
Using Rules for the Integration of Heterogeneous and
Autonomous Context-Aware Systems
David Mosén1 and Arantza Illarramendi2 and Mohand-Said Hacid3

Abstract. In this paper we introduce NUBIA, a middleware that
combines, through business rules, information generated by hetero-
geneous and autonomous systems. Communication between NUBIA
and systems is loosely-coupled and highly compatible, as Web Ser-
vices and other standards are used. The main component of NUBIA
is a rule engine, sensible to temporal knowledge and with integrated
functions (e.g. frequencies, percentages). A user friendly interface al-
lows entering, using a script language, customized rules, whose con-
ditions depend on the information sent from the systems. For each
rule, settings such as the maximum firing frequency and the activa-
tion within a group may be defined. Moreover, NUBIA also supports
a rule editor role, which allows a more realistic viewpoint of context-
aware rules customization. Finally, automatic rule translation to the
user’s language and a role-oriented interface facilitate the interaction
with NUBIA.

1 INTRODUCTION
The term context awareness has evolved through time, but has always
maintained a sense of somehow gathering data from the environment.
In the last years, the definition of context by Dey et al. [1] seems to
be the most widely embraced. It states that context is ”any informa-
tion that can be used to characterize the situation of entities that are
considered relevant to the interaction between a user and an appli-
cation, including the user and the application themselves. Context is
typically the location, identity and state of people, groups and com-
putational and physical objects”. Notice that this definition implies
that context is not necessarily physical, so it can be sensed through
virtual sensors (e.g. Web Services).

Nowadays, context-aware systems work in general in an au-
tonomous way and do not interact among them. However, connecting
them can, in many situations, increase the advantages that they pro-
vide separately. Let us take the example of two systems, in charge
of monitoring a house and vital signs of a person, respectively. A
connection between them can boost alertness in a home for elderly
people scenario, where a single unit reacts to information about both
the house and the owner’s health. Of course, each system should still
be able to be in control of its own domain.

For a tight coupling among systems, a complex manual process
may be needed. With this in mind, we present in this paper NUBIA,
a middleware that integrates, through loosely-coupled connections,
any kind of context-aware systems, independently of the domain that
they consider, while preserving the autonomy of each system. Thus,
internal management in each domain remains within the respective

1 University of the Basque Country, Spain, email: david@mosen.es
2 University of the Basque Country, Spain, email: a.illarramendi@ehu.es
3 Univ. Claude Bernard Lyon, France, email: mshacid@liris.univ-lyon1.fr

system, whereas a combined management across domains is handled
through NUBIA.

To test the middleware and demonstrate its usefulness, we
constructed a typical homecare scenario, oriented towards a single
inhabitant (i.e. the user), although visits pose no actual problem.
Abundant previous work about homecare can be found [2] [3], and
we refer to it for a more thorough study on the subject. However,
our aim is to show how an integral homecare system can be build
adding up independent, separately developed, components. Thus,
the personal healthcare application, provided by SaludNova [4], and
the domotics system we integrated were already developed, in order
to test out the integration issue in a real scenario.

Benefits from integration through rules of the mentioned systems
can be seen in several cases. For example, the healthcare system
lacks fall detection, so if domotics determines using its sensors
that the user fell, a warning is sent to NUBIA, which in turn warns
the healthcare system. In the same way, the domotics system can
be commanded to turn off the oven and stove if the user suffers a
heart failure. Further, if a risk situation requires both systems to
detect certain alarms, then a third system, in charge of handling joint
alarms, is notified. As a final example, this additional alarm system
can also be notified of errors in the main systems (see Subsection
3.2.1).

Summing up, the main features of NUBIA are the following
ones:

1. Because sensed context is information sent from connected sys-
tems through Web Services, it is a context-aware application too.

2. It allows combining context-aware systems information through
customized business rules sensible to knowledge extracted from a
stored history.

3. Finally, it provides a user friendly graphical interface, which sup-
ports different user roles (final, rules editors and administrators).

2 RELATED WORK
Concerning related works, we can observe that trends in software
development move toward generic design patterns. In that direction,
there seems to be an agreement on the need for finding a context-
aware standardized architecture [5]. This area has been widely stud-
ied, with several proposals of context-aware frameworks [6] [7]. We
also present a proposal of a standardized architecture; however, our
goal in this paper is to focus on the use of rules for getting the inte-
gration of context-aware systems.

On context integration, the work by Tao Gu et al. on SOCAM [8],
an architecture for developing context-aware services, is the closest

to our proposal. We basically differentiate on what is integrated, as
we aim at autonomous context-aware systems integration, while SO-
CAM directly integrates physical context. Anyhow, both proposals
carry out the idea of reasoning with the context to offer some kind of
service to external applications.

Similarly to NUBIA, the system proposed by Agarwal et al. on
electronic medical records [9] uses business rules to combine gath-
ered history information, namely, from RFID sensors and patient
monitoring. Thus, our proposal is similar in the sense that we use
gathered information in business rules. However, in the case of NU-
BIA, information used is context which comes from any kind of
context-aware system, thus not restricted to the medical field.

Finally, our approach towards personalization, based on cus-
tomized rules managed by a rule editor, can be situated among those
that appear on the existing literature, neatly explained by Henrick-
sen & Indulska [10]. They classify personalization approaches on
context-aware systems into three categories: end user programming,
machine learning and preference-based. The one used in NUBIA is
similar to the end user programming, but it provides as a novelty a
scheme where the user relies on a rule editor to make the adjustments
he/she requires.

3 NUBIA ARCHITECTURE

The middleware core is divided into three main units. First, the
context handling module, which transforms context to a standardized
representation and deals with history knowledge. The rule engine
module, which manages the combined information using business
rules. Finally, the communication module, which provides the
context handling module with the context coming from systems,
and allows the rule engine to communicate about actions to execute
in the systems. Hence, notice that communication flows both ways
between NUBIA and systems.

In this section, we briefly explain the main features of the
mentioned modules, which can be seen in Figure 1.

Figure 1. NUBIA’s architecture

3.1 Context handling module
Taking into account that systems can communicate heterogeneous
context, there is a need for its classification into predefined groups.
This process is called categorization.

3.1.1 Categorization

Two categorization viewpoints exist [11]: conceptual, based on what
the context symbolizes (e.g. person, network, physical environment),
and measurement, based on how the context is represented (e.g. a
value, a predicate). There exists a bigger tendency to follow the con-
ceptual categorization [12] [13]. However, we chose a measurement
categorization in order to explore its possibilities in relation to the
management of history knowledge. Hence, context is classified into
the following four categories:

1. Single. Simple events, which happen at a very precise moment.
Alerts and punctual detections fit into this context category.

2. Discrete. The context can only take one value once at a time from
a finite set of values, each of which represents a state. Examples
in this category are device’s power state, which toggle between
on and off, and generally any context whose possible states are
well-defined.

3. Continuous. In this case, the value representing the context is a
real number, so we can make comparisons to see whether it is
within a certain range. Uncountable data belong to this category.

4. Descriptive. Compound content cannot be represented by any of
the three categories above. This category is based on the descrip-
tion statement and uses the notion of predicate. A person’s loca-
tion, for example, is represented as location(person,place).

Furthermore, context reported by systems may correspond to dif-
ferent levels of reasoning, ranging from raw data to thoroughly rea-
soned knowledge. Figure 2 shows a layered scheme [14] where con-
text information flows to the middleware from any of the two first
layers of a context-aware system.

Nevertheless, the category to which context belongs is the only
relevant distinction and context is manipulated based on it. For ex-
ample, a light switch, the energy level of an electron and a storm
emergency level are all considered as discrete context, regardless the
complexity of the process to obtain them.

Figure 2. Information flow in a layered scheme

3.1.2 The summarizing log

NUBIA manages a special type of history, called a summarizing
log, which gets updated every time some context information is
received from a system. A typical history logs everything, for an

eventual use, without any further modification than the addition
of new records. In a summarizing log, instead, a logging action
causes a modification that updates key information about the current
situation. This logging method helps to extract knowledge from the
history, that we refer as temporal knowledge.

Stored information such as number of times in a state or elapsed time
within a range, together with interesting timestamps, are enough to
infer the above mentioned temporal knowledge (e.g. frequencies,
time since last state shift).

Let us suppose that we want to know the frequency of a given
simple event. Two fields are required in the summarizing log: the first
time the event is registered, and the times count. Thus, the frequency
can be calculated:

frequency = (now − first time)/times count
There is also information directly extracted from the summarizing

log, as it is useful without any further operation. Examples are:
within which ranges from a defined set is some continuous value;
and the number of times in a certain state. For these two cases, the
following information could be part of the log:

(name:corporalTemp(at)temp(at)biometrics, currentValue:36.6)
(range:[36.0,36.9], lastBegan:12060000004, lastEnded:-)
(range:[36.0,36.6],

lastBegan:1206000800, lastEnded:1206000900)
(range:[36.8,max], lastBegan:1206001000, lastEnded:-)

(name:faintRisk(at)alarms(at)biometrics, currentState:low,
lastShift:1206010000, shifts:7)

(state:low, times:5, last:1206010000)
(state:average, times:2, last:12060000300)
(state:high, times:0, last:-)

Conditions in the rules (see Section 3.2) are checked against
all this knowledge, temporal and non-temporal.

Finally, notice that summarizing logs are not aimed at applica-
tions with infrequent or full history reasoning [16] [17], as they
are not powerful enough. Context-aware systems, however, have
a strong requirement on time, and a summarizing log helps to get
quick response times. Moreover, it is compatible with a full-fledged
history, so that the best of both worlds is available.

3.2 Rule engine module

This module evaluates rules that trigger depending on the context
knowledge extracted from the summarizing log. The rule engine is
independent from the communication process. As a result, systems
can continue to report context information even if the rule engine is
not active.

3.2.1 Rule structure

Two classes of business rule engines exist. First, and the one used
in our proposal, a production rule engine deals with rules with ”IF
condition THEN action” semantics. Usually, an external agent in-
vokes the engine, so in the scenario of a context-aware system with
production rules, the system typically invokes the engine whenever

4 Timestamps are described in Unix time [15] (seconds elapsed since 01 Jan
1970, 00:00:00 UTC).

some context is sensed. If, given the new situation, the conditions of
a rule are true, it fires.

Second, reactive rule engines. In this case rules fire when their
conditions are true as well, but they need some event to happen in
order to get evaluated. Hence their name, Event Condition Action
(ECA). This class of rule engine is suited for most context-aware
systems, because sensed context adjusts well to the concept of event.
Thus, the system does not need to explicitly invoke the rule engine,
as it is already aware of generated (context) events.

In NUBIA, many defined conditions depend on time, so they can-
not be evaluated only when some context information arrives, be-
cause temporal knowledge must also be taken into consideration.
There are two possible mechanisms to deal with this situation. Let
us take the following as an example condition:

The light has been in state off for 5 minutes
The first option (continuous evaluation) is to constantly check

whether 5 minutes have elapsed since the last shift to off. The
alternative (evaluation scheduling) is to schedule the system to
invoke the rule engine 5 minutes after each time the light changes to
the off state. This alternative is more efficient, as it uses processing
resources more wisely. However, it is also non-trivial, because
depending on the condition semantics, evaluations should be sched-
uled in different ways (e.g. with a certain frequency for a limited
time, when the event is detected). In either case (continuous or
scheduled evaluation), the middleware is in charge of telling its rule
engine when to evaluate the rules (i.e. events do not directly trigger
the rules) so we chose to implement them as production rules. In
particular, rules are implemented using JBoss Rules [19], following
a forward-chaining production structure.

The right hand side of the rules comprises two kinds of actions:
internal and external.

External actions are not executed by the middleware, but in a con-
nected system. In addition to sending context information, systems
may expose actions to NUBIA through Web Services, so that they
can be ordered to execute the actions.

Internal actions control NUBIA itself and gathered information.
This includes error count resetting. NUBIA detects both incoming
communication errors (i.e. context reported by a system is invalid or
the message is corrupt) and outgoing communication errors (i.e. the
system to which to connect is unreachable). Data can also be reset
if, for example, the information about a certain context should be
initialized. Finally, a system may refuse to execute an ordered action,
so this can be used in the condition part too.

3.2.2 Settings

Some of the incorporated settings in the rule engine include:
Maximum firing frequency. Controls repetition of rule firing. Even

if a rule is evaluated to true, it will not be fired unless the defined time
has elapsed. In that case, it will only fire if it is still true. For example,
the user may want to be notified of new mail after at least 2 hours
since the last notification, even if mail arrives in the meanwhile.

Activation group. This setting has been extended from the JBoss
Rules option with the same name. The rule within an activation group
with the highest priority is executed; the rest, albeit evaluated as true,
do not get a chance to be executed until the time defined by the
group’s maximum firing frequency goes by (all rules in a group have
the same maximum firing frequency). For example, if the user has a
tumble, the system should call a relative, but if, additionally, the user
suffers a heart-attack, this action may be overridden by a call to the

emergency number.
Other settings, such as firing count limit and expiry dates, may

eventually be included as well. The existance of some of these set-
tings in JBoss Rules might facilitate their implementation.

3.2.3 NIRE language

As a final point concerning the rule engine module, we designed a
script language to facilitate the definition of rules and check their va-
lidity, so that they do not cause errors during execution. The NUBIA
Input Rule Editing (NIRE) language provides the following benefits:

1. Transparency and independence from the underlying rule imple-
mentation engine.

2. A compact syntax, with no unneeded verbosity.
3. Translation extensibility through XML, allowing the definition of

new rule translations to other user languages without recompiling
the application.

The following is an example of a rule in NIRE. Notice that settings
are not defined in the language, as they are introduced through the
graphical interface.

if
is-true
presence@locator@wear $somebody

last-time-in-range
temperature@temp01@domotics 15 27 > 3600

time > 18:00:00
then

turn-heater (using heater@domotics) "on"
display (phone(at)aux-phone)
"$somebody is home, turning heater on."

The rule has a typical ”IF condition THEN action” structure. Each
of the first two conditions are stated over a certain context, while the
third is an internal NUBIA condition which controls the time of the
day. Each action is defined by a name and its corresponding device
and system. In this rule, both actions require one parameter each, de-
limited by double quotation marks. Concerning symbols, ”@” (i.e.
at) denotes in which device and system a context is sensed or an ac-
tion is executed, whereas the dollar symbol, denotes variables. Thus,
the first condition states that somebody must be detected, and saves
his/her name in the ”somebody” variable.

If the chosen translation language is English, the user would see
this resulting text:

If presence is true for a certain person ’somebody’, temperature
has not been between 15 and 27 ◦C in the last hour and it is more
than 6 in the afternoon, then turn heater on and display in the phone
”’somebody’ is home, turning heater on.”.

3.3 Communication
Information flows between systems and NUBIA in both ways: con-
text information is reported to the middleware and orders to execute
actions are sent back. In either case, Web Services are used. Thus,
to make communication possible, developers who wish to have their
systems integrated need to: make methods to be used by NUBIA
available through a Web Service; and report desired context to NU-
BIA’s Service.

Usually, applications use a fixed set of Web Services, but some-
times they may require to call beforehand unknown Web Services.

Dynamic invocation allows client applications to invoke Web Ser-
vices whose descriptions are unknown until the application is used.
As an example implementation, the Dynamic Invocation Interface
(DII) [18] for CORBA supports this functionality. NUBIA needs the
dynamic invocation, given that it is aimed at working with before-
hand unknown systems.

For a higher decoupling from inner operation, serialized XML are
sent, so if more communication-related functionalities are added to
the middleware, only the XML representation would change, whilst
Web Services in connected systems and the middleware would
remain the same. The following XMLs are examples of incoming
and outgoing messages, respectively:

<event time=”1206000000” xmlns=”http://www.tempuri.org”>
<signal name=”smoke” device=”smk” system=”domotics”/>
<continuousInfo>0.32</continuousInfo>
</event>

<request time=’1206000000’ xmlns=’http://www.tempuri.org’>
<action name=’switch’ device=’light01’ system=’domotics’/>
<parameter>off</parameter>
</request>

Despite Web Services are the best communication option because
of its wide de facto standardization, there are systems that do not
fully accept them, such as smartphones, most of which cannot host a
web server. To cope with this difficulty, socket communication stands
in NUBIA as an alternative to Web Services.

4 INTERFACE

The task of integrating autonomous context-aware systems is not
easy, so NUBIA provides a graphical interface that focuses on the
separation of the different types of users (i.e. roles) for a more spe-
cific interaction with each of them. Therefore, before we show the
main features of the GUI, we present the user roles considered by
NUBIA.

Figure 3. Some windows from NUBIA’s interface

4.1 Roles

Relation with end users is a thoroughly studied issue in context-
aware systems. Giving users control over a system they use implies
they need to learn, in some degree, how to interact with it. Different
approaches towards this interaction exist [10], but they lack either
power of control or simplicity, so we define a role that fills the gap
between the end user and the administrator, to keep the user some-
how in control and yet increase simplicity in their interaction with
the system. Thus, for our middleware NUBIA, we establish a three
tiered role division to better focus on each role requirements:

1. Administrator. There only exists one, and defines which systems
to connect to NUBIA and their specifications, probably handed
by other administrators or developers. Also, he/she configures set-
tings such as working mode (dedicated server or shared machine)
and application defaults. Finally, the administrator is in charge of
account management.

2. Rule editor. Manages rules without the need to know about appli-
cation programming or technical details. A user with a little bit
of technical knowledge may manage rules and act as a rule editor
too.

3. End user. Can only see the defined rules and decide whether to
start or stop NUBIA.

In this scheme, roles are incremental, with the administrator having
privileges as a rule editor and user as well.

4.2 Ease of interaction

A configuration wizard à la MySQL [20] (see figure 3) guides the
administrator to easily configure, for example, system defaults and
working mode.

Systems specifications are defined in XML, so they can be
checked through an XML-schema and translated to internal rep-
resentation through an XSL transformation. This way, portability,
independence and easy handling are achieved and hence, the
administrator selects the file with the definitions and NUBIA does
the rest.

Maximum firing frequency, validity expiration or activation
policies within a group are settings that allow a more refined exe-
cution control. Nevertheless, defined defaults (by the administrator
or NUBIA itself) make simple rule creation an easier task. A rule
preview, an auxiliary panel with available data and syntax documen-
tation, and an accurate error checking facilitate rule creation even
more.

Automatic translation of rules to the user’s language allows less
technical users to easily understand them, whilst not giving extra
work to the rule editor.

5 CONCLUSIONS

We have presented a middleware that successfully connects, with
loosely coupled Web Services, autonomous context-aware systems,
combining and making use of their information to trigger business
rules. Interaction is made through an easy to use interface, designed
taking roles into account.

Using the implemented prototype, we observed the following be-
havior: a rule may be triggered by incoming context information or
because some defined time has elapsed. Taking both possible cases

into account, the average response time starts at 10 milliseconds with
a few defined rules, each of which adds a 4 microseconds overhead.

This last fact confers the middleware scalability concerning rules.
Finally, the fast processing of Web Service messages supports heavy
communication between NUBIA and the context-aware systems, so a
great scalability is also achieved in the amount of integrated systems
and communication with them.

ACKNOWLEDGEMENTS
This work is supported by the Spanish Ministry of Education and
Science (TIN2007-68091-C02-01) and the Basque Government (IT-
427-07).

REFERENCES
[1] A. Dey, D. Salber, and G. Abowd, A conceptual framework and a

toolkit for supporting the rapid prototyping of context-aware applica-
tions, Human-Computer Interaction, vol. 16, pp. 97-166, 2001.

[2] A. Cesta & F. Pecora, Integrating Intelligent Systems for Elder Care in
RoboCare, W.C. Mann & A. Helal (Eds): Promoting Independence for
Older Persons with Disabilities, IOS Press, pp. 65-73, 2006.

[3] G. Virone et al., An Advanced Wireless Sensor Network for Health Mon-
itoring, D2H2, Arlington, Virginia, 2006.

[4] SaludNova Sociedad Cooperativa, website: http://www.saludnova.com/
(as of April 2008).

[5] M. Baldauf & S. Dustdar, A Survey on Context-Aware Systems, Techni-
cal Report Number TUV-1841-2004-24, November 2004.

[6] J.E. Bardram, The Java Context Awareness Framework (JCAF), Tech.
Report CfPC 2004-PB-61, Centre for Pervasive Computing, Aarhus,
Denmark, 2003.

[7] K. Henricksen & J. Indulska, A Software Engineering Framework for
Context-Aware Pervasive Computing, Second IEEE International Con-
ference on Pervasive Computing and Comms. (PERCOM 2004), March
2004.

[8] T. Gu, H. Pung , D. Zhang A service-oriented middleware for building
context-aware services, Journal of Network and Computer Applications
28(1): 1-18, 2005.

[9] S. Agarwal, Context-Aware System to Create Electronic Medical En-
counter Records, Technical Report Number TR-CS-06-05, 2006.

[10] K. Henricksen & J. Indulska, Personalising Context-Aware Applica-
tions, in OTM Workshop on Context-Aware Mobile Systems, Springer-
Verlag, pages 122–131, 2005.

[11] M.A. Razzaque, Categorization and Modeling of Quality in Context
Information, in Proceedings of the IJCAI Workshop on AI and Auto-
nomic Communications, 2005.

[12] Eleftheria Katsiri & Alan Mycroft, A first-order logic model for context-
awareness in distributed sensor-driven systems, RSPSI Workshop,
2006.

[13] Anjum Shehzad, Hung Q. Ngo, Kim Anh Pham and Sungyoung Lee,
”Formal Modeling in Context Aware Systems”, KI-Workshop Model-
ing and Retrieval of Context (MRC2004), 2004.

[14] S.W. Loke, Context aware pervasive systems : the architecture of a new
breed of applications (ISBN: 0849372550), Abstract layered architec-
ture (page 25) . Boca Raton, FL : Auerbach Publications, 2006.

[15] Unix time article from Wikipedia, available at
http://en.wikipedia.org/wiki/Unix time.

[16] G.M. Youngblood et al., Automation Intelligence for the Smart Envi-
ronment, IJCAI-05, page 1513, 2005.

[17] V. Jakkula & D. Cook, Anomaly detection using temporal data mining
in a smart home environment, Methods of Information in Medicine,
2008.

[18] BEA Documentation on the Dynamic Invocation Interface, available at
http://e-docs.bea.com/tuxedo/tux80/creclien/dii.htm (as of April 2008).

[19] JBoss Rules, http://www.jboss.com/products/rules (as of April 2008).
[20] MySQL 5.0 Server Configuration Wizard, documentation available at

http://dev.mysql.com/doc/refman/5.0/en/mysql-config-wizard.html.

