
Can URML model successfully Drools rules?
Emilian Pascalau and Adrian Giurca 1

Abstract. The use of rules in business modeling is becoming more
and more important, in applications requiring dynamic change of be-
havior. A number of rule languages and tools have been proposed
to the software engineering community. However, there are not too
many visual languages for rule modeling. The goal of this paper is to
investigate the modeling capabilities of UML-based Rule Modeling
Language (URML) with respect of Drools rules. We choose Drools
because is the most important and well known open source rule plat-
form. It is friendly to both developers and business users, offers a lot
of functionality but does not provide a visual modeling environment
for rules. The Single Item English Electronic Auction Use Case is
used to illustrate the modeling capabilities. The paper concludes that
URML rules can model the large part of Drools rules but improve-
ments of the modeling language are necessary.

1 Introduction
Nowadays global information networks like Internet are the envi-
ronment were business processes take place in automated way. A
large part of e-commerce activities is devoted to B2B relationships.
The natural way to describe behavior of such businesses is through
business rules. However, actually there is no standard way for busi-
ness rule definitions. Yet there are several rule platforms and rule
languages: Drools [13] (also known as JBossRules), F-Logic, Jess,
SWRL. The most important initiative in the process of developing a
standard for rule interchange is Rule Interchange Format (RIF) [1].
Their main goal is to define a set of requirements and standards to
be followed by any translator performing rule interchange between
existing rules platforms.

A use case very well suited for such an environment and also very
well suited to have his behavior modeled with business rules is auto-
mated negotiation. This is a general problem that comprises auctions
also. In our paper we take as use case the Single Item English Elec-
tronic Auction [3], [9], [10]. We model its behavior using URML,
UML-based rule modeling language (URML) [17, 18], a rule mod-
eling extension of UML([12]).

Opposed to the approach taken by the authors in [15], where the
vocabulary is presented as an ER model, we express the vocabulary
as an UML model. In [5], [8] was argued that UML is a de facto
standard for modeling vocabularies. Moreover, in the software engi-
neering community UML class diagrams are widely used to express
vocabularies. URML, as an extension of UML, it is well suited to
capture rules on top of UML vocabularies.

The goal of the paper is to research the capabilities of URML to
model rules that can be serialized to Drools.

Drools it is the most important and well known open source rule
platform. It is friendly to both developers and business users, offers

1 Brandenburg University of Technology, Germany email: {pascalau,
giurca}@tu-cottbus.de

a lot of functionality but does not provide a visual modeling environ-
ment for rules.

It is well known that visual modeling is easier to be understood
and to be remembered, therefore we claim that a visual language for
rule modeling is necessary.

The authors of [17] argued, that rule modeling language should
provide ways for representing rule expressions, in a manner easy to
be understood by domain experts or by software engineers, who are
usually used with UML modeling. URML extends UML meta-model
with the concept of rule.

2 UML-based rule modeling language - URML
URML is developed by the REWERSE Working Group I1. Its main
goal is to provide visual constructs for modeling rules and business
processes. URML is close related to R2ML [16], [17] - a rule lan-
guage for rule interchange.

URML is wanted to be a general approach for modeling rules
in comparison with work introduced in [4]. According to [18],
URML supports derivation rules, production rules and reaction
rules. URML uses concepts such as rule condition, rule conclusion,
filters, actions and events.

A rule condition is either a ClassificationCondition, a RoleCondi-
tion or AssociationCondition. The rule condition may contain a filter
expression. For example the condition depicted in Figure 1 models
the following logical conjunction:
Proposal($bProposal) ∧ Proposal($sProposal)∧
∧product($bProposal) = product($sProposal)∧
∧price($bProposal) > 0

price : Integer
dateTime : Date
type : ProposalType
isValid : Boolean

Proposal

VR

$sProposal, $bProposal $bProposal.product=$sProposal.product

and $bProposal.price>0

Figure 1. A rule condition

A filter is either an OCLFilter or an OpaqueFilter. Classification-
Condition refers to a UML Class, which is a condition classifier, and
consists of an ObjectVariable, which is an instance of the Class; For
example the expression

$bProposal.product == $sProposal.product
and $bProposal.price > 0

from Figure 1 is an OCL filter.
A rule conclusion is either a RoleConclusion, ClassificationCon-

clusion, or AttributionConclusion, or AssociationConclusion or an

ftp://ftp.cs.sunysb.edu/pub/TechReports/kifer/flogic.pdf
http://www.jessrules.com/
http://www.w3.org/Submission/SWRL/
http://www.w3.org/2005/rules/wiki/RIF_Working_Group
http://oxygen.informatik.tu-cottbus.de/rewerse-i1/?q=node/7
http://oxygen.informatik.tu-cottbus.de/rewerse-i1/

Action. A more detailed description of these concepts is not possible
because of the lack of space. The Figure 2 depicts an action corre-
sponding to the following state change expression

isV alid($bProposal)

i.e. the object property isValid is set to true.

price : Integer
dateTime : Date
type : ProposalType
isValid : Boolean

Proposal

VR
$bProposal.isValid=true

U

Figure 2. A rule action

Actions are used in production rules and in reaction rules. URML
supports the following actions: AssertAction, RetractAction, Update-
Action and InvokeAction. They correspond to the OMG Production
Rule Representation (PRR) [11].

The main advantage of URML is that it extends UML with only
a few visual elements (see Table 1): circles for rules, conditions ar-
rows, conclusion arrows, action arrows. Since Drools deals only with
production rules, only production rules visual elements of URML are
depicted in Table 1. A condition arrow can be negated and is repre-
sented as a crossed arrow at origin. Conclusion arrows refer to a class
or an association. Action arrows are double-headed arrows referring
either to a class (in the case of create, delete, assign or invoke ac-
tion) or to an activity. Rule action arrow is annotated with an action
type (A for Assert Action, R for Retract Action, U for Update Ac-
tion, and I for Invoke Action). Variables are denoted in bold (such as
$bProposal).

Table 1. URML Production Rule visual elements

Rule

Rule condition arrow
A

Negated rule condition arrow
A

Rule action arrow
attr

A
attr = 10

U

3 Drools basics
Drools is an object oriented business rule management system
(BRMS) and also a Rule Engine based on Charles Forgy’s Rete al-
gorithm [13].

The Drools architecture is based on three main components: pro-
duction memory that stores the rules, working memory that stores the
facts and the inference engine.

Drools development platform comes in two flavors: as an Eclipse
plug-in Drools IDE and as web application Drools BRMS. The
Drools IDE provides developers with an environment to edit and test
rules in various formats, and integrate it deeply with their applica-
tions from within Eclipse. The IDE has a textual/graphical rule edi-
tor, a RuleFlow graphical editor, a domain specific language editor.

Our claim is that a visual rule editor is necessary and will enrich
the Drools IDE with an important and more easy to use ”feature”.
In opposition with the already built in rule text editor of the Drools
IDE this will provide a visual way to model rules. Since Drools rules

are written on top of Java Beans, visual modeling with URML is
appropriate. The actual Drools IDE functionality and configuration
is targeted mainly to developers and very technical users as authors
argue in [13](Chapter 5 - The (Eclipse based) Rule IDE). The new
feature will overcome this inconvenient and will allow software ar-
chitects and engineers to easily describe the business rules in a visual
way.

Rules are expressed in Drools Rule Language (DRL). It contains
package declaration, imports, globals, functions and rules. Package
declaration and usage are similar to those from Java. A DRL pack-
age defines a collection of rules and other related constructs. It rep-
resents a namespace, for the contained rules. Opposed to Java, the
DRL package name is not related to files or folders in any way. DRL
import statements work and have the same meaning as in Java. Glob-
als as the name specifies are global variables used mainly to make
application objects available to rules, for services or to provide data.
According with [13], DRL functions provides a way to put semantic
code in rule source file and are some how equivalent to helper classes
from Java. A DRL query is simply a way to query the working mem-
ory for facts that match the conditions stated.

Drools manual [13] provides the following example:

rule "Approve if not rejected"
salience -100
agenda-group "approval"

when
not Rejection()
p : Policy(approved == false,
policyState:status)
exists Driver(age > 25)
Process(status == policyState)

then
log("APPROVED: due to no objections.");
p.setApproved(true);

end

The above rule has an unique name
("Approve if not rejected"), optional attributes (such
as salience -100), conditions identified by when (such as
exists Driver(age > 25)) and actions introduced with then
(such as p.setApproved(true);). The conditional part of a
rule corresponds to a logical formula comprising zero or more Con-
ditional Elements. The concept of Pattern is the main conditional
element. eval is a Boolean expression evaluator. The action part
contains a list of actions that are to be executed. Drools provides
predefined logical actions such as: insert, update, insertLogical,
retract but any valid Java code is also allowed.

4 Modeling Rules with URML
Automated negotiations e.g. electronic auctions are well suited to be
modeled with rules. The past research was focused on defining and
development of protocols and strategies to be used in multi agent sys-
tems that are to perform negotiations [10, 9, 3]. Auctions, a form of
negotiation mechanism for electronic commerce, are also discussed
in a number of papers such as [19, 20, 14].

English Auction is an important type of auction discussed in a wide
range of papers such as [6, 7, 2], and we consider that the subject is
far from being finished. The principles of Single Item English Auc-
tion are: (1) only one item is sold at a time; (2) bidding is open; (3)
all participants bid against each other openly; (4)each successive bid
must be higher than the old one; (5) the seller begins the auction;

http://blog.athico.com/
http://www.eclipse.org
http://download.jboss.org/drools/release/4.0.5.19064.GA/drools-4.0.5-eclipse3.2.zip
http://download.jboss.org/drools/release/4.0.5.19064.GA/drools-4.0.5-brms.zip

(6) buyers bid against each other by raising the price, until only one
willing buyer remains.

4.1 The Vocabulary
Our work will use a fragment of the vocabulary (see Figure 3) for
automated negotiation similar with the one from [2].

Buyer

id
isAllowToPostBid : Boolean

Party

Seller

id
quantity
type : ProductType

Product

price : Integer
dateTime : Date
type : ProposalType
isValid : Boolean

Proposal

1 1

BID = Bid
AGR = Agreement

«enumeration»
ProposalType

1..*

{disjoint, complete}

Figure 3. Negotiation Vocabulary

Proposals encapsulate data about price, date and time, and product
in auction. They are exchanged between parties. A proposal is either
a Bid or an Agreement. A bid is a commitment from a buyer to pay
that price if the bid is declared to be a winning bid (proposal). An
agreement is a proposal upon which all parties were agreed.

4.2 The Rules
The aim of this section is to model rules that automate the negotiation
in Single Item English Auction.

VR

$buyer

$buyer.proposal=$bProposal

$seller

$seller.proposal=$sProposal

$sProposal, $bProposal

$bProposal.product=$sProposal.product

$bProposal.isValid=true

Buyer

Seller

price : Integer
dateTime : Date
type : ProposalType
isValid : Boolean

ProposalU

and $bProposal.price>0

Figure 4. Validation Rule: ”A valid proposal is a proposal that is about the
product from seller proposal and the submitted proposal price is greater than
0.”

Buyer
id
isAllowToPostBid : Boolean

Party

PostR

$party

$party instanceOf Buyer

$buyer.isAllowToPostBid=true

U

Figure 5. Posting Rule: ”Only buyers parties are allowed to post bids.”

In [3] rules are classified in taxonomies such as: proposal valid-
ity, protocol enforcement, updating status and information of par-
ticipants, agreement formation, termination. These rules taxonomy

price : Integer
dateTime : Date
type : ProposalType
isValid : Boolean

Proposal

IR

Buyer

$buyer

$buyer.proposal=$newProposal

$newProposal, $oldProposal

$newProposal.type==ProposalType.BID

$newProposal.dateTime=system.dateTime

U

$oldProposal

R

recordSubmisionTime($newProposal) serialize($oldProposal)

I I

and
$oldProposal.type==ProposalType.BID

and
$oldProposal.price<$newProposal.price

Figure 6. Bid Improvement Rule: ”Each new bid must be an improvement
over the last one. If the submitted bid is an improvement, then update the bid
time.”

price : Integer
dateTime : Date
type : ProposalType
isValid : Boolean

Proposal

Buyer

1 1

WR

$buyer
$buyer.proposal=$proposal $proposal

$proposal.dateTime==null

$proposal

R

Figure 7. Withdraw Proposal Rule: ”Buyers proposals that are not best pro-
posal have to be withdrawn.”

introduces a packaging model for the rules. Actually URML does
not provide a package modeling therefore actually we consider rule
diagrams in the same folder to be part of the same package.

To illustrate URML capabilities we model one rule from each
package obtained from the ontology.

The URML representation of a validation rule is depicted in
Figure 4. The rule uses the following vocabulary beans: Buyer,
Seller, Proposal and Product.

We have a buyer ($buyer), a seller ($seller), two proposals
($bProposal and $sProposal): one for the buyer and one for
the seller.

The arrow condition comes with variables (e.g. $bProposal) and
filter expressions $bProposal is buyer’s proposal and is bound to
the buyer’s proposal. For this we use a condition arrow going from
buyer to rule that says $buyer.proposal=$bProposal. The
same works for the seller.

The action performs a setter call on the isValid property of the
$bProposal.

The posting rule (Figure 5) determines when a party can post a
proposal.

Improvement rules define the way bids are posted. In a Single Item
English Auction each successive bid must be an improvement, there-
fore its price must be greater than the $oldProposal price. This
is exactly what the rule from Figure 6 does.

Another protocol enforcement rule is shown in Figure 7. If the
proposal $proposal belongs to a $buyer and it is not the best pro-
posal(i.e. dateT ime is null) then withdraw $proposal.

The Figure 8 depicts the model of a display rule. This rule refers
to the package updating status and information of participants and
specifies which party can see a new proposal. In Single Item English
Auction every new proposal is known to all parties involved in auc-
tion.

Termination rules define conditions when an auction is terminated.
The Figure 9 depicts an URML model of such rule.

price : Integer
dateTime : Date
type : ProposalType
isValid : Boolean

Proposal

DispR

Buyer

$buyer

$buyer.proposal=$proposal

$proposal

$proposal.dateTime!=null

informParty()

and $proposal.type==ProposalType.BID

I

Figure 8. Display Proposal Rule: ”If a new proposal has been posted into
the system then all parties must be informed about this.”

price : Integer
dateTime : Date
type : ProposalType
isValid : Boolean

Proposal

TR

$proposal

$proposal.type==ProposalType.AGREEMENT

terminate()

and $proposal.dateTime!=null

I

Figure 9. Termination Rule: ”If type of the current proposal from working
memory is AGREEMENT and dateT ime of proposal is not null then the
auction can be terminated.”

5 URML Rules as Drools Rules
This Section presents how a rule modeled with URML can be seri-
alized to Drools. Consider the improvement rule (see Figure 6). The
below code is the Drools DRL:

package org.ruleapp.rules.improvement;

import org.ruleapp.vocabulary.Proposal;
import org.ruleapp.vocabulary.Buyer;
import org.ruleapp.vocabulary.ProposalType;

rule "IR"
when
$oldProposal:Proposal(
type == ProposalType.BID,
$oPrice:price
)
$newProposal:Proposal(
type == ProposalType.BID,
$nPrice:price,
$nPrice > $oPrice
)

then
recordSubmisionTime($newProposal);
update($newProposal);
serialize($oldProposal);
retract($oldProposal);

end

function recordSubmisionTime(Proposal $p){

//...
}

function serialize(Proposal $p){
//...

}

The rule is part of a specific package i.e.
org.ruleapp.rules.improvement encoded in the cor-
responding DRL package declaration.

The rule (as seen in the URML model) uses the classes Proposal,
Buyer and ProposalType therefore all of them should be available to
the engine (as Java Beans). We make them available by generating
the appropriate import commands.

The name of the Drools rule (IR) is the same with the name from
the visual model.

The filter condition

$newProposal.type==ProposalType.BID and
$oldProposal.type==ProposalType.BID and
$oldProposal.price < $newProposal.price

generates the conditions (i.e. the when
part) in the Drools rule. While parts such as
$newProposal.type==ProposalType.BID
have immediate translation, the part
$oldProposal.price < $newProposal.price re-
quires the generation of new variables ($nPrice and $oPrice)
before the condition evaluation. Readers may notice that this filter
can be also implemented by means of an eval() call but then the
rule become less declarative.

Our actions are:

1. an invoke action (I) corresponding to the function call
recordSubmisionTime($newProposal);

2. an update action which normally translates into a Drools standard
action update

3. another invoke action (i.e. serialize($oldProposal);)
and

4. a retract action (R) generating the code
retract($oldProposal);

6 Future Work
While the translation of all of these actions to Drools code is straight-
forward by using DRL functions one major disadvantage of the ac-
tual URML language is that it does not offer a way to specify the
order of actions in the rule action part. For example, looking to the
rule diagram from Figure 6 it is not clear both for a human expert and
a machine in which order the depicted actions have to be performed.

The translation, presented in this paper was done manually and is
intended as example for a potential implementation, that would have
to perform it automatically.

Our proposal is to extend the URML metamodel by allowing se-
quence actions i.e an ordered sequence of standard actions as in the
Figure 10 .

Other open issues are: (1) Drools provides DRL queries while
URML does not provide any visual construct modeling that; (2)
URML does not provide any annotations to encode various DRL
rules attributes.

Drools complex constructs offering integration with databases
such as collect and accumulate are not yet supported by the
visual language.

price : Integer
dateTime : Date
type : ProposalType
isValid : Boolean

Proposal

Buyer

IR

$buyer

$buyer.proposal=$newProposal

$newProposal, $oldProposal

$newProposal.type==ProposalType.BID
and

$oldProposal.type==ProposalType.BID
and

$oldProposal.price<$newProposal.price

recordSubmisionTime($newProposal)

serialize($oldProposal)

U

R

I

$newProposal

I

$oldProposal

Figure 10. ”The New Bid Improvement Rule”

Finally user-defined actions encoded by plain Java code are not
yet supported. Our future work will investigate the need of an exten-
sion of the visual language that allows UML opaque expressions to
encode these actions.

A potential URML implementation for Drools rules must extends
the actual Eclipse IDE by allowing at least UML class diagrams, rule
diagrams and rule packages.

REFERENCES

[1] RIF Basic Logic Dialect. http://www.w3.org/2005/rules/
wiki/BLD, October 2007.

[2] Costin Badica, Adrian Giurca, and Gerd Wagner, ‘Using Rules and
R2ML for Modeling Negotiation Mechanisms in E-Commerce Agent
Systems’, in Proceedings of the 2nd International Conference on
Trends in Enterprise Application Architecture, TEAA2006, eds., Dirk
Draheim and Gerald Weber, volume 4473 of Lecture Notes in Com-
puter Science, pp. 84 – 99. Springer, (November 2006). http:
//dx.doi.org/10.1007/978-3-540-75912-6_7.

[3] Claudio Bartolini, Chris Preist, and Nicholas R. Jennings, ‘A Generic
Framework for Automated Negotiation’, Technical report, HP Labs,
(January 2002). http://www.hpl.hp.com/techreports/
2002/HPL-2002-2.pdf.

[4] Saartje Brockmans, Peter Haase, Pascal Hitzler, and Rudi Studer, ‘A
Metamodel and UML Profile for Rule-Extended OWL DL Ontologies’,
in Proceedings of 3rd European Semantic Web Conference, ESWC
2006, Budva, Montenegro, volume 4011 of Lecture Notes in Computer
Science, pp. 303 – 316. Springer Berlin / Heidelberg, (June 2006).
http://dx.doi.org/10.1007/11762256_24.

[5] Stephen Cranefield and Martin Purvis, ‘UML as an Ontol-
ogy Modelling Language’, in Proceedings IJCAI-99 Work-
shop on Intelligent Information Integration, (1999). http:
//hcs.science.uva.nl/usr/richard/workshops/
ijcai99/UML_Ontology_Modelling.pdf.

[6] Esther David, Rina Azoulay-Schwartz, and Sarit Kraus, ‘An English
Auction Protocol for Multi-attribute Items’, in Proceedings of the Work-
shop on Agent Mediated Electronic Commerce on Agent-Mediated
Electronic Commerce IV, Designing Mechanisms and Systems, volume
2531 of Lecture Notes in Computer Science, pp. 361 – 378. Springer
Berlin / Heidelberg, (2002). http://dx.doi.org/10.1007/
3-540-36378-5_4.

[7] Esther David, Alex Rogers, Jeremy Schiff, Sarit Kraus, and Nicholas R.
Jennings, ‘Optimal Design Of English Auctions With Discrete Bid Lev-
els’, in Proceedings of the 6th ACM conference on Electronic com-
merce, Vancouver, BC, Canada, pp. 98 – 107. ACM New York, NY,
USA, (2005).

[8] Giancarlo Guizzardi, Gerd Wagner, and Heinrich Herre, ‘On the Foun-
dations of UML as an Ontology Representation Language’, in Proceed-
ings of 14th International Conference on Engineering Knowledgein
the Age of the Semantic Web EKAW 2004, eds., Enrico Motta, Nigel
Shadbolt, Arthur Stutt, and Nicholas Gibbins, volume 3257 of Lecture
Notes in Computer Science, pp. 47 – 62. Springer Berlin / Heidelberg,
(5-8 October 2004). http://www.loa-cnr.it/Guizzardi/
EKAW.pdf.

[9] Nicholas R. Jennings, Peyman Faratin, A. R. Lomuscio, Simon Par-
sons, Michael Wooldridge, and Carles Sierra, ‘Automated Negotiation:
Prospects, Methods and Challenges’, Group Decision and Negotia-
tion, 10(2), 199 – 215, (March 2001). http://dx.doi.org/10.
1023/A:1008746126376.

[10] Sarit Kraus, ‘Negotiation and cooperation in multi-agent environ-
ments’, Special issue on economic principles of multi-agent systems,
94(1-2), 79 – 98, (1997). http://iskp.csd.auth.gr/mtpx/
agents/material/kraus97negotiation.pdf.

[11] OMG. Production rule representation (prr), beta 1. http://www.
omg.org/docs/dtc/07-11-04.pdf, November 2007.

[12] Object Management Group (OMG). UML 2.0 Superstructure
Specification. http://www.omg.org/cgi-bin/doc?ptc/
2003-08-02, August 2002.

[13] Mark Proctor, Michael Neale, Michael Frandsen, Sam Griffith Jr.,
Edson Tirelli, Fernando Meyer, and Kris Verlaenen. Drools
4.0.5. http://downloads.jboss.com/drools/docs/4.0.
5.19064.GA/html_single/index.html, January 2008.

[14] Daniel Rolli and Andreas Eberhart, ‘An Auction Reference Model
for Describing and Running Auctions’, Wirtschaftsinformatik
2005, 289 – 308, (2005). http://dx.doi.org/10.1007/
3-7908-1624-8_16.

[15] Valentina Tamma, Michael Wooldridge, Ian Blacoe, and Ian Dickinson,
‘An Ontology Based Approach to Automated Negotiation.’, in Pro-
ceedings of the Workshop on Ontologies in Agent Systems, Bologna,
Italy, AMEC02, volume 2531 of Lecture Notes in Computer Science,
pp. 317 – 334. Springer Berlin / Heidelberg, (2002). http://dx.
doi.org/10.1007/3-540-36378-5_14.

[16] Gerd Wagner, Adrian Giurca, and Sergey Lukichev, ‘A Gen-
eral Markup Framework for Integrity and Derivation Rules’,
in Principles and Practices of Semantic Web Reasoning, eds.,
François Bry, François Fages, Massimo Marchiori, and Hans-
Jürgen Ohlbach, number 05371 in Dagstuhl Seminar Proceed-
ings, Dagstuhl, Germany, (2005). Internationales Begegnungs- und
Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Ger-
many. http://drops.dagstuhl.de/opus/volltexte/
2006/479/pdf/05371.GiurcaAdrian.Paper.479.pdf.

[17] Gerd Wagner, Adrian Giurca, and Sergey Lukichev, ‘A Usable Inter-
change Format for Rich Syntax Rules. Integrating OCL, RuleML and
SWRL’, in Proceedings of Reasoning on the Web 2006, Edinburgh,
Scotland, (May 2006). http://www.aifb.uni-karlsruhe.
de/WBS/phi/RoW06/procs/wagner.pdf.

[18] Gerd Wagner, Adrian Giurca, Sergey Lukichev, Grigoris An-
toniou, Carlos Viegas Damasio, and Norbert E. Fuchs, ‘Lan-
guage Improvements and Extensions’, Technical Report I1-
D8, REWERSE, (April 2006). http://rewerse.net/
deliverables-restricted/i1-d8.pdf.

[19] Peter R. Wurman, Michael P. Wellman, and William E. Walsh, ‘A
Parametrization of the Auction Design Space’, Games and Economic
Behavior, 35, 304 – 338, (2001). http://www4.ncsu.edu/

˜wurman/Papers/Wurman-GEB-00.pdf.
[20] Peter R. Wurman, Michael P. Wellman, and William E. Walsh, ‘Speci-

fying Rules for Electronic Auctions’, AI Magazine, 23, (2002). http:
//www4.ncsu.edu/˜wurman/Papers/AI-Mag-WWW.pdf.

http://www.w3.org/2005/rules/wiki/BLD
http://www.w3.org/2005/rules/wiki/BLD
http://dx.doi.org/10.1007/978-3-540-75912-6_7
http://dx.doi.org/10.1007/978-3-540-75912-6_7
http://www.hpl.hp.com/techreports/2002/HPL-2002-2.pdf
http://www.hpl.hp.com/techreports/2002/HPL-2002-2.pdf
http://dx.doi.org/10.1007/11762256_24
http://hcs.science.uva.nl/usr/richard/workshops/ijcai99/UML_Ontology_Modelling.pdf
http://hcs.science.uva.nl/usr/richard/workshops/ijcai99/UML_Ontology_Modelling.pdf
http://hcs.science.uva.nl/usr/richard/workshops/ijcai99/UML_Ontology_Modelling.pdf
http://dx.doi.org/10.1007/3-540-36378-5_4
http://dx.doi.org/10.1007/3-540-36378-5_4
http://www.loa-cnr.it/Guizzardi/EKAW.pdf
http://www.loa-cnr.it/Guizzardi/EKAW.pdf
http://dx.doi.org/10.1023/A:1008746126376
http://dx.doi.org/10.1023/A:1008746126376
http://iskp.csd.auth.gr/mtpx/agents/material/kraus97negotiation.pdf
http://iskp.csd.auth.gr/mtpx/agents/material/kraus97negotiation.pdf
http://www.omg.org/docs/dtc/07-11-04.pdf
http://www.omg.org/docs/dtc/07-11-04.pdf
http://www.omg.org/cgi-bin/doc?ptc/2003-08-02
http://www.omg.org/cgi-bin/doc?ptc/2003-08-02
http://downloads.jboss.com/drools/docs/4.0.5.19064.GA/html_single/index.html
http://downloads.jboss.com/drools/docs/4.0.5.19064.GA/html_single/index.html
http://dx.doi.org/10.1007/3-7908-1624-8_16
http://dx.doi.org/10.1007/3-7908-1624-8_16
http://dx.doi.org/10.1007/3-540-36378-5_14
http://dx.doi.org/10.1007/3-540-36378-5_14
http://drops.dagstuhl.de/opus/volltexte/2006/479/pdf/05371.GiurcaAdrian.Paper.479.pdf
http://drops.dagstuhl.de/opus/volltexte/2006/479/pdf/05371.GiurcaAdrian.Paper.479.pdf
http://www.aifb.uni-karlsruhe.de/WBS/phi/RoW06/procs/wagner.pdf
http://www.aifb.uni-karlsruhe.de/WBS/phi/RoW06/procs/wagner.pdf
http://rewerse.net/deliverables-restricted/i1-d8.pdf
http://rewerse.net/deliverables-restricted/i1-d8.pdf
http://www4.ncsu.edu/~wurman/Papers/Wurman-GEB-00.pdf
http://www4.ncsu.edu/~wurman/Papers/Wurman-GEB-00.pdf
http://www4.ncsu.edu/~wurman/Papers/AI-Mag-WWW.pdf
http://www4.ncsu.edu/~wurman/Papers/AI-Mag-WWW.pdf

	Introduction
	UML-based rule modeling language - URML
	Drools basics
	Modeling Rules with URML
	The Vocabulary
	The Rules

	URML Rules as Drools Rules
	Future Work

