
Calculations in OWL

Luigi Iannone and Alan Rector

School of Computer Science
University of Manchester

Manchester
M13 9PL UK

{iannone,rector}@cs.manchester.ac.uk

Abstract. The current OWL specification does not include a syntax
for specifying calculated values for data type properties. Their introduc-
tion, although acknowledged among the desiderata, seems yet unlikely
to appear in the forthcoming OWL 2.0. This paper shows one way of
working around this absence using annotations. The aim here is not to
suggest a standard but, rather, to individuate the potential issues that
a full fledged standard solution will have to tackle.

1 Motivation

OWL 1.1/2.0’s ability to deal with numeric ranges and values is a major step
forward for many applications. However, very often, in the biological domain, it
is necessary that numeric data data are transformed before being used. While
there are many more complex arithmetic operations that would be useful, the
ability to take two or more numeric inputs and calculate composite result, is
needed to make progress at all. Typical examples are calculation of Body Mass
Index from height and weight (BMI = Weight/Height2), units conversion (the
weight in the preceding formula must be in Kg and the height in meters), drug
dose calculations which are often expressed as total daily dose per weight or per
body surface area. Although theoretical negative results [1] have discouraged the
incorporation of complex arithmetic operations into inference engines, a limited,
reasoner independent, solution that supplements the OWL specification in a
systematic way is needed. In this paper we propose a possible way forward.

2 OWL Calculations

Our framework offers the possibility to attach one or more alternative formulas1

to a data property so that, after a preprocessing phase, each individual admitting
such properties in an OWL ontology, could have a filler computed using the ap-
propriate formula. Our initial assumption is that formulas ought to be attached
to properties. The most direct way to do that is by means of annotations on the
1 Please notice that the words formula, calculations, and their plurals are used hence-

forth interchangeably as synonyms for the same concept

data property themselves. This has the direct consequence that, in the frequent
case in which different classes of individuals require different formulas for com-
puting the value for the same data property, such property will present as many
annotations as there are alternatives. Moreover, this requires a mechanism for
deciding which one should be applied. A more object-oriented approach would
have, on the contrary, suggested to attach formulas to classes. However, we de-
cided against the latter because it would have been convenient only for formulas
that applied to named classes2, as there is no way in OWL to annotate a non
primitive class. The only workaround would be to define such complex classes
by asserting their equivalence with a named one, and then annotate the latter
with the formula. However, this would not scale and would introduce new class
names whose relevance in terms of domain model is at least dubious. Further-
more, OWL is axiom, rather than, object-oriented and this makes the annotation
of properties more natural than the annotation of classes with formulas.

In Fig. 1 we summarise graphically the components of a formula in our frame-
work:

Fig. 1. Formula components - dashed lines mean optional component

A formula can be decomposed into the following blocks:

– Conflict Strategy: Indicates the strategy to adopt when a value is cal-
culated for a functional property that already has got a filler for for the
individual under consideration. The possible strategies are:
• OVERRIDING - The engine will replace the existing value with the

newly computed one.
• OVERRIDDEN - The engine will discard the computed value preserving

the existing one.
• EXCEPTION - The engine will raise a specific exception relinquishing

control to an external application or to the user.
– Applies to: Class expression that restricts the application scope of the for-

mula to the instances of such description (Optional, if omitted the property
domain will be the scope). In case more than one formula is applicable to an
individual (i.e.: the individual is in more than one Applies to restriction for
the same property, and such scopes are incomparable w.r.t. subsumption)
an exception is raised and no value is computed.

2 Named class here is used to denote either defined classes or primitive ones, as opposed
to unnamed, anonymous, complex class

– Bindings: A binding is an assignment of a formula variable. Each binding
is a property chain that yields to a value (or a set of values) to be assigned
to the corresponding variable in the formula.

– Storage: Like bindings, storage paths are property chains that determine
where to store the computed value(s). They are made of object properties
only and the final data property is omitted as it is the data property anno-
tated by the formula itself. If omitted, for each computed value, a filler for
the annotated data property will be attached directly to the each individual
in the formula application scope.

– Formula Body: The formula itself. It can be a simple formula or an ag-
gregate. In case of multiple bindings for a variable, the former will output
multiple results, the latter ones will out put the corresponding aggregate
value.

We developed a syntax for encoding all the above inside OWL annotations
attached to data properties. The complete grammar can be found at
http://www.cs.man.ac.uk/~iannonel/owlcalculations/syntax.html. Besides
dealing with cases of different formulas for the same data property inherited by
an individual on account of multiple inheritance, our framework does not solve
any of the theoretical problems referenced above (see [1]). Unedicidability re-
mains a problem that formula users must deal with. This framework, in fact, is
meant to be used as a preprocessing facility that populates the ontology with
values, before it is sent to a reasoner for classification purposes. However, the
framework itself uses the reasoner inferences to apply its formulas. Hence, the
only safe situations are those where data property values do not interact with
terminological axioms, i.e.: instance classification does not depend on its data
property fillers.

3 Related Work

To the best of our knowledge, there is not, at the state of the art, a standard
way to express, in OWL, that the fillers of a data property can (or should) be
derived from others by means of a formula. The immediate plans for OWL 2.0
specifications drafted so far [2] do not provide any support either. Nonetheless,
the issue has been raised and discussed during the drafting phase [3] and it will be
resumed in the preparation of the following versions of OWL. Ours, then, should
be considered a practical, temporizing solution and an early exploration of the
issues that a fully OWL-based answer to the problem of including calculations
into ontologies will have to solve. The only comparable alternative consists of
utilising a rule based formalism to represent calculations. In this perspective, DL-
safe rules [4] are currently the most expressive decidable rule language compatible
with OWL-DL. Rules implementing the calculations could be encoded in the
DL-safe fragment of the Semantic Web Rule Language (SWRL) and used on top
of ontologies. The actual formulas can be translated using what in the SWRL
specification are called built-ins. Unfortunately, all the implementation at the
state of the art of reasoners that deal with DL-safe rules offer a very limited

or no built-in support (see, for instance, Pellet - http://pellet.owldl.com/
faq/rules). Furthermore, there is a limited support also for SWRL rules that
have anonymous OWL classes in their bodies, hence, in order to encode the
applicability of a formula to an individual, one would have to refer it to a named
class. This has the same shortcoming of annotating classes with formulas rather
than data property (see the discussion at the beginning section 2), i.e.: the
undesirable proliferation of defined class created just for calculation rather than
modeling purposes.

4 Conclusions and Future Work

We presented a framework that enables the attachment of formulas to a data
property in OWL and the computation of its values. This has been done in view of
a more thorough standard specification covering this functionality for OWL and
represents a temporizing solution. We also developed an API and a plug-in for
Proótegé 4 ontology editor that can be found along with essential documentation
at http://www.cs.man.ac.uk/~iannonel/owlcalculations/. Future work in
this direction will focus on layering formulas on top of each other, augmenting
the set of arithmetic operators available, devising extension for custom strategies
for conflicts between computed values and pre-existing ones, and heuristics to
detect dangerous (potentially undecidable) interactions with the reasoners.

References

1. Baader, F., Sattler, U.: Description logics with concrete domains and aggregation.
In Prade, H., ed.: Proceedings of the 13th European Conference on Artificial Intel-
ligence (ECAI-98), John Wiley & Sons Ltd (1998) 336–340

2. Horrocks, I., Parsia, B., Patel-Schneider, P.F., Sattler, U.: OWL 2 Web Ontology
Language: Model-Theoretic Semantics W3C Working Draft April 2008.

3. W3C OWL Working Group: OWL Working Group Issue Tracking - Issue 5 - Doubt
about n-ary types http://www.w3.org/2007/OWL/tracker/issues/5.

4. Motik, B., Sattler, U., Studer, R.: Query Answering for OWL-DL with Rules. In
McIlraith, S.A., Plexousakis, D., van Harmelen, F., eds.: International Semantic
Web Conference. Volume 3298 of Lecture Notes in Computer Science., Springer
(2004) 549–563

