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Abstract. Weakly dicomplemented lattices are bounded lattices equipped
with two unary operations to encode a negation on concepts. They have
been introduced to capture the equational theory of concept algebras [12].
They generalize Boolean algebras. Concept algebras are concept lattices,
then complete lattices, with a weak negation and a weak opposition. A
special case of the representation problem for weakly dicomplemented
lattices, posed in [4] is whether complete weakly dicomplemented lat-
tices are isomorphic to concept algebras. In this contribution we give a
negative answer to this question (Theorem 3). We also provide a new
proof of a well known result due to M.H. Stone [8], saying that each
Boolean algebra is a field of sets (Corollary 4).

1 Weak dicomplementation.

Definition 1. A weakly dicomplemented lattice is a bounded lattice L
equipped with two unary operations 4 and 5 called weak complementation
and dual weak complementation, and satisfying for all x, y ∈ L the following
equations:

(1) x44 ≤ x,
(2) x ≤ y =⇒ x4 ≥ y4,
(3) (x ∧ y) ∨ (x ∧ y4) = x,

(1’) x55 ≥ x,
(2’) x ≤ y =⇒ x5 ≥ y5,
(3’) (x ∨ y) ∧ (x ∨ y5) = x.

We call x4 the weak complement of x and x5 the dual weak complement
of x. The pair (x4, x5) is called the weak dicomplement of x and the pair
(4,5 ) a weak dicomplementation on L. The structure (L,∧,∨,4 , 0, 1) is
called a weakly complemented lattice and (L,∧,∨,5 , 0, 1) a dual weakly
complemented lattice.
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The following properties are easy to verify: (i) x ∨ x4 = 1, (ii) x ∧ x5 = 0,
(iii) 04 = 1 = 05, (iv) 14 = 0 = 15, (v) x5 ≤ x4, (vi) (x ∧ y)4 = x4 ∨ y4,
(vii) (x ∨ y)5 = x5 ∧ y5, (viii) x444 = x4, (ix) x555 = x5, and
(x) x45 ≤ x44 ≤ x ≤ x55 ≤ x54.

Example 1.

(a) The natural examples of weakly dicomplemented lattices are Boolean alge-
bras. For (B,∧,∨, ¯, 0, 1) a Boolean algebra, (B,∧,∨, ¯, ¯, 0, 1) (the comple-
mentation is duplicated, i.e. x4 := x̄ =: x5) is a weakly dicomplemented
lattice.

(b) Each bounded lattice can be endowed with a trivial weak dicomplemen-
tation by defining (1, 1), (0, 0) and (1, 0) as the dicomplement of 0, 1 and
of each x 6∈ {0, 1}, respectively.

Definition 2. Let (P,≤) be a poset and f : P → P be a map. f is a closure
operator on P if for all x, y ∈ P , x ≤ f(y) ⇐⇒ f(x) ≤ f(y). This is equivalent
to x ≤ f(x), x ≤ y =⇒ f(x) ≤ f(y) and f(f(x)) = f(x). Usually we will
write a closure operator on a set X to mean a closure operator on the powerset
(P(X),⊆) of X. Dually, f is a kernel operator on P if for all x, y ∈ P ,
x ≥ f(y) ⇐⇒ f(x) ≥ f(y). As above, we will say that f is a kernel operator
on X to mean a kernel operator on (P(X),⊆).

For a weakly dicomplemented lattice (L,∧,∨,4 ,5 , 0, 1), the maps x 7→ x44

and x 7→ x55 are resp. kernel and closure operators on L. If f is a closure
operator (resp. a kernel operator) on a lattice L, then f(L) (with the induced
order) is a lattice. Recall that for any closure operator h on L we it holds
h(h(x)∧h(y)) = h(x)∧h(y) as well as h(h(x)∨h(y)) = h(x∨y), and for any kernel
operator k on L it holds k(k(x)∧k(y)) = k(x∧y) and k(k(x)∨k(y)) = k(x)∨k(y).
We denote by P d the dual poset of (P,≤), i.e. P d := (P,≥). Then f is a kernel
operator on P iff f is a closure operator on P d.

Proposition 1. Let h be a closure operator and k a kernel operator on a set X.
For A ⊆ X define A4h := h(X \A) and A5k := k(X \A).

(i) (hP(X),∩,∨h,4h , h∅, X), with A ∨h B := h(A ∪ B), is a weakly comple-
mented lattice.

(i’) (kP(X),∧k,∪,5k , ∅, kX), with A ∧k B := k(A ∩ B), is a dual weakly com-
plemented lattice.

(ii) If hP(X) is isomorphic to kP(Y ), then h and k induce weakly dicomple-
mented lattice structures on hP(X) and on kP(Y ) that are extensions of
those in (i) and (i′) above respectively.

Proof. For (i), let h be a closure operator on X; (hP(X),∩,∨h, h∅, X) is a
bounded lattice. So we should only check the equations (1)− (3) in Definition 1.
For x ∈ hP(X), we have x44 = h(X\h(X\x)) ⊆ h(X\(X\x)) = h(x) = x, and
(1) is proved. For x1 ≤ x2 in hP(X), we have x1 ⊆ x2 and h(X \x1) ⊇ h(X \x2),
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and (2) is proved. Now we consider x, y ∈ hP(X). Trivially (x∩y)∨h (x∩y4h) ≤
x. In addition,

(x ∩ y) ∨h (x ∩ y4h) = (x ∩ y) ∨h (x ∩ h(X \ y)) = h((x ∩ y) ∪ (x ∩ h(X \ y)))

⊇ h((x ∩ y) ∪ (x ∩ (X \ y))) = h(x) = x.

(i′) is proved similarly.
For (ii) we will extend the structures of (i) and (i′) to get weakly dicom-

plemented lattices. By (i), (hP(X),∩,∨h,4h , h∅, X) is a weakly complemented
lattice. Let ϕ be an isomorphism from hPX to kPX. We define 5ϕ on hP(X)
by: x5ϕ := ϕ−1(ϕ(x)5k). Then

x5ϕ5ϕ =
(
ϕ−1

(
ϕ(x)5k

))5ϕ = ϕ−1
(
ϕ

(
ϕ−1

(
ϕ(x)5k

))5k
)

= ϕ−1
(
ϕ(x)5k5k

)
,

and x5ϕ5ϕ ≥ ϕ−1(ϕ(x)) = x. For x ≤ y in hPX we have ϕ(x) ≤ ϕ(y) implying
ϕ(x)5k ≥ ϕ(y)5k and x5ϕ = ϕ−1(ϕ(x)5k) ≥ ϕ−1(ϕ(y)5k) = y5ϕ . For x, y in
hPX, we have

(x ∨ y) ∧ (x ∨ y5ϕ) = (x ∨ y) ∧ (x ∨ ϕ−1(ϕ(y)5k))
= ϕ−1

(
(ϕ(x) ∨ ϕ(y)) ∧ (ϕ(x) ∨ ϕ(y)5k)

)
= ϕ−1(ϕ(x)) = x.

Therefore (hP(X),∩,∨h,4h ,5ϕ , h∅, X) is a weakly dicomplemented lattice. Sim-
ilarly (kP(X),∧k,∪,4ϕ ,5k , ∅, kX) with x4ϕ := ϕ(ϕ−1(x)4h) is a weakly di-
complemented lattice.

Proposition 2. Let h be a closure operator on X and k a kernel operator on Y
such that hP(X) is isomorphic to kP(Y ). Let ϕ be an isomorphism from hP(X)
to kP(Y ). We set L := {(x, y) ∈ hP(X) × kP(Y ) | y = ϕ(x)}. L has a weakly
dicomplemented lattice structure induced by h and k.

Proof. By Lemma 1 (hP(X),∩,∨h,4h , h∅, X) is a weakly complemented lattice
and (kP(X),∧k,∪,5k , ∅, kX) a dual weakly complemented lattice. For every
y ∈ kP(Y ) there is a unique x ∈ hP(X) such that y = ϕ(x). For (a, b) and
(c, d) in L, we have a ≤ c ⇐⇒ b ≤ d. We define a relation ≤ on L by:

a ≤ c ⇐⇒ : (a, b) ≤ (c, d) : ⇐⇒ b ≤ d. Then hP(X)
π1∼= L

π2∼= kP(Y ) where πi

is the ith projection. Thus (L,≤) is a bounded lattice. Moreover (a, b)∧ (c, d) =
(a ∩ c, ϕ(a ∩ c)) and (a, b) ∨ (c, d) = (ϕ−1(b ∪ d), b ∪ d). For (x, y) ∈ L, we
define (x, y)4 := (x4h , ϕ(x4h)) and (x, y)5 := (ϕ−1(y5k), y5k). We claim that
(L,∧,∨,4 ,5 , 0, 1) is a weakly dicomplemented lattice. In fact,

(x, y)44 = (x4h , ϕ(x4h))4 = (x4h4h , ϕ(x4h4h)) ≤ (x, ϕ(x)) = (x, y).

If (x, y) ≤ (z, t) in L, we have x ≤ z and y ≤ t, implying x4h ≥ z4h and
ϕ(x4h) ≥ ϕ(z4h); thus (x, y)4 = (x4h , ϕ(x4h)) ≥ (z4h , ϕ(z4h)) = (z, t)4.
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These prove (1) and (2) of Definition 1. It remains to prove (3). Let (x, y) and
(z, t) in L;

((x, y) ∧ (z, t)) ∨ ((x, y) ∧ (z, t)4) = (x ∩ z, ϕ(x ∩ z)) ∨ ((x, y) ∧ (z4h , ϕ(z4h)))
= (x ∩ z, ϕ(x ∩ z)) ∨ (x ∩ z4h , ϕ(x ∩ z4h))
= (ϕ−1(ϕ(x ∩ z) ∪ ϕ(x ∩ z4h)), ϕ(x ∩ z) ∪ ϕ(x ∩ z4h))
= ((x ∩ z) ∨h (x ∩ z4h), ϕ((x ∩ z) ∨h (x ∩ z4h)))
= (x, ϕ(x)).

and (3) is proved.

The advantage of the weakly dicomplemented lattice L in Lemma 2 is that, in ad-
dition to extending the weakly and dual weakly complemented lattice structures
induced by h and k, it also keeps track of the closure and kernel systems.

Definition 3. Let L be a bounded lattice and x ∈ L. The element x∗ ∈ L (resp.
x+ ∈ L) is the pseudocomplement (resp. dual pseudocomplement) of x if

x ∧ y = 0 ⇐⇒ y ≤ x∗ (resp. x ∨ y = 1 ⇐⇒ y ≥ x+) for all y ∈ L.

A double p-algebra is a lattice in which every element has a pseudocomplement
and a dual pseudocomplement.

Example 2. Boolean algebras are double p-algebras. Finite distributive lattices
are double p-algebras. N5 is a double p-algebra that is not distributive. All
distributive double p-algebras are weakly dicomplemented lattices.

The following result give a class of “more concrete” weakly dicomplemented
lattices.

Proposition 3. Let L be a finite lattice. Denote by J(L) the set of join irre-
ducible elements of L and by M(L) the set of meet irreducible elements of L
respectively. Define two unary operations 4 and 5 on L by

x4 :=
∨
{a ∈ J(L) | a � x} and x5 :=

∧
{m ∈ M(L) | m � x}.

Then (L,∧,∨,4 ,5 , 0, 1) is a weakly dicomplemented lattice. In general, for G ⊇
J(L) and H ⊇ M(L), the operations 4G and 5H defined by

x4G :=
∨
{a ∈ G | a � x} and x5H :=

∧
{m ∈ H | m � x}

turn (L,∧,∨,4G ,5H , 0, 1) into a weakly dicomplemented lattice.

Proof. Let G ⊇ J(L), b ∈ G and x ∈ L. Then b �
∨
{a ∈ G | a � x} implies

b ≤ x; i.e. b � x4G =⇒ b ≤ x. Thus x4G4G =
∨
{b ∈ G | b � x4G} ≤ x

and (1) is proved. For x ≤ y we have {a ∈ G | a � x} ⊇ {a ∈ G | a � y}
implying x4G ≥ y4G , and (2) is proved. For (3), it is enough to prove that for
a ∈ J(L), a ≤ x ⇐⇒ a ≤ (x ∧ y) ∨ (x ∧ y4G), since J(L) is

∨
-dense in L.

Let a ≤ x. We have a ≤ y or a ≤ y4G . Then a ≤ x ∧ y or a ≤ x ∧ y4G . Thus
a ≤ (x∧ y)∨ (x∧ y4G). The reverse inequality is obvious. (1′)− (3′) are proved
similarly.
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Example 3 above is a special case of concept algebras. Before we introduce con-
cept algebras, let us recall some notions from Formal Concept Analysis (FCA).
The reader is refered to [5]. Formal Concept Analysis was born in the eighties
from the formalization of the notion of concept [10]. Traditional philosophers
considered a concept to be determined by its extent and its intent. The extent
consists of all objects belonging to the concept while the intent is the set of all
attributes shared by all objects of the concept. In general, it may be difficult
to list all objects or attributes of a concept. Therefore a specific context should
be fixed to enable formalization. A formal context is a triple (G, M, I) of sets
such that I ⊆ G × M . The members of G are called objects and those of M
attributes. If (g,m) ∈ I, then the object g is said to have m as an attribute.
For subsets A ⊆ G and B ⊆ M , A′ and B′ are defined by

A′ := {m ∈ M | ∀g ∈ A g I m} and B′ := {g ∈ G | ∀m ∈ B g I m}.

A formal concept of the formal context (G, M, I) is a pair (A,B) with A ⊆ G
and B ⊆ M such that A′ = B and B′ = A. The set A is called the extent
and B the intent of the concept (A,B). B(G, M, I) denotes the set of all formal
concepts of the formal context (G, M, I). For concepts (A,B) and (C,D), (A,B)
is called a subconcept of (C,D) provided that A ⊆ C (which is equivalent to
D ⊆ B). In this case, (C,D) is a superconcept of (A,B) and we write (A,B) ≤
(C,D). The relation subconcept-superconcept encodes the hierarchy on
concepts, namely, that a concept is more general if it contains more objects,
and equivalently, if it is determined by less attributes.

Theorem 1 ([10]). The concept lattice B(G, M, I) is a complete lattice in
which infimum and supremum are given by:

^
t∈T

(At, Bt) =

 \
t∈T

At,

 [
t∈T

Bt

!′′!
and

_
t∈T

(At, Bt) =

  [
t∈T

At

!′′
,
\
t∈T

Bt

!
.

A complete lattice L is isomorphic to B(G, M, I) iff there are mappings γ̃ : G →
L and µ̃ : M → L such that γ̃(G) is supremum-dense, µ̃(M) is infimum-dense
and g I m ⇐⇒ γ̃g ≤ µ̃m for all (g,m) ∈ G×M .

(B(G, M, I);≤) is called the concept lattice of the context (G, M, I). All com-
plete lattices are (copies of) concept lattices. We adopt the notations below for
g ∈ G and m ∈ M :

g′ := {g}′, m′ := {m}′, γg := (g′′, g′) and µm := (m′,m′′).

The concept γg is called object concept and µm attribute concept. The sets
γG is supremum-dense and µM infimum-dense in B(G, M, I). We usually assume
our context clarified, meaning that x′ = y′ =⇒ x = y for all x, y ∈ G∪M . If γg
is supremum-irreducible we say that the object g is irreducible. An attribute
m is said irreducible if the attribute concept µm is infimum-irreducible. A
formal context is called reduced if all its objects and attributes are irreducible.
For every finite lattice L there is, up to isomorphism, a unique reduced context
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K(L) := (J(L),M(L),≤) such that L ∼= B(K(L)). We call it standard context
of L. The meet and join operations in the concept lattice can be used to formalize
the conjunction and disjunction on concepts [6]. To formalize a negation two
operations are introduced as follow:

Definition 4. Let (G, M, I) be a formal context and (A,B) a formal concept.
We define

its weak negation by (A,B)4 :=
(
(G \A)′′ , (G \A)′

)
and its weak opposition by (A,B)5 :=

(
(M \B)′ , (M \B)′′

)
.

A(K) :=
(
B(K);∧,∨,4 ,5 , 0, 1

)
is called the concept algebra of the formal

context K, where ∧ and ∨ denote the meet and the join operations of the concept
lattice.

These operations satisfy the equations in Definition 1 (cf. [12]). In fact concept
algebras are typical examples of weakly dicomplemented lattices. One of the
important and still unsolved problems in this topic is to find out the equational
theory of concept algebras; that is the set of all equations valid in all concept
algebras. Is it finitely generated? i.e. is there a finite set E of equations valid in
all concept algebras such that each equation valid in all concept algebras follows
from E? We start with the set of equations defining a weakly dicomplemented
lattice and have to check whether they are enough to represent the equational
theory of concept algebras. This representation problem can be split:

strong representation: Describe weakly dicomplemented lattices that are iso-
morphic to concept algebras.

equational axiomatization: Find a set of equations that generate the equa-
tional theory of concept algebras.

concrete embedding: Given a weakly dicomplemented lattice L, is there a
context K4

5(L) such that L can be embedded into the concept algebra of

A
(
K4
5(L)

)
?

We proved (see [4] or [3]) that finite distributive weakly dicomplemented lattices
are isomorphic to concept algebras. However we cannot expect all weakly dicom-
plemented lattices to be isomorphic to concept algebras, since concept algebras
are first of all complete lattices. In Section 3 we will show that being complete
is not enough for weakly dicomplemented lattices to be isomorphic to concept
algebras. Before that we show in Section 2 that weakly dicomplemented lattices
generalize Boolean algebras.

2 Weakly Dicomplemented Lattices with Negation

Example 1 states that duplicating the complementation of a Boolean algebra
leads to a weakly dicomplemented lattice. Does the converse hold? The finite
case is easily obtained [Corollary 1]. Major parts of this section are taken from
[4]. We will also describe weakly dicomplemented lattices whose Boolean part is
the intersection of their skeletons (definitions below).

222 Léonard Kwuida, Hajime Machida



Definition 5. A weakly dicomplemented lattice is said to be with negation if
the unary operations coincide, i.e., if x5 = x4 for all x. In this case we set
x4 =: x̄ := x5.

Lemma 1. A weakly dicomplemented lattice with negation is uniquely comple-
mented.

Proof. x44 ≤ x ≤ x55 implies that x = ¯̄x. Moreover, x ∧ x̄ = 0 and x̄ is a
complement of x. If y is another complement of x then

x = (x ∧ y) ∨ (x ∧ ȳ) = x ∧ ȳ =⇒ x ≤ ȳ

x = (x ∨ y) ∧ (x ∨ ȳ) = x ∨ ȳ =⇒ x ≥ ȳ

Then ȳ = x and x̄ = y. L is therefore a uniquely complemented lattice.

It can be easily seen that each uniquely complemented atomic lattice is a copy
of the power set of the set of its atoms, and therefore distributive. Thus

Corollary 1. The finite weakly dicomplemented lattices with negation are ex-
actly the finite Boolean algebras.

Of course, the natural question will be if the converse of Lemma 1 holds. That is,
can any uniquely complemented lattice be endowed with a structure of a weakly
dicomplemented lattice with negation? The answer is yes for distributive lattices.
If the assertion of Corollary 1 can be extended to lattices in general, the answer
will unfortunately be no. In fact R. P. Dilworth proved that each lattice can be
embedded into a uniquely complemented lattice [?]. The immediate consequence
is the existence of non-distributive uniquely complemented lattices. They are
however infinite. If a uniquely complemented lattice could be endowed with a
structure of weakly dicomplemented lattice, it would be distributive. This cannot
be true for non distributive uniquely complemented lattices.

Lemma 2. Each weakly dicomplemented lattice with negation L satisfies the de
Morgan laws.

Proof. We want to prove that x ∧ y = x̄ ∨ ȳ.

(x̄ ∨ ȳ) ∨ (x ∧ y) ≥ x̄ ∨ (x ∧ ȳ) ∨ (x ∧ y) = x̄ ∨ x = 1

and
(x̄ ∨ ȳ) ∧ (x ∧ y) ≤ (x̄ ∨ ȳ) ∧ x ∧ (x̄ ∨ y) = x̄ ∧ x = 0.

So x̄∨ ȳ is a complement of x∧y, hence by uniqueness it is equal to x ∧ y. Dually
we have x ∨ y = x̄ ∧ ȳ.

Now for the distributivity we can show that

Lemma 3. x ∧ (y ∨ z) is a complement of (x ∧ y) ∨ (x ∧ z).

On the Isomorphism Problem of Concept Algebras 223



Proof. Since in every lattice the equation x ∧ (y ∨ z) ≥ (x ∧ y) ∨ (x ∧ z) holds,
we have that x ∧ (y ∨ z) ≤ (x ∧ y) ∨ (x ∧ z); so we have to show only that
x ∧ (y ∨ z) ∨ (x ∧ y) ∨ (x ∧ z) = 1. Using the de Morgan laws and axiom (3)
several times we obtain:

x ∧ (y ∨ z) ∨ (x ∧ y) ∨ (x ∧ z) = x̄ ∨ (ȳ ∧ z̄) ∨ (x ∧ y) ∨ (x ∧ z)
= x̄ ∨ (ȳ ∧ z̄ ∧ x) ∨ (ȳ ∧ z̄ ∧ x̄) ∨ (x ∧ y ∧ z)
∨(x ∧ y ∧ z̄) ∨ (x ∧ z ∧ ȳ)

= x̄ ∨ (ȳ ∧ z̄ ∧ x̄) ∨ (x ∧ y ∧ z) ∨ (x ∧ y ∧ z̄)
∨(x ∧ ȳ ∧ z) ∨ (x ∧ ȳ ∧ z̄)

= x̄ ∨ (ȳ ∧ z̄ ∧ x̄) ∨ (x ∧ y) ∨ (x ∧ ȳ)
= x̄ ∨ (ȳ ∧ z̄ ∧ x̄) ∨ x

= 1.

Thus x ∧ (y ∨ z) is a complement of (x ∧ y) ∨ (x ∧ z).

Since the complement is unique we get the equality

x ∧ (y ∨ z) = x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

Thus weakly dicomplemented lattices generalize Boolean algebras in the follow-
ing sense

Theorem 2. Boolean algebras with the complementation duplicated3 are weakly
dicomplemented lattices. If 4 =5 in a weakly dicomplemented lattice L, then
(L,∧,∨, ¯, 0, 1), with x̄ := x4 = x5 for all x ∈ L, is a Boolean algebra.

As the equality x4 = x5 not always holds, we can look for a maximal subset
with this property.

Definition 6. For any weakly dicomplemented lattice L, we will call B(L) :=
{x ∈ L | x4 = x5} the subset of elements with negation.

As in Definition 5 we denote by x̄ the common value of x4 and x5. We set
L4 := {a4 | a ∈ L} = {a ∈ L | a44 = a} and call it the skeleton of L, as well
as L5 := {a5 | a ∈ L} = {a ∈ L | a55 = a} and call it the dual skeleton of
L.

Corollary 2. (B(L),∧,∨, ¯, 0, 1) is a Boolean algebra that is a subalgebra of the
skeleton and the dual skeleton.

Proof. From x4 = x5 we get x44 = x54 and x45 = x55. Thus

x45 = x44 = x = x55 = x54

3 see Example 1
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and B(L) is closed under the operations 4 and 5. We will prove that B(L) is a
subalgebra of L. We consider x and y in B(L). We have

(x ∧ y)4 = x4 ∨ y4 = x5 ∨ y5 ≤ (x ∧ y)5 ≤ (x ∧ y)4 and

(x ∨ y)5 = x5 ∧ y5 = x4 ∧ y4 ≥ (x ∨ y)4 ≥ (x ∨ y)5.

Thus x ∧ y and x ∨ y belong to B(L). B(L) is a weakly dicomplemented lattice
with negation, and is by Theorem 2, a Boolean algebra.

While proving Corollary 2 we show that B(L) is a subalgebra of L. It is the
largest Boolean algebra that is a subalgebra of the skeletons and of L. We call
it the Boolean part of L. The inclusion B(L) ⊆ L4 ∩ L5 can be strict (see
Fig. 1). It would be nice to find under which conditions the Boolean part is the
intersection of the skeleton and dual skeleton?

Lemma 4. If L is a finite distributive lattice with 5 = ∗ (pseudocomplementa-
tion) and 4 = + (dual pseudocomplementation), then B(L) is the set of com-
plemented elements of L.

Proof. Let L be a finite distributive lattice with 5 = ∗ and 4 = +. We denote
by C(L) the set of complemented elements of L. Of course B(L) ⊆ C(L). Let
x ∈ C(L). From the distributivity there is a unique elements z ∈ L such that
x ∨ z = 1 and x ∧ z = 0. Then z ≤ x5 ≤ x4 ≤ z, and x ∈ B(L).

Even in this case, the Boolean part can still be strictly smaller than the inter-
section of the skeletons (see Fig. 1 below).

Fig. 1. Examples of dicomplementations. For L1, the elements c, b and a are each im-
age (of their image). The operation 4 is the dual of 5. We have B(L1) = {0, 1}, L41 =
{0, 1, c, d, e, c4, d4, e4}, L51 = {0, 1, c, a, b, c5, a5, b5} and C(L1) = {0, 1, c, a5}.
Thus B(L1) ( C(L1) = L41 ∩ L51 . For L2,

4 =+ and 5 =∗. L42 = {0, 1, c, c4},
L52 = {0, 1, c, c5}, B(L2) = {0, 1} = C(L2) ( {0, 1, c} = L42 ∩ L52 .

Lemma 5. B(L) = L4 ∩ L5 iff x44 = x55 =⇒ x45 = x54.
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Proof. (⇒). Let x ∈ L such that x44 = x55. Then x ∈ L4 ∩ L5 = B(L) and
implies x4 = x5. Therefore x45 = x55 = x = x44 = x54.

(⇐). Let x ∈ L4 ∩ L5. Then x44 = x = x55 and implies x4 = x544 ≤
x5. Thus x4 = x5, and x ∈ B(L).

3 Strong representation problem

We start this section by a negative result, namely by showing that completeness is
not enough for weakly dicomplemented lattices to be (copies of) concept algebras.

Theorem 3. There is no formal context whose concept algebra is isomorphic to
a complete atomfree Boolean algebra.

Proof. Let B be a complete and atomfree Boolean algebra. By Theorem 1, there
is a context (G, M, I) such that B(G, M, I) ∼= B (lattice isomorphism). Without
loss of generality, we can assume that (G, M, I) is a subcontext of (B,B,≤).
We claim that there are g, h ∈ G with 0 < h < g < 1. In fact, for an element
g ∈ G ⊆ B with 0 6= g there is a ∈ B such that 0 < a < g, since B is atomfree.
Moreover G is

∨
-dense in B and then 0 6= a =

∨
{x ∈ G | x ≤ a}, implying that

there {x ∈ G | 0 < x ≤ a} 6= ∅. Thus we can choose h ∈ G with 0 < h ≤ a < g.
In the concept algebra of (G, M,≤) we have h4 =

∨
{x ∈ G | x � h} ≥ g > h.

From h ∨ h4 = 1 we get h4 = 1 6= h′ (the complement of h in B).

Theorem 3 says that an atomfree Boolean algebra is not isomorphic to a
concept algebra. However it can be embedded into a concept algebra. The cor-
responding context is constructed via ultrafilters. A general construction was
presented in [4].

Definition 7. A primary filter is a (lattice) filter that contains w or w4 for
all w ∈ L. Dually, a primary ideal is an ideal that contains w or w5 for all
w ∈ L. Fpr(L) denotes the set of all primary filters and Ipr(L) the set of primary
ideals of L.

For Boolean algebras, a proper filter F is primary iff it is an ultrafilter, iff it is
a prime filter (x ∨ y ∈ F =⇒ x ∈ F or y ∈ F ). The following result, based on
Zorn’s lemma provides the sets of K4

5.

Theorem 4 (“Prime ideal theorem”). For every filter F and every ideal I
such that F ∩ I = ∅ there is a primary filter G containing F and disjoint from
I. Dually, for every ideal I and every filter F such that I ∩ F = ∅ there is a
primary ideal J containing I and disjoint from F .

Corollary 3. If x 6≤ y in L, then there exists a primary filter F containing x
and not y.

For x ∈ L, we set

Fx := {F ∈ Fpr(L) | x ∈ F} and Ix := {I ∈ Ipr(L) | x ∈ I}.
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The canonical context of a weakly dicomplemented lattice L is the formal
context

K
4
5(L) := (Fpr(L), Ipr(L),2) with F 2 I : ⇐⇒ F ∩ I 6= ∅.

The derivation in K45(L) yields, F ′x = Ix and I ′x = Fx for every x ∈ L. Moreover,
the map

i : L → B
(
K
4
5(L)

)
x 7→ (Fx, Ix)

is a bounded lattice embedding with i(x5) ≤ i(x)5 ≤ i(x)4 ≤ i(x4). If the
first and last inequalities above were equalities, we would get a weakly dicom-
plemented embedding into the concept algebra of K4

5(L). This would give a
solution to the representation problem of weakly dicomplemented lattices.

Theorem 5. If L is a Boolean algebra, then the concept algebra of K4
5(L) is a

complete and atomic Boolean algebra into which L embeds.

Proof. If B is a Boolean algebra, then a proper filter F of L is primary iff it is an
ultrafilter, and a proper ideal J is primary iff it is maximal. Thus Fpr(L) is the
set of ultrafilters of L and Ipr(L) the set of its maximal ideals. In addition, the
complement of an ultrafilter is a maximal ideal and vice-versa. For F ∈ Fpr(L),
L\F is the only primary ideal that does not intersect F , and for any J ∈ Ipr(L),
L\J is the only primary filter that does not intersect J . Thus the context K4

5(L)
is a copy of (Fpr(L),Fpr(L), 6=). The concepts of this context are exactly pairs
(A,B) such that A ∪B = Fpr(L) and A ∩B = ∅. Thus B(K4

5(L)) ∼= P(Fpr(L))
and each subset A of Fpr(L) is an extent of K4

5(L). It remains to prove that the
lattice embedding

i : L → B
(
K
4
5(L)

)
x 7→ (Fx, Ix)

is also a Boolean algebra embedding. If i(x4) 6= i(x)4 then there is F ∈ Fx4 \
(Fpr(L) \ Fx)

′′ = Fx4 \ (Fpr(L) \ Fx) = ∅, which is a contradiction. Similarly
i(x5) = i(x)5. Therefore B embeds into the complete and atomic Boolean
algebra A

(
K4
5(L)

)
which is a copy of P (Fpr(L)).

The above result is a new proof to a well-known result (Corollary 4) due to
Marshall Stone [8]. The advantage here is that the proof is very simple and does
not require any knowledge from topology. Recall that a field of subsets of a set
X is a subalgebra of P(X), .i.e. a family of subsets of X that contains ∅ and X,
and that is closed under union, intersection, and complementation.

Corollary 4 ([8]). Each Boolean algebra embeds into a field of sets.
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We conclude this section by an example. Consider the Boolean algebra FN of
finite and cofinite subsets of N. It is not complete. But P(N) is a complete
and atomic Boolean algebra containing FN. By Theorem 5 A(K4

5(B)) is also
a complete and atomic Boolean algebra into which FN embeds. The atoms of
FN are {n}, n ∈ N. These generate its principal ultrafilters. FN has exactly one
non-principal ultrafilter U (the cofinite subsets). Thus |FN| = |N| + 1 = |N|.
We can find a bijection let say f between the atoms of P(N) and the atoms
of A(K4

5(FN)). f induces an isomorphism f̂ : P(N) → A(K4
5(FN)). Is there a

universal property for A(K4
5(B)) of Boolean algebras. For example is A(K4

5(B))
the smallest complete and atomic Boolean algebra into which B can be embedded?

4 Conclusion

Weakly dicomplemented lattices with negation are exactly Boolean algebras
(Thm. 2). Even if they are not always isomorphic to concept algebras (Thm. 3),
they embed into concept algebras (Thm. 5). Finite distributive weakly dicomple-
mented lattices are isomorphic to concept algebras [3]. Extending these results
to finite weakly dicomplemented lattices in one sense and to distributive weakly
dicomplemented lattices in the other are the next tasks. Finding a kind of uni-
versal property to characterize the construction in Thm. 5 is a natural question
to be addressed.
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