
What can be done with the Semantic Web?
An Overview of Watson-based Applications?

Mathieu d’Aquin, Marta Sabou, Enrico Motta, Sofia Angeletou, Laurian
Gridinoc, Vanessa Lopez, and Fouad Zablith

Knowledge Media Institute (KMi)
The Open University, Milton Keynes, United Kingdom

{m.daquin, r.m.sabou, e.motta, s.angeletou, l.gridinoc, v.lopez,

f.zablith}@open.ac.uk

Abstract. Thanks to the huge efforts deployed in the community for
creating, building and generating semantic information for the Semantic
Web, large amounts of machine processable knowledge are now openly
available. Watson is an infrastructure component for the Semantic Web,
a gateway that provides the necessary functions to support applications
in using the Semantic Web. In this paper, we describe a number of ap-
plications relying on Watson, with the purpose of demonstrating what
can be achieved with the Semantic Web nowadays and what sort of new,
smart and useful features can be derived from the exploitation of this
large, distributed and heterogeneous base of semantic information.

1 Introduction

It is now commonly admitted that, while it still needs to grow and evolve, the
Semantic Web has already become a reality. Millions of RDF documents are now
published online, describing hundreds of millions of entities through billions of
statements. The Semantic Web is now the biggest, most distributed and most
heterogeneous knowledge base that ever existed, and is very quickly evolving,
as thousands of users constantly create new knowledge and update the existing
one.

While it now appears clearly that the effort deployed by the community in
creating semantic information and making it available on the Web has been
successful, it seems to be a good time to consider the applications of this huge
information infrastructure the Semantic Web has become: What can be done
with it?

Watson [1] is a Semantic Web Gateway: it collects and indexes semantic in-
formation on the Web, to provide a variety of access mechanisms for users and
applications. As such, it provides support for building a new kind of applica-
tions taking benefit from the Semantic Web as it makes possible within these
applications to dynamically find, explore and exploit online semantic content [2].
? This work was funded by the Open Knowledge and NeOn projects sponsored by

the European Commission as part of the Information Society Technologies (IST)
programme.



A number of applications relying on Watson have already been developed and
provide demonstrators of the possibilities offered by this approach of exploiting
the Semantic Web. In this paper, we describe these applications (at least, the
ones we know of, as Watson is an open service that anybody can use), with
the aim of providing an overview of the variety of tasks that can be achieved
nowadays with the Semantic Web.

2 Watson: the Semantic Web Gateway

The need of next generation Semantic Web applications for a new kind of infras-
tructure motivated the development of Watson: a gateway that realizes a single
access point to the semantic information published online and provides efficient
services to support application developers in exploiting this large amount of dis-
tributed and heterogeneous data.

2.1 Overview

Watson collects online semantic documents through a variety of crawlers, ex-
ploring different sources, such as PingTheSemanticWeb.com. The particularity
of these crawlers, compared with usual web crawlers, is that they consider se-
mantic relations across documents in addition to classical hyperlinks. Also, when
collecting online semantic content they check for duplicates, copies, or prior ver-
sions of the discovered documents.

Once collected, these documents are analyzed and indexed according to a
variety of information concerning the content of the document, its complexity,
quality and relations to other resources. This analysis step is core to Watson as
it ensures that the key information is extracted, which can help applications in
selecting, assessing, exploiting and combining these resources.

Fig. 1. Screenshots of the Watson Web interface (http://watson.kmi.open.ac.uk)

Finally, the goal of Watson is to provide efficient and adequate access to the
collected information for applications and, to some extent, human users. A web
interface allows users to search semantic content by keywords, to inspect them, to
explore semantic documents, and to query them using SPARQL (see Figure 1).



However, the important part of Watson is the services and API it provides to
support the development of next generation Semantic Web applications. Indeed,
Watson deploys a number of Web services and a corresponding API allowing
applications to:

– find Semantic Web documents through sophisticated keyword based search,
allowing applications to specify queries according to a number of parameters
(type of entities, level of matching of the keywords, etc.);

– retrieve metadata about these documents, e.g., size, language, label, logical
complexity, etc;

– find specific entities (classes, properties, individuals) within a document;
– inspect the content of a document, i.e., the semantic description of the enti-

ties it contains;
– apply SPARQL queries to Semantic Web documents.

The combination of mechanisms for searching semantic documents (keyword
search), retrieving metadata about these documents and querying their content
(e.g., through SPARQL) provides all the necessary elements for applications to
select and exploit online semantic resources. Moreover, the Watson web services
and API are in constant evolution to support the requirements of novel applica-
tions.

2.2 Differences with Other Semantic Web Search Engines

There are a number of similar systems to Watson, falling into the category of
Semantic Web search engines. However, Watson differs from these systems in
a number of ways, the main one being that Watson is the only one to provide
the necessary level of services for applications to dynamically exploit Semantic
Web data. For example, one of the most popular Semantic Web Search engine is
Sindice1. However, while Sindice indexes a very large amount of semantic data,
it only provides a simple look-up service allowing applications/users to “locate”
semantic documents. Therefore, it is still necessary to download and process
these documents locally to exploit them, which in many cases, is not feasible.
The Swoogle system2 is closer to Watson. However, it does not provide some of
the advanced search and exploration functions that are present in the Watson
APIs (including the SPARQL querying facility). The Falcon-S3 Semantic Web
search engine has been focusing more on the user interface aspects, but now
provides an initial API including a sub-set of the functions provided by Watson.

Another important aspect to consider is how open Semantic Web Search
engines are. Indeed, Watson is the only Semantic Web search engine to provide
unlimited access to its functionalities. Sindice, Swoogle and Falcon-S are, on the
contrary, restricting the possibility they offer by limiting the number of queries
executable in a day or the number results for a given query.
1 http://sindice.com/
2 http://swoogle.umbc.edu/
3 http://iws.seu.edu.cn/services/falcons/api/index.jsp



3 Services on Top of Watson

In this section, we look at a first category of applications of Watson: System that
make use of Watson to provide additional features for users and developers.

3.1 Scarlet: Relation Discovery

Scarlet4 follows the paradigm of automatically selecting and exploring online
ontologies to discover relations between two given concepts. For example, when
relating two concepts labeled Researcher and AcademicStaff, Scarlet 1) identifies
(at run-time) online ontologies that can provide information about how these two
concepts inter-relate and then 2) combines this information to infer their relation.
We have investigated two increasingly sophisticated strategies to discover and
exploit online ontologies for relation discovery. The first strategy, S1, derives a
relation between two concepts if this relation is defined within a single online
ontology, e.g., stating that Researcher v AcademicStaff . The second strategy,
S2 addresses those cases in which no single online ontology states the relation
between the two concepts, by combining relevant information which is spread
over two or more ontologies - e.g., that Researcher v ResearchStaff in one
ontology and that ResearchStaff v AcademicStaff in another. To support
this functionality, Scarlet relies on Watson to access online ontologies.

Scarlet originates from the design of an ontology matcher that exploits the Se-
mantic Web as a source of background knowledge to discover semantic relations
(mappings) between the elements of two ontologies. This matcher was evaluated
in the context of aligning two large, real life thesauri: the UNs AGROVOC
thesaurus (40K terms) and the United States National Agricultural Library
thesaurus NALT (65K terms) [3]. The matching process performed with both
strategies resulted in several thousands mappings, using several hundreds online
ontologies, with an average precision of 70%.

3.2 The Watson Synonym Service

The Watson Synonym Service5 is a simple service that creates a base of term
clusters, where the terms of a cluster are supposed to be associated to the same
sense. It makes use of the information collected by Watson in the form of on-
tologies to derive these clusters.

The basic algorithm to create term clusters is quite straightforward. Enti-
ties in Semantic Web ontologies all possess one and only one identifier (in a
given namespace, e.g., we consider Person to be the identifier of http://www.
example.org/onto#Person). They can also be associated to one or several la-
bels, through the rdf:label property. Hence the algorithm simply assumes that
a term t1 is a synonym of another term t2 if t1 and t2 are used either as label
or identifier of the same entity. Our synonym discovery offline algorithm then
simply iterates through all the entities in Watson’s ontologies to create clusters
of terms that are used together in the identifiers or labels of entities.

4 http://scarlet.open.ac.uk/
5 http://watson.kmi.open.ac.uk/API/term/synonyms



Of course, the quality of the results obtained with this method is not as good
as the one obtained with the complex and costly approaches that are employed to
build systems like Wordnet. However, the advantage of this algorithm is that its
quality improves together with the growth of the Semantic Web, without requir-
ing any additional effort for collecting the data. Quite a high number of good syn-
onyms are found, like in the cluster {ending, death, termination, destruction}.
In addition, this method does not only find synonyms in one language, but can
provide the equivalent terms in various languages, providing that multi-lingual
ontologies exist and cover these terms. It could be argued that these are not
actually synonyms (but translations) and one of the possible extensions for this
tool is to make use of the language information in the ontologies to distinguish
these cases.

4 Ontology Engineering with Watson

In this section, we look at applications that exploit online knowledge for the
purpose of creating new knowledge or enriching existing one.

4.1 The Watson Plugin for Knowledge Reuse

Ontology reuse is a complex process involving activities such as searching for
relevant ontologies for reuse, assessing the quality of the knowledge to reuse,
selecting parts of it and, finally, integrating it in the current ontology project.
As the Semantic Web provides more and more ontologies to reuse, there is an
increasing need for tools supporting these activities.

The Watson plugin6 aims to facilitate knowledge reuse by integrating the
search capabilities of Watson within the environment of an ontology editor (the
NeOn Toolkit). The resulting infrastructure allows the user to perform all the
steps necessary for large scale reuse of online knowledge within the same envi-
ronment where this knowledge is processed and engineered.

In practice, the Watson plugin allows the ontology developer to find, in exist-
ing online ontologies, descriptions of the entities present in the currently edited
ontology (i.e., the base ontology), to inspect these descriptions (the statements
attached to the entities) and to integrate these statements into the base ontology.
For example, when extending the base ontology with statements about the class
Researcher, the Watson plugin identifies, through Watson, existing ontologies
that contain relevant statements such as:

– Researcher is a subclass of AcademicStaff
– PhDStudent is a subclass of Researcher
– Researcher is the domain of the property isAuthorOf

These statements can be used to extend the edited ontology, integrating them
to ensure, for example, that the class Researcher becomes a subclass of a newly
integrated class AcademicStaff.
6 http://watson.kmi.open.ac.uk/editor plugins.html



4.2 Evolva: Ontology Evolution Using Background Knowledge

Ontologies form the backbone of Semantic Web enabled information systems.
Today’s organizations generate huge amount of information daily, thus ontolo-
gies need to be kept up to date in order to reflect the changes that affect the
life-cycle of such systems (e.g., changes in the underlying data sets, need for new
functionalities, etc). This task, described as the “timely adaptation of an ontol-
ogy to the arisen changes and the consistent management of these changes”, is
called ontology evolution [4]. While it seems necessary to apply such a process
consistently for most of the ontology-based systems, it is often a time-consuming
and knowledge intensive task, as it requires a knowledge engineer to identify the
need for change, perform appropriate changes on the base ontology and manage
its various versions.

Evolva7 is an ontology evolution system starting from external data sources
(text documents, folksonomies, databases, etc.) that form the most common
mean of storing data. First, a set of terms are extracted from these sources as
potentially relevant concepts/instances to add to the ontology, using common
information extraction methods. Evolva then makes use of Watson (through
the intermediary of Scarlet) to find external sources of background knowledge
to establish relations between these terms and the knowledge already present
in the ontology, providing in this way the mean to integrate these new terms
in the ontology. For this purpose, we devised a relation discovery process that
combines various background knowledge sources with the goal of optimizing
time-performance and precision.

4.3 FLOR: FoLksonomy Ontology enRichment

Folksonomies, social tagging systems such as Flickr and Delicious, are at the
forefront of the Web2.0 phenomenon as they allow users to tag, organize and
share a variety of information artifacts. The lightweight structures that emerge
from these tag spaces, only weakly support content retrieval and integration ap-
plications since they are agnostic to the explicit semantics underlying the tags
and the relations among them. For example, a search for mammal ignores all
resources that are not tagged with this exact word, even if they are tagged with
specific mammal names such as lion, cow, and cat. The objective of FLOR [7] is
to attach formal semantics to tags, derived from online ontologies and make the
relations between tags explicit (e.g., that mammal is a superclass of lion). The
enrichment algorithm that has been experimentally investigated builds on Wat-
son: given a set of tags, the prototype identifies the ontological entities (classes,
properties and individuals) that define the tags in their respective context. Ad-
ditionally, it aims to identify formal relations between the tags (subsumption,
disjointness and generic relations) utilizing Scarlet.

The experiments [8] have led to further insights into to nature of ontologies
on the Semantic Web, from which we highlight two key ones. First, we found that

7 An overview of Evolva can be found in [5, 6].



online ontologies have a poor coverage of a variety of tag types denoting novel
terminology scientific terms, multilingual terms and domain specific jargons.
Secondly, we observed that online ontologies can reflect different views and when
used in combination can lead to inconsistencies in the derived structures.

5 End User Applications Relying on Watson

Finally, this section considers applications directly providing new features for
users by relying on online semantic content.

5.1 Wahoo/Gowgle: Query Expansion

Wahoo and Gowgle8 are 2 demonstrators, showing how Web ontologies can be
used for a simple application to query expansion in a classical Web search engine.
For example, when given a keyword like developer, such a tool could find out
that, in an ontology, there is a sub-class programmer of developer and could
therefore suggest this term as a way to specify the query to the Web search
engine. Without Watson, this would require to integrate one or several ontologies
about the domain of the queries and an infrastructure to store them, explore
them and query them. However, if the considered search engine is a general Web
search engine, such as Google or Yahoo, the domain of the queries cannot be
predicted a priori: the appropriate ontology can only be selected at run-time,
depending on the query that is given. In addition, this application would require
a heavy infrastructure to be able to handle large ontologies and to query them
efficiently. Gowgle and Wahoo rely on Semantic Web ontologies explored using
Watson instead.

The overall architecture of these applications is made of a Javascript/HTML
page for entering the query and displaying the results, which communicates using
the principles of AJAX with the Watson server. In the case of Gowgle, Google
is used as a the Web Search Engine and the Watson SOAP Web services are
employed for ontology exploration (http://watson.kmi.open.ac.uk/WS and
API.html). In the case of Wahoo, Yahoo and the Watson REST API (http:
//watson.kmi.open.ac.uk/REST API.html) are used.

Both applications use Watson to exploit online ontologies, in order to suggest
terms related to the query, that is, if the query contains the word developer : 1-
to find ontologies somewhere talking about the concept of developer, 2- to find
in these ontologies which entities correspond to developer and 3- to inspect the
relations of these entities to find related terms.

5.2 PowerAqua: Question Answering

To some extent, PowerAqua9 can be seen as a straightforward human interface
to any semantic document indexed by Watson. Using PowerAqua, a user can

8 http://watson.kmi.open.ac.uk/wahoo and http://watson.kmi.open.ac.uk/

gowgle
9 http://poweraqua.open.ac.uk/



simply ask a question, like “Who are the members of the rock band Nirvana?”
and obtain an answer, in this case in the form of a list of musicians (Kurt
Cobain, Dave Grohl, Krist Novoselic and other former members of the group).
The main strength of PowerAqua resides in the fact that this answer is derived
dynamically from the relevant datasets available on the Semantic Web. Note
that even if PowerAqua is meant to be an end-user application, lots of effort are
still required on interaction and user interface issues.

Without going into too many details, PowerAqua first uses a Gate-based [9]
linguistic component to transform a question into a set of possible “query triples”,
such as <person/organization, members, rock band Nirvana>. The next step
consists then in locating, thanks to Watson, online semantic documents describ-
ing entities that correspond to the terms of the query triples, locating for example
an individual called Nirvana in a dataset about music. During this step, Word-
Net is used to augment the terms in the query triples with possible synonyms.
Once a collection, usually rather large, of potential candidate ontologies is found,
PowerAqua then employs a variety of heuristics and a powerful matching algo-
rithm, PowerMap [10], to try and find answers from the collection of candidate
ontologies. In our example, the query triple shown above can be successfully
matched to the schema <Nirvana, has members, ?x:Musician>, which has been
found in a music ontology on the Semantic Web. In more complex examples, an
answer may require integrating a number of statements. For instance, to answer
a query such as “Which Russian rivers flow to the Black Sea”, PowerAqua may
need to find information about Russian rivers, information about rivers which
flow to the Black Sea and then combine the two. In general, several sources of
information, coming from various places on the Web, may provide overlapping
or complementary answers. These are therefore ranked and merged according to
PowerAqua’s confidence in their contribution to the final answer.

5.3 PowerMagpie: Semantic Browsing

PowerMagpie10 is a Semantic Web browser that makes use of openly available
semantic data to support the interpretation process of the content of arbitrary
web pages. Unlike Magpie, which relied on a single ontology selected at design
time, PowerMagpie automatically, i.e., at run-time, identifies and uses relevant
knowledge provided by multiple online ontologies. From a user perspective, Pow-
erMagpie is an extension of a classical web browser and takes the form of a
vertical widget displayed on top of the currently browsed web page. This widget
provides several functionalities that allow exploring the semantic information
relevant to the current web page. In particular, it summarizes conceptual enti-
ties relevant to the web page. Each of the entities can then be shown in the text,
where the user may initialize different ways of exploring the information space
around a particular entity. In addition, the semantic information discovered by
PowerMagpie, which relates the text to online semantic resources, is injected
into the web page as embedded annotations in RDFa. These annotations can

10 http://powermagpie.open.ac.uk



then be stored into a local knowledge base and act as an intermediary for the
interaction of different semantic-based systems.

5.4 Word Sense Disambiguation

Finally, we describe the work by Gracia et al. [11], which exploits large scale
semantics to tackle the task of word sense disambiguation (WSD). Specifically
they propose a novel, unsupervised, multi-ontology method which 1) relies on
dynamically identified online ontologies as sources for candidate word senses and
2) employs algorithms that combine information available both on the Semantic
Web and the web in order to integrate and select the right senses. The algorithm
uses Watson to access online ontologies. Due to the rich Watson API, they can
access all the important information without having to download the ontologies,
thus providing an efficient and robust functionality.

The development and use of the WSD algorithm revealed that the Semantic
Web provides a good source of word senses that can complement traditional
resources such as WordNet. Also, because the extracted ontological information
is used as a basis for relatedness computation and not exploited through formal
reasoning as in the case of ontology matching, the algorithm is less affected by
the quality of formal modeling than Scarlet. What affects the WSD method,
however, is that most ontologies have a weak structure and as such provide
insufficient information to perform a satisfactory disambiguation.

6 Discussion: the Role of Watson

The availability of large amounts of semantic information is not sufficient in
making the Semantic Web to achieve its full potential. Users should be provided
with smart, useful and efficient applications demonstrating the added value of
the Semantic Web. The development of Watson is guided and informed by the
requirements of such applications, which need an efficient and robust system to
access the Semantic Web. In this paper, we provided an overview of a number of
applications made possible by Watson, with the aim of showing what currently
can be achieved with the Semantic Web and, hopefully, to provide inspiration
for developers to develop new applications.

In addition, we believe that these applications demonstrate the need for in-
frastructure components like Watson, offering high level services to support the
dynamic selection and exploitation of Semantic Web data. Indeed, a character-
istic shared by the presented applications is that they all require to identify
and process semantic information at run-time, in an open domain. Considering
this, usual approaches consisting in gathering relevant ontologies and datasets
in a local infrastructure are not applicable. It is necessary to gather the relevant
knowledge dynamically, from various resources available on the Web.

The focus Watson put on providing a complete infrastructure for supporting
application development is also essential to make these applications possible.
Most of them would not be achievable using any other Semantic Web search en-
gine, as it would require for them to download and process locally the semantic



documents. Apart from the obvious scalability issues this raises, it would also
be needed for these applications to include an infrastructure capable of han-
dling at run-time the heterogeneity of the semantic documents available online.
Watson provides a common API to access pre-processed semantic documents in
an homogeneous and efficient way. In addition, apart from this obvious reason,
several of the presented applications use Watson instead of other similar systems
either because of the added functionalities it provides (e.g., Watson implements
advanced ontology selection algorithms used by PowerMagpie) or because of its
robustness (e.g. Scarlet switched from Swoogle to Watson for its ability to handle
efficiently a large number of queries without restriction and without crashing).

However, one issue on which additional effort is required concerns the quality
of the delivered information. Indeed, as these applications relies on heterogeneous
data, coming from anywhere on the (Semantic) Web, it is essential to provide
support for assessing the quality of such data and to filter them accordingly.
Watson already applies basic mechanisms to improve the quality of the results
(e.g., filtering duplicates, extracting complexity information, etc.) A more flex-
ible framework combining both automatic metrics for ontology evaluation and
user evaluation should be considered to make possible a more fine-grained, cus-
tomizable quality ranking of semantic documents.

References

1. d’Aquin, M., Baldassarre, C., Gridinoc, L., Sabou, M., Angeletou, S., Motta, E.:
Watson: Supporting Next Generation Semantic Web Applications. In: Proc. of the
WWW/Internet conference. (2007)

2. dAquin, M., Motta, E., Sabou, M., Angeletou, S., Gridinoc, L., Lopez, V., Guidi,
D.: Toward a New Generation of Semantic Web Applications. IEEE Intelligent
Systems (2008)

3. Sabou, M., d’Aquin, M., Motta, E.: Exploring the Semantic Web as Background
Knowledge for Ontology Matching. Journal of Data Semantics (2008)

4. Haase, P., Stojanovic, L.: Consistent evolution of owl ontologies. European Se-
mantic Web Conference (ESWC) (2005)

5. Zablith, F.: Dynamic ontology evolution. ISWC Doctoral Consortium (2008)
6. Zablith, F., Sabou, M., d’Aquin, M., Motta, E.: Using Background Knowledge for

Ontology Evolution. In: International workshop on ontology dynamics. (2008)
7. Angeletou, S., Sabou, M., Motta, E.: Semantically enriching folksonomies with

FLOR. In: Workshop Collective Intelligence & the Semantic Web. (2008)
8. Angeletou, S., Sabou, M., Specia, L., Motta, E.: Bridging the gap between folk-

sonomies and the semantic web: An experience report. In: Workshop Bridging the
Gap between Semantic Web and Web 2.0. (2007)

9. Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.: GATE: A framework
and graphical development environment for robust NLP tools and applications.
In: Proc. of the 40th Anniversary Meeting of the Association for Computational
Linguistics. (2002)

10. Lopez, V., Sabou, M., Motta, E.: PowerMap: Mapping the Real Semantic Web on
the Fly. In: International Semantic Web Conference (ISWC). (2006)

11. Gracia, J., Trillo, R., Espinoza, M., Mena, E.: Querying the Web: A Multiontology
Disambiguation Method. In: Proc. of the Sixth International Conference on Web
Engineering (ICWE). (2006)


