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Abstract. This paper proposes a novel application of Formal Concept
Analysis (FCA) to neural decoding: the semantic relationships between
the neural representations of large sets of stimuli are explored using
concept lattices. In particular, the effects of neural code sparsity are
modelled using the lattices. An exact Bayesian approach is employed to
construct the formal context needed by FCA. This method is explained
using an example of neurophysiological data from the high-level visual
cortical area STSa. Prominent features of the resulting concept lattices
are discussed, including indications for a product-of-experts code in real
neurons.

1 Introduction

Mammalian brains consist of billions of neurons, each capable of independent
electrical activity. From an information-theoretic perspective, the patterns of
activation of these neurons can be understood as the codewords comprising the
neural code. The neural code describes which pattern of activity corresponds
to what information item. We are interested in the (high-level) visual system,
where such items may indicate the presence of a stimulus object or the value of
some stimulus attribute, assuming that each time this item is represented the
neural activity pattern will be the same or at least similar. Neural decoding is
the attempt to reconstruct the stimulus from the observed pattern of activation
in a given population of neurons [1,2,3,4]. Popular decoding quality measures,
such as Fisher’s linear discriminant [5] or mutual information [6] capture how
accurately a stimulus can be determined from a neural activity pattern (e.g.,
[4]). While these measures are certainly useful, they provide little information
about the structure of the neural code, which is what we are concerned with
here. Furthermore, we would also like to elucidate how this structure relates to
the represented information items, i.e. we are interested in the semantic aspects
of the neural code.

To explore the relationship between the representations of related items,
Földiák [7] demonstrated that a sparse neural code can be interpreted as a graph
(a kind of ”semantic net”). Each codeword can then be represented as a set of
active units (a subset of all units). The codewords can now be partially ordered
under set inclusion: codeword A ≤ codeword B iff the set of active neurons
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of A is a subset of the active neurons of B. This ordering relation is capable
of capturing semantic relationships between the represented information items.
There is a duality between the information items and the sets representing them:
a more general class corresponds to a smaller subset of active neurons, and more
specific items are represented by larger sets [7]. Additionally, storing codewords
as sets is especially efficient for sparse codes, i.e. codes with a low activity ratio
(i.e. few active units in each codeword). These findings by Foldiak [7] did not
employ the terminology and tools of Formal Concept Analysis (FCA) [8,9]. But
because this duality is a Galois connection, it is of interest to apply FCA to
such data. The resulting concept lattices are an interesting representation of the
relationships implicit in the code.

We would also like to be able to represent how the relationship between
sets of active neurons translates into the corresponding relationship between
the encoded stimuli. In our application, the stimuli are the formal objects, and
the neurons are the formal attributes. The FCA approach exploits the duality
of extensional and intensional descriptions and allows to visually explore the
data in lattice diagrams. FCA has shown to be useful for data exploration and
knowledge discovery in numerous applications in a variety of fields [10,11].

This paper does not include an introduction to FCA because FCA is well
described in the literature (e.g., [9]). We use the phrase reduced labelling to refer
to line diagrams of concept lattices which have labels only attached to object
concepts and attribute concepts. As a reminder, an object concept is the smallest
(w.r.t. the conceptual ordering in a concept lattice) concept of whose extent the
object is a member. Analogously, an attribute concept is the largest concept of
whose intent the attribute is a member. Full labelling refers to line diagrams of
concept lattices where concepts are depicted with their full extent and intent.

We provide more details on sparse coding in section 2 and demonstrate how
the sparseness (or denseness) of the neural code affects the structure of the
concept lattice in section 3. Section 4 describes the generative classifier model
which we use to build the formal context from the responses of neurons in the
high-level visual cortex of monkeys. Finally, we discuss the concept lattices so
obtained in section 5.

2 Sparse coding

One feature of neural codes which has attracted a considerable amount of interest
is its sparseness. As detailed in [12], sparse coding is to be distinguished from
local and dense distributed coding. At one extreme of low average activity ratio
are local codes, in which each item is represented by a separate neuron or a small
set of neurons. This way there is no overlap between the representations of any
two items in the sense that no neuron takes part in the representation of more
than one item. An analogy might be the coding of characters on a computer
keyboard (without the Shift and Control keys), where each key encodes a single
character. It should be noted that locality of coding does not necessarily imply
that only one neuron encodes an item, it only says that the neurons are highly
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selective, corresponding to single significant items of the environment (e.g. a
“grandmother cell” - a hypothetical neuron that has the exact and only purpose
to be activated when someone sees, hears or thinks about their grandmother).

The other extreme (approximate average activity ratio of 0.5) corresponds
to dense, or holographic coding. Here, an information item is represented by the
combination of activities of all neurons. For N binary neurons this implies a
representational capacity of 2N . Given the billions of neurons in a human brain,
2N is beyond astronomical. As the number of neurons in the brain (or even just in
a single cortical area, such as primary visual cortex) is substantially higher than
the number of receptor cells (e.g. in the retina), the representational capacity
of a dense code in the brain is much greater than what we can experience in a
lifetime (the factor of the number of moments in a lifetime adds the requirement
of only about 40 extra neurons). Therefore the greatest part of this capacity is
redundant.

Sparse codes (small average activity ratio) are a favourable compromise be-
tween dense and local codes ([13]). The small representational capacity of local
codes can be remedied with a modest fraction of active units per pattern be-
cause representational capacity grows exponentially with average activity ratio
(for small average activity ratios). Thus, distinct items are much less likely to
interfere when represented simultaneously. Furthermore, it is much more likely
that a single layer network can learn to generate a target output if the input
has a sparse representation. This is due to the higher proportion of mappings
being implementable by a linear discriminant function. Learning in single layer
networks is therefore simpler, faster and substantially more plausible in terms of
biological implementation. By controlling sparseness, the amount of redundancy
necessary for fault tolerance can be chosen. With the right choice of code, a rel-
atively small amount of redundancy can lead to highly fault-tolerant decoding.
For instance, the failure of a small number of units may not make the represen-
tation undecodable. Moreover, a sparse distributed code can represent values at
higher accuracy than a local code. Such distributed coding is often referred to
as coarse coding.

3 Concept lattices of local, sparse and dense codes

In the case of a binary neural code, the sparseness of a codeword is inversely
related to the fraction of active neurons. The average sparseness across all code-
words is the sparseness of the code [13,12]. Sparse codes, i.e. codes where this
fraction is low, are found interesting for a variety of reasons: they offer a good
compromise between encoding capacity, ease of decoding and robustness [14];
they seem to be employed in the mammalian visual processing system [15]; and
they are well suited to representing the visual environment we live in [16,17]. It is
also possible to define sparseness for graded or even continuous-valued responses
(see e.g. [18,4,12]). To study what structural effects different levels of sparse-
ness would have on a neural code, we generated random codes, i.e. each of 10
stimuli was associated with randomly drawn responses of 10 neurons, subject to
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the constraints that the code be perfectly decodable and that the sparseness of
each codeword was equal to the sparseness of the code. Fig.1 shows the contexts
(represented as cross-tables) and the concept lattices of a local code (activity
ratio 0.1), a sparse code (activity ratio 0.2) and a dense code (activity ratio 0.5).
In a local code, the response patters to different stimuli have no overlapping ac-
tivations, hence the lattice representing this code is an anti-chain with top and
bottom element added. Each concept in the anti-chain introduces (at least) one
stimulus and (at least) one neuron. In contrast, a dense code results in a larger
number of concepts which introduce neither a stimulus nor a neuron. The lattice
of the dense code also contains substantially longer chains between the top and
bottom nodes than in the case of sparse and local codes.
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Fig. 1. Contexts (represented as cross-tables) and concept lattices for a local,
sparse and dense random neural code. Each context was built out of the responses
of 10 (hypothetical) neurons (n1, ..., n10) to 10 stimuli (s1, ..., s10). Each node
represents a concept.

The most obvious differences between the lattices is the total number of con-
cepts. A dense code, even for a small number of stimuli, will give rise to a large
number of concepts, because the neuron sets representing the stimuli are very
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probably going to have non-empty intersections. These intersections are poten-
tially the intents of concepts which are larger than those concepts that introduce
the stimuli. Hence, the latter are found towards the bottom of the lattice. This
implies that they have large intents, which is of course a consequence of the
density of the code. Determining these intents thus requires the observation of a
large number of neurons, which is unappealing from a decoding perspective. The
local code does not have this drawback, but is hampered by a small encoding
capacity (maximal number of concepts with non-empty extents): the concept
lattice in fig.1 is the largest one which can be constructed for a local code com-
prised of 10 binary neurons. Which of the above structures is most appropriate
depends on the conceptual structure of the environment to be encoded and the
appropriate sparseness that can be selected.

4 Building a formal context from responses of high-level
visual neurons

To explore whether FCA is a suitable tool for interpreting real neural codes,
we constructed formal contexts from the responses of high-level visual cortical
cells in area STSa (part of the temporal lobe) of monkeys. Characterising the
responses of these cells is a difficult task. They exhibit complex nonlinearities and
invariances which make it impossible to apply linear techniques, such as reverse
correlation [19], that were shown to be useful in understanding the responses
of neurons in early visual areas [20,21]. The concept lattices obtained by FCA
might enable us to display and browse these invariances: if the response of a
subset of cells indicates the presence of an invariant feature in a stimulus, then
all stimuli having this feature should form the extent of a concept whose intent
is given by the responding cells.

4.1 Physiological data

The data were obtained through [22], where the experimental details can be
found. Briefly, spike trains were obtained from single neurons within the upper
and lower banks of the superior temporal sulcus (STSa) of an awake and behav-
ing monkey (Macaca mulatta) via standard extracellular recording techniques
[23]. During the recordings, the monkey had to perform a fixation task. This
area contains cells which are responsive to faces. Extracellular voltage fluctua-
tions were measured, and the stereotypical action potentials (i.e. ’spikes’) of the
neuron were detected and their temporal sequence was recorded resulting in a
’spike train’. These spike trains were turned into distinct samples, each of which
contained the spikes from −300 ms before to 600 ms after the stimulus onset
with a temporal resolution of 1 ms. The stimulus set consisted of 1704 images,
containing colour and black and white views of human and monkey head and
body, animals, fruits, natural outdoor scenes, abstract drawings and cartoons.
Stimuli were presented for 55 ms each without inter-stimulus gaps in random
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sequences. While this rapid serial visual presentation (RSVP) paradigm compli-
cates the task of extracting stimulus-related information from the spike trains,
it has the advantage of allowing for the testing of a large number of stimuli. A
given cell was tested on a subset of 600 or 1200 of these stimuli, each stimulus
was presented between 1-15 times.

The data were previously analysed with respect to the stimulus selectivity of
individual cells only. Previous neural population decoding studies were aimed at
identifying stimulus lables (e.g. [2,3]) only. This paper presents the first analysis
of the semantic structure of neural data with FCA.

4.2 Bayesian thresholding

In order to apply FCA, we extracted a binary attribute from the raw spike
trains. We could use many-valued attributes to describe the neural response,
but we will employ a simple binary thresholding as a starting point. This binary
attribute should be as informative about the stimulus as possible, to allow for
the construction of meaningful concepts. We do this by Bayesian thresholding,
as detailed below. This procedure also avails us of a null hypothesis H0 =”the
responses contain no information about the stimuli”.

A standard way of obtaining binary responses from neurons is thresholding
the spike count within a certain time window. This is a relatively straightforward
task, if the stimuli are presented well separated in time and a large number of
trials per stimulus are available. Then latencies and response offsets are often
clearly discernible and thus choosing the time window is not too difficult. How-
ever, under RSVP conditions with few trial per stimulus, response separation
becomes more tricky, as the responses to subsequent stimuli will tend to follow
each other without an intermediate return to baseline activity. Moreover, neural
responses tend to be rather noisy. We will therefore employ a simplified version
of the generative Bayesian Bin classification algorithm (BBCa) [24], which was
shown to perform well on RSVP data [25].

BBCa was designed for the purpose of inferring stimulus labels g from a
continuous-valued, scalar measure z of a neural response. The range of z is
divided into a number of contiguous bins. Within each bin, the observation model
for the g is a Bernoulli scheme with G types and with a Dirichlet prior over its
parameters. It is shown in [24] that one can iterate/integrate over all possible
bin boundary configurations efficiently, thus making exact Bayesian inference
feasible. Moreover, the marginal likelihood (or model evidence) becomes thus
available, which can be used to infer the posterior distribution over all spike
counting windows. We make two simplifications to BBCa: 1) z is discrete, because
we are counting spikes and 2) we use models with only 1 bin boundary Z0 in the
range r of z, i.e.

P (g = li|z = zi) =
{

pli if zi ≤ Z0

qli otherwise (1)
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We have no a priori preferences for any stimulus label, thus we choose ∀g : αg =
βg = 1. Since the Dirichlet priors on the pg and qg are conjugate to the likelihood
of the data (eqn.(1)), the posteriors can be computed in closed form. Further
details of the posterior computation after observing a set of stimulus-response
pairs (li, zi) are analogous to [24].

The bin membership (higher bin = stimulus has attribute) of a given neural
response can then serve as the binary attribute required for FCA, since BBCa
weighs bin configurations by their classification (i.e. stimulus label decoding)
performance. We proceed in a straight Bayesian fashion: since the bin member-
ship is the only variable we are interested in, all other parameters (counting
window size and position, class membership probabilities, bin boundaries) are
marginalised. This minimises the risk of spurious results due to ”contrived” infor-
mation (i.e. choices of parameters) made at some stage of the inference process.
Afterwards, the probability that the response belongs to the upper bin is thresh-
olded at a probability of 0.5, i.e. if the probability is larger than 0.5, then there
will be a cross in the context. Instead of this simple binarisation, other methods
of conceptual scaling could be used.

Since BBCa yields exact model evidences, it can also be used for model
comparison. Running the algorithm with no bin boundaries in the range of z
effectively yields the probability of the data given the ”null hypothesis” H0: z
does not contain any information about g. We can then compare it against the
alternative hypothesis described above (i.e. the information which bin z is in
tells us something about g) to determine whether the cell has responded at all.

4.3 Cell selection

The experimental data consisted of recordings from 26 cells. To minimise the
risk that the computed neural responses were a result of random fluctuations,
we excluded a cell if 1) H0 was more probable than 10−6 or 2) the posterior
standard deviations of the counting window parameters were larger than 20 ms,
indicating large uncertainties about the response timing. Cells which did not
respond above the threshold included all cells excluded by the above criteria
(except one). Furthermore, since not all cells were tested on all stimuli, we also
had to select tuples of subsets of cells and stimuli such that all cells in a tuple
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were tested on all stimuli. Incidentally, this selection can also be accomplished
with FCA, by determining the concepts of a context with gIm =”stimulus g was
tested on cell m” and selecting those with a large number of stimuli × number
of cells. One of these cell and stimulus subset pairs (16 cells, 310 stimuli) was
selected for further exemplary analysis, but the lattices computed from the other
subset pairs displayed similar features.

5 Results

To analyse the neural code, the thresholded neural responses were used to build
stimulus-by-cell-response contexts. We performed FCA on these with Colib-
riConcepts1, created stimulus image montages2 and plotted the lattices3. In
these graphs, the images represent the formal objects. The top of the frame
around each concept image contains the concept number and the list of cells in
the intent (which, unfortunately, may be difficult to see in the printed version of
the graphs. Moreover, the list is truncated if more than 6 cells are in the intent.).

Fig.2 shows a lattice which has an emphasis on ”face” and ”head” concepts.
The concepts introducing human and cartoon faces (i.e. with extents consisting
of general ”face” images) tend to be higher up in the lattice and their intents
tend to be small. In contrast, the lower concepts introduce mostly single monkey
faces (and faces of the monkey’s caregivers), with the bottom concepts having
intents of ≥ 7 cells. We may interpret this as an indication that the neural code
has a higher ”resolution” for faces of conspecifics (and other ”important” faces)
than for faces in general, i.e. other monkeys are represented in greater detail in a
monkey’s brain than humans or cartoons. This feature can be observed in most
lattices we generated. Thus, monkey STSa cells are not just responsive to faces
in general, but to specific subclasses, such as monkey faces, in particular.

Fig.3 shows a subgraph from a lattice with full labelling. Full labelling is
of interest in these applications because viewing the full extent simultaneously
gives an impression of “what this concept is about”. The concepts in the left
half of the graph are face concepts, whereas the extents of the concepts in the
right half also contain a number of non-face stimuli. Most of the latter have
something ”roundish” about them. The bottom concept, being subordinate to
both the ”round” and the ”face” concepts, contains a stimulus with both char-
acteristics, which points towards a product-of-experts (PoE) encoding [26]. In
PoE, each ’expert’ can be thought of as an attribute (or attribute combination)
of the represented item. These experts are expected to correspond to meaningful
aspects of the information items. Several examples of this kind can be found in
the other graphs of the complete concept lattices, which cannot be included in
this paper.

1 available at http://code.google.com/p/colibri-concepts/
2 via ImageMagick, available at http://www.imagemagick.org
3 with Graphviz, available at http://www.graphviz.org
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Fig. 2. A lattice with reduced labelling on the stimuli, i.e. stimuli are only shown
in their object concepts. The ∅ indicates that an extent is the intersection of the
parent concept extents, i.e. no new stimuli were introduced by this concept.
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Fig. 3. A subgraph of a lattice with full labelling. The concepts on the right
side are not exclusively ”face” concepts, but most members of their extents have
something ”roundish” about them.

6 Conclusion

We demonstrated the potential usefulness of FCA for the exploration and in-
terpretation of neural codes. This technique is feasible even for high-level visual
codes, where linear decoding methods [20,21] fail, and it provides qualitative
information about the structure of the code which goes beyond stimulus label
decoding [1,2,3,4]. The semantic structure of neural data has previously been
analysed with tree-based clustering methods [27]. Imposing a tree structure on
the data may be inappropriate for neural data that reflects a more general se-
mantic structure, as supported by our results.

Clearly, however, our application of FCA for this analysis is still in its in-
fancy. It would be very interesting to repeat the analysis presented here on data
obtained from simultaneous multi-cell recordings, to elucidate whether the con-
ceptual structures derived by FCA are used for decoding by real brains. On
a larger scale than single neurons, FCA could also be employed to study the
relationships in fMRI data [28].
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14. Földiák, P.: Forming sparse representations by local anti-Hebbian learning. Bio-
logical Cybernetics 64 (1990) 165–170

15. Olshausen, B.A., Field, D.J., Pelah, A.: Sparse coding with an overcomplete basis
set: a strategy employed by V1. Vision Res. 37(23) (1997) 3311–3325

16. Olshausen, B.: Learning Linear, Sparse, Factorial Codes. Technical Report AIM
1580 (1996)

17. Simoncelli, E.P., Olshausen, B.A.: Natural image statistics and neural representa-
tion. Annual Review of Neuroscience 24 (2001) 1193–1216

18. Rolls, E., Treves, A.: The relative advantages of sparse versus distributed encoding
for neuronal networks in the brain. Network 1 (1990) 407–421

19. Dayan, P., Abbott, L.: Theoretical Neuroscience. MIT Press, London, Cambridge
(2001)

20. Jones, J., Palmer, L.A.: An evaluation of the two-dimensional Gabor filter model
of simple receptive fields in cat striate cortex. Journal of Neurophysiology 58(6)
(1987) 1233–1258

21. Ringach, D.L.: Spatial structure and symmetry of simple-cell receptive fields in
macaque primary visual cortex. Journal of Neurophysiology 88 (2002) 455–463
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