
A Service-Oriented Architecture to Support Agent
Reputation Models Interoperability

Luis G. Nardin1, Anarosa A. F. Brandão1, Jaime S. Sichman1, and Laurent Vercouter2

1 Laboratório de Técnicas Inteligentes - EP/USP
Av. Prof. Luciano Gualberto, 158 - trav. 3 - 05508-900 - São Paulo - SP - Brazil

{luis.nardin, anarosa.brandao, jaime.sichman}@poli.usp.br
2 Ecole Nationale Supérieure des Mines de Saint-Etienne
158, cours Fauriel, 42023 Saint-Etienne Cedex 2, France

Laurent.Vercouter@emse.fr

Abstract. Agents are becoming a popular technology for the development of
distributed, heterogeneous and always available systems. In those systems, inter-
actions are essential, but semantic heterogeneity turns the establishment of in-
teraction among agents into a problem. When considering reputation models in
multi-agent systems, the lack of a consensus about the reputation definition could
be a problem for interactions since they are essential to accelerate the convergence
of the reputation evaluation. We propose in this paper a service-oriented architec-
ture to deal with this semantic heterogeneity. This architecture supports concept
mapping and translation among reputation model ontologies to a common ontol-
ogy and vice-versa, thus allowing heterogeneous agents interoperability.

1 Introduction

The growth of the internet and associated technologies brought ”interaction” as a new
metaphor for computation, turning computing into an activity that is inherently social,
leading to new ways of conceiving, designing, developing and managing computational
systems [10]. The multi-agent approach is an example of a technology that complies
with such viewpoint, since agents have two important capabilities in multi-agent sys-
tems (MAS): to act autonomously at some extent and to engage in social activities need-
ing cooperation, coordination and negotiation [19]. The engagement in any of these ac-
tivities implies that the agent will exchange information. In open environments, where
there is no control about the agents that enter or leave the system, agents that partici-
pate on those social activities are exposed to risks, e.g. when taking a decision based on
inaccurate information received from a malevolent agent.
Some solutions to this problem are based on trust models, which serve as a decision
criterion for an agent to engage and to participate in social activities. The concept of
reputation from social sciences has been used by most of the researchers as the pre-
ferred mechanism to implement computational trust models. Moreover, reputation is a
social property or a social process. It is a social property when considered as an agent’s
mental representation about other agents and a social process when considered as the
result of the belief’s transmission [5].
Considering reputation as a social process requires that the agents in the system interact

in order to increase the amount of information transmission, thus accelerating the repu-
tation evaluation convergence. However, as there is no consensus on a single reputation
definition, the several reputation models already proposed ([4], [5], [11], [14], [15],
[20]) were developed using different approaches and different semantics attached to
reputation and its associated concepts. In order to overcome this semantic heterogene-
ity of reputation models, the creation of an ontology that could subsume the different
reputation models, called Functional Ontology of Reputation (FORe) was proposed in
[3]. The underlying idea in this work was to use a so-called hybrid approach [18]: rep-
utation interoperability would be obtained by translating a source model (expressed in
ontological terms) to FORe, and then by translating the result obtained in FORe to a tar-
get model (also expressed in ontological terms). In another work [17], a general agent
architecture was proposed to implement agents that could interoperate about reputation
using FORe as a common ontology.
In this paper, we propose to use a service-oriented architecture (SOA) to support agent
reputation interoperability. The use of a service-oriented approach is related to the idea
proposed by [7] of providing all the ontology-related functions through Web Services
[2]. The paper is organized as follows. In section 2, we briefly present the general agent
architecture proposed on [17], and on which we are basing our work. Section 3 presents
an overview of the service-oriented architecture proposed to support agent reputation
models interoperation. A detailed description of the architecture components (the On-
tology Mapping Service and the Translator module) is given in sections 4 and 5. A
scenario illustrating the architecture usage is shown in section 6 and a case study is pre-
sented in section 7. Finally, conclusions and comments about future work are presented
in section 8.

2 A General Architecture for Reputation Interaction

A general architecture for reputation interaction was proposed in [17] (Fig. 1). In this
architecture, it is considered that different agents may have heterogeneous reputation
models and the agent reputation model is implemented in a module called Reputation
Reasoner Module (RRM). A component called Reputation Mapping Module (RMM)
was integrated to the agent architecture in order to provide the mapping and translation
ontology functions [9] that would allow agents with different reputation models to in-
teract.
Two ontologies are used: the FORe and the reputation model ontology, this latter con-
sisting of the representation of the internal agent reputation model in ontological terms.
Hence, when two agents need to exchange information about reputation, the RRM of the
source agent activates the RMM to translate its query from its inner reputation model
to FORe and then the Interaction Module (IM) sends the message to the target agent.
When this latter receives the message, a similar process is done: the query is translated
from FORe to the target reputation model by the RMM, which activates the RRM in
order to process the query according to its inner reputation model.
Although this architecture gives a general idea of providing reputation interoperabil-
ity, it does not represent, however, a full detailed architecture [17]. We propose in the
sequence a possible solution, by using a SOA approach.

Fig. 1. Agent architecture for reputation interaction

3 The Service-Oriented Architecture for Reputation Interaction

The main underlying idea in the proposed service-oriented architecture for reputation
interaction is that the mapping between different reputation models represented by on-
tologies may be realized off-line and be available on-line as a service. In this architec-
ture, the hybrid approach proposed by Visser et al. [18] is used to allow the interopera-
tion of agents with different reputation models based on a common vocabulary, which
requires the agent to perform two distinct but interrelated ontology functions: mapping
and translation. Mapping is a collection of functions assigning the concepts and rela-
tions in one ontology to the concepts and relations in another ontology. Translation is
the application of the mapping functions to translate sentences from a source to a target
ontology [9].
The advantage of using a service-oriented architecture, from a design/programming
perspective, is that the agents become simpler since they do not need to perform the
mapping function internally. While the advantage of using the hybrid approach comes
from the fact that the agents do not know the other agents internal reputation model
avoiding cheating.
Hence, the architecture extends the previous general agent architecture in two ways: (i)
it subdivides the RMM in two distinct and specialized modules: the Ontology Mapping
Service (OMS), which performs the ontology mapping function, and the Translator,
which performs the ontology translation function. (ii) It performs the ontology mapping
function as a service outside the agent architecture. Fig. 2 shows this extended archi-
tecture. By defining such extension, we intend to alleviate the agent dynamic workload,
since it will not need to perform the mapping function on-line. Moreover, the results of
such mapping will be stored in the service and it may be reused by new agents that enter
the system and have an internal reputation model that was already mapped and stored
in the service.
The Ontology Mapping Service module is a service and resides outside the agent. It
implements the ontology mapping function and it has two main functionalities: (i) to
map concepts from the target’s reputation model ontology to the concepts of the com-
mon ontology. This mapping can be directly inferred by simply classifying the resulting
ontology from the integration and alignment of a given reputation model and the com-

Fig. 2. The proposed service-oriented architecture

mon ontology [12], and (ii) to answer concept translation requests from the Translator
module.
The Translator module resides inside the agent and it implements the ontology trans-
lation function. It has four main activities: (i) to translate the reputation messages from
the common ontology to the target agent’s reputation model ontology whenever the
message comes from the IM; (ii) to translate the reputation messages from the agent’s
reputation model ontology to the common ontology whenever the message is sent to
IM; (iii) to trigger some function in the RRM based on the interpretation of messages
written using the reputation model ontology; and (iv) to create a message using the rep-
utation model ontology whenever requested by RRM. The RRM is dependent of the
agent internal reputation model and its implementation is out of the scope of this paper.

4 The Ontology Mapping Service

The Ontology Mapping Service (Fig. 3) is considered as the architecture’s core com-
ponent since it performs part of the ontology mappings and provides it through its Web
Services interface for use by the Translator module. Its existence is independent of the
agent since it is provided as a service.
A description of its components follows:

– Ontology Repository stores the reputation models ontology described in terms of a
common ontology.

– Translation Repository stores the mapping of reputation models ontology concepts
to the common ontology concepts.

Fig. 3. The Ontology Mapping Service components

– Classifier Module reads the ontologies stored in the Ontology Repository; classifies
it using the Inference Engine and stores the result in the Translation Repository. Its
pseudo-code follows:
read ontology
classifyOntology(ontology)
allAsserted = getAllAssertedConcepts(ontology)
for each asserted of allAsserted do

allInferred = getAllInferedConcepts(asserted)
for each inferred of allInferred do
write TranslationRepository[asserted,

inferred]
end for

end for

Algorithm 1. Classifier Module algorithm

– Inference Engine Interface is a communication module between the Classifier Mod-
ule and the Inference Engine.

– Inference Engine is an ontology reasoner that infers the relations between the rep-
utation model ontology and the common ontology concepts.

– Query Interface answers the Translator module requests for translation of concepts.

The Ontology Mapping Service is implemented as a Web Service [2] and it is fully
implemented in Java programming language using the Protégé-OWL Plugin [8]. The
inference engine chosen was Pellet [16] since it (1) is completely developed in Java and
(2) has a method call integration to the Protégé-OWL Plugin.

5 The Translator Module

The Translator module (Fig. 4) utilizes the mappings stored in the OMS in order to
translate sentences from the common ontology to the agent’s reputation model ontol-
ogy and vice-versa. This module is tightly integrated to the other agent’s modules, since

it resides inside the agent. The Translator module interacts with two agent’s modules:
the IM and the RRM. Among the functionalities performed by this module, there is the
treatment of translation inconsistencies.

Fig. 4. The Translator Module components

Translation inconsistency is considered any translation of a source ontology concept
to a target ontology concept which mapping is not one to one, for instance, when the
source ontology concept maps to more than one target ontology concept or when the
source ontology concept is not mapped to any target ontology concept.
Flexibility and configurability were identified as the two main required characteristics
for this module design, since not all the agents implement the same IM and RRM, and
each agent may have different translation strategies. Flexibility allows the Translator
module to be adapted to interact with different kinds of IM and RRM, while configura-
bility allows the selection of specific translation strategies and value transformations to
fulfill the agent needs.
In order to satisfy the flexibility characteristic, the Translator module is designed with
one central component, the Translator Controller (TC) and six other components that
perform specific functions. All the six components are actually interface specifications,
which have predetermined function in the architecture according to the following:

– Interaction Module Interface (IMI) receives/sends messages from/to the agent’s
IM.

– Ontology Mapping Service Client Interface (OMSCI) queries the OMS in order to
obtain all possible translations from the source ontology to the target ontology.

– Value Transform Interface (VTI) is executed to transform, if necessary, the val-
ues associated with a concept when that concept is translated from an ontology to
another.

– Translation Strategy Interface (TSI) determines the strategy to use when the con-
cept does not have a possible translation or when there are multiple possible transla-
tions. In the former, some of the possible inconsistency treatments are: (i) to remove

the concept from the translated message, (ii) do not translate the concept and keep
the original one, or (iii) to use some kind of heuristic to determine a non-direct
translation. In the latter, the possible strategies are similar: (i) to remove the con-
cept from the translated message, (ii) to translate the source concept to the multiple
target concepts, or (iii) to use some kind of heuristics to choose one of the possible
choices.
Despite the possibility of creating strategies to prevent translation inconsistencies,
they may not solve the inconsistencies for all possible situations and they may gen-
erate other inconsistencies. Some examples are: (i) the strategy of removing the
concept from the translated message may invalidate the message content causing
some misunderstanding between the agents; (ii) the strategy of keeping the original
concept when there is no possible translation may cause the impossibility of the
message interpretation by the target agent since it does not know the meaning of
the non-translated concept.
In order to prevent new inconsistencies when using heuristic strategies, those strate-
gies must be logically equivalent (A ⇔ B), meaning that if concept A translates to
concept B, when the inverse translation is requested the concept B must translate
to concept A.

– Language Module Interface (LMI) performs the parsing of the internal language
used in the message to identify concepts for translation and to rebuild the message
after the concepts translation.

– Reputation Reasoner Interface (RRI) interprets the messages described using the
Translator module internal language and, based on that, performs calls to the RRM.
It receives calls from the RRM and builds messages in the internal language.

The configurability characteristic is satisfied by the possibility of configuring the TC to
use the desired implementation of each one of the components specified as an interface.

6 Usage Example

This section presents a scenario showing the level of interoperability achieved as a
result of the agents’ interaction about reputation when using the architecture previously
described. Considering the use of the service-oriented architecture proposed, at least
one OMS must exist in the system to support the mapping and translation of reputation
model ontology concepts to a common reputation ontology concepts and vice-versa.
The following two steps are required prior to use OMS [12]:

1. to design the reputation model ontologies of the reputation models, if the reputation
models are not described in ontological terms, since the OMS only maps ontologies.

2. to align the reputation models ontology to the common reputation ontology, since
the OMS processes only ontologies that are already described in terms of a common
reputation ontology.

Designing the Reputation Model Ontologies
We built the reputation model ontologies manually by using Protégé as the editor and

OWL [1] as the ontology language, which is the most recent standard ontology lan-
guage from the World Wide Web Consortium (W3C1). In the sequence, the terminolo-
gies identified as concepts in two reputation models, L.I.A.R. [11] and Repage [14], are
described. Those concepts compose the design of the reputation model ontologies.
L.I.A.R. (Liar Identification for Agent Reputation) is a model for the implementation
of social control of agent interaction. The idea is to provide tools that allow agents to
(1) reason about other agent’s interaction; (2) detect any interaction rules violation; and
(3) maintain a reputation model of other agents. Its reputation model distinguishes rep-
utation in five different types, which are based on seven roles involved in the reputation-
related processes. Each of the seven roles is defined by the source and kind of informa-
tion used to calculate the reputation value. The seven roles are: Target role, Participant
role, Observer role, Evaluator role, Punisher role, Beneficiary role and Propagator role.
The five different types of reputation are: Direct Interaction-based Reputation (DI-
bRp), Indirect Interaction-based Reputation (IIbRp), Observation Recommendation-
based Reputation (ObsRcbRp), Evaluation Recommendation-base Reputation (EvR-
cbRp) and Reputation Recommendation-based Reputation (RpRcbRp). Each reputation
is associated to a facet, which is the subject the evaluation is about.
Repage. The Repage (Reputation and ImAGE) system is a computational module based
on a reputation model proposed by [5]. Image and reputation are the two main concepts
in this model and they represent social evaluations. Image is an evaluative belief, which
is formed using information, acquired by agent experience or propagated third-party
images. Reputation is a meta-belief, which is formed, based on anonymous reputation
value transmitted on the social network about the target agent. The social evaluations
are context-based which means that the agent may hold different social evaluation for
the same target (AgentImage and AgentReputation). The model distinguishes the types
of agents involved in the image or reputation formation in four different types: Target
agents, Evaluator agents, Propagator agents and Beneficiary agents.

Aligning the Reputation Model Ontologies to FORe
Alignment is the establishment of binary relations between the concepts of two ontolo-
gies [9]. The binary relations used to perform this operation in our case are defined in
FORe.
We manually defined each of the reputation model concepts identified previously in
terms of FORe. For example, the L.I.A.R. instances of the Direct Interaction-based
Reputation concept have at least one association through the hasInformationSource re-
lation to instances of the DirectExperience, formally defined:

∃hasInformationSource(DirectExperience)

In addition, the Repage instances of the Image concept have at least one association
through the hasInformationSource relation to instances of the DirectExperience or Ob-
servation or SecondHandInformation, formally defined:

∃hasInformationSource(DirectExperience or Observation or SecondHandInformation)

Having the alignment, it is manually stored in the Ontology Repository. Therefore,
the Ontology Mapping Service detects this new ontology and executes the Classifier

1 http://www.w3c.org

Module (Algorithm 1) to process it. As a result, the output of such process is stored
in the Translation Repository. This is made for each reputation model ontology. The
mapping results generated by the OMS can be seen in [12].
In the sequence, we present an example of reputation interaction between two agents
that implement different reputation models, L.I.A.R. and Repage.

7 Case Study

Let us consider an agent mediated service marketplace scenario, composed of service
provider agents and consumer agents. Providers publish and provide services, while
consumers search and contract services. In order to mitigate the risks imposed by
an open and dynamic marketplace environment, each agent incorporates a reputation
mechanism to help in the agent’s decision of contracting or not services from a deter-
mined provider. In this scenario, when a consumer agent wants to contract a service,
it first searches for the providers that have that kind of service available. Secondly, it
exchanges reputation information with other consumer agents to evaluate the reputa-
tion of each provider and finally, it decides which provider to contract the service from,
based on the reputation values received.
Suppose a system where there are two consumer agents, called Alice and Bob, im-
plementing the proposed service-oriented architecture and using different reputation
models. Agent Alice uses the Repage reputation model and agent Bob uses the L.I.A.R.
reputation model. Thus, considering that we have opted for using FORe as the common
reputation ontology, the OMS needs to be set up to support the translation from Repage
and L.I.A.R. to FORe, and vice-versa.
Now, assume that agent Alice wants to buy a ticket to fly from Rome to Paris. In order
to buy a cheap ticket, Alice searches in a list of airline companies the ones that fly those
cities. Since she has never flown any of the airlines in the list, she is afraid of choosing
a distrustful one. However, she knows Bob, which travels a lot in Europe. She decides
to ask him about the reputation of each one of the airline companies in the list to help
in her decision.
Agent Alice, with the objective of obtaining the airline companies’ reputation value,
activates her RRM, requesting it to query agent Bob for the information required. The
RRM, through the RMI, elaborates a SPARQL [13] message using the Repage concepts.
Repage concepts are used since it is the Alice inner reputation model ontology.

SELECT ?AgentName ?Reputation ?Value
WHERE {?x reputation:AgentName ?AgentName .

?x reputation:Value ?Value .
?x reputation:Reputation ?Reputation .
?x reputation:AgentReputation ?RepNature .
FILTER ((?Reputation = true) && REGEX(?RepNature,Airline))

}

The message is sent to TC that activates the LMI. This module identifies the con-
cepts Value, Reputation and AgentReputation for translation. Using the OMSCI, the
TC queries the OMS in order to obtain the possible translations for those concepts from
the agent’s reputation model ontology to the common reputation ontology, the FORe.
Table 1 presents the possible translations for the concepts identified by the LMI (the

Table 1. Mapping of Repage concepts to FORe concepts

Repage Concept FORe Concept
Value ReputationEvaluationValue

ReputationFinalValue
Reputation SecondaryReputation
AgentReputation ReputationNature

complete mapping is found in [12]).
Having this table, the TSI is activated to solve all the possible translation inconsisten-
cies it may exist. In this case, the only inconsistency that exists is the translation of the
Value Repage concept to FORe concept, since there are two possible target concepts.
Selecting the third translation strategy described in section 5 and defining the heuristics
to select the first option from the list, the concept Value translates to ReputationEvalua-
tionValue. Since there is no numerical value for translation in the message, the TC does
not use the VTI and the resulting translated message is:

SELECT ?AgentName ?SecondaryReputation ?ReputationEvaluationValue
WHERE {?x reputation:AgentName ?AgentName .

?x reputation:ReputationEvaluationValue ?ReputationEvaluationValue .
?x reputation:SecondaryReputation ?SecondaryReputation .
?x reputation:ReputationNature ?RepNature .
FILTER ((?SecondaryReputation = true) && (REGEX(?RepNature,Airline)))

}

Afterwards, this message is redirected to the IMI that activates the agent’s IM, which
encapsulates the message into a communication protocol (FIPA2) before sending it to
agent Bob.
The agent Bob receives the message from agent Alice through its IM and extracts the
information from the message. It identifies that the message is related to reputation, thus
it redirect the message content to the IMI. The TC receives the message content from
the IMI and sends it to the LMI to retrieve the concepts for translation from the FORe
to the L.I.A.R. ontology. The LMI recognizes the concepts ReputationEvaluationValue,
SecondaryReputation and ReputationNature from the FORe. The TC obtains the possi-
ble translations for those concepts using the OMSCI, which are shown on Table 2 (the
complete mapping is found in [12]).

Table 2. Mapping of FORe concepts to L.I.A.R. concepts

FORe Concept L.I.A.R. Concept
ReputationEvaluationValue ReputationValue
SecondaryReputation
ReputationNature Facet

The TC activates the TSI in order to have all the possible inconsistencies resolved.
There is only one inconsistency, related to the SecondaryReputation concept. Actu-
ally, there is no L.I.A.R. concept that directly relates to this FORe concept. In order
to solve that inconsistency there are two possible strategies: (i) to remove the con-
cept from the translated message or (ii) to use some kind of heuristic to determine
a non-direct translation. Since the former is too simple, the strategy would be to use

2 http://www.fipa.org

the classified ontology to identify all the L.I.A.R. concepts that are classified under
the FORe concept SecondaryReputation, i.e, EvaluationRecommendationBasedReputa-
tion, ObservationRecommendation-BasedReputation and ReputationRecommendation-
BasedReputation).

SELECT ?AgentName ?EvRcbRp ?ObsRcbRp ?RpRcbRp ?ReputationValue
WHERE {?x reputation:AgentName ?AgentName .

?x reputation:ReputationValue ?ReputationValue .
?x reputation:EvaluationRecommendationBasedReputation ?EvRcbRp .
?x reputation:ObservationRecommendationBasedReputation ?ObsRcbRp .
?x reputation:ReputationRecommendationBasedReputation ?RpRcbRp .
?x reputation:Facet ?RepNature .
FILTER((?EvRcbRp = true || ?ObsRcbRp = true || ?RpRcbRp = true) &&

(REGEX(?RepNature,Airline)))
}

After the message is translated, the TC sends the message to RRI. The RRI interprets
the SPARQL query and it activates the agent’s RRM, which processes the request and
returns a response to RRI. An example of such a response can be seen bellow.

((AgentName=A; ReputationValue=0.7; EvRcbRp=false; ObsRcbRp=false; RpRcbRp=true; Facet=Airline);
(AgentName=A; ReputationValue=0.4; EvRcbRp=true; ObsRcbRp=false; RpRcbRp=false; Facet=Airline);
(AgentName=B; ReputationValue=0.9; EvRcbRp=false; ObsRcbRp=false; RpRcbRp=true; Facet=Airline);
(AgentName=C; ReputationValue=0.1; EvRcbRp=false; ObsRcbRp=true; RpRcbRp=false; Facet=Airline))

This response is sent back to agent Alice as an inform message and the translation
process is executed all again, but at this time backwards.

8 Conclusions and Future Work

This paper presented a service-oriented architecture for agent interaction about rep-
utation. It extended the general architecture presented in [17] by dividing one of its
modules into two: (i) an external service for ontology mapping; and (ii) a translation
module that remains inside the agent. A detailed description of those new modules and
their components was presented.
In order to describe the entire interaction about reputation, an example of the service-
oriented architecture use was shown. In this example, the way new modules and their
components communicate was described as well as some inconsistencies translation
strategies.
As future work, we intend to improve the treatment of some inconsistencies that were
found during the development of the translation strategies. We also intend to evaluate
the possible application of the general approach, i.e. providing agent interoperability
using a service-oriented architecture based on ontology translation in different aspects
of multi-agent systems other than reputation, for instance, organizational models [6].

9 Acknowledgements

This work is partially supported by CNPq and FAPESP, Brazil, as well as by USP/
COFECUB ORGMAS project.

References

1. S. Bechhofer, F. Harmelen, J. Hendler, I. Horrocks, D. L. McGuiness, P. F. Patel-Schneider,
and L. A. Stein. OWL web ontology language reference. W3C recommendation, W3C,
February 2004.

2. D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C. Ferris, and D. Orchard. Web
services architecture. W3C recommendation, W3C, February 2004.

3. S. Casare and J. S. Sichman. Using a functional ontology of reputation to interoperate dif-
ferent agent reputation models. Journal of the Brazilian Computer Society, 11(2):79–94,
2005.

4. C. Castelfranchi and R. Falcone. Principles of trust in mas: Cognitive anatomy, social im-
portance and quantification. ICMAS’98, pages 72–79, 1998.

5. R. Conte and M. Paolucci. Reputation in Artificial Societies. Social Beliefs for Social Order.
Boston: Kluwer, 2002.

6. L. Coutinho, A. A. F. Brandão, J. S. Sichman, and O. Boissier. Model-driven integration of
organizational models. Proceedings of the 9th International Workshop on Agent Oriented
Software Engineering, 2008.

7. O. Dameron, N. F. Noy, H. Knublauch, and M. A. Musen. Accessing and manipulating on-
tologies using web services. Proceedings of the 3rd International Semantic Web Conference
(ISWC2004), 2004.

8. M. Horridge, H. Knublauch, A. Rector, R. Stevens, and C. Wroe. A practical guide to build-
ing owl ontologies using the protégé-owl plugin and coode tools edition 1.0. Technical
report, The University Of Manchester Stanford University, 2004.

9. Y. Kalfoglou and M. Schorlemmer. Ontology mapping: the state of the art. The Knowledge
Engineering Review, 18:1–31, 2003.

10. M. Luck, P. McBurney, O. Shehory, and S. Willmott. Agent Technology: Computing as
Interaction (A Roadmap for Agent Based Computing). AgentLink, 2005.

11. G. Müller and L. Vercouter. L.i.a.r. achieving social control in open and decentralised multi-
agent systems. Technical report, Ecole Nationale Suprieure des Mines de Saint-Etienne,
2008.

12. L. G. Nardin, A. A. F. Brandão, J. S. Sichman, and L. Vercouter. An ontology mapping ser-
vice to support agent reputation models interoperability. (to appear). Proceedings of Work-
shop on Trust in Agent Societies, 2008.

13. E. Prud’hommeaux and A. Seaborne. Sparql query language for rdf (working draft). Tech-
nical report, W3C, March 2007.

14. J. Sabater, M. Paolucci, and R. Conte. Repage: Reputation and image among limited au-
tonomous partners. Journal of Artificial Societies and Social Simulation, 9(2), 2006.

15. J. Sabater and C. Sierra. Social regret, a reputation model based on social relations. Journal
SIGecom Exch., 2(1):44–56, 2001.

16. E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz. Pellet: A practical owl-dl reasoner.
Journal of Web Semantics, 2006.

17. L. Vercouter, A. A. F. Brandão, S. Casare, and J. S. Sichman. An experience on reputation
models interoperability based on a functional ontology. Proceedings of 20th International
Joint Conference on Artificial Intelligence (IJCAI’07), 2007.

18. U. Visser, H. Stuckenschmidt, H. Wache, and T. Vögele. Enabling technologies for inter-
operability. Workshop on the 14th International Symposium of Computer Science for Envi-
ronmental Protection, 2000.

19. M. Wooldridge. An Introduction to MultiAgent Systems. John Wiley & Sons, June 2002.
20. G. Zacharia and P. Maes. Trust management through reputation mechanisms. Journal of

Applied Artificial Intelligence, 14(2):881–907, 2000.

