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Abstract

Background: A protein annotation database, such as the Universal Protein Resource (UniProtKB), is a valuable
resource for the validation and interpretation of predicted 3D structure patterns in proteins. Previously, results
have been on point mutation extraction methods from biomedical literature which can be used to support the
consuming work of manual database curation. However, these methods were limited on point mutation extraction
and do not extract features for the annotation of proteins at the residue level.

Results: This work introduces a system that identifies protein residue sites in abstract texts and annotate them
with features extracted from the context. The performances of all text mining modules were evaluated against
a manually annotated corpus. The identified annotation features can be attributed to at least one of six tar-
geted categories, e.g. enzymatic reaction. Extracted results were cross-validated against UniProtKB and for 13
annotations of residues that have not been confirmed in the UniProtKB a manual assessment was performed.

Conclusions: This work proposes a solution for the automatic extraction of protein residue annotation from biomed-
ical articles. The presented approach is an extension to other existing systems in that a wider range of residue
entities are considered and that features of residues are extracted as annotations.

Background

The understanding of the biological function of pro-
teins remains to be a central challenge in biology.
In protein science, sequence analysis of amino acids
or studies of their spatial distribution have led to
predictions and discoveries of a number of biological
significant patterns and motifs, e.g. metal-binding
sites, catalytic triads, and ligand binding sites [1–7].
Complementary to these mined data is the prolifer-
ation of protein annotations by extracting informa-
tion from biomedical articles in the view of updat-

ing existing databases. Clearly, annotations can be
used to verify data mined sequence/structure pat-
terns and likewise predicted patterns can be used to
search for association in the database. However, the
major annotation effort at the current stage is the
compilation of features at the protein level, while
the actual target should be at the residue level, be-
cause biological function! s can be mapped to a de-
fined group of residues in proteins (function sites).
This is also reflected in the field of automatic infor-
mation extraction from literature, where solutions
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have been published for the extraction of interac-
tions of proteins [8, 9], subcellular protein localisa-
tion [10], pathway discovery [11], and function anno-
tation with Gene Ontology terminologies [12]. Few
groups have investigated in point mutation extrac-
tion, but without feature extraction for residue an-
notation [13–17].

Works have been published that focused on the
extraction of point mutations, which is one type of
a residue entity [13–17]. The point mutation ex-
traction systems called MEMA [16] and MuteXt [17]
use a dictionary lookup approach to detect protein
names and disambiguate multiple protein-residue
pairs with a word distance measurement. Mutation-
GraB [13], the successor of MuteXt, uses a graph bi-
gram method to calculate the proximity by weight-
ing the association of word-pairs. Another applica-
tion called MutationMiner [15] focuses on the inte-
gration of extracted point mutations into a protein
structure visualisation program.

These systems are all dedicated to the extrac-
tion of point mutations, but provide no extraction
of residue annotation. In a recent publication [14],
an ontological model was proposed that should hold
information extracted from MutationMiner as well
as point mutation annotations. However, the author
did not provide any results of feature extraction nor
was a strategy proposed. Residue annotation dif-
fers from functional annotation of proteins because
the biological role of a residue is described rather
in a biochemical context, which is then revealed in
the function or property of the protein. At present,
there is neither such an ontological model nor a ter-
minological resource publicly available.

The goal of this research is the identification of
biological function of mined structure patterns of
proteins. For this purpose a novel approach that
combines structure mining and text mining is pro-
posed. The results of the combined mining study
will be published elsewhere. This paper reports
on the text mining part and introduces a strategy
for the compilation of protein residue annotations
that can be used for the interpretation of struc-
ture patterns. The result demonstrates that tex-
tual information can be captured and used to aug-
ment data in UniProtKB. Because the primary data
resource is Medline, the extraction covers a broad
range of biomedical fields, but is limited to abstract
texts. The biological community benefits from the
extracted annotations, for example, in that data
mined structure patterns can be interpreted biologi-

cally or predicted function in proteins can be better
characterised.

The contribution of this work is the auto-
matic extraction of protein residue annotation from
biomedical articles. Contextual information are ex-
ploited to identify features of residues that corre-
spond to one of six chosen target categories (SCAT,
Table 1). As a result, proteins can be selected with
residues clustered by annotation types, which can
lead to discovery of, for example, evolutionary rela-
tionships.

Results and Discussion
The following sections assess first the extraction sys-
tem and then the extracted data.

Evaluation of the identification systems for men-
tions of organism, protein and residues and their
associations.

In order to evaluate the performance of the NER and
the AD systems used in this study, the results were
compared against the results from manual curation
of a set of 100 Medline articles, i.e. the gold standard
corpus (GC) generated as part of this study.

Table 2 (top) shows the performance of each
named entity recognition. With an F1 measure of
0.91 the performance of the residue tagger is within
range of previous works where only the residue was
identified as point mutation [13–17]. On the other
hand, the performance of organism name recognition
was lower with precision of 0.81 and recall of 0.72.
The protein recognition has the lowest performance
(precision = 0.65, recall = 0.60 ). The relatively low
recall is due to permutation and lexical variants in
text that are not covered by the dictionaries.

The evaluation of the organism-protein-residue
AD module shows that the algorithm of [17] is suit-
able for association detection. The performance has
a precision of 0.83 and a recall of 0.33 (Table 2, bot-
tom). Two prominent reasons for the low recall is
the correct organism-protein association but with a
mismatch of protein sequence and residue, or the as-
sociation of organism and protein was wrong in the
first instance.

The implemented association detection system is
able to extract associations in accordance to UniPro-
tKB.
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Cross-validation of organism-protein association
with UniProtKB.

In this section the evaluation was performed auto-
matically on a cross-validation test set (XC) derived
from the UniProt corpus (UC). From the 136,566 ci-
tations listed in the UniProt a virtually complete set
of 136,559 abstract texts were retrieved from Med-
line to build the UC. Subselection from UC to de-
termine XC resulted in 5,253 abstract texts repre-
senting a range of diverse proteins (Table 3, top).
Corresponding to this test corpus is the set of 70,401
triplet identifiers of UniProtID-TaxonomyID-PMID
(UTP) for the protein-organism association evalu-
ation and 68,008 triplet identifiers of UniProtID-
ResidueID-PMID (URP) for the protein-residue as-
sociation (Table 3, middle and bottom).

With a precision of 0.77 and recall of 0.08 (F1
= 0.14) the result for organism-protein association
extraction indicates that although the system seems
to extract correct relations with a reasonable num-
ber of TP the recall of the solution is too low to
fully judge on the performance. The low recall is
best explained by missing information in the scien-
tific documents that would confirm the organism-
protein association. The results shows that the strin-
gent residue-sequence match resulted in a precision
of 1.00 and recall of 0.14 (F = 0.25). The low recall
can be explained by several factors: 1) differences
between the protein sequence index between the au-
thor and the database; 2) changes in the sequence
indexing rules by UniProtKB; 3) sequence variants
which have not been reported in the database yet;
4) false protein-organism association with the con-
sequence of retrieving the incorrect sequence.

Notice the evaluation of the extraction system
was done on Medline abstracts for a range of diverse
proteins indexed by UniProtKB as opposed to pre-
vious works with extraction from full texts for a few
protein family examples. Therefore the results im-
plicate that the extraction from only abstract texts is
possible for a number of different UniProt proteins.

PDB citation enrichment.

For each PDB protein entry a link to a corre-
sponding UniProt record is available. The AD sys-
tem extracts only relations for proteins recorded
in the UniProtKB. Therefore each Medline record
with a found o-p-r association can be added to
the citation set of the corresponding PDB entry.
At the state of this analysis, the PDB contained

42,943 PDB protein structure with a sub-fraction of
42,653 having a unique corresponding UniProt pro-
tein identifier (11,912). For each of these proteins
the whole Medline was scanned for abstracts with ex-
tracted organism-protein-residue associations. Fig-
ure 1 shows the comparison of the citation sets based
on UniProtKB references and the whole Medline
analysis.

For 2,535 out of 11,912 proteins the extrac-
tion system found a total of 18,748 corresponding
PMIDs. Analysis with citation indices for this subset
of proteins revealed that 680 out of 18,748 PMIDs
were rediscoveries. The low number of rediscovery
can be explained in that many annotations are done
from sections only available in the full text. Al-
though the analysis was based on Medline abstract
texts, the extraction was already able to find for 21
percent of the target proteins a large number of ci-
tations. With a precision of 0.83 (determined by
gold standard evaluation) the estimated number of
TP from the novel discovered citations is 15,560. In
context of the 16,560 references of the 2,535 pro-
teins from UniProtKB, the extraction expands the
citation set by 1.94 fold.

The extraction system can be used to expand the
citation list of UniProtKB/PDB by using only Med-
line abstract texts. In this experiment the estimated
number of overlooked citations for a subset of tar-
get proteins provide already a large set for feature
extraction for the annotation of protein residues.

Evaluation of feature extraction.

The detection of domain specific features was done
by a classification approach which required a labelled
reference set and a defined set of categories. The pre-
cision, recall and F1-measure values were calculated
for each category and summarised in Table 4. Two
sets of categories were tested, each with different but
corresponding semantic categories: (1) the six tar-
geted categories (SCAT) and (2) the categories listed
in the feautre table in UniProtKB (FCAT).

For SCAT, the classifiers for structure compo-
nent, chemical modification, binding type yielded in
F1 measures of 0.69, 0.61, and 0.67. For FCAT the
top performing classifiers were: motif, variant, and
binding with similar F1 scores (0.62, 0.61, 0.58). The
remaining classifiers are still usable for feature detec-
tion, as they had precision scores comparable to the
top F1 performing classifiers: enzymatic activity and
cellular phenotype from SCAT, modified residue, ac-
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tive site and site for FCAT. The figures indicate that
the features used here are suitable for feature de-
tection and their classification. The performance
of feature detection was tested on the gold stan-
dard corpus (GC). Sentences with residue mention-
ing were examined and where applicable suitable fea-
tures were annotated manually and compared with
the extraction method. The number of validated
and non-validated features was determined and per-
formance measured.

The performance shows that the classification ap-
proach for feature detection had a reasonable cover-
age for SCAT and FCAT (recall of 0.61 and 0.59 for
SCAT and FCAT) but is imprecise in capturing the
correct annotation (precision of 0.21 for both, Table
5). This is not surprising, considering that features
are expressed throughout the whole sentences, but
have different attachments to named entities.

The association of residues and features was
based on a syntactical analysis of their verbal and
prepositional relations by using a shallow language
parser. The approach was evaluated by the perfor-
mance of detecting all manually annotated residue-
feature pairs within the GC data set. With a preci-
sion of 0.54 and recall of 0.81 the performance of the
shallow parser suggests it is highly usable for residue
annotation extraction (Table 6). The low precision
is explained by the current implementation of the
parser which returns relations with nested preposi-
tional phrases, thus the calculated precision tends
to have a lower value. extraction performance de-
creases when additional extraction modules (NER,
AD, FE) were used. This shows that the extraction
of annotation is greatly sensitive to each extraction
modules.

Despite the performance of each module can be
improved, the result shows that the extraction sys-
tem can deliver residue annotations.

Protein residue annotation extraction and com-
parison with UniProtKB.

The extraction system in this study delivered clas-
sified features of protein residues from Medline as
annotations. This section provides examples of the
validity of the drawn annotations by comparing ex-
tracted information from the gold standard corpus
with entries in the UniProtKB.

Within this experiment, four UniProt proteins
with a total of 19 annotations from seven sentences
and five abstract texts were mined with the extrac-

tion system (Table 7). By comparing the mined an-
notations with correspondent entries in the UniProt
six out of 19 annotations were equivalent to exist-
ing information in the database (rediscovery). Fur-
ther, the semantic tags of the annotations, provided
by the classification of extracted text features, are
biologically meaningful. For example, “the putative
catalytic triad” is correctly tagged as enzymatic, be-
cause it is a chemical reaction site and therefore a
requirement for enzymatic function. In this example,
the predicted semantic tag is equivalent to the cate-
gory active site from the feature table in UniProt. In
another example, “major phosphorylation sites” was
evaluated as rediscovery of the database information
“Phosphothreonine; by MAPK” and “Phosphoser-
ine; by MAPK” while the predicted tag (structural
com! ponent) and the assigned category in UniProt
(modified residues) are not equivalent. This is still
valid, because both pieces of information describe
the function of the residues as modification site,
while the predicted tag represented this as a sub-
structure and UniProt emphasises on the modifica-
tion of the residues.

For the remaining 13 extracted annotations there
are no equivalent information represented in the
UniProt. All are tagged with structural component
which is biologically valid, for example, “highly con-
served C-terminal region” is an important substruc-
ture of the protein and the extraction can aid in de-
termining evolutionary important residues of protein
families. However, the annotation “conserved phos-
phopantothenate binding” can arguably be discussed
whether it should be tagged as structural component
or binding.

In conclusion, the biological significance of the
extracted annotations were studied by comparison
with annotations from UniProt for the extracted
proteins from the gold standard corpus. From the
comparison, the rediscovery data shows that the
used SCAT scheme and its feature sets are able to
capture information correspondent to UniProt anno-
tations. The predicted semantic tags are biologically
valid and do not necessarily have to be equivalent to
the categories found in the database. On the other
hand, the novel discovery data indicates a potential
contribution of the extraction for the automatic an-
notation of protein residues in UniProt.
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Conclusions
The aim of this work was to compile protein
residue features from Medline texts as annotation
for UniProtKB proteins by combining a series of text
mining methods. Although the performances of each
module may not be at optimal level, the generated
data output indicates that the strategy is able to de-
liver biological meaningful results. Cross-validation
with UniProtKB analysis indicate that the extrac-
tion contains novel information that can complement
and update the knowledge in UniProtKB and conse-
quently provide annotations for PDB protein struc-
tures.

It is important to note that the extraction was
done only on abstract texts from Medline. The ad-
vantage over full text is to exploit a publicly available
broad range of scientific publications but on the cost
on the information level of abstract texts. However,
the results demonstrate that even with abstract texts
a vast amount of annotation can be obtained.

As with high performing NER, AD, and FE sys-
tems become more available, this conceptual strat-
egy in protein residue annotation extraction may
yield optimal results for the biological community.

Methods
The extraction of protein residue annotation from
text can be divided into three steps: 1) named entity
recognition (NER) and extraction of residue men-
tions, 2) association detection (AD) of related named
entities, 3) extraction of annotation features for as-
sociated entities.

NER for protein and species.

Named entity recognition for proteins was based
on an approach that combined dictionary lookup
with fuzzy matching and basic disambiguation [18–
20]. All protein names were collected from UniPro-
tKB/SwissProt. Names of species were extracted
from the NCBI Taxonomy references from UniPro-
tKB/SwissProt and then collecting scientific and
common names of the referenced organisms. The
dictionary was complemented with terminologies de-
scribing only the referenced genus and the collection
of full organism name (genus + specie) augmented
with abbreviated genus forms (first letter abbrevia-
tion of genus + specie). Web services for the identifi-
cation of protein names and taxa names are available

from the TM infrastructure at the EBI ( [18]).

Identification of residue mentions from the text.

The extraction of residue mentions follows ap-
proaches of previous publications [16, 17]. Sets
of regular expressions were constructed to identify
three types of protein residue site mentions. The
first basic type is the single protein sequence site
reference which consists of a (wild-type) amino acid
name, followed by the sequence position number
(e.g. “Gly-12”, “arginine 4”, “Tyr74”, “Arg(53)”).
A point mutation is the second type of residue site
where the description details the change of an amino
acid at given position. The common notation is
the wild-type amino acid name, the sequence po-
sition followed by the substitution (e.g. “W77R”,
“Cys560Arg”, “ser-52->ala”, “ala2-methionine”).
Finally, the third type of residue site describes ei-
ther a list of residues or an interaction pair (e.g.
“Tyr 85 to Ser 85”, “Trp27–Cys29”). The common
notation is an amino acid name, sequence position, a
connection symbol or conn! ection word, amino acid
name, and sequence position. In addition to the ab-
breviated notation residue sites can be expressed in
grammatical form (e.g. “isoleucine at position 3”,
“substitution of Ala at position 4 to Gly”, “Ser472
to glutamic acid”).

Identification of associations between mentions of
species, proteins and residues.

The identification of a residue can only be validated,
if it is part of the protein sequence as it is reported
in a reference database (e.g., UniProtKB). This re-
quires that the protein mention in the text is further
supported by evidence for the species under scrutiny
to select the appropriate protein sequence from the
bioinformatics database; that excludes the risk of
using orthologous protein sequences. The associ-
ation of organisms with proteins and the proteins
with residues was done based on the algorithm de-
scribed by [17]. First, specie and protein mentions
were associated by measuring the word distance be-
tween them. Associated proteins and their specie
mention form a pair that correctly specifies the pro-
tein with a unique identifier in the reference database
(UniProtKB). If no match was found, the associa-
tion was relaxed to genus matching resulting in a list
of protein identifiers. In case of multiple organisms
matching, word proximity metric was used to pr!
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efer the closest word-pair. The identifier was used
to retrieve the protein sequence from the database
in order to validate the residue mention. According
to the algorithm proposed by [17], three cases can be
distinguished: (1) the residue correctly matches the
protein sequence, (2) several alternative sequences
are matching from a list of protein mentions (identi-
fiers), and (3) no match can be found for the residue
in the available protein sequences. If several protein
sequences were relevant candidates, then again the
word distance metric was used to select the closest
word pairs.

Feature extraction for the annotation of residues.

The origin of a biological function of a protein is
group of residues and their experimental characteri-
sation are reported in scientific publications. In this
study the feature extraction process was divided into
two parts: in the first part the text was processed to
extract NPs that served as candidate features, and
in the second part the extracted candidate features
were classified into categories of annotation features.
Noun phrases are specified as nominal forms in com-
bination with adjective and adverb mentions (NP =
Det? (Adj—Adv—N)* N ). Even though most NPs
denote terms this is not always true [21].

In the first part, the abstract text was split into
sentences and annotated with part-of-speech (pos)
tags using the cistagger which has a similar perfor-
mance as the treetagger but it has an integration of
a large biomedical terminological resource. Then the
shallow parser described in [22] was applied to ex-
tract verbal and prepositional dependencies. Since
this parser does not deal with prepositional attach-
ment ambiguity it has been extended with a prepo-
sitional phrase attachment disambiguation module
explained in [23]. In the second part, the features
were categorized using the endogenous classification
approach described in [24]. Basically, the algorithm
relies only on the mutual information of the lexical
constituents of terms and their assigned categories.
In contrast, the exogenous (corpus-based) approach
requires large amounts of contextual cues which are
difficult to obtain. The endogenous approach is
therefore more reliable to produce results even un-
der conditions of sparse data. During the training
phase, lexical constituents of multi-word terms were
extracted from a labelled reference set and represent
features for a defined set of categories. The associa-
tion between both, the features and the categories,

were estimated based on their mutual information
score and the association between the multi-word
term and a category was computed as the sum of the
associations of its constituents. The categorization
of a multi-word term into one of the categories then
amounts to t! he identification of the best fitting
category for a term based on the term’s components.
The reference set for the relevant multi-word terms
was generated using maximal length noun phrase
(MLNP) analysis based on two different sets of NPs
that were extracted from an whole Medline abstract
texts analyses: the first set consists of NPs that co-
occurred with residue mentions in the same sentence
without nested residue terms (NP(not r)), and the
second set represents NPs with nested residue terms
(NP(r)); since the co-occurrence with a residue may
indicate higher relevance. Once the set of MLNPs
were extracted each NP was manually labelled us-
ing three different categorization schemes. The first
scheme is binary labelling (BCAT) to separate do-
main relevant terms from non relevant ones. The
second scheme uses six semantic categories identi-
fied from a study on the manual categorization of
residue annotations based on scientific content from
Medline (bottom-up approach). The identified cat-
egories and their definitions are shown in Table 1
(SCAT). The final set was defined through a top-
down approach by reusing categories described in
the feature table of the UniProtKB data resource
for proteins (FCAT).

Generation of evaluation corpora.

For the evaluation of the extraction system, two test
corpora were generated using the UniProt corpus
(UC). The UC consists of those Medline abstract
texts that are cited in the UniProt database for rele-
vant protein-residue pairs. The complete corpus was
automatically analysed for organism, protein and
residue mentions and tagged appropriately. A gold
standard corpus (GC) was created through manual
curation since no corpora are available. A random
sample of 100 Medline abstract texts was drawn from
the UC where every abstract had to fulfil the con-
dition that a mention of an organism, a protein and
a residue was present (tri-co-occurrence). All men-
tions of an organism, a protein, the residue, the as-
sociations between the mentions, and the contained
features of the residues (see above) were then an-
notated manually from two independent annotators
with domain expertise. For the automatic evaluation
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of extracted data a cross-validation corpus (XC) was
derived from UC, because not all database informa-
tion are necessarily expressed in abstract texts and
vice versa. Documents in UC were scanned for tri-
occurrences of organism-protein-residue mentions in
text, and then analysed if the combinations of the
four identifiers UniProtID-TaxonomyID-ResidueID-
PMID can be found in the database. If at least a
single match was found the document was selected.
For the non-matching combinations the correspond-
ing annotations were removed from text.
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Figures
Figure 1: Comparison of UniProt indexed citations and discovered citations from Medline.
The extraction system identified for a subset of all UniProt proteins the triple associations of organism-
protein-residue in Medline abstract texts. The identified list of citations for these proteins were compared
with the citations references from the correspondent UniProt entries.
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Tables
Table 1: Six target categories of biological interest (SCAT).
The definition of each category of biological interest targeted in this study are listed together with their
references to databases for extracting candidate terminologies. A mapping of these categories to equiva-
lent/similar categories from UniProtKB (FCAT) is provided.
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SCAT FCAT reference definition
structure component domain, motif,

topo dom, chain,
transmem, coil

PASTA [25] Class denoting concepts that
represent pieces and parts of the
protein structure.

chemical modification variant, mod res,
peptide, var seq,
lipid

n/a Class denoting changes to the
protein sequence and the chem-
ical composition.

structural modification region, site n/a Class denoting the changes to
the protein structure without
changes to the chemical compo-
sition.

binding type binding, metal,
disulfid, crosslnk,
dna bind, np bind,
zn fing, ca bind

GO [26] Class denoting different physico-
chemical forces leading to a
bond formation between a pro-
tein structure component and a
chemical entity.

enzymatic activity act site EC [27], GO [26] Types of enzymatic reactions as
a subpart to protein functions.

cellular phenotype n/a n/a Class denoting different cellular
phenotypes that can be affected
by structural or compositional
changes of a protein.

Table 2: Named entity recognition and association detection performance evaluated on gold standard
corpus.
Performance was measured in terms of precision, recall, and F1 measure. o = organism; p = protein; r =
residue; o-p-r = association of o, p and r.

target available extracted TP precision recall F1
o 123 109 88 0.81 0.72 0.76
p 511 471 305 0.65 0.60 0.62
r 202 222 197 0.87 0.96 0.91

o-p-r 158 63 52 0.83 0.33 0.47

Table 3: Cross-validation of organism-protein-residue extraction with UniProtKB.
Automatic performance analysis of the extraction with UniProtKB as reference. Performance was measured
in terms of precision, recall, and F1 measure. UC = UniProt corpus; XC = cross validation corpus; UTP
= triplet identifiers of UniProtID-TaxonomyID-PMID; URP = triplet identifers of UniProtID-ResidueID-
PMID; o = organism; p = protein; r = residue; o-p = association of o and p; p-r = association of p and
r.
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ResID
data o p r o-p p-r PMID TaxID UniProtID conv site seq range—pair
UC 136,559 11,348 175,695 28,950 33,750 4,021 2,281
UC - - - 6,532 0 0 0
UC + 119,880 11,348 174,717 25,482 30,041 3,740 2,095
UC + 129,792 11,328 175,695 28,932 33,723 3,991 2,278
UC + 30,732 4,743 115,882 28,950 33,750 4,021 2,281
UC + + 119,653 11,328 174,717 25,470 30,014 3,713 2,092
UC + + + 27,709 4,740 113,412 25,470 30,014 3,713 2,092

XC 5,253 1,536 45,869 9,519 7,342 227 421
XC - - - 131,306 0 0
XC + 5,253 1,536 45,869 9,519 7,342 227 421
XC + 5,253 1,536 45,869 9,519 7,342 227 421
XC + 5,253 1,536 45,869 9,519 7,342 227 421
XC + + 5,253 1,536 45,869 9,519 7,342 227 421
XC + + + 5,253 1,536 45,869 9,519 7,342 227 421
XC + + + 5,253 1,536 45,869 9,519 7,342 227 421
XC + + + + 5,253 1,536 45,869 9,519 7,342 227 421
XC + + + + + 4506 1301 3937 8804 5783 0 329

UTP
data o p r o-p p-r available extracted common precision recall F1
XC + + + 70,401 7,333 5,625 0.77 0.08 0.14

URP
data o p r o-p p-r available extracted common precision recall F1
XC + + + + + 68,008 9504 9504 1.00 0.14 0.25

Table 4: Feature classification performance.
The classification of contextual features of residues mentioned in text was used to identify annotations and
to classify them into categories of biological interest. Cross validation was performed with training and test
sets with 3600 and 400 features, respectively. Performance was measured in terms of precision, recall and
F1 measure.
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SCAT FCAT
category recall precision F1 category recall precision F1
structure component 0.8 0.6 0.69 motif 0.45 1 0.62

domain 0.5 0.62 0.55

chemical modification 0.73 0.52 0.61 variant 0.77 0.5 0.61
lipid 0.4 1 0.57
modified res 0.47 0.59 0.52
peptide 0.11 0.29 0.16

binding type 0.68 0.67 0.67 binding 0.63 0.54 0.58
crosslink 0.25 0.67 0.36
disulfid 0.17 0.62 0.26
metal 0.12 0.25 0.16

structural modification 0.25 0.64 0.36 site 0.68 0.47 0.56
region 0.59 0.46 0.52

enzymatic activity 0.42 0.49 0.46 active site 0.48 0.5 0.49

cellular phenotype 0.47 0.6 0.53 n/a

Table 5: Feature detection evaluated on gold standard corpus.
The classification method was used to identify features of interest. The performance in detecting manually
determined annotations was measured in terms of precision, recall and F1 measure. SCAT = feature detection
using the six target categories; FCAT = feature dection using categories from the feature table in UniProtKB.

feature available extracted common precision recall F1
SCAT 164 474 100 0.21 0.61 0.31
FCAT 164 460 97 0.21 0.59 0.31

Table 6: Performance of residue-feature association detection evaluated on gold standard corpus.
The association of residue and annotation was done by shallow parsing and extracting verbal/prepositional
relations. The performance was measured in precision, recall and F1 measure. GC = gold standard corpus;
r = residue; f = feature; o = organism; p = protien; s = verbal/prepositional relation between r and f; o-p
= association between o and p; p-r = association between p and r.

extraction filter
data s r f o p o-p p-r avail extr comm prc rec f1
GC + 88 132 68 0.52 0.77 0.62
GC + + + 88 65 30 0.46 0.34 0.39
GC + + + + + 82 62 27 0.44 0.33 0.38
GC + + + + + + + 82 93 19 0.20 0.23 0.22

Table 7: Comparison of extracted protein residue annotations with UniProtKB.
The extraction system delivered protein annotation from Medline abstracts. Example of extraction were
drawn from the gold standard corpus extraction.
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UniProtID ResidueID PMID SCAT extracted feature FCAT UniProt annotation
P40380 THR13 12135491 str comp major phospho-

rylation sites for
MAPK

mod res Phosphothreonine;
by MAPK

“ SER19 ” ” ” ” Phosphoserine; by
MAPK

“ SER19 12135491 chem mod negative effect mutagen S → E:reduces ac-
tivity as a cdc2 in-
hibitor; when asso-
ciated with E-13

Q93K00 ASP123 12147465 enzymatic the putative cat-
alytic triad

act site nucleophile (by
similarity)

“ HIS279 ” ” ” ” proton acceptor (by
similarity)

“ ASP250 ” ” ” ” proton donor (by
similarity)

Q93K00 GLU55 12147465 str comp putative oxyanion
hole

n/a n/a

“ TRP124 ” ” ” n/a n/a

Q02809 W612 9617436 str comp ” n/a n/a

Q9HAB8 GLY43 12906824 str comp conserved ATP
binding residues

n/a n/a

“ SER61 ” ” ” n/a n/a
“ GLY63 ” ” ” n/a n/a
“ GLY66 ” ” ” n/a n/a
“ PHE230 ” ” ” n/a n/a
“ ASN258 ” ” ” n/a n/a
“ ASN59 ” ” conserved phospho-

pantothenate bind-
ing

n/a n/a

“ ALA179 ” ” ” n/a n/a
“ ALA180 ” ” ” n/a n/a
“ ASP183 ” ” ” n/a n/a
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