NEXPTIME

SDk,e, SDk,e,¬ (in EXPTIME) EXPTIME-complete in co3NEXPTIME
SDk,u,e, SDk,u,e,¬

SDu, SDe, SDu,e (in 2-EXPTIME) in 2-EXPTIME in 4-EXPTIME
SDu,¬, SDe,¬, SDu,e,¬

Table 1. Some complexity results for decidable cases

7 Related work

The language introduced in [1], SDL(X), was based on an embedding of service compar-
ison into subsumption in an expressive description logic, µALCIO. With the reduction
to query containment we adopt here, it is possible to support service intersection and
dataflow graphs, even if they violate the quasi-forest structure of µALCIO. Moreover,
we provide an articulated complexity analysis not available in [1].

The idea of formalizing services as queries has been first introduced in [5]. The lan-
guage adopted there is simpler than ours: only one construct combining our selection
and restriction, and a form of composition where output and input messages must per-
fectly match. The semantics of services in [5] is restricted to the constants occurring in a

55

KB rather than domain elements. Furthermore, all upper bounds provided there are EX-
PTIME or beyond. Currently our NP bounds for EL identify the most efficient service
description logics in the literature. Moreover, even in the hardest cases, our language is
never more complex than [5].

In OWL-S, services are described by means of preconditions, postconditions, and
add/delete lists. Pre- and postconditions are like ABoxes; add/delete lists specify the side
effects of the services. The same mechanism can describe functional services. WSMO is
built upon an articulated model, including user roles and goals, that lead to a planning-
like view of service composition. In WSDL-S, WSDL service specifications (that are
basically type definitions) are bound to concepts defined in an underlying ontology. No
good computational results are currently available for any of the above standards.

8 Conclusions and future work

SDLfull and its fragments are rich service description languages that—however—enjoy
numerous decidability results (reported in Table 1), and in some case (SDk,u(EL)) ser-
vice comparison is significantly less complex than in previous competing logics. Encour-
aging experimental results are available for an analogous problem [2]. We are planning
an experimental implementation based on the same technology.

Many issues need further work, here we mention just the main open problems. Au-
tomated service composition needs efficient heuristics for quickly selecting promising
candidate dataflows. The bounds for EL reported in parentheses in Table 1 are simply
inherited from more complex logic and it is not obvious whether they are tight. Dise-
qualities and negation over roles would be helpful, but the undecidability results of [8]
warn that some restrictions may be needed. It would also be interesting to check whether
service comparison can be in NP also for other low-complexity logics such as the DL-lite
family.

References
1. Piero A. Bonatti. Towards service description logics. In JELIA, LNCS 2424, pages 74–85.

Springer, 2002.
2. Piero A. Bonatti and F. Mogavero. Comparing rule-based policies. In 9th IEEE Int. Work. on

Policies for Distributed Systems and Networks (POLICY 2008), pages 11–18, 2008.
3. D. Calvanese, G. De Giacomo, and M. Lenzerini. Conjunctive query containment and answering

under description logic constraints. ACM Trans. Comput. Log., 9(3), 2008.
4. A.K. Chandra and P.M. Merlin. Optimal implementation of conjunctive queries in relational

data bases. In Proc. Ninth Annual ACM Symp. on Theory of Computing, pages 77–90, 1976.
5. D. Hull, E. Zolin, A. Bovykin, I. Horrocks, U. Sattler, and R. Stevens. Deciding semantic

matching of stateless services. In Proc. of AAAI 2006. AAAI Press, 2006.
6. Magdalena Ortiz, Diego Calvanese, and Thomas Eiter. Data complexity of query answering in

expressive description logics via tableaux. J. of Automated Reasoning, 41(1):61–98, 2008.
7. Riccardo Rosati. Integrating ontologies and rules: Semantic and computational issues. In Rea-

soning Web, LNCS 4126, pages 128–151. Springer, 2006.
8. Riccardo Rosati. The limits of querying ontologies. In ICDT, LNCS 4353, pages 164–178.

Springer, 2007.
9. Riccardo Rosati. On conjunctive query answering in EL. In Description Logics. CEUR-WS.org,

2007.

56

Towards Large Sale Reasoning on the SemantiWebBalázs Kádár, Gergely Lukásy and Péter SzerediBudapest University of Tehnology and EonomisDepartment of Computer Siene and Information Theory1117 Budapest, Magyar tudósok körútja 2., Hungarybalazs�kadar.biz,{lukasy,szeredi}�s.bme.huAbstrat. Traditional algorithms for desription logi (DL) instane re-trieval are ine�ient for large amounts of underlying data. As desriptionlogi is beoming popular in areas suh as the Semanti Web, it is veryimportant to have systems that an reason e�iently over large data sets.In this paper we present the DLog desription logi reasoner spei�allydesigned for suh senarios.The DLog approah transforms desription logi axioms using the SHIQDL language into a Prolog program. This transformation is done withoutany knowledge of the partiular individuals: they are aessed dynami-ally during the normal Prolog exeution of the generated program. Thisallows us to store the individuals in a database instead of memory, whihresults in better salability and helps using desription logi ontologiesdiretly on top of existing information soures.In this paper we fous on the desription of the DLog appliation itself.We present the arhiteture of DLog and desribe its interfaes. Thesemake it possible to use ABoxes stored in databases and to ommuni-ate with the Protégé ontology editor, as a server appliation. We alsoevaluate the performane of the DLog database extension.Keywords: large data sets, desription logi, reasoning, logi program-ming, databases1 IntrodutionDesription Logis (DLs) allow us to represent knowledge bases onsisting ofterminologial axioms (the TBox) and assertional knowledge (the ABox).Desription Logis are beoming widespread as more and more systems startusing semantis for various reasons. As an example, in the Semanti Web idea,DLs are intended to provide the mathematial bakground needed for more intel-ligent query answering. Here the knowledge is aptured in the form of expressiveontologies, desribed in the Web Ontology Language (OWL) [1℄. This languageis mostly based on the SHIQ desription logi, and it is intended to be thestandard knowledge representation format of the Web.However, we have tremendous amounts of information on the Web whihalls for reasoners that are able to e�iently handle suh abundane of data.
57

Moreover, as these data annot be stored diretly in memory, we need solutionsfor querying desription logi onepts in an environment where the ABox isstored in a database.We found that most existing desription logi reasoners are not suitable forthis task, as these are not apable of handling ABoxes stored externally. Thisis not a simple tehnial problem: most existing algorithms for querying DLonepts need to examine the whole ABox to answer a query. This results insalability problems and undermines the point of using databases. Beause ofthis, we started to investigate tehniques whih allow the separation of the in-ferene algorithm from the data storage.We have developed a solution, where the inferene algorithm is divided intotwo phases. First we reate a query-plan in Prolog from the atual DL knowl-edge base, without aessing the underlying data set. Subsequently, this query-plan an be run on real data, to obtain the required results. The implementa-tion of these ideas is inorporated in the DLog reasoning system, available athttp://dlog-reasoner.soureforge.net.In this paper we fous on the arhiteture of the DLog system, as well ason its external interfaes. We disuss the interfae used for aessing databases,whih allows desription logi reasoning on top of existing information soures.We also desribe the Protégé [2℄ interfae that makes it possible to use DLog asthe bak-end reasoner of this popular ontology editor. Details on the theoretialside of DLog an be found in [3℄ and in [4℄.This paper is strutured as follows. Setion 2 summarises related work. InSetion 3 we give a general introdution to the DLog approah and present thearhiteture and implementation details of the system. The database and Protégéinterfaes are desribed in Setions 4 and 5, respetively. Setion 6 evaluates theperformane of the database extension of DLog w.r.t. the version whih storesthe ABox as Prolog fats. Finally, in Setion 7, we onlude with the future workand the summary of our results.2 Related workSeveral tehniques have emerged for dealing with ABox-reasoning. Tradi-tional ABox-reasoning is based on the tableau inferene algorithm, whih triesto build a model showing that a given onept is satis�able. To infer that anindividual i is an instane of a onept C, an indiret assumption ¬C(i) is addedto the ABox, and the tableau-algorithm is applied. If this reports inonsisteny,
i is proved to be an instane of C. The main drawbak of this approah is thatit annot be diretly used for high volume instane retrieval, beause it wouldrequire heking all instanes in the ABox, one by one.To make tableau-based reasoning more e�ient on large data sets, severaltehniques have been developed in reent years [5℄. These are used by the state-of-the-art DL reasoners, suh as RaerPro [6℄ or Pellet [7℄.Extreme ases involve serious restritions on the knowledge base to ensuree�ient exeution with large amounts of instanes. For example, [8℄ suggests a2

58

solution alled the instane store, where the ABox is stored externally, and isaessed in a very e�ient way. The drawbak is that the ABox may ontainonly axioms of form C(a), i.e. we annot make role assertions.Paper [9℄ disusses how a �rst order theorem prover suh as Vampire anbe modi�ed and optimised for reasoning over desription logi knowledge bases.This work, however, mostly fouses on TBox reasoning.In [10℄, a resolution-based inferene algorithm is desribed, whih is not assensitive to the inrease of the ABox size as the tableau-based methods. How-ever, this approah still requires the input of the whole ontent of the ABoxbefore attempting to answer any queries. The KAON2 system [11℄ implementsthis method and provides reasoning servies over the desription logi language
SHIQ by transforming the knowledge base into a disjuntive datalog program.Although the motivation and goals of KAON2 are similar to ours, unlikeKAON2 (1) we use a pure two-phase reasoning approah (i.e. the ABox is a-essed only during query answering) and (2) we translate into Prolog whih haswell-established, e�ient and robust implementations.Artile [12℄ introdues the term Desription Logi Programming. This ideauses a diret transformation ofALC desription logi onepts into de�nite Horn-lauses, and poses some restritions on the form of the knowledge base, whihdisallow axioms requiring disjuntive reasoning. As an extension, [13℄ introduesa fragment of the SHIQ language that an be transformed into Horn-lauses.This work, however, still poses restritions on the use of disjuntions.3 The DLog systemThe main idea of the DLog approah is that we transform a SHIQ knowl-edge base KB into �rst-order lauses Ω(KB) and from these we generate Prologode [3℄. In ontrast with [11℄, all lauses ontaining funtion symbols are elim-inated during the transformation: the resulting lauses an be resolved furtheronly with ABox lauses. This forms the basis of a pure two phase reasoningframework, where every possible ABox-independent reasoning step is performedbefore aessing the ABox itself, allowing us to store the ontent of the ABox inan external database.Atually, in the general transformation, we use only ertain properties of
Ω(KB). These properties are satis�ed by a subset of �rst order lauses that is,in fat, larger than the set of lauses that an be generated from a SHIQ KB.We all these lauses DL lauses. As a onsequene of this, our results an beused for DL knowledge bases that are more expressive than SHIQ. This inludesthe use of ertain role onstrutors, suh as union. Furthermore, some parts ofthe knowledge base an be supplied by the user diretly in the form of �rst orderlauses. More details an be found in [3℄.As the lauses of a SHIQ knowledge base KB are normal �rst-order lauseswe an apply the Prolog Tehnology Theorem Proving (PTTP) tehnology [14℄diretly on these. In [3℄ we have simpli�ed the PTTP tehniques for the speial3

59

ase of DL lauses and we have proved that these modi�ations are sound andomplete for DL lauses.The simpli�ed PTTP tehniques used in DLog inlude deterministi anestorresolution and loop elimination. Both are appliable only to unary prediates,i.e. prediates orresponding to DL onepts.In the design of the DLog system we fous on modularity. This enables us toeasily implement new features and new interfaes. The top level arhiteture ofthe system is shown in Figure 1. In this �gure, as in subsequent �gures of thepaper, retangles with rounded orners represent modules of the DLog system,while data are shown as plain retangles. In Figure 1 the DLog reasoner is shownwithin a dashed retangle.
PSfrag replaements Client

DLog reasoner
KnowledgeBas
eManager First phase:translationSeond phase:exeutionSupport modulesFig. 1. The top level arhiteture of the DLog system.The user (either loal or remote) aesses DLog through one of the externalinterfaes. These interfaes range from a loal onsole to server interfaes likeDIG used by the Protégé ontology editor. The knowledge base manager is theentral piee of the system. It oordinates the tasks of the other modules, andperforms the administration of multiple onurrent knowledge bases. It forwardsthe request arriving from the interfaes to the reasoner modules.The support modules onsist of several tools that are used by most parts ofthe system. They inlude a on�guration manager module, a logger, an XMLreader, a run-time system for the seond phase, and several portability tools thatallow DLog to run under di�erent Prolog implementations (urrently SWI andSICStus).The �rst phase, translation, shown in Figure 2, takes a set of desriptionlogi axioms as input. These axioms are divided into two parts: the TBox orterminology box stores onept and role inlusion axioms, while the ABox orassertion box ontains the fatual data. The ABox may be stored (partly or4

60

ompletely) in external databases. The ABox is proessed �rst, produing theABox ode (whih is a Prolog module), and the ABox signature, whih is requiredfor translating the TBox. The generation of ABox ode inludes optimisationssuh as indexing on seond argument for roles stored in memory.Next, the TBox is proessed in two steps. First the DL translator moduletransforms the desription logi formulae to a set of DL lauses [15℄, whih arepassed on to the TBox translator module that generates the exeutable TBoxode. This generated ode is equivalent, with respet to instane retrieval, to theinput DL knowledge base. The TBox translator module uses various optimisa-tions [3℄ to obtain more e�ient Prolog programs. The ABox and TBox ode anbe generated diretly into memory or may be saved to disk for later (standalone)use.PSfrag replaements
TBoxABox DLtranslator TBoxtranslatorABox signatureABoxtranslator ABox odeTBox odeFig. 2. The �rst phase: translation.The seond phase, exeution, shown in Figure 3, uses the ABox and TBoxprograms generated in the �rst phase, to answer queries. There are two waysto exeute queries: the generated TBox an be alled diretly from Prolog asa low-level interfae, or the Query module provides a high-level interfae thatprovides basi support for omposite queries and an aggregate the results. Innormal operation the query module is alled by the knowledge base manager,whih forwards the results to the user interfae. As the query module does notdepend on the rest of the system, it may be used in standalone operation. Therun-time system (shown as RTS in the �gure) inludes a hash table implementedin C used to speed up the reasoning, and optional olletion of statistis.PSfrag replaements ABox odeTBox ode QuerymoduleRTS Queries ResultsFig. 3. The seond phase: exeution.5

61

4 Integrating DLog with databasesAs the �rst phase of reasoning (i.e. the generation of a query plan) onlydepends on the signature of the data set, and beause of the top-down infereneof Prolog, DLog an e�iently use databases to store the ABox.There may be several advantages in using databases to store the ABox.Firstly, this allows reasoning on data sets that annot �t into memory. Seondly,it makes integrating DLog with existing systems easier, as the reasoner an usethe existing databases of other appliations. Thirdly, querying some onepts(namely those orresponding to so-alled query prediates) may be performedusing omplex database queries, rather than DL reasoning, whih is expeted todeliver a marked inrease in performane.A prediate is a query prediate [3℄, if it is non-reursive, it does not invokeits negation, and is not invoked from within its negation. Here, a prediate P0 issaid to invoke a prediate Pn, n ≥ 1, if there are n− 1 intermediate prediates
P1 . . . Pn−1, suh that Pi is diretly invoked by Pi−1, i.e. it ours in a lausebody the head of whih is Pi−1, for i = 1, . . . , n.Query prediates require neither loop elimination, nor anestor resolutionduring exeution. The name �query prediate� re�ets that fat that suh predi-ates an be transformed to omplex database queries (provided that all oneptsand roles required are stored in a single database). This an inrease the per-formane as the database engine an optimise the query using statistial andstrutural knowledge of the database in question.We designed the database interfae to be as simple as possible. The databasesare aessed via the ODBC driver of SWI-Prolog; as a onsequene DLog aninterfae with most modern database systems. We wanted a way to speifydatabase aess using existing tools and interfaes � suh as Protégé and theDIG interfae it utilises � even if those do not, at the moment, provide a way tospeify database usage. To aess a database, several piees of information areneeded: the name of the database, a user name, a password, a desription of whihtable to use for given onepts and roles, et. Beause of the aforementioned re-quirements we deided to use ABox assertions to arry this meta-information.ABox assertions are desription logi onstruts that are readily available in DLsystems and interfaes, suh as OWL and DIG.In order to speify the database aess for onepts and roles we introduenew roles (objet properties), attributes (datatype properties) and individualsde�ned in the namespae http://www.s.bme.hu/dlogDB.The ODBC interfae presribes that database onnetions are to be iden-ti�ed by a Data Soure Name (DSN). In DLog we introdue an individual torepresent a given database onnetion. Roles and onepts are also representedby individuals. An arbitrary name an be used for suh an individual.The meta data provided is used to onnet to the database, and, for eahonept and role, an additional lause is generated, whih, by exeuting an ap-propriate database query, lists appropriate individuals (or pairs of individuals).This allows onepts and roles to be stored partially in databases and partiallyin memory. This may be very useful when developing ontologies.6

62

4.1 Speifying the Database InterfaeDatabase onnetions are represented by individuals that have the string at-tribute hasDSN de�ned. The value of this attribute is the name of the data soure(DSN). As all other names in this setion, this name is de�ned in the namespaehttp://www.s.bme.hu/dlogDB.Additional string attributes, namely hasUserNameand hasPassword, may be used to speify the user name and the password forthe given onnetion, if required.The objet property hasConnetion links an individual representing a roleor a onept with the database onnetion to be used for aessing it. Thismakes it possible to use one data soure for one onept, and a di�erent onefor another. The instane on the left hand side is the individual representingthe role or onept, while the instane on the right hand side is the individualrepresenting the onnetion.Two methods are provided to speify how to get the data from the database.One is to speify a query that is to be diretly exeuted on the database. Thismethod, named the simple interfae, is provided beause of its simpliity: it anbe applied to databases without any modi�ation. However it has two drawbaks:� it makes transforming query prediates to database queries very di�ult;and� it performs badly for instane hek queries.The latter is a large setbak as most of the queries are instane heks, assumingthe the projetion optimisation of [3℄ is used.Therefore the seond, preferred, way is to provide the name of a table or ofa view and the name of the olumn(s) of this table. This approah, alled theomplex interfae may require the reation of new views in the database, butprovides muh greater �exibility and better performane.The SQL query in the simple interfae is de�ned using the string attributehasQuery. The individual represents the role or onept and the attribute valueis the query string. For individuals representing roles the query must return twoolumns, and for those used for onepts it must return one olumn that ontainsthe individual name.If the omplex interfae is used, the name of the table or view to use isspei�ed by the string attribute hasTable. The name of the olumn listing theindividuals of a onept is given using the string attribute hasColumn. For roles,the attributes hasLHS and hasRHS are used for the left and the right hand side,respetively.Beause, in Protégé, individuals annot be spei�ed as instanes of a negatedonept, we provide some additional attributes: hasNegQuery, hasNegTable andhasNegColumn. These are used to speify the database aess of negated on-epts, in a way similar to their respetive positive pairs. By providing an attributehasNegQuery for a name representing the onept C we speify a query listingthe individuals of ¬C. Obviously, both hasQuery and hasNegQuery an appearas attributes of the same individual. 7
63

To speify that the individual onept represents the onept C, one simplyhas to make onept an instane of C. The DLog system will hek eah oneptourring in the ABox if it ontains an instane whih is in the namespaehttp://www.s.bme.hu/dlogDB. If suh an instane is found, it is interpretedas a �handle� to a database whih is to produe (additional) instanes for thegiven onept.Similarly, to speify that an individual role represents the role R, we requirethat the user inludes the triple {role, R, indiv} in the ABox. Here indiv isan arbitrary individual. Again DLog will look for an instane in the namespaehttp://www.s.bme.hu/dlogDB within the domain (i.e. the left hand side) ofeah role, and use it to onstrut a database aess for the given role.The database interfae is urrently in the alpha test phase. We believe thatour approah for this task, disussed above, is an intermediate solution. Ulti-mately the standard interfaes, suh as DIG, should be extended to allow storing(parts of) the ABox in databases. However, we hope that our work ontributesto implementing this ultimate goal.4.2 Examples of Using the Database InterfaeWe now present two examples for interfaing with databases, one for thesimple, and one for the omplex interfae.The examples ontain ABox assertions, whih are displayed as RDF triplesin {subjet, prediate, objet} format. String values are shown betweenquotes. The namespae http://www.s.bme.hu/dlogDB# is represented by thedlog: pre�x.Figure 4 shows the use of the simpli�ed interfae for the ABox of the Ioasteexample. This lassial example involves the onept desribing a person hav-ing a patriide hild, who, in turn, has a non-patriide hild. The ABox axioms,whih are now to be stored in a database, desribe the hasChild relation betweenpairs of individuals (traditionally ontaining (Ioaste, Oedipus), (Ioaste,Polyneikes), (Oedipus, Polyneikes) and (Polyneikes, Thersandros)). TheABox also spei�es whih individuals are patriide and whih are non-patriide(traditionally Oedipus is known to belong to the former, while Thersandros tothe latter).We have hosen the namespae represented by the io: pre�x for the namesin this ontology. The database onnetion is named iodb, and the orrespondingDSN is spei�ed as "ioaste" (line 1). This onnetion is aessed withoutspeifying a user name or a password. Aordingly, iodb has no attributes otherthan dlog:hasDSN.Both the role hasChild and the onept Patriide are taken from thisdatabase. The role hasChild is represented by the instane dlog:riohasChild.We hose this name as a mnemoni for a role from the namespae io, alledhasChild, but any other name ould have been used. Line 2 tells the system thatthis individual represents the role io:hasChild. Here, the right hand side ofthe role is of no interest, so we hose to have the same individual as on the lefthand side. Line 6 tells that the individual dlog:ioPatriide is an instane of8
64

1 {dlog:iodb, dlog:hasDSN, "ioaste"}2 {dlog:riohasChild, io:hasChild, dlog:riohasChild}3 {dlog:riohasChild, dlog:hasConnetion, dlog:iodb}4 {dlog:riohasChild, dlog:hasQuery,5 "SELECT parent, hild FROM hasChild"}6 {dlog:ioPatriide, rdf:type, io:Patriide}7 {dlog:ioPatriide, dlog:hasConnetion, dlog:iodb}8 {dlog:ioPatriide, dlog:hasQuery,9 "SELECT name FROM people WHERE patriide"}10 {dlog:ioPatriide, dlog:hasNegQuery,11 "SELECT name FROM people WHERE NOT patriide"}Fig. 4. An example of the simpli�ed database interfae.the onept io:Patriide1. This individual, whih thus represents the oneptio:Patriide, has two queries assoiated with it: one for io:Patriide (line 8)and one for its negation (line 10).The simpli�ed interfae allows omplex queries, suh as the one for Patriidewhih has a WHERE lause. This way the existing table people an be used withoutmodi�ation. However, this approah makes it very di�ult to transform anypossible query prediates in the TBox to diret database queries, and instanehek queries run with a poor performane.We now present a seond example. The TBox of this example, taken from[4℄, is shown below.1 ∃hasFriend. Aloholi ⊑ ¬Aloholi2 ∃hasParent.¬Aloholi ⊑ ¬AloholiLine 1 desribes that those who have a friend who is aloholi are non-aloholi(as they see a bad example), while line 2 states that those who have a non-aloholi parent are non-aloholi (as they see a good example). In the lassiform the ABox ontains role assertions for the hasParent and hasFriend re-lations only, and no onept assertions about anyone being aloholi or non-aloholi. In spite of this, in the presene of ertain role instane patterns, onean infer some people to be non-aloholi, using ase analysis.For example, onsider the following pattern: Jak is Joe's parent and also hisfriend. Now, if we assume that Jak is aloholi, then the axiom in line 1 impliesthat Joe is not aloholi. On the other hand, if Jak is not aloholi, it followsfrom line 2 that Joe is not aloholi, either. Thus these two role assertions implythat Joe has to be non-aloholi. Other patterns, where Joe an be inferred tobe non-aloholi, are the following: Joe is a friend of himself; Joe is a friend ofan anestor; and Joe's two anestors are in the hasFriend relationship.1 Note that the pre�x rdf, used in the prediate position of the triple in line 6, refersto the RDF namespae: http://www.w3.org/1999/02/22-rdf-syntax-ns#.9
65

In Figure 5 we present a database aess spei�ation for the above example,using the omplex interfae. Here, the database aloholi is aessed with theuser name "drunkard" and the password "palinka" (lines 1�3). We assumethat a new view, alled "hasParentView", was de�ned in the database to hidethe omplex query for the role hasParent, f. lines 4�6. The olumns of thisview, hild and parent (lines 7�8), ontain the data for the role hasParent.From this information DLog an reate a query for instane retrieval ("SELECThild, parent FROM hasParentView"), and three other query patterns for theases when at least one of the individuals is known (e.g. "SELECT hild FROMhasParentView WHERE parent = ?"). This approah allows for the generationof omplex database queries for the query prediates.1 {dlog:aldb, dlog:hasDSN, "aloholi"}2 {dlog:aldb, dlog:hasUserName, "drunkard"}3 {dlog:aldb, dlog:hasPassword, "palinka"}4 {dlog:ralhasParent, al:hasParent, dlog:ralhasParent}5 {dlog:ralhasParent, dlog:hasConnetion, dlog:aldb}6 {dlog:ralhasParent, dlog:hasTable, "hasParentView"}7 {dlog:ralhasParent, dlog:hasLHS, "hild"}8 {dlog:ralhasParent, dlog:hasRHS, "parent"}9 {dlog:ralhasFriend, al:hasFriend, dlog:ralhasFriend}10 {dlog:ralhasFriend, dlog:hasConnetion, dlog:aldb}11 {dlog:ralhasFriend, dlog:hasTable, "friends"}12 {dlog:ralhasFriend, dlog:hasLHS, "friend1"}13 {dlog:ralhasFriend, dlog:hasRHS, "friend2"}14 {dlog:alAloholi, rdf:type, al:Aloholi}15 {dlog:alAloholi, dlog:hasConnetion, dlog:aldb}16 {dlog:alAloholi, dlog:hasTable, "aloholiView"}17 {dlog:alAloholi, dlog:hasColumn, "name"}18 {dlog:alAloholi, dlog:hasNegTable, "nonaloholiView"}19 {dlog:alAloholi, dlog:hasNegColumn, "name"}Fig. 5. An example of the omplex database interfae.In Figure 5, lines 10�13 speify the database aess for the role hasFriend,while lines 14�19 allow for aessing individuals belonging to the onept aloholiand its negation through appropriate database views.5 Integrating DLog with ProtégéProtégé [2℄ is an open soure ontology editor that supports the Web OntologyLanguage (OWL) [1℄, and an onnet to reasoners via the HTTP-based DIGinterfae [16℄. The DLog server implements the DIG interfae and an be used toexeute instane retrieval queries issued from the graphial interfae of Protégé.10
66

The DIG interfae spei�es ommuniation via HTTP, and uses XML dataformat. For the implementation we used the HTTP server provided with SWI-Prolog. In implementing the interfae we faed di�ulties aused by some am-biguities of the DIG spei�ations, despite there being an (exat) XML shemade�nition. Another di�ulty was that Protégé does not stritly follow the def-inition of the interfae. For example it uses a learKB ommand that is noteven de�ned in version 1.1 of DIG. In DIG 1.0, whih supported only a singledatabase, this ommand was de�ned, but Protégé uses the new version that sup-ports multiple onurrent knowledge bases. We strove for an implementation asgeneri and omplying to the interfae de�nition as possible while, also beingompatible with Protégé.For parsing XML we use the SGML module of SWI-Prolog, whih an beoperated in an XML ompatibility mode, allowing namespaes. As this is nota diret XML parser, it has some di�ulties when used in XML mode. Forexample even with the stritest settings and treating all warnings as errors, itaepts input �les that are not even well-formed XML. Beause of this, and inhope of better performane, we are planning to swith to Apahe Xeres-C++.With Xeres we plan to use SAX parsing, instead of DOM, with the hope oflower memory usage and faster parsing.The data are extrated from the XML DOM using De�nite Clause Grammars(DCG).Figure 6 shows the results of a query issued from Protégé, as answered bythe DLog server.

Fig. 6. Sreenshot of query results in Protégé answered by DLog.11
67

The integration of Protégé and the database interfae is in progress. A seriousdi�ulty is that if the results of a query ontain individuals that are not de�nedin Protégé (i.e. individuals present only in databases) Protégé silently dropsthese individuals from the list of query results.6 EvaluationThis setion ontains a preliminary performane test of the database inter-fae.We tried the database interfae on a large version of the Ioaste problemwhih ontains 5058 pairs in the hasChild relation, 855 instanes that are knownto be patriide, and 314 that are known to be non-patriide.The exeution results are summarised in Table 1. The load time means thetime it takes to load the �le whih ontains the axioms, inluding the XMLparsing. The translation time is the time it takes to generate the TBox andABox ode from the axioms, while exeution time is the run-time of the query.Table 1. Comparing the in-memory and database version of a large Ioaste test.(seonds) load translate exeute totalin-memory 0.88 0.53 0.02 1.43database 0.05 0.02 0.36 0.43When the ABox is stored in memory, the translation takes 1.41 seonds, andthe exeution takes only 0.02 seonds. Note that these �gures were obtained withthe indexing optimisation turned o�. When this optimisation is turned on, thenumber of generated ABox lauses is doubled, and translation time inreasesaordingly.The database variant of the example enumerates all the instanes of thequeried onept in 0.36 seonds. This, ompared to the original 0.02 seonds ismuh slower. However, the time we spent at ompile-time was altogether 0.07seonds, resulting in a total exeution time of 0.43 seonds. To sum up, in termsof total query exeution time, more than a three-fold derease was ahieved,using the database interfae.From the above data it may seem that using a database for storing the ABox,whih �ts into memory, is bene�ial only beause of the redued ompile-time.However, we believe that in the ase of large data sets and omplex queries(espeially if these ontain onepts giving rise to query prediates) exeutiontime an also be better than that of the in-memory variant.Detailed evaluation of the DLog System an be found in [3℄.12
68

7 Summary and future workIn this paper we have shown the arhiteture of the DLog system, disussed adatabase interfae for representing large ABoxes, and reported on the integrationof DLog with the Protégé ontology editor.The database interfae is espeially useful if the data set annot �t in memoryor if it is shared with other systems. Using databases an greatly redue ompiletime and, with advaned optimisations, it may provide e�ieny similar to thatof the in-memory version.Future improvements inlude the optimisation of query prediates, by trans-forming them to database queries, and better integration of Protégé and thedatabase interfae. Our plans also inlude the implementation of a query mod-ule to handle omposite queries, and the support for additional interfae formats,suh as OWL, or the KRSS notation used by e.g. the RaerPro engine.AknowledgementsThe authors are grateful to the anonymous reviewers for their omments onthe earlier version of the paper, and espeially for reommending the BillionTriples Challenge for evaluation.Referenes1. Behhofer, S.: OWL web ontology language referene. W3C reommendation(February 2004)2. Noy, N., Fergerson, R., Musen, M.: The knowledge modelof Protege-2000: Combining interoperability and �exibility.http://iteseer.nj.ne.om/noy01knowledge.html (2000)3. Lukásy, G., Szeredi, P.: E�ient desription logi reasoning in Prolog: the DLogsystem. Tehnial report, Budapest University of Tehnology and Eonomis (Jan-uary 2008) Conditionally aepted for publiation in Theory and Pratie of LogiProgramming.4. Lukásy, G., Szeredi, P., Kádár, B.: Prolog based desription logi reasoning.(Deember 2008) To appear in ICLP 2008.5. Haarslev, V., Möller, R.: Optimization tehniques for retrieving resoures desribedin OWL/RDF douments: First results. In: Ninth International Conferene on thePriniples of Knowledge Representation and Reasoning, KR 2004, Whistler, BC,Canada, June 2-5. (2004) 163�1736. Haarslev, V., Möller, R., van der Straeten, R., Wessel, M.: Extended Query Fa-ilities for Raer and an Appliation to Software-Engineering Problems. In: Pro-eedings of the 2004 International Workshop on Desription Logis (DL-2004),Whistler, BC, Canada, June 6-8. (2004) 148�1577. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A pratialOWL-DL reasoner. Web Semant. 5(2) (2007) 51�538. Horroks, I., Li, L., Turi, D., Behhofer, S.: The Instane Store: DL reasoningwith large numbers of individuals. In: Proeedings of DL2004, British Columbia,Canada. (2004) 13
69

9. Horroks, I., Voronkov, A.: Reasoning support for expressive ontology languagesusing a theorem prover. In: FoIKS. Volume 3861 of Leture Notes in ComputerSiene., Springer (2006) 201�21810. Hustadt, U., Motik, B., Sattler, U.: Reasoning for Desription Logis around SHIQin a resolution framework. Tehnial report, FZI, Karlsruhe (2004)11. Motik, B.: Reasoning in Desription Logis using Resolution and DedutiveDatabases. PhD thesis, Univesität Karlsruhe (TH), Karlsruhe, Germany (January2006)12. Grosof, B.N., Horroks, I., Volz, R., Deker, S.: Desription logi programs: Com-bining logi programs with desription logi. In: Pro. of the Twelfth InternationalWorld Wide Web Conferene (WWW 2003), ACM (2003) 48�5713. Hustadt, U., Motik, B., Sattler, U.: Data omplexity of reasoning in very expressivedesription logis. In: Proeedings of the Nineteenth International Joint Confereneon Arti�ial Intelligene (IJCAI 2005), International Joint Conferenes on Arti�ialIntelligene (2005) 466�47114. Stikel, M.E.: A Prolog tehnology theorem prover: a new exposition and imple-mentation in Prolog. Theoretial Computer Siene 104(1) (1992) 109�12815. Zombori, Zs.: E�ient two-phase data reasoning for desription logis. In: Pro-eedings of the International Federation for Information Proessing Tehnial Com-mittee on Arti�ial Intelligene (TC12), Milan, Italy (September 2008) Aeptedonferene paper.16. Behhofer, S.: The DIG desription logi interfae. http://dig.s.manhester.a.uk/(2006)

14
70

Reasoning on the Web with Open and Closed
Predicates

Gerd Wagner1, Adrian Giurca1, Ion-Mircea Diaconescu1, Grigoris Antoniou2,
Anastasia Analyti2 and Carlos Viegas Damasio3

1 Brandenburg University of Technology, Germany
{G.Wagner, Giurca, M.Diaconescu}@tu-cottbus.de,
2 Institute of Computer Science, FORTH-ICS, Greece

{antoniou, analyti}@ics.forth.gr
3 Universidade Nova de Lisboa, Portugal

cd@di.fct.unl.pt

Abstract. SQL, Prolog, RDF and OWL are among the most promi-
nent and most widely used computational logic languages. However,
SQL, Prolog and RDF do not allow the representation of negative in-
formation, only OWL does so. RDF does not even include any negation
concept. While SQL and Prolog only support reasoning with closed pred-
icates based on negation-as-failure, OWL supports reasoning with open
predicates based on classical negation, only. However, in many practical
application contexts, one rather needs support for reasoning with both
open and closed predicates. To support this claim, we show that the
well-known Web vocabulary FOAF includes all three kinds of predicates
i.e. closed, open and partial predicates. Therefore, reasoning with FOAF
data, as a typical example of reasoning on the Web, requires a formalism
that supports the distinction between open and closed predicates. We
argue that ERDF, an extension of RDF, offers a solution to deal with
this problem.

1 Introduction

1.1 Open and Closed Predicates

Many information management scenarios deal with predicates with their com-
plete extension recorded (e.g. in a database). Such closed predicates use the
computational mechanism of negation-as-failure (NAF) in order to infer negative
conclusions based on the explicit absence (or non-inferability) of an information
item. In other words, not for open but only for closed predicates, NAF is similar
with standard negation.

The issue of reasoning with closed predicates and NAF has been researched
in the field of Artificial Intelligence back in the 1980’s, as a form of NAF has been
implemented at that time both in the database language SQL and in the logic
programming language Prolog. The resulting theories and formalisms, including
the famous “Closed-World Assumption”, have considered NAF to be the nega-
tion concept of choice in computational logic systems, and have downplayed the

71

significance of “open-world” reasoning with classical negation. 20 years later,
however, a computational logic concept of classical negation has been chosen
and implemented in a prominent computational logic formalism, viz the Web
ontology language OWL [10]. While SQL and Prolog have a nonmonotonic com-
putational logic semantics and support only closed predicates, OWL is based
on a computational fragment of classical logic and therefore supports only open
predicates. However, in many practical application contexts, one rather needs
support for reasoning with both open and closed predicates.

1.2 Total and Partial Predicates

In fact, in addition to the distinction between open and closed predicates, it is
useful to make another distinction between total and partial predicates. All these
distinctions are related to the semantics of negative information and negation.
The distinction between total and partial predicates is supported by partial logic
(see [9]), which comes in different versions (with either 3 or 4 truth values) and
can be viewed as a refinement of classical logic allowing both truth value gaps and
truth value clashes. The law of the excluded middle only holds for total, but not
for partial predicates. Both closed and open predicates are total. Consequently
we obtain three kinds of predicates, as described in the following table:

NAF=NEG LEM (Law of Excluded Middle)
closed yes yes
open no yes
partial no no

The symbolic equation NAF=NEG denotes the condition that negation-as-
failure and standard negation collapse, i.e. that both connectives are logically
equivalent.

1.3 Three Kinds of Predicates in FOAF

A well-known example of a Web vocabulary is FOAF, the Friends of a Friend
vocabulary [6], which is essentially expressed in RDFS (with a few additional
constructs borrowed from OWL), and which has the purpose to create a Web of
machine-readable information describing people, the links between them and the
things they create and do. As examples of closed, open and partial predicates
included in FOAF we consider the properties foaf:member, foaf:knows and
foaf:topic interest. Of course, one could simply stipulate that these predi-
cates have a standard classical logic semantics. But we argue that their intended
meaning in natural language implies that they are better treated as closed, open,
respectively partial predicates according to partial logic.

When a foaf:Group is defined, we may assume that such a definition is
not made in an uncontrolled distributed manner, but rather in a controlled
way where one specific person (or agent) has the authority to define the group,
typically in the context of an organization that empowers the agent to do so.

72

In this case, it is natural to consider the definition of the group membership
to be a complete specification, and, consequently, to consider the foaf:member
property to be a closed predicate. For the following example,

<foaf:Group rdf:ID="http://tu-cottbus.de/lit/erdf-team">
<foaf:name>BTU Cottbus ERDF Team</foaf:name>
<foaf:member rdf:resource="#Gerd"/>
<foaf:member rdf:resource="#Adrian"/>
<foaf:member rdf:resource="#Mircea"/>

</foaf:Group>
<foaf:Person rdf:ID="Gerd">
<foaf:Person rdf:ID="Adrian">
<foaf:Person rdf:ID="Mircea">

this would mean that we can draw the (negative) conclusion that

Grigoris is not a member of the BTU Cottbus ERDF Team

based on the absence of a fact statement that ”Grigoris is a member of the BTU
Cottbus ERDF Team”.

In the case of the property foaf:knows, however, we could argue that the
standard RDF and OWL treatment of classes and properties as open predicates
is adequate, since one does normally not make a complete set of statements
about all persons one knows in a FOAF file. Consequently, the absence of a fact
statement that ”Grigoris knows Gerd” does not justify to draw the negative
conclusion that ”Grigoris does not know Gerd”.

Both foaf:member and foaf:knows can be considered as total predicates
that are subject to the law of the excluded middle, implying that the following
disjunctive statements hold:

Either Grigoris is a member of the BTU Cottbus ERDF Team or Grigoris
is not a member of the BTU Cottbus ERDF Team.
Either Grigoris knows Gerd or Grigoris does not know Gerd.

In the case of the property foaf:topic interest, the situation is different.
First, notice that while in the previous cases of foaf:member and foaf:knows
there is no need of representing negative fact statements, we would like to be
able to express both topics in which we are interested and topics in which we
are definitely not interested (and would therefore prefer not to receive any news
messages related to them). For instance, we may want to express the negative
triple “Gerd is definitely not interested in the topic motor sports”. Therefore,
we should declare foaf:topic interest to be a partial property, which means
(1) that we want to be able to represent negative fact statements along with
positive fact statements involving this predicate and (2) that the law of the
excluded middle does not hold for it: it is not the case that for any topic x,

Gerd is interested in the topic x or Gerd is (definitely) not interested in
the topic x.

73

There may be topics, for which it is undetermined whether Gerd is interested in
them or not.

1.4 Extended RDF

Since RDF(S) (see [7, 5, 3]) does not allow to represent negative information and
does not support any negation concept, we need to extend it for turning it into
a suitable reasoning formalism for FOAF and similar Web vocabularies.

In [12], it was argued that a database, as a knowledge representation system,
needs two kinds of negation, namely weak negation for expressing negation-as-
failure (or non-truth), and strong negation for expressing explicit negative infor-
mation or falsity, to be able to deal with partial information. In [13], this point
was also made for the Semantic Web as a framework for knowledge representa-
tion in general, and in [1, 2] for the Semantic Web language RDF with a proposal
how to extend RDF for accommodating the two negations of partial logic as well
as derivation rules. The extended language, called Extended RDF, or in short
ERDF, has a model-theoretic semantics that is based on partial logic [9].

1.5 Plan of the Paper

While the theoretical foundation of ERDF has been presented in [1, 2], the novel
contributions of this paper are

1. an exposition and discussion of the RDF-style syntax of ERDF, and
2. a presentation of a case study that shows how a practical Web vocabulary

(FOAF) would benefit from the extended logical features offered by ERDF
(the support of two kinds of negation and three kinds of predicates).

3. a discussion about our current implementation of ERDF tool set, including
an inference engine, and our future plans for improvements.

2 The ERDF Abstract Syntax

This section describes the abstract syntax of ERDF in terms of a MOF/UML
metamodel that is aligned with the RDF metamodel of OMG’s Ontology Defi-
nition Metamodel (ODM) [8].

2.1 The ERDF-Vocabulary

ERDF adds the following classes to the RDFS vocabulary: erdf:PartialClass,
erdf:PartialProperty, erdf:TotalClass, erdf:TotalProperty, erdf:OpenClass,
erdf:OpenProperty, erdf:ClosedClass and erdf:ClosedProperty. These classes
specialize erdf:Class and erdf:Property as depicted in Figure 1.

ERDF allows to designate properties and classes that are completely rep-
resented in a knowledge base – they are called closed. The classification if a
predicate is closed or not is up to the owner of the knowledge base: the owner
must know for which predicates there is complete information and for which
there is not.

74

Fig. 1. The ERDF vocabulary as an extension of the RDFS vocabulary

2.2 ERDF Descriptions and Atoms

ERDF descriptions, as depicted in the metamodel diagram in Figure 2, extend
RDF descriptions by

1. adding to RDF property-value slots an optional attribute negationMode that
allows to specify three kinds of negation (Naf for negation-as-failure, Sneg for
strong negation and NafSneg for negation-of-failure over strong negation).
An optional value, None is also possible and it is the default value (i.e. when
the attribute negationMode is missing);

2. allowing not only data literals, URI references and blank node identifiers as
subject and object arguments (called subjectExpr and valueExpr in Figure
2), but also variables.

Fig. 2. ERDF Descriptions

An ERDF description consists of the following components:

– One subject expression, denoted by the subjectExpr property in the meta-
model diagram, being an ERDF term, that is a URIReference, a Variable,

75

an ExistentialVariable (blank node identifier) or rdfs:Literal (see Fig-
ure 3 for the definition of ERDF term).

– A non-empty set of slots being property-value pairs consisting of a URI
reference denoting a property and an ERDF term as the value expression.

Fig. 3. ERDF Terms

Obviously, descriptions with just one slot correspond to the usual concept
of an atomic statement (or triple), while descriptions with multiple slots cor-
respond to conjunctions of such statements. However, as can be seen in Figure
2, all descriptions are considered as ERDF atoms, which in addition subsume
datatype predicate atoms (datatype predicates are often also called ‘built-ins’).

ERDF fact statements are variable-free ERDF descriptions such that no
slot has a negation mode other than None or Sneg. That is, only strong negation
may occur in fact statements (in the case of negative information).

ERDF descriptions with variables correspond to conjunctive query formulas
that can be used as rule conditions.

2.3 ERDF Rules

The abstract syntax of ERDF rules is defined in the metamodel diagram in
Figure 4. ERDF rules are derivation rules of the form D ← A1, . . . , An. where
D is an ERDF description with only None or Sneg as slot negation modes and
A1, . . . , An are ERDF atoms, that is, descriptions or datatype predicate atoms.

3 A Concrete Syntax for ERDF

Our approach is to follow the RDF/XML syntax as much as possible and derive
an RDF-style syntax for ERDF atomic formulas, “triple patterns” from the
abstract syntax metamodel presented above.

3.1 Expressing a Vocabulary in ERDF

Using the ERDF predicate categories defined in section 2.1, we can refine the
FOAF vocabulary definition of foaf:member, foaf:knows and foaf:topic interest
as follows:

76

Fig. 4. ERDF Rule

<erdf:OpenProperty rdf:about="http://xmlns.com/foaf/0.1/knows">

<rdfs:domain rdf:resource="http://xmlns.com/foaf/0.1/Person"/>

<rdfs:range rdf:resource="http://xmlns.com/foaf/0.1/Person"/>

</erdf:OpenProperty>

<erdf:PartialProperty rdf:about="http://xmlns.com/foaf/0.1/topic_interest">

<rdfs:domain rdf:resource="http://xmlns.com/foaf/0.1/Person"/>

<rdfs:range rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>

</erdf:PartialProperty>

<erdf:ClosedProperty rdf:about="http://xmlns.com/foaf/0.1/member">

<rdfs:domain rdf:resource="http://xmlns.com/foaf/0.1/Group"/>

<rdfs:range rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>

</erdf:ClosedProperty>

We identify erdf:OpenProperty with rdf:Property and erdf:OpenClass
with rdfs:Class. Thus, by default, all RDF predicates are considered to be
open. One may argue that is no need of erdf:OpenProperty and erdf:OpenClass
constructs, but for names uniformity and expressivity these constructs are de-
fined as part of the ERDF vocabulary.

3.2 Expressing ERDF Terms

ERDF terms are URI references, blank node identifiers, variables or data liter-
als. They are expressed in two ways, depending on their occurrence as subject
expressions or as value expressions.

Terms as subject expressions are values of the erdf:about attribute,
which may be URI references, blank node identifiers or variables (using the
SPARQL syntax for blank node identifiers and variables).

Terms as value expressions are expressed either with the help of one
of the attributes rdf:resource, rdf:nodeID or erdf:variable, or as the text
content of the property-value slot element in the case of a data literal.

77

3.3 Descriptions and Datatype Predicate Atoms

ERDF descriptions are encoded by means of the erdf:Description element.
Each description contains a non-empty list of (possibly negated) property-value
slots.

Example 1. Gerd knows Adrian, has some topic interest, but is not interested
in the topic ‘motor sports’

<erdf:Description erdf:about="#Gerd">

<foaf:knows rdf:resource="#Adrian"/>

<foaf:topic_interest rdf:nodeID="x"/>

<foaf:topic_interest erdf:negationMode="Sneg"

rdf:resource="urn:topics:motor_sports"/>

</erdf:Description>

erdf:Description, as an extension of rdf:Description element, allows
negated slots and two other possible values for triples subject: variables and
literals (as values of erdf:about attribute). For expressing RDF triples it is
possible to use any of rdf:Description or erdf:Description elements.

Datatype predicate atoms are n-ary logical atoms. The value of erdf:arguments
property represent an ordered list of arguments. The erdf:predicate XML at-
tribute encodes the URI reference to the predicate.

Example 2. Using built-ins

<erdf:DatatypePredicateAtom erdf:predicate="swrlb:add">

<erdf:arguments>

<erdf:Variable>?sum</erdf:Variable>

<rdfs:Literal rdf:datatype="xs:int">40</rdfs:Literal>

<rdfs:Literal rdf:datatype="xs:int">20</rdfs:Literal>

</erdf:arguments>

</erdf:DatatypePredicateAtom>

3.4 Rules and Rulesets

Two syntaxes for ERDF rules are proposed: (1) a more concise non-XML syntax
based on SPARQL triple patterns, and (2) an XML-based syntax, which is useful
for rule transformations and interchange.

To express ERDF rules in XML, constructs from R2ML[14] rule markup
language are used. Later, it may be an option to use the W3C rule interchange
format.

Inspired by Jena Rules4, the non-XML syntax for ERDF rules is based on
SPARQL triple patterns: universal quantified variables prefixed by the ‘?’ sym-
bol, literals, typed literals, URI’s or QNames to denote full URI’s. Five types of
atoms can be used:
4 Jena Rules Syntax - http://jena.sourceforge.net/inference/#rules

78

– built-ins, available in a predefined set 5 and offering the possibility of defining
new ones (e.g. sum(?a,?b,?c) bound c to the value of sum from a and b).

– positive triples, formally expressed as (subject predicate object), e.g.
(ex:John foaf:knows ex:Tom);

– strong negated triples, denoted by adding the ‘-’ symbol in front of the second
node, namely predicate, e.g. (?x -foaf:topic_interest ?t);

– weak-negated triples, expressed as a built-in, namely naf. It’s arguments, are
the triple’s nodes, i.e. : naf(?x foaf:knows ex:Tom).

– negation-as-failure over strong negation, the ‘-’ symbol is added in front of
the second argument, namely the predicate, when the naf built-in is used,
e.g. naf(?x -foaf:topic_interest ?t).

4 The ERDF Application Programming Interface

The ERDF Application Programming Interface was implemented as an extension
of Jena Rules. An extended rule syntax was defined for allowing the two ERDF
negation connectives. The rule language is backward compatible, therefore the
Jena rules are also supported.

Adding support for reasoning in top of ERDF facts has required modifications
in the structure of the Jena API. In Figure 5 are reflected some important
changes of the informational model. These improvements were made for allowing
representation of negated triples and for dealing with these triple types. The
ERDF reasoner was defined as an extension of the Jena backward engine.

Fig. 5. ERDF Triples extension

The RDF(S)-based reasoner implemented by the Jena API uses an internal
set of axioms and rules. For instance, the following axioms are used to express
relations used by the RDF Schema:

-> (rdf:type rdfs:range rdfs:Class).

-> (rdfs:Resource rdf:type rdfs:Class).

5 Jena built-ins - http://jena.sourceforge.net/inference/#RULEbuiltins

79

An internal set of rules is used for computing the transitive closure in RDF(S).
As an example, the following rule consider the subClassOf relationship:

[(?a rdfs:subClassOf ?b), (?b rdfs:subClassOf ?c) -> (?a rdfs:subClassOf ?c)]

ERDF defines erdf:Class as being the superclass of all its classes and
erdf:Property the superclass of all properties. This was reflected by extending
the Jena axioms set:

-> (rdf:type rdfs:range erdf:Class).

-> (rdfs:Resource rdf:type erdf:Class).

-> (erdf:TotalClass rdfs:subClassOf erdf:Class)

-> (erdf:PartialClass rdfs:subClassOf erdf:Class)

-> (erdf:ClosedClass rdfs:subClassOf erdf:TotalClass)

-> (erdf:OpenClass rdfs:subClassOf erdf:TotalClass)

-> (erdf:TotalProperty rdfs:subClassOf erdf:Property)

-> (erdf:PartialProperty rdfs:subClassOf erdf:Property)

-> (erdf:ClosedProperty rdfs:subClassOf erdf:TotalProperty)

-> (erdf:OpenProperty rdfs:subClassOf erdf:TotalProperty)

-> (erdf:OpenClass rdfs:subClassOf rdfs:Class)

-> (rdfs:Class rdfs:subClassOf erdf:OpenClass)

-> (erdf:OpenProperty rdfs:subClassOf rdf:Property)

-> (rdf:Property rdfs:subClassOf erdf:OpenProperty)

Since ERDF deals also with closed properties, the internal rules set was
extended to support this feature:

[close1: (?s -?p ?o)

<-

(?p rdf:type erdf:ClosedProperty)

(?p rdf:range ?r)(?p rdf:domain ?d)

(?s rdf:type ?d)(?o rdf:type ?r) naf(?s ?p ?o)]

Some other information about the ERDF API might be accessed on the
ERDF Web Page6. An AJAX based Web Application 7 is provided for testing
ERDF rules. The application needs as input data: (1) a set of RDF/ERDF facts
(using XML/RDF syntax), (2) a set of rules (using Jena Rules extended syntax),
and (3) a set of queries (expressed by using Jena Rules extended syntax). The
input data is processed by the ERDF API and query results are returned.

5 Case Study - Building FOAF-Based Working Groups

This section presents a scenario involving FOAF data and ERDF rules. As a
short story, an organizing committee needs to create working groups with peo-
ples from different communities taking part at some meeting. The assumption is
that every member has his own FOAF file where their topic interests and con-
tacts are provided. The FOAF files are available to the organizing committee.
6 ERDF - http://oxygen.informatik.tu-cottbus.de/rewerse-i1/?q=ERDF
7 ERDF Rules frontend - http://oxygen.informatik.tu-cottbus.de/JenaRulesWeb

80

The organizers task is to offer a solution (or more) for grouping participat-
ing members, having different topic interests areas, by their common interests.
Therefore, two members are considered qualified for the same group if they have
at least one common interest, but no contradictory interests. The second goal
is to extend the community by grouping those members which does not know
yet one each other. The meaning of “contradictory topic interest” between two
members is that one topic interest of a member is negated in the FOAF file of
the other member. The foaf:knows property express possible contacts between
participants, and foaf:topic_interest property denotes interest topics of the
meeting participants.

For instance, the organizers have collected the following data from FOAF
files of some meeting participants:

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:foaf="http://xmlns.com/foaf/0.1/"

xmlns:erdf="http://www.informatik.tu-cottbus.de/IT/erdf#">

<erdf:Description erdf:about="http://www.tu-cottbus.de/staff#Gerd">

<rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Person"/>

<foaf:topic_interest rdf:resource="urn:topics:RDF"/>

<foaf:topic_interest rdf:resource="urn:topics:AgentBasedSimulation"/>

<foaf:topic_interest erdf:negationMode="Sneg"

rdf:resource="urn:topics:motor_sports"/>

</erdf:Description>

<rdf:Description rdf:about="http://www.ics.forth.gr/staff#Grigoris">

<rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Person"/>

<foaf:knows rdf:resource="http://www.tu-cottbus.de/staff#Gerd"/>

<foaf:topic_interest rdf:resource="urn:topics:RDF"/>

</rdf:Description>

<rdf:Description rdf:about="http://www.tu-cottbus.de/staff#Adrian">

<rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Person"/>

<foaf:topic_interest rdf:resource="urn:topics:RDF"/>

<foaf:topic_interest rdf:resource="urn:topics:motor_sports"/>

</rdf:Description>

<rdf:Description rdf:about="http://www.tu-cottbus.de/staff#Mircea">

<rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Person"/>

<foaf:knows rdf:resource="http://www.tu-cottbus.de/staff#Adrian"/>

<foaf:topic_interest rdf:resource="urn:topics:AgentBasedSimulation"/>

</rdf:Description>

</rdf:RDF>

Notice that only the first description, since it includes negative triples, needs
to be marked up as an ERDF description. For the other (positive) fact statements
there is possible to use RDF (but also ERDF).

The following rule, expressed by using XML-based syntax, is defined to es-
tablishes if two persons (meeting participants) classify for the same group.

81

If persons X and Y do not know each other, they have at least one
common topic interest and have no contradictory topic interest, then it
is recommended that X and Y are members of the same group.

<r2ml:DerivationRule r2ml:ruleID="sameGroupAs">

<r2ml:conditions>

<erdf:Description erdf:about="?x">

<rdf:type rdf:resource="foaf:Person"/>

<foaf:topic_interest erdf:variable="?t"/>

<foaf:knows erdf:negationMode="Naf" erdf:variable="?y"/>

<conf:contradictoryInterest erdf:negationMode="Naf" erdf:variable="?y"/>

</erdf:Description>

<erdf:Description erdf:about="?y">

<rdf:type rdf:resource="foaf:Person"/>

<foaf:topic_interest erdf:variable="?t"/>

<foaf:knows erdf:negationMode="Naf" erdf:variable="?x"/>

<conf:contradictoryInterest erdf:negationMode="Naf" erdf:variable="?x"/>

</erdf:Description>

</r2ml:conditions>

<r2ml:conclusion>

<erdf:Description erdf:about="?x">

<conf:sameGroupAs erdf:variable="?y"/>

</erdf:Description>

</r2ml:conclusion>

</r2ml:DerivationRule>

The non-XML syntax for ERDF rules can be used to express the same rule:

[sameGroup: (?x conf:sameGroupAs ?y)

<-

(?x rdf:type foaf:Person)(?y rdf:type foaf:Person)

naf(?x foaf:knows ?y) naf(?y foaf:knows ?x)

naf(?x conf:contradictoryInterest ?y)

naf(?y conf:contradictoryInterest ?x)]

The following rule define how the values of the conf:contradictoryInterest
predicate are computed:

[conInterest: (?p1 conf:contradictoryInterest ?p2)

<-

(?p1 rdf:type foaf:Person)(?p2 rdf:type foaf:Person)

(?p1 foaf:topic_interest ?t)(?p2 -foaf:topic_interest ?t)]

Other rules/queries are then used to create foaf:Groups. Values computed
for conf:sameGroupAs property might by considered for this purpose. Consider
the following queries:

@prefix btu: http://www.tu-cottbus.de/staff#

[q1: <- (btu:Gerd conf:sameGroupAs btu:Mircea)]

[q2: <- (btu:Gerd conf:sameGroupAs btu:Adrian)]

[q3: <- (?p1 conf:sameGroupAs ?p2)]

82

The answer is “true” for q1 (no contradictory interests and persons does not
know each other) and “false” for q2 (“motor sports” is a contradictory interest).
The last query (q3) will return all possible combinations of two persons which
might be in the same group.

This use case is available for online testing by using the AJAX frontend. The
Figure 6 shows an results excerpt obtained by using the above facts, rules and
queries as input data in the frontend.

Fig. 6. Query result using ERDF API

6 Related Work

Variables in triples have also been introduced in languages such as N3 [4] and
Jena Rules [11]. A form of negation-as-failure has been implemented in Jena
Rules by using a special built-in predicate. In N3, there is also a form of negation-
as-failure, which allows one to test for what a formula does not say, with the help
of log:notIncludes. But neither N3 nor Jena Rules has a systematic treatment
of negative information and open and closed predicates.

7 Conclusion and Future work

The paper presents an abstract and an RDF-style concrete syntax for ERDF,
allowing to represent negative fact statements and supports reasoning with open
and closed predicates. We have argued that these issues are of practical sig-
nificance by showing how they affect the popular FOAF vocabulary. Finally a
prototype of the ERDF API is described and a practical use case is considered.

Future work includes further extensions of the language, constructs for han-
dling uncertainty and reliability, and their implementation in the ERDF API.

83

References

1. Anastasia Analyti, Grigoris Antoniou, Carlos Viegas Damasio, and Gerd Wagner.
Negation and Negative Information in the W3C Resource Description Framework.
Annals of Mathematics, Computing and Teleinformatics, 1(2):25–34, 2004.

2. Anastasia Analyti, Grigoris Antoniou, Carlos Viegas Damasio, and Gerd Wagner.
Stable Model Theory for Extended RDF Ontologies. In Yolanda Gil, Enrico Motta,
V. Richard Benjamins, and Mark A. Musen, editors, Proceedings of the 4th Inter-
national Semantic Web Conference, volume 3729 of Lecture Notes in Computer
Science (LNCS), pages 21–36, Galway, Ireland, 6-10 November 2005. Springer-
Verlag.

3. Grigoris Antoniou and Frank Van Harmelen. A Semantic Web Primer. MIT Press,
2004.

4. Tim Berners-Lee. N3 (Notation 3). http://www.w3.org/DesignIssues/Notation3.html,
1998.

5. D. Brickley and R.V. Guha. RDF Vocabulary Description Language 1.0: RDF
Schema. W3C Recommendation February 2004. http://www.w3.org/TR/rdf-
schema/.

6. Dan Brickley and Libby Miller. FOAF Vocabulary Specification 0.91.
http://xmlns.com/foaf/spec/, November 2007.

7. Klyne G. and Caroll J.J. Resource Description Framework (RDF): Con-
cepts and Abstract Syntax. W3C Recommendation 10 February 2004.
http://www.w3.org/TR/rdf-concepts/.

8. Object Management Group. Ontology Definition Metamodel.
http://www.omg.org/docs/ptc/07-09-09.pdf, November 2007.

9. Heinrich Herre, Jan O. M. Jaspars, and Gerd Wagner. Partial Logics with Two
Kinds of Negation as a Foundation for Knowledge-Based Reasoning. In D.M.
Gabbay and H. Wansing, editors, What is Negation? Kluwer Academic Publishers,
1999.

10. Peter F. Patel-Schneider, Patrick Hayes, and Ian Horrocks. OWL Web Ontol-
ogy Language. Semantics and Abstract Syntax. http://www.w3.org/TR/owl-
semantics/, February 2004.

11. Dave Reynolds. Jena Rules experiences and implications for rule use cases. In
W3C Workshop on Rule Languages for Interoperability, 2005.

12. Gerd Wagner. A database needs two kinds of negation. In B. Talheim and H.D.
Gerhardt, editors, 3rd Symposium on Mathematical Fundamentals of Database
and KnowledgeBase Systems, volume 495 of Lecture Notes in Computer Science
(LNCS), pages 357–371. Springer-Verlag, 1991.

13. Gerd Wagner. Web rules need two kinds of negation. In F. Bry, N. Henze, and
J. Maluszynski, editors, Principles and Practice of Semantic Web Reasoning, Pro-
ceedings of the 1st International Workshop, PPSWR ’03, volume 2901 of Lecture
Notes in Computer Science (LNCS), pages 33–50. Springer-Verlag, 2003.

14. Gerd Wagner, Adrian Giurca, and Sergey Lukichev. A General Markup Frame-
work for Integrity and Derivation Rules. In F. Bry, F. Fages, M. Marchiori, and
H. Ohlbach, editors, Dagstuhl Seminar Proceedings 05371, Principles and Practices
of Semantic Web Reasoning, 2005.

84

A Preliminary Report on Answering Complex Queries
related to Drug Discovery using Answer Set Programming

Olivier Bodenreider1, Zeynep H. Çoban2, Mahir C. Doğanay3

Esra Erdem4, and Hilal Koşucu5

1 National Library of Medicine, National Institutes of Health, USA
2 Department of Biostatistics, Harvard School of Public Health, USA

3 Dept. of Mathematics and Computing Science, University of Groningen, The Netherlands
4 Faculty of Engineering and Natural Sciences, Sabancı University, Turkey

5 Department of Computer Science, University of Toronto, Canada

Abstract. We introduce a new method for integrating relevant parts of knowl-
edge extracted from biomedical ontologies and answering complex queries re-
lated to drug safety and discovery, using Semantic Web technologies and answer
set programming. The applicability of this method is illustrated in detail on some
parts of existing biomedical ontologies. Its effectiveness is demonstrated by com-
puting an answer to a real-world biomedical query that requires the integration of
NCBI Entrez Gene and the Gene Ontology.

1 Introduction

Improvements in Web technologies have brought about various forms of data, and thus
WWW has been a huge and easy-to-reach source of knowledge. Particularly recent
advances in health and life sciences (e.g., human genome project) have led to generation
of a large amount of data. In order to facilitate access to its desired parts, such a big mass
of data has been stored in structured forms (like databases or ontologies). For instance,
some data/information about drugs is being stored in ontologies, like DRUGBANK and
PHARMGKB, available on WWW; and the genes targeted by the drug Epinephrine can
be found by searching such a drug ontology using the keyword “Epinephrine.”

On the other hand, storing heterogeneous data independent from each other and
at different locations has made it difficult to automate high-level reasoning about the
stored data. For instance, it is possible to find an answer to the query “What are the
genes targeted both by Epinephrine and by Isoproterenol?” only after several steps:
considering that a drug (and also a gene) might have been stored in different ontologies
under different names, first for each drug a list of genes targeted by that drug could be
found, and next these two lists of genes are compared to identify the common ones, by
comparing these two lists of genes. Such complex queries, which require appropriate in-
tegration of knowledge stored in different places and in various forms, can be answered
by current Web technologies most of the time only by some direction/reasoning of hu-
mans. This slows down vital research, like drug discovery, that requires comparative
data analysis and high-level reasoning and decision making.

Motivated by these challenges, this paper studies the problem of integrating vari-
ous data sources to be able to perform high-level reasoning tasks, including answering

85

complex queries using both Semantic Web technologies and Answer Set Programming
(ASP) [1–4]. The idea is to build a rule layer using ASP over ontologies described with
some Semantic Web technologies. The rule layer not only provides rules to link parts
of the ontologies but also provides some background knowledge to be able to perform
various reasoning tasks, such as query answering.

That most of the information about biomedical ontologies are actually defaults and
that most biomedical ontologies contain incomplete knowledge motivated us to use a
nonmonotonic formalism to build a rule layer over ontologies. That experts might want
to express preferences as well as constraints while querying the knowledge stored in
ontologies to be able to discover new knowledge, and that ASP provides an expressive
language to express them and efficient solvers, like DLVHEX6 [5] built over DLV,7 to
reason about them motivated us to use ASP as such a nonmonotonic formalism.

2 Three Ontologies

To experiment with our ASP approach to integrating biomedical ontologies and reason-
ing about them, and to illustrate its applicability, we have developed three ontologies,
namely a gene ontology, a disease ontology, and a drug ontology. We have built these
ontologies from existing knowledge from various data sources available on the Web.
These ontologies are written in RDF(S). To develop our disease ontology, first we se-
lected a set of diseases. The names (and their synonyms) of each disease are taken
from PHARMGKB database.8 Information about the symptoms of these diseases is
obtained from the Medical Symptoms and Signs of Disease web page.9 Information
about the genes related to each disease are also extracted from PHARMGKB. Each dis-
ease is classified in some category relative to the information available at the Genes
and Diseases web page.10 Some components of the disease ontology is shown in Ta-
ble 1. We have prepared the other two ontologies in a similar way, using PHARMGKB,
UNIPROT,11 GENE ONTOLOGY (GO),12 GENENETWORK database,13 DRUGBANK,14

and the Medical Symptoms and Signs of Disease web page.

3 Integrating Knowledge Extracted from Different Ontologies

DLVHEX provides constructs to import external theories that may be in different for-
mats. For instance, consider as an external theory our drug ontology described in RDF.
All triples from this theory can be exported using the external predicate &rdf:

6 http://con.fusion.at/dlvhex/
7 http://www.dbai.tuwien.ac.at/proj/dlv/
8 http://www.pharmgkb.org/ .
9 http://www.medicinenet.com/symptoms_and_signs/article.htm .

10 http://www.ncbi.nlm.nih.gov/disease/ .
11 http://www.ebi.uniprot.org/index.shtml .
12 http://www.geneontology.org .
13 http://humgen.med.uu.nl/˜lude/genenetwork/ .
14 http://redpoll.pharmacy.ualberta.ca/drugbank/ .

86

Table 1. The disease “Asthma” described in our disease ontology

has name Asthma
has synonyms Bronchia, Bronchial Asthma
has symptoms Coughing, Wheezing, Chest tightness,

Shortness of breath, Faster breathing
related genes ABCC1, ADA, ADAM33, ADCY9, AD0RA1,

ADRB1, ADRB2, ALOX5, COMT, CRHR1
treatedBy drugs Isoproterenol, Flunisolide, Salbutamol

triple_drug(X,Y,Z) :- &rdf["URI for Drug Ontology"](X,Y,Z).

Not all triples may be relevant to the query asked by the user. For instance, if one
asks for the names of drugs listed in the ontology, then only the triples that describe
the names of drugs are sufficient to answer this query. The names of drugs, out of all
properties about drugs described in drug.rdf, can be extracted by the following rule:

drug_name(A) :- triple_drug(_,"drugproperties:name",A).

If the query were about gene-gene interactions, then we could extract the relevant
part of the gene ontology by the rules

gene_gene(G1,G2) :- triple_gene(X,"geneproperties:name",G1),
triple_gene(X,"geneproperties:related_genes",B),
triple_gene(B,Z,Y), Z!="rdf:type",
triple_gene(Y,"geneproperties:name",G2).

Once necessary parts of ontologies are extracted from ontologies, one can define
further concepts to integrate these knowledge. For instance, once we extract the gene-
gene interactions, we can obtain all chains of gene-gene interactions for a gene targeted
by a drug, by defining the transitive closure of gene gene:

tc_gene_gene(X,Y) :- gene_gene(X,Y).
tc_gene_gene(X,Y) :- gene_gene(X,Z), tc_gene_gene(Z,Y).

Now let us relate this information to a gene G targeted by a drug D by finding every
gene G1 that is related to G by means of a chain of interactions:

drugTargetedGene_interacts_gene(D,G,G1) :-
drug_targets(D,G), tc_gene_gene(G,G1).

4 Answering Complex Queries using DLVHEX

With the help of Devrim Gözüaçık (a medical doctor and a molecular biologist), we
have identified a set of meaningful queries about drugs, genes, diseases, towards drug
safety and discovery. We present here only three of them:

Q6 What are the sideeffects that are shared by all the drugs that treat a disease D?

87

Q12 Is there a drug that has no toxicity information?
Q14 Does a drug R alleviate at least 1 symptom of a disease D and have at most 2

symptoms of D as side effects?

We integrate relevant parts of ontologies, and formulate these queries as follows.

Q6 What are the sideeffects that are shared by all the drugs that treat a disease D?
For the disease Asthma, this query can be formulated as follows:
answer :- sideeffect(S), common_sideeffect("Asthma",S).
:- not answer.

Here common sideeffect is defined as follows:
-common_sideeffect(D,S) :- not drug_sideeffect(R,S),

drug_disease(R,D), sideeffect(S).

common_sideeffect(D,S) :- not -common_sideeffect(D,S),
sideeffect(S), disease_name(D).

Here is a part of the answer DLVHEX finds to the query above:
flushing dizziness headache

Q12 Is there a drug that has no toxicity information?
To answer this query, we define a new concept of “unknown” toxicity:
unknown_toxicity_drug(X) :- drug_synonym(R,X),

not drug_istoxic(R), not -drug_istoxic(R).

where drug istoxic(R) describes that the drug R is toxic, and -drug istoxic(R)
describes that the drug R is not toxic:
drug_istoxic(R) :- triple_drug(X,"drugproperties:name",R),

triple_drug(X,"drugproperties:is_toxic","yes").
drug_istoxic(R) :- drug_synonym(R,R1), drug_istoxic(R1).

-drug_istoxic(R) :- triple_drug(X,"drugproperties:name",R),
triple_drug(X,"drugproperties:is_toxic","no").

-drug_istoxic(R) :- drug_synonym(R,R1), -drug_istoxic(R1).

For the query
:- not unknown_toxicity_drug("Isoproterenol").

DLVHEX returns an answer set; therefore the answer to the query above is positive.
Q14 Does a drug R alleviate at least 1 symptom of a disease D and have at most 2

symptoms of D as side effects?
To answer this query we define a new concept:
a_drug_disease_relation(R,D) :-

disease_name(D), drug_name(R),
1 <= #count{S:drug_symptom(R,S),disease_symptom(D,S)},
#count{S:drug_sideeffect(R,S),disease_symptom(D,S)}<=2.

For the query
:- not a_drug_disease_relation("Isoproterenol",

"Substance Related Disorders").

DLVHEX returns no answer set; therefore the answer to the query above is negative.

88

5 From Glycosyltransferase to Congenital Muscular Dystrophy

To investigate the effectiveness of our approach to answering real-world queries, we
have considered a slight modification of the complex query studied in [6]:

Find all the genes annotated with the molecular function glycosyltransferase
or any of its descendants and associated with any form of congenital muscular
dystrophy.

and tried to reproduce the same results. In the query of [6] the GO ID for glycosyltrans-
ferase is given. The query above requires integration of NCBI Entrez Gene (EG) and
the Gene Ontology (GO).

To find an answer to this query, we have used the RDF version of GO that is released
on February 6, 2008; it contains 416700 RDF triples. We have used an RDF version of
EG that contains 673180 RDF triples.

The computation of an answer consists of two parts: extracting relevant knowledge
from each ontology and integrating them. We have extracted from GO the molecular
function glycosyltransferase and its descendants by the rules

mf_isa(Y) :- triple_go(Y,"go:name",YN),
&strstr[YN,"glycosyltransferase"].

mf_isa(Y) :- triple_go(Y,"go:synonym",YN),
&strstr[YN,"glycosyltransferase"].

mf_isa(X) :- triple_go(X,"go:is_a",Y), mf_isa(Y).
mf_isa(X) :- triple_go(X,"go:synonym",XN),

triple_go(Z,"go:name",XN), triple_go(Z,"go:is_a",Y), mf_isa(Y).

The first two rules extract the molecular functions whose names or synonyms contain
the string “glycosyltransferase”. The last two rules extract the descendants of these
molecular functions, considering their synonyms.

Similarly, we have extracted from EG the diseases with any form of congenital
muscular dystrophy, by the rules

gene_disease(Y,D) :- triple_eg(Y,"eg:has_OMIM_record",Z),
triple_eg(Z,"eg:has_textual_description",D),
&strstr[D,"congenital"], &strstr[D,"muscular"],
&strstr[D,"dystrophy"].

After that we have integrated the extracted knowledge by the rules

gene_mf_disease(Y,XI,D) :- gene_disease(Y,D),
triple_eg(Y,"eg:has_GeneOntology_annotation",X),
mf_isa(XI), triple_eg(X,"eg:has_GO_ID",XI).

and computed the following answer (the same as in [6]) to the query:

gene_mf_disease("http://www.ncbi.nlm.nih.gov/dtd/NCBI_Entrezgene.
dtd/9215", "http://www.geneontology.org/go#GO:0008375",
"Muscular dystrophy, congenital, type 1D")

89

DLVHEX extracts relevant knowledge from the ontologies, integrates them, and
computes the answer above in 9 minutes, on a machine with Intel Centrino 1.8GHz
CPU and 1 GB of RAM running on Windows XP.

6 Conclusion

We have studied integrating relevant parts of knowledge extracted from biomedical on-
tologies, and answering complex queries related to drug safety and discovery, using Se-
mantic Web technologies and Answer Set Programming (ASP). We have illustrated the
applicability of this method on some ontologies extracted from existing biomedical on-
tologies, and its effectiveness by computing an answer to a real-world biomedical query
that requires the integration of NCBI Entrez Gene and the Gene Ontology. We have also
compared our approach with the existing Semantic Web technologies that support rep-
resenting and answering queries. We have observed about these technologies that, due
to lack of support for rules or for some concepts (e.g., transitive closure, negation as fail-
ure, cardinality constraints), some queries can not be represented concisely and some
queries can not be represented at all. In this sense, the ASP-approach provides a more
expressive formalism to represent rules, concepts, constraints, and queries.

Acknowledgments

Devrim Gözüaçık helped us identify some of the complex queries. Thomas Krennwall-
ner and Roman Schindlauer helped us with installing/using DLVHEX. RACER Systems
provided us a free, educational version of RACERPRO,15 to be used in connection with
DLVHEX. Anonymous reviewers provided useful comments on an earlier draft. This
research was supported in part by the Intramural Research Program of the National
Institutes of Health (NIH), National Library of Medicine (NLM).

References

1. Lifschitz, V.: Action languages, answer sets and planning. In: The Logic Programming
Paradigm: a 25-Year Perspective. Springer (1999)

2. Marek, V., Truszczyński, M.: Stable models and an alternative logic programming paradigm.
In: The Logic Programming Paradigm: a 25-Year Perspective. Springer (1999)

3. Niemelä, I.: Logic programs with stable model semantics as a constraint programming
paradigm. Annals of Mathematics and Artificial Intelligence 25 (1999)

4. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press (2003)

5. Eiter, T., G.Ianni, R.Schindlauer, H.Tompits: Effective integration of declarative rules with
external evaluations for Semantic-Web reasoning. In: Proc. of ESWC. (2006)

6. Sahoo, S.S., Zeng, K., Bodenreider, O., Sheth, A.: From “glycosyltransferase” to “congenital
muscular dystrophy”: Integrating knowledge from NCBI Entrez Gene and the Gene Ontology.
In: Proc. of Medinfo. (2007)

15 http://www.racer-systems.com/ .

90

