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Abstract. The traditional strategy performed by Information Retrieval
(IR) systems is ranked keyword search: for a given query, a list of docu-
ments, ordered by relevance, is returned. Relevance computation is pri-
marily driven by a basic string-matching operation. To date, several at-
tempts have been made to deviate from the traditional keyword search
paradigm, often by introducing some techniques to capture word mean-
ings in documents and queries. The general feeling is that dealing explic-
itly with only semantic information does not improve significantly the
performance of text retrieval systems. This paper presents SENSE (SE-
mantic N-levels Search Engine), an IR system that tries to overcome the
limitations of the ranked keyword approach, by introducing semantic lev-
els which integrate (and not simply replace) the lexical level represented
by keywords. Semantic levels provide information about word meanings,
as described in a reference dictionary, and named entities. We show how
SENSE is able to manage documents indexed at three separate levels,
keywords, word meanings, and entities, as well as to combine keyword
search with semantic information provided by the two other indexing
levels.

1 Introduction

Ranked keyword search is quite successful, in spite of its obvious limits basically
due to polysemy, the presence of multiple meanings for one word, and synonymy,
multiple words having the same meaning. The result is that, due to synonymy,
relevant documents can be missed if they do not contain the exact query key-
words, while, due to polysemy, wrong documents could be deemed as relevant.
These problems call for alternative methods that work not only at the lexical
level of the documents, but also at the meaning level.

Any attempt to work at the meaning level must solve the problem that, while
words occur in a document, meanings do not, since they are often hidden behind
words. For example, for the query “apple”, some users may be interested in doc-
uments dealing with “apple” as a fruit, while other users may want documents
related to the company. Some linguistic processing is needed in order to pro-
vide a more powerful “interpretation” both of the user needs behind the query



and of the words in the document collection. This linguistic processing may re-
sult in the production of semantic information that provide machine readable
insights into the meaning of the content. As shown by the previous example,
named entities (people, organizations, etc.) mentioned in the documents consti-
tute important part of their semantics. Therefore, semantic information could
be captured from a text by looking at word meanings, as they are described in
a reference dictionary (e.g. WordNet [13]), and named entities.

This paper proposes an IR system which manages documents indexed at
multiple separate levels: keywords, senses (word meanings), and entities. The
system is able to combine keyword search with semantic information provided
by the two other indexing levels.

The paper is organized as follows: after a detailed description of the SEmantic
N-levels Search Engine model, we sketch its architecture in Section 3. Sections
4 and 5 provide a description of sense and entity levels, respectively. Global
ranking strategies are discussed in Section 6. Finally, main work related to the
research presented in this paper is discussed in Section 7. Conclusions and future
work close the paper.

2 N-Levels model

The main idea underlying the definition of an open framework to model differ-
ent semantic aspects (or levels) pertaining document content is that there are
several ways to describe the semantics of a document. Each semantic facet needs
specific techniques and ad-hoc similarity functions. To address this problem we
propose a framework where a different IR model is defined for each level in the
document representation. Each level corresponds to a logical view that aims at
describing one of the possible semantic spaces in which documents can be rep-
resented. The adoption of different levels is intented to guarantee acceptable
system performance even when not all semantics representations are available
for a document.

We suppose that a keyword level is always present and, when also other
levels are available, these ones are used to offer enhanced retrieval capabilities.
Furthermore, our framework allows to associate each level with the appropriate
representation and similarity measure. The following semantic levels are cur-
rently available in the framework:

Keyword level - the entry level in which the document is represented by the
words occurring in the text.

Word meaning level - this level is represented through synsets obtained by
WordNet, a semantic lexicon for the English language. A synset is a set
of synonym words (with the same meaning). Word Sense Disambiguation
algorithms are adopted to assign synsets to words.

Named entity level - this level consists of entities recognized into the docu-
ment text and tagged with a unique Wikipedia URI. A Named Entity Dis-
ambiguation (NED) algorithm is adopted to assign Wikipedia URI to words
that represent entities.



Analogously, N different levels of representation are needed for representing
queries. The N query levels are not necessarily extracted simultaneously from
the original keyword query issued by the user: a query level can be obtained
when needed. For example, the ranked list of documents for the query “Apple
growth” might contain documents related to both the growing of computer sales
by Apple Inc. and the growth stages of apple trees. Then, when the system will
collect the user feedback (for instance, a click on a document in which “Apple”
has been recognized as a named entity), the query vector for the named entities
level might be produced. We also extended the notion of relevance R(q, d), which
computes the degree of similarity between each document d in the collection and
the user query q. The relevance must be evaluated at each level by defining a
proper local similarity function that computes document relevance according
to the weights defined by the corresponding local scoring function. Since the
ultimate goal is to obtain a single list of documents ranked in decreasing order
of relevance, a global ranking function is needed to merge all the result lists that
come from each level. This function is independent of both the number of levels
and the specific local scoring and similarity functions because it takes as input
N ranked lists of documents and produces a unique merged list of most relevant
documents.

3 SENSE System Architecture

SENSE is a semantic IR system based on the N-Levels model described in the
previous section. Figure 1 depicts the system architecture and shows the modules
involved in the information extraction and retrieval processes. In more detail:

– Document Manager - It manages document collections to be indexed. It
is invoked by the User Interface module to display the results of a user query.

– Text Operations - It performs basic and more advanced NLP operations.
Basic operations implemented are: Stop words elimination, Stemming, POS-
tagging, Lemmatization and Named Entity Recognition (NER). Besides basic
NLP processing, more advanced procedures were designed for the semantic
levels of SENSE: Named Entity Disambiguation (NED) and Word Sense
Disambiguation (WSD). The core component that performs all the steps
(WSD and NED included) needed for building the document representation
at the meaning level is META [4].

– User Interface - It provides the query interface, which is not just a textbox
where keywords can be typed since it allows users to issue queries involving
semantic levels.

The core of the N-Levels indexing and retrieval processes consists of the
following modules:

– N-Levels Indexer - It creates and manages as many inverted indexes as
the number of levels into the N-levels model. While the Text Operations
component provides the features corresponding to the different levels, the N-
Levels Indexer computes the local scoring functions defined for assigning
weights to features.



Fig. 1. System Architecture

– N-Levels Query Operations - It reformulates user needs so that the
query can be executed over the appropriate inverted indexes.

– N-Levels Searcher - It retrieves the set of documents matching the query,
for each level identified by Text Operations. It implements the local sim-
ilarity functions defined in the model.

– N-Levels Ranker - It arranges documents retrieved by the Searcher
into a unique list to be shown to the user. For each level involved into the
search task, it ranks documents according to the local similarity function and
then merges all the local lists into a single list by using the global ranking
function.

The core components that perform the N-Levels indexing and retrieval pro-
cesses are implemented on the Lucene API1. Lucene is a full-featured text
search engine library that implements the vector space model. We implemented
an extension of the Lucene API, the N-Levels Lucene Core, to meet all
the requirements of the proposed model.

1 http://lucene.apache.org/



4 Meaning Level

In SENSE, features at the meaning level are synsets obtained from WordNet
2.0. It groups English words into sets of synonyms called synsets, each synset
is assigned with a unique identifier and contains a set of synonymous words or
collocations; different senses of a word occurs in different synsets.

In order to assign synsets to words, we adopted a WSD strategy. The goal
of a WSD algorithm consists in assigning a target word wi, occurring in a doc-
ument d, with its appropriate meaning or sense s, by exploiting the context C
in which wi occurs. The context C for wi is defined as a set of words that pre-
cede and follow wi. The sense s is selected from a predefined set of possibilities,
usually known as sense inventory. The WSD algorithm adopted in SENSE is an
improved version of JIGSAW [5]. The basic idea of the algorithm is to combine
three different strategies to disambiguate nouns, verbs, adjectives and adverbs
respectively. The main motivation behind our approach is that the effectiveness
of a WSD algorithm is strongly influenced by the Part of Speech (POS) tag of
the target word.

The WSD algorithm takes as input a document d = [w1, w2, . . . , wh], encoded
as a list of words (in order of their appearance), and returns a list of WordNet
synsets X = [s1, s2, . . . , sk] (k ≤ h), in which each element sj is obtained by
disambiguating the target word wi based on the similarity of each sj with the
words in the context of wi. Notice that k ≤ h because some words, such as
proper names, might not be found in WordNet.

Given the word wi and the associated sense inventory Si = {si1, si2, . . . , sik},
the algorithm defines a specific (different for each POS) function ϕ(wi, sij), that
computes a real value in [0, 1], representing the confidence with which sense sij
can be associated to wi. The sense assigned to wi is the one with the highest
confidence. We will not provide further details about the implementation of the
WSD procedure because it is not the focus of the paper. More details are reported
in [5, 16]. Here we underline that the algorithm achieves about 60% of average
precision on the All-words task. This result shows that it performs comparably
to other state-of-the art knowledge-based WSD algorithms.

The idea behind the adoption of WSD is that each document is represented
at the meaning level by the senses conveyed by the words, together with their re-
spective occurrences. The WSD procedure produces a synset-based vector space
representation, called bag-of-synsets (BOS). In this model a document is repre-
sented by a synset vector, rather than a word vector. Let D be a collection of
M documents. The j-th document in D is represented as:

dj = 〈tj1, tj2, . . . , tjn〉, j = 1, . . . ,M

where tjk is the k-th synset in dj , n is the total number of synsets in dj . Document
dj is represented in a |V |-dimensional space by a synset-frequency vector, V
being the vocabulary for D (the set of distinct synsets recognized by the WSD
procedure in the collection):

fj = 〈wj1, wj2, . . . , wj|V |〉, j = 1, . . . ,M



where wjk is the weight of the synset tk in dj , computed according to the local
scoring function defined in the next section.

4.1 Synset Scoring Function

Given a document di and its synset representation computed by the WSD proce-
dure, X = [s1, s2, . . . , sk], the basic idea is to compute a partial weight for each
sj ∈ X, and then to improve this weight by finding out some relations among
synsets belonging to X.

The partial weight, called sfidf (synset frequency, inverse document fre-
quency), is computed according to a strategy resembling the tf-idf score for
words:

sfidf(sj , di) = tf(sj , di)︸ ︷︷ ︸
synset frequency

· log | C |
nj︸ ︷︷ ︸

IDF

(1)

where | C | is the total number of documents in the collection and nj is the
number of documents containing the synset sj . tf(sj , di) computes the frequency
of sj in document di.

Finally, the synset confidence factor (α) is used to weigh the sfidf value.
Thus, the final local score for synset sj in di is:

sfidf(sj , di) · (1 + α) (2)

4.2 Synset Similarity Function

The local similarity functions for both the meaning and the keyword levels are
computed using a modified version of the LUCENE default document score. For
the meaning level, both query and document vectors contain synsets instead of
keywords. Given a query q and a document di, the synset similarity is computed
as:

synsim(q, di) = C(q, di) ·
∑
sj∈q

(sfidf(sj , di)(1 + α) ·N(di)) (3)

where:

– sfidf(sj , di) and α are computed as described in the previous section;
– C(q, di) is the number of query terms in di;
– N(di) is a factor that takes into account document length normalization.

5 Named Entity Level

The Named Entity Recognition (NER) task has been defined in the context of the
Message Understanding Conference (MUC) as the capability of identifying and
categorizing entity names, defined as instances of the three types of expressions:



entity names, temporal expressions, number expressions [11]. For the purpose of
SENSE a further step is needed and it consists of Entity Disambiguation.

The Named Entity Disambiguation is a specialization of classic WSD. Within
this work the task has been performed adapting the Lesk dictionary-based WSD
algorithm [1]. The basic assumption is that words in a given neighbourhood
will probably share a common topic. Apart from knowledge about the context
of a target entity (the immediate surrounding words), the algorithm requires a
machine readable dictionary, with an entry for each possible sense for a word.
Each token that refers to an Entity in the original document is tagged with the
Wikipedia URI that better represents the Entity meaning, thus Wikipedia plays
the role of sense inventory in the proposed algorithm for NED.

Considering that the words to disambiguate for Named Entity Disambigua-
tion are only those representing an Entity, the algorithm works as follows.

Given an input document d = [w1, . . . , wj−1, wj = e1j , wj+1, . . . , wh−1,
wh = e2h, wh+1, . . . ], where [e1j , e

2
j , . . . , ekj ] are k entities and [w1, w2, . . . ] are

tokens occurring in the document d, the algorithm returns a list of Wikipedia
URIs Xd = [s1, s2, . . . , sk]. Each element si is obtained by disambiguating
the target entity ei on the ground of the information obtained from Wikipedia
for each candidate URI (Wikipedia page content of the URI) and words in the
context C of ei. The list of Wikipedia candidate URIs comes from the Wikipedia
Search page for ei and only the first ten results are exploited. The context C of
the target entity ei is defined as a window of n words to the left and another n
words to the right, for a total of 2n words surrounding ei. In the current version
of the algorithm, if other entities occur in the context of the target entity, they
are considered as words and not as entities.

Similarly to the meaning level, documents are represented at the entity level
by using an adaptation of the vector space model, the rapresentation adopted
for this level is a bag-of-entities rather than a bag-of-synsets. The vocabulary
is the set of entities recognized by the NER text operation in the collection;
specifically each entity is identified by the URI of the entity instance (borrowed
from Wikipedia). As first attempt, a classical tf-idf heuristic has been adopted
to score entities and cosine similarity has been implemented as local similarity
function.

6 Global Ranking

Given a query q, each local similarity function produces a local ranked list of
relevant documents. All the local lists must be merged in order to give a single
ranked list to the user. The global ranking function is devoted to this task.

Algorithms for merging ranked lists are widely used by meta-search engines,
which send user requests to several search engines and aggregate results into
a single list [9]. Our strategy for defining the global ranking function is thus
inspired by prior work on meta-search engines.

Formally, we define:



– U : the universe, that is the set containing all the distinct documents in the
local lists;

– τj={ x1 ≥ x2 ≥ . . . ≥ xn }: the j-th local list, j = 1, . . . , N , defined as an
ordered set S of documents, S ⊆ U , ≥ is the ranking criterion defined by
the j-th local similarity function;

– τj(xi): a function that returns the position of xi in the list τj ;
– sτj (xi): a function that returns the score of xi in τj ;
– wτj (xi): a function that returns the weight of xi in τj .

Two different strategies can be adopted to obtain wτj (xi), based on the score
or the position of xi in the list τj . Since local similarity functions may produce
scores varying in different ranges, and the cardinality of lists can be different, a
normalization process (of scores and positions) is necessary in order to produce
weights that are comparable.

The aggregation of lists in a single one requires two steps: the first one pro-
duces the N normalized lists and the second one merges the N lists in a single
one denoted by τ̂ . The two steps are thoroughly described in [2]. We choose
to adopt Z-Score normalization and ComSUM respectively as score normaliza-
tion and rank aggregation function. In particular the Z-Score normalization is
computed using the following formula:

wτj (xi) = sτj (xi)−µsτj
σ
s
τj

Regarding ComSUM list aggregation method, the score of document xi in
the global list is computed by summing all the normalized scores for xi:

ψ(xi) =
∑
τj∈R w

τj (xi)

where R is the set of all local list.

7 Related Work

The general idea of enhancing keyword search by the addition of word mean-
ings is (of course) not new. Many strategies have been used to incorporate se-
mantic information coming from ontologies or electronic dictionaries into search
paradigms. Mainly two aspects have been addressed in the past: query expansion
with semantically related terms, and the comparison of queries and documents
by using semantic similarity measures.

Query expansion with WordNet has shown to potentially improve recall,
as it allows matching relevant documents even if they do not contain the exact
keywords in the query [17–19]. On the other hand, semantic similarity measures
have the potential to redefine the similarity between a document and a user query
[6, 12, 15]. The semantic similarity between concepts is useful to understand how
similar the meanings of the concepts are. However, computing the degree of
relevance of a document with respect to a query means computing the similarity



among all the synsets of the document and all the synsets of the user query, thus
the matching process could have very high computational costs.

In [10], the authors performed a shift of representation from a lexical space,
where each dimension is represented by a term, towards a semantic space, where
each dimension is a concept expressed using WordNet synsets. They adapted
the Vector Space Model applied to WordNet synsets. The realization of the
semantic tf-idf model was rather simple, because it was sufficient to index the
documents or the user-query by using strings representing synsets. The retrieval
phase is similar to the classic tf-idf model, with the only difference that matching
is carried out between synsets.

While previous methods tried to replace the lexical space with one semantic
space, in SENSE we defined an adaptation of the vector space model that allows
the integration of the lexical space with one or more semantic spaces. We show
how keywords can be integrated with WordNet synsets, but the model can be
easily extended by adding more levels, without modifying the whole architecture
of the SENSE system. Another remarkable attempt to indexing documents ac-
cording to WordNet senses which is most similar to our approach is reported
in [14]. The authors designed an information retrieval system performing a com-
bined word-based and sense-based indexing and retrieval. They added lexical
and semantic information to both the query and the documents during a pre-
processing step in which the query and the text are disambiguated. More recent
approaches [7, 8] try to combine keyword search with techniques for navigating
and querying ontologies. In [7], documents are annotated with concepts in a do-
main ontology and indexed using classical Bag-Of-Words model, while in [8] it
is described a search tool based on ontology assisted query rephrasing and key-
word search. The main limitation of the approach is that relevance is computed
simply by using a tf-idf score on concepts, instead of keywords.

8 Conclusions and Future Work

We have described SENSE (SEmantic N-levels Search Engine), a semantic N -
levels IR system which manages documents indexed at multiple separate levels:
keywords, senses and entities. The system is able to combine keyword search
with semantic information provided by the two other indexing levels.

The distinctive feature of the system is that an IR framework is proposed to
integrate, rather than simply replace, the lexical space with semantic spaces. We
provided a detailed description of the sense level, by defining a WSD algorithm to
assign words occurring in a document with senses and an entity disambiguation
method to identify entities within text. We defined a global ranking functions
describing how to merge rankings produced by different levels. A preliminary
evaluation involving both the keyword and the word meaning level has been
performed at CLEF 2008 [3]. As future work, we plan to perform an extended
experimental session and to investigate new strategies for representing docu-
ments both at the synset and at the entity level.
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