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1Switch Laboratory, VIB, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium

Email: Joke Reumers - joke.reumers@vub.ac.be; Joost Schymkowitz - joost.schymkowitz@vub.ac.be; Fréderic Rousseau∗-
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Abstract

Background: Linking structural effects of mutations to functional outcomes is a major issue in structural bioin-
formatics, and many tools and studies have shown that specific structural properties such as stability and residue
burial can be used to distinguish neutral variations and disease associated mutations.

Results: We have investigated 39 structural properties on a set of SNPs and disease mutations from the Uniprot
Knowledge Base that could be mapped on high quality crystal structures and show that none of these properties
can be used as a sole classification criterion to separate the two data sets. Furthermore, we have reviewed the
annotation process from mutation to result and identified the liabilities in each step.

Conclusions: Although excellent annotation results of various research groups underline the great potential of using
structural bioinformatics to investigate the mechanisms underlying disease, the interpretation of such annotations
cannot always be extrapolated to proteome wide variation studies. Difficulties for large-scale studies can be found
both on the technical level, i.e. the scarcity of data and the incompleteness of the structural tool suites, and on
the conceptual level, i.e. the correct interpretation of the results in a cellular context.

Background

The molecular phenotype of a coding non synony-
mous SNP or disease associated mutation describes
the functional and structural properties of a protein
that are affected by a single amino acid substitu-
tion [25]. In this study we want to address whether
the concept of the in silico determined molecular
phenotype can be employed for large-scale classifica-
tion of SNPs and disease mutations. The attempt to
classify a large set of mutations based on an incom-

plete molecular phenotype may seem naive at first
glance, had it not been suggested that individual
properties such as protein stability, the accessibility
of the amino acid substitution site, and the location
of variants in surface pockets are predictive deter-
minants of the phenotypic effect of a variation [1–4].
A comparative study of protein stability predictors
by Blundell and co-workers demonstrated that al-
though protein stability changes caused by mutation
can be relatively accurately estimated in silico, these
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predictions by themselves do not yield accuracy on
large-scale classification between benign and disrup-
tive mutations [5–7].

Furthermore, computational analyses rely heav-
ily on the quality of the data under scrutiny and
the computational methods used to evaluate these
data. Before investigating 39 structural properties of
proteins and amino acid substitutions for their pre-
dictive power regarding SNP classification, we have
investigated what major liabilities are encountered
when implementing an structural approach to SNP
annotation and classification. The results are com-
pared with those achieved by the best performers
among the state-of-the-art tools.

Results and Discussion
In this study we have identified the common issues
that are encountered when performing large-scale
analyses of structural properties of human coding
variation. The first issue concerns the availability of
structural data for nsSNPs and disease mutations,
while the second involves the availability of compu-
tational tools to predict structural properties. The
last issue concerns the quality of classification: are
the training and evaluation data sets used in the
analyses sufficient to extrapolate results for larger
studies, and do the properties used have sufficient
predictive power to separate the two data sets?

Structural coverage of human genetic variation

Despite structural genomics projects, the gap be-
tween sequence and structural information is still
wide, and the coverage of variation data with struc-
tural data is estimated to be as low as 14% [4]. We
have investigated the boundaries of structural cov-
erage by varying the quality requirements on the
structural model (Supplementary Figure S1A), the
sequence identity between query sequence and mod-
elled structure (Figure S1B), the percentage of the
wild type sequence covered by the structural model
(Figure S1C), and the length of the alignment be-
tween query and target (Figure S1D). Without ap-
plying any restrictions, about 12% of all nsSNPs
present in the Ensembl Variation Database (release
44) can be mapped on a structural model, in accor-
dance with the estimate cited previously. However,
this percentage is valid only when no restrictions
regarding sequence identity, sequence coverage or

structure quality are applied. Our standard restric-
tions on building high-confidence structural models
using the FoldX force field are X-ray structures with
a resolution lower than 2.5 Å and sequence identity
higher than 80%. Applying these restrictions to the
Ensembl data results in a data set of 5416 nsSNPs
(circa 4% of the data, Figure S1B).

Predictability of structural properties

The second issue for a large-scale structural bioinfor-
matics approach is the structural properties that are
predictable with state of the art tools: how well can
we describe the structural behaviour of a protein and
its mutants? Previous structural studies have iden-
tified protein stability, aggregation and misfolding
as determinants of correct functioning on the single
protein level [7,11,12]. Mutations affecting the func-
tional sites of a protein, such as DNA, ligand and
protein interaction sites, are not considered within
this scope, but the investigation of these sites will
most certainly be of great importance to assess the
impact of amino acid substitutions.

Tools have been developed that describe the
structure and dynamics of a protein: stability, ag-
gregation, amyloidosis, and folding. We have used
computational methods that are capable of assessing
the effects of a mutation on protein stability (FoldX),
aggregation (Tango) and amyloidosis (Waltz). Al-
though algorithms exist that can predict folding of
small single domain proteins (e.g. Rosetta [13],
FoldX [14], SimFold [15]), to date no computational
method exists that can predict folding events on
large multi-domain proteins, or that is applicable in
genome wide studies.

Although we have not investigated protein-
protein interactions in this study, we have included
an analysis of the binding of proteins to molecular
chaperones, as it is directly related to correct folding
of the protein. The high abundance of chaperones in
the cell emphasises their crucial role in the cell [16],
but this is not reflected in the availability of compu-
tational tools for chaperone binding. We have used
the only available tool, the Hsp70 binding predic-
tor Limbo [17], to assess chaperone binding variation
caused by amino acid alteration.

The predictive power of structural properties

Following the recommendations of Care et al [18],
we have used the SwissProt annotated disease and
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polymorphism data (SwissProt Variation Index re-
lease 52) as the evaluation data for our analyses.
Mapping of these variants on high quality structural
models (X-ray structures with resolution ≤ 2.5Å, se-
quence identity with the model above 80%) yielded
a data set of 240 positive (disease-associated) muta-
tions and 400 negative variations (neutral nsSNPs)
in 98 proteins. To ensure that the analyses are com-
parable, we applied the sequence based predictors to
the same small data set as the predictors that use
3D structures or structural models.

Before we evaluated the discriminative power of
the individual structural parameters, we wanted to
assess whether our data showed distinguishable pat-
terns for three important parameters. The first two
criteria, stability difference and the degree of burial
of the mutation site, have previously been identi-
fied as providing information about the severity of
a mutation [4, 19]. The third criterion is difference
in aggregation propensity, which has been cited as
likely to be an important factor in disease suscepti-
bility [12, 20] but thus far has not been applied in a
proteome wide mutation analysis.

Figure 1 shows the distributions for the stabil-
ity differences (A) and differences in aggregation
propensity (B) between wild type and variant pro-
teins, and the burial of the mutation site (C). The
first observation of both the stability and the ag-
gregation analysis is that the observed changes are
not discrete but follow a smooth distribution from
negative to positive change. Second, there are no-
ticeable differences between SNPs and disease muta-
tions, but they cannot be distinguished by a simple
cut-off value on the output, as there is large over-
lap between the distributions. This is confirmed by
the P-values obtained from paired student t-tests,
which are 0.96 for the stability distributions, 0.99
for the aggregation distributions, and 0.99 for the
burial distributions, respectively. For the stability
distributions, we see that disease mutations are gen-
erally more destabilising than SNPs, but their distri-
butions overlap largely. A similar analysis has been
performed on SwissProt variants using the Site Di-
rected Mutator stability predictor [7], and the distri-
butions of stability differences of disease mutations
and neutral variations are similar to our findings.

In a first series of properties to test as classifiers,
we have investigated 15 properties of the amino acid
substitution site that contribute to the assessment of
the effect of the mutation using the FoldX algorithm
(Table 3). Cut off values were generated that var-

ied between the minimal and maximal values mea-
sure for the specific property, and the true and false
positive rate, and the Matthews correlation coeffi-
cient (MCC) were calculated for each cut-off value.
Table 3 lists the data for both the best MCC and
the MCC90, i.e. the coefficient that is measured at
high specificity (true negative rate = 90%). The
corresponding ROC curves for these analyses can be
found in Supplementary Figure S1.

The same strategy was then applied to predicted
values of structural differences between mutant and
wild type proteins (24 properties). Statistics were
calculated for stability and entropy parameters, as
well as for differences concerning protein aggrega-
tion, amyloidosis and chaperone binding (Table 4,
Supplementary Figure S2).

The results obtained from these detailed analy-
ses are unanimous: none of the parameters evaluated
can be used to separate the data. All MCC values
are close to zero, and thus the predictions are no bet-
ter than a random predictor would perform on the
data. The high accuracy of FoldX for stability esti-
mation has been proven in various studies [6,9,10], so
we have high confidence in our stability estimations.
In accordance with the analyses of [7], we find that
high stability differences alone are no sufficient crite-
rion to distinguish deleterious mutations and neutral
variation. These results show that the dominant ef-
fect of for instance stability that was proposed in
earlier large-scale studies [4, 22] can not be always
generalised for other data.

The fact that none of the properties representing
conformational differences between wild type and
variant protein contain enough information to distin-
guish neutral and deleterious variation implies that
large-scale classification based on singular structural
properties is not feasible and requires a better un-
derstanding of how the complex interplay between
biophysical and biochemical properties of a protein
conspire to different tolerance for mutations in dif-
ferent proteins.

Recent studies that combine structural and evo-
lutionary information using machine learning tech-
niques are able to classify relatively large data sets
obtained for the SwissProt database successfully
(summarised in Table S2). Machine learning ap-
proaches suggest that data integration is indeed the
way forward, but the creation of this black box style
of classifier does not offer insight into the biological
processes. In the same way that using evolutionary
information to classify SNPs obscures the how and
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why a specific mutation is deleterious, using black
box machine learning methods will not teach us what
the underlying reason of disease is. Although know-
ing that an amino acid is critical for correct function
is of course useful, in a structural bioinformatics ap-
proach the focus is more on the molecular mecha-
nism underlying disease.

A simple combination of the SNPeffect structural
bioinformatics toolsuite on our evaluation data set
showed that in our case, at least a linear combina-
tion of these methods is not sufficient to classify the
data (TPR = 0.73, TNR= 0.27, MCC=0). A large
part of the polymorphism data is predicted to have
deleterious effect. To assess the “predictiveness” of
our data set, we applied the well-established evolu-
tionary method SIFT [24] to our data and found that
SIFT was also not able to classify effectively. In fact
the results were even worse than our naive classifier
(TPR=0.69, TNR=0.21, MCC=-0.12).

As an illustration of the influence of the data
set used for evaluation on the performance of a pre-
dictor, we list the results for the variation in per-
formance of SNP classification of SIFT, that uses
evolutionary information to label SNPs (Supplemen-
tary Table S3). The Matthews correlation coefficient
varies between -0.12 on our data set over 0.25 on hu-
man mutagenesis data, up to 0.59 on the HIV-1 pro-
tease mutagenesis set in the original SIFT paper [24].
This is yet another informative example on how cru-
cial the choice of training and test data are to build
and evaluate predictors: generalisation of results is
only possible when the training data are expressive
enough to represent the entire feature space.

Conclusions
The concept of using the molecular phenotypic ef-
fect of a nsSNP to assess its effect on the structure
and function of the protein it alters was first intro-
duced by Bork and co-workers [25]. The question
has been raised to how much of this molecular phe-
notype is necessary to evaluate the contribution of
a SNP to a disease phenotype: are there singular
dominant properties that determine the impairment
of structure and function, or do we need to consider
the full ensemble of molecular properties to interpret
the impact of the SNP? Other research groups have
proposed that single properties such as stability [4]
and solvent accessibility [1] can be used to classify
SNPs. We have examined all the individual struc-

tural bioinformatics tools that were proposed in the
SNPeffect toolsuite [26] for their ability to act as a
binary classifier for deleterious and neutral SNPs.
Neither of the individual properties that were ex-
amined could serve this purpose. Because several
approaches were able to classify similar data sets as
the one we have used, we applied the most used evo-
lutionary method, SIFT [23], to our data set. As it
was not able to classify our data set accurately, we
argued that generalisation of the results presented by
the state of the art classifiers might be an important
issue. We illustrated this problem with the variabil-
ity of performance of SIFT on 8 different data sets
used in various analyses.

From these analyses we concluded that strict
classification of SNPs is not feasible at the time, both
because there are still many technical difficulties to
overcome, and because the biological interpretation
of the molecular phenotype in relation to a disease
phenotype is a complex matter. Even at the single
molecule level, we cannot assess how tolerant a spe-
cific protein is to structural variation. The inherent
rigidity of a protein might influence the change in
stability that is allowed before severe conformational
changes are introduced. Furthermore, on the cellu-
lar level biological interpretation is even harder: we
can not predict the role of the protein quality control
system plays in this tolerance level, not all interac-
tions are described at the molecular level, and much
more. Even if we can predict the molecular effect
accurately, this might not necessarily result in a dis-
ease phenotype because of functional redundancy of
the protein.

However, not being able to classify human varia-
tion into disease mutations and neutral or beneficial
variation does not mean that this approach or the
methods developed are useless. By using high qual-
ity bioinformatics tools, we can select from a large
pool of variations the candidates that are interesting
for detailed investigation. This in itself is a valuable
contribution, because the amount of variation data
available is too massive to be investigated experi-
mentally. In silico analyses can and will be used
successfully as an addition to in vitro and in vivo
studies.
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Methods
Assembly of data sets

Statistics on the structural coverage and validation
status of human non synonymous coding SNPs were
performed on data from the Ensembl human vari-
ation database release 44, containing 12.2 million
SNPs, of which 133698 cause an amino acid vari-
ation in a known transcript. The mapping of SNPs
on protein structures was evaluated using the “ensp-
pdbmapping” DAS service provided by the SPICE
server [27]. Positive and negative data sets for
the evaluation of SNP classification were designed
with data from the SwissProt variation index [28] in
the UniProt knowledge base (version 52.0, March
2007, [29]) that were mapped onto known PDB
structures and high quality homologs thereof. The
quality criteria described in the results section (mod-
els with resolution of 3 Åor higher, sequence iden-
tity of 80% or more) lead to structural models of
400 SNPs (negative) and 240 disease associated mu-
tations (positive).

Structural bioinformatics tools

We have used the FoldX force field [33] for all mu-
tant properties regarding structural location, protein
stability and its various components, the Tango [34]
and Waltz [35, submitted] algorithms to assess the
propensity for aggregation of wild type and variant
proteins, and the Limbo algorithm [17, submitted] to
evaluate the chaperone-binding properties of amino
acid sequences. A novel tool developed by Lenaerts
et al (unpublished) was used to estimate the en-
tropy of a specific amino acid site in a high-resolution
structure. Detailed descriptions of these five tools
can be found in the Supplementary Material.
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Figures
Figure 1 - Distributions for the major structural criteria in the disease and polymorphism datasets.
White = disease mutations, grey = polymorphisms. A. Stability difference as calculated by the FoldX force
field (in kcal.mol−1). B. Difference in aggregation propensity as calculated by the Tango algorithm. Values
close to neutral changes (in the range [−50, 50]) are left out for display purposes. C. Distribution of degree
of burial of the amino acid substitution site.
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Tables
Table 1 - Summary of structural coverage of SNP data.
Several criteria resulting from the above analyses are applied to assess the structural coverage and reliability
of that coverage of human SNPs in the Ensembl database, as well as the overlap of the structural coverage
with quality parameters for the validation and frequency status of the polymorphism data.

Properties # SNPs % SNPs
nsSNPs covered by high quality structural data
No additional criteria 9877 7.4
Sequence coverage>80 or alignment length> 100 8238 6.2
Sequence identity>80 5416 4.1
Sequence coverage>80 or alignment length> 100,
and sequence identity>80

5318 4.0

Highly reliable nsSNPs covered by high quality structural data
Doublehit validation status, MAF>0.01 680 0.51
Doublehit validation status, MAF>0.01, sequence
identity>80

229 0.17

Doublehit validation status, MAF>0.01, sequence
coverage>80 or alignment length> 100

446 0.33

Doublehit validation status, MAF>0.01, sequence
coverage>80 or alignment length> 100, and se-
quence identity>80

209 0.16

Table 2 - Predictive power of structural properties of the modeled variant proteins.
FoldX was used to evaluate both the overall stability contribution of the amino acid substitution site in
the modeled structure and the various factors involved in this stability. The entropy of the variant amino
acid was calculated using a sampling strategy to assess the possible side chain conformations allowed at the
substitution site. Both stability and entropy were calculated for all mutations and for a subset of buried
mutations (side chain burial < 0.5) and surface mutations (side chain burial ≥ 0.5). Corresponding ROC
curves are shown in Supplementary Figure S2.

Table 1
Property FPR TPR Best MCC Threshold MCC90
FoldX energy evaluation
Overall stability of residue 14 33 0.22 1.61 0.19
Backbone H bond 32 72 0.40 -1.05 0.22
Sidechain H bond 99 100 0.07 -1.76 <0
Electrostatics 86 93 0.11 -0.10 -0.01
Entropy side chain 59 80 0.22 0.32 0.05
Entropy main chain 13 27 0.18 1.96 0.10
Van der Waals contribution 25 47 0.23 -0.98 0.15
Solvation hydrophobic 10 22 0.16 -0.6 0.16
Solvation polar 42 70 0.28 1.5 0.06
Van der Waals clash 18 33 0.17 0.22 0.15
Side chain burial 51 67 0.16 0.43 -0.1
Main chain burial 59 83 0.26 0.73 0.05
Entropy by sampling of possible side chain conformations
Entropy side chain 72 84 0.15 0.93 0
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Table 3 - Predictive power of the differences between wild type and variant proteins for different
structural properties.
FoldX was used to evaluate both the overall stability difference between wild type and variant structure, and
the constituting contributions leading to this stability difference. The entropy difference caused by the amino
acid substitution was calculated using a sampling strategy to assess the possible side chain conformations
allowed at the substitution site. Both stability and entropy difference were calculated for all mutations and
for a subset of buried mutations (side chain burial < 0.5) and surface mutations (side chain burial ≥ 0.5).
Corresponding ROC curves are shown in Supplementary Figure S3.

Property FPR TPR Best Threshold MCC90
MCC

FoldX energy evaluation
Overall stability difference 73 85 0.15 -0.45 0.14
Overall stability diff. (surface) 0 8 0.2 3.1 0.13
Overall stability diff. (buried) 21 44 0.25 2.64 0.12
Backbone clash 91 99 0.18 -1.00 -0.02
Backbone H bond 59 83 0.26 -0.025 0.06
Sidechain H bond 79 92 0.18 -0.13 -0.14
Electrostatics 6 18 0.18 0.15 0.16
Entropy main chain 6 18 0.18 0.15 0.04
Entropy side chain 64 74 0.11 -0.125 -0.05
Solvation hydrophobic 57 75 0.19 -0.15 -0.03
Solvation polar 22 36 0.15 0.20 -0.05
Torsion clash 1 3 0.07 1.00 -0.05
Van der Waals contribution 7 14 0.11 0.89 0.10
Van der Waals clash 98 100 0.10 -1.60 0.02
Entropy difference by sampling of possible side chain conformations
FoldX entropy difference 85 92 0.11 -1.85 -0.02
FoldX entropy diff. (buried) 96 100 0.14 -2.70 -0.05
FoldX entropy diff. (surface) 37 57 0.20 -0.10 0.02
Aggregation properties
Tango 1 3 0.07 39.9 0
Tango (positive, more aggr.) 14 22 0.10 16.37 0
Tango (negative, less aggr.) 69 78 0.10 -8.00 0
Waltz 0 1 0.07 748.97 0
Waltz (positive, more aggr.) 16 21 0.06 677.15 0
Waltz (negative, less aggr.) 99 100 0.07 -2412.78 0
Limbo 17 33 0.18 5.45 0

Additional Files
Figure 1 – figure1.pdf
Additional file 2 — supplementary.pdf
Several of the less critical figures and tables are added as supplementary material, together with detailed
descriptions of the structural bioinformatics tools used.

8



Using structural bioinformatics to investigate the impact of
non synonymous SNPs and disease mutations: scope and
limitations
Supplementary Material

Joke Reumers1, Joost Schymkowitz1 and Fréderic Rousseau∗1
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Methods

Structural bioinformatics tools

FoldX

The FoldX force field was developed for the fast and
accurate estimation of the free change upon muta-
tion on the stability of a protein or a protein com-
plex [23–26]. It uses an all-atom representation of
these macromolecules, and has been validated on a
test database of more than 1000 mutants from more
than 20 different proteins. It currently yields a cor-
relation of 0.78 with a standard deviation of 0.41
kcal/mol.

Modelling and evaluation of mutations in FoldX
is performed with the BuildModel command. It is
used first to model a homologous sequence on a
structural model and to optimise the side chains to
fit the new sequence, and then to evaluate the effect
of a single amino acid variation. The Gibbs free en-
ergy of a protein is calculated with the Stability com-
mand. The various structural parameters used in
the classification tests (backbone clash, backbone H
bond formation , sidechain H bond formation, elec-
trostatics , solvation of hydrophobic residues, solva-
tion of polar residues, torsion clash, Van der Waals
contribution,Van der Waals clash)

Entropy calculations based on side chain sampling

In addition to the entropy calculations intrinsic to
the FoldX force field, we use a novel method based
on extensive sampling of side chain conformations
as developed by Lenaerts et al. (unpublished). The
sampling method produces for each side chain the
probability (P (X)) of finding the residue’s side chain
in a particular conformational state. From these
probabilities entropy can easily be derived:

H(X) = −
∑

iP (xi)log2P (xi)

The method uses a rotamer database based on
conditional statistics of dihedral angles derived from
the WHAT IF data set [27]. All amino acids from
this data and their corresponding dihedral angles
(10◦ bin) were used to derive the following probabili-
ties: P (χi), P (χi|χi−1) and P (χi|χi−1, χi−2), except
for χ1(P (χ1) and P (χ1|φ, ψ)). A set of n random
rotamers can be derived from the probability distri-
bution thus calculated. This will allow sampling of
rotamers with greater resolution than classical ro-
tamer libraries.

The sampling itself is performed by Monte Carlo
based sampling method with Metropolis criterion (at
298K). The Metropolis criterion states that a certain
conformational change is accepted with a probabil-
ity p that depends on the free energy change ∆∆G
associated with the conformational change as given

1



by the following formula:

p = 1if∆∆G < 0

p = e−
∆∆G
RT if∆∆G ≥ 0

The free energy of each change is determined
with FoldX.

Tango

The β-aggregation prediction algorithm Tango [28]
uses a statistical mechanics approach to represent
a competition between major conformational states:
the random coil and the native conformations, as
well as β-turn, α-helix and β-aggregate. Two win-
dows of variable length slide over the sequence, and
each such window can populate these conformational
states according to a Boltzmann distribution. The
frequency of population of each structural state for
a given segment will be relative to its energy, which
is derived from statistical and empirical parameters.
To predict the β-aggregating segments of a peptide,
Tango calculates the partition function of the phase
space involving these conformational states. In our
analysis we have used Tango to calculate the differ-
ence in aggregation tendency that results from an
single amino acid variation.

Waltz

Current methods for the prediction of the sequence
determinants of amyloidosis suffer from two major
problems: overpredicting amorphous cross β aggre-
gates and missing amylogenic sequences that are en-
riched in the polar Q and N residues, such as the
prion protein. The Waltz algorithm [29, submit-
ted] tackles these problems by taking into account
amyloid hexapeptides from 48 new amyloid form-
ing sequences, derived from 31 proteins. About half

the proteins in this extended data set were not pre-
viously known to contain amyloidogenic sequences
such as presenilin-2, titin and myosin. Waltz com-
bines terms from amino acid sequence scoring in the
learning set, physical property analysis and homol-
ogy modelling. The method shows 84% sensitivity
at 92% specificity on the AmylHex data set [30],
and correctly identifies mutations in human proteins
known to be associated with amyloid deposition.

Limbo

Limbo is a Hsp70 binding site predictor that was
built using a dual method combining sequence and
structural information [31, submitted]. Experimen-
tal DnaK binding data of 53 non-redundant pep-
tide sequences was used to generate a sequence-
based position-specific scoring matrix (PSSM) based
on logarithm of the odds scores. Following an
in silico alanine scan of the substrate peptide in
the crystal structure of a DnaK-substrate complex
(PDBID 1DKX Zhu1996) using FoldX, a structure-
based PSSM that reflects the individual contribution
of certain substrate residue types for DnaK bind-
ing was generated. The Limbo DnaK binding site
predictor was obtained by combining the structure-
based PSSM with a normalisation factor of 0.2 with
the sequence-based PSSM. Limbo is able to correctly
predict 89% of the true positives in a tested peptide
set (high sensitivity), with a concurrent amount of
only 5.9% false positives for a specific score threshold
(high specificity). The robustness of the predictor
was evaluated with a cross-validation test, resulting
in a true positive rate of 72% true positives and a
false positive rate of 5.9%. The predictor was able
to identify an entire known DnaK binding site in the
heat-shock promoter σ 32 [32]. We have used Limbo
to rank mutated proteins according to their DnaK
binding affinity.
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Tables

Supplementary Table S1 - Types of data sets used to train and test SNP classifiers.

Origin data set Size Number References
of data set of studies

Neutral variations
Mutagenesis studies 111-3706 9 [1–9]
Orthologs 888-16682 3 [3, 9, 10]
SwissProt SNP 502-12944 6 [3, 8, 11–14]
OMIM 558 1 [15]
dbSNP 5177-21471 2 [16,17]
Disease mutations
Mutagenesis studies 159-1750 8 [1–9]
COSMIC database 879 1 [18]
HGMD 3768-10263 1 [9]
OMIM 879-2249 5 [3, 8, 13,15,18]
SwissProt Disease 175-9610 9 [3, 8, 10–14,19,20]
Data [21] 209 1 [20]
Data [22] 185 2 [19,20]

Supplementary Table S2 - Performance of state-of-the-art predictors on representative data sets.
The performance of a few selected tools on SwissProt disease associated mutations and SNP data are shown.

Study Method FPR FNR TPR TNR MCC Size
set

Bao et al [11] Random Forest 0.3 0.24 0.76 0.7 0.46 205
Capriotti et al [13] HybridMeth - - - - 0.46 21185
Karchin et al [14] SVM 0.2 0.19 0.81 0.8 0.61 3691
Ng & Henikoff [19] SIFT 0.19 0.31 0.69 0.81 0.50 5333
Wang & Moult [20] Stability 0.3 0.1 0.9 0.7 0.61 262
Worth et al [16] Combined 0.09 0.68 0.32 0.91 0.28 9143
Yue & Moult [9] SVM 0.15 0.26 0.74 0.85 0.59 6077

Supplementary Table S3 - Variation of the performance of SIFT on different data sets.
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Study Dataset FPR FNR TPR TNR MCC
Bao et al [11] Test set 0.33 0.38 0.62 0.67 0.29
Saunders et al [8] Human 0.4 0.35 0.65 0.6 0.25
Ng & Henikoff [7] lac I repressor 0.22 0.43 0.57 0.78 0.36
Ng & Henikoff [7] HIV 1-protease 0.3 0.12 0.88 0.7 0.59
Ng & Henikoff [7] T4 lysozyme 0.41 0.28 0.72 0.59 0.31
Ng & Henikoff [19] SwissProt disease 0.19 0.31 0.69 0.81 0.50
Worth et al [16] SwissProt + dbSNP 0.41 0.29 0.71 0.59 0.30
Our evaluation SwissProt 0.79 0.31 0.69 0.21 -0.12
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Figure S1. Structural coverage of Ensembl non synonymous SNP data. A. Number of SNPs in structures
determined by NMR and X-ray crystallography studies or models of these structures. 11% of all non

synonymous SNPs can be mapped on crystallography structures, and 7% of all SNPs can be modeled on a high-quality X-ray
structure (resolution ≤ 2.5Å). B. Number of SNPs covered by structural data versus the sequence identity

between the query sequence and the structural model. The number of SNPs that can be modeled on X-ray structures
(•) decreases from 15% of all nsSNPs (15685 nsSNPs, 5% sequence identity) to 2.5% (3341) of all SNPs for which the

structure of the wild type sequence has been determined experimentally (100% sequence identity). When only high quality
structures are considered (◦), this amount is reduced by half to 7.4% for a sequence identity of 5% and 1.5% for exact models.
C. Number of SNPs covered by structural data versus the sequence coverage of the wild type sequence. There
are almost no SNPs for which the full length of the protein sequence is covered (100% coverage), but for 80% coverage almost
8000 SNPs can be selected, of which circa 5500 in high quality structures. D. Number of SNPs covered by structural
data versus the length of the alignment between protein sequence and structural model. About a third of the

SNPs that can be modeled are located in a structural alignment that is less than 100 amino acids long, both for models based
on all X-ray structures (•) and based on high resolution structures only (◦).
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Figure S2 (continued). ROC curves for classification of disease mutations and neutral variation by using structural
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7



0

20

40

60

80

100

0 20 40 60 80 100

Entropy side chain
by sampling strategy

T
P
R

FPR

0

20

40

60

80

100

0 20 40 60 80 100

Entropy side chain
by sampling strategy (buried)

T
P
R

FPR

0

20

40

60

80

100

0 20 40 60 80 100

Entropy side chain
by sampling strategy (surface)

T
P
R

FPR

Figure S2 (continued). ROC curves for classification of disease mutations and neutral variation by using structural

properties of the amino acid substitution site.

8



0

20

40

60

80

100

0 20 40 60 80 100

Overall stability difference
T
P
R

FPR

0

20

40

60

80

100

0 20 40 60 80 100

Backbone H bond

T
P
R

FPR

0

20

40

60

80

100

0 20 40 60 80 100

Sidechain H bond

T
P
R

FPR

0

20

40

60

80

100

0 20 40 60 80 100

Electrostatics

T
P
R

FPR

0

20

40

60

80

100

0 20 40 60 80 100

Entropy main chain

T
P
R

FPR

0

20

40

60

80

100

0 20 40 60 80 100

Entropy side chain

T
P
R

FPR

0

20

40

60

80

100

0 20 40 60 80 100

Solvation hydrophobic

T
P
R

FPR

0

20

40

60

80

100

0 20 40 60 80 100

Solvation polar

T
P
R

FPR

0

20

40

60

80

100

0 20 40 60 80 100

Torsion

T
P
R

FPR

0

20

40

60

80

100

0 20 40 60 80 100

Van der Waals clash

T
P
R

FPR

0

20

40

60

80

100

0 20 40 60 80 100

Van der Waals contribution

T
P
R

FPR

0

20

40

60

80

100

0 20 40 60 80 100

Overall stability difference
(surface residues)

T
P
R

FPR

0

20

40

60

80

100

0 20 40 60 80 100

Overall stability difference
(buried residues)

T
P
R

FPR

0

20

40

60

80

100

0 20 40 60 80 100

Backbone clash

T
P
R

FPR

Figure S3. ROC curves for classification of disease mutations and neutral variation by using structural differences between

the wild type and variant protein.
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Figure S3 (continued). ROC curves for classification of disease mutations and neutral variation by using structural

differences between the wild type and variant protein.
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differences between the wild type and variant protein.
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