
Facilitating Requirements Engineering of
Semantic Applications

Óscar Muñoz-Garćıa, Raúl Garćıa-Castro, Asunción Gómez-Pérez

Ontology Engineering Group, Departamento de Inteligencia Artificial.
Facultad de Informática, Universidad Politécnica de Madrid, Spain

{omunoz,rgarcia,asun}@fi.upm.es

Abstract. This paper presents a detailed Requirements Engineering
process for the development of semantic applications. It presents the
activities for requirements elicitation and analysis and shows how to fol-
low these activities in an example case study. To facilitate its use by
software engineers that are not experts in semantic technologies, several
resources are provided, namely a comprehensive collection of the char-
acteristics of semantic applications and two catalogues of use cases and
system models.

1 Introduction

A large-scale semantic application is a semantic application that makes use of
semantic technologies and that manipulates huge quantities of heterogeneous
decentralised knowledge that present different degrees of quality. It produces
and consumes own and external data and retrieves knowledge automatically
exploring different sources [1].

As a particular domain for semantic applications, the Semantic Web is a
large-scale source of knowledge that requires designing applications which are
very different from classic knowledge-based systems [1]. The next generation of
Semantic Web applications needs to deal with significant problems associated
with the scale, heterogeneity, and the varying degrees of quality of the infor-
mation contained in the Semantic Web and other problems such as information
provenance. These problems are not only appearing in the Semantic Web but
also in other knowledge management systems or data interpretation systems.

Software engineers without expertise in the development of semantic appli-
cations do not know how to define or implement the semantic functionalities of
applications and it is difficult for them to carry out the development process
of these kind of applications. Thus, it is necessary to provide them a solution
consisting on guidelines that they can easily adapt and integrate in their devel-
opment processes.

This paper introduces a process that facilitates Requirements Engineering of
semantic applications, that is, the process of finding out, analysing, documenting
and checking the requirements of a semantic application. To this end, this paper

defines a process for requirements elicitation and analysis of semantic applica-
tions, helping application developers during the first stages of building semantic
applications from scratch or of including semantic components into traditional
information systems.

This paper is structured as follows. Section 2 presents previous work about
the characterisation of semantic applications and about existing scenarios of se-
mantic applications. Section 3 specifies the proposed Requirements Engineering
process with the tasks that compose it. Section 4 illustrates how to carry out the
process with an example case study. Finally, Section 5 presents the conclusions
of this work and future lines of work.

2 Semantic Applications

In order to elicit and analyse the requirements of a semantic application, it is
necessary to understand the characteristics that commonly appear in semantic
applications and the different scenarios where semantic solutions are applied.

A characterisation of semantic applications can be extracted taking
into account the characteristics of this kind of applications presented in [1–4].
Table 1 shows the result of the characterisation according to the nature of the
ontologies that the application uses, the data that the application produces and
consumes, the kind of reasoning that the application applies, and the interoper-
ability characteristics of the application with other systems.

In [5] a set of scenarios for applying ontologies in applications are pre-
sented. Next, these scenarios are summarised: Neutral Authoring, where an infor-
mation artifact is authored in a single language and is converted into a different
form to be used in multiple target systems; Ontology as Specification, where an
ontology of a given domain is created and used as a basis for the specification
and development of some software; Common Access to Information, where in-
formation is required by one or more persons or computer applications but is
expressed using unfamiliar vocabulary or in an inaccessible format; and Ontology-
based Search, where an ontology is used for searching an information repository
for desired resources. In [6] there is a classification of type of usage of ontologies
for Semantic Web applications from where several scenarios can be derived. In
this work they present the following categories: Usage as a Common Vocabulary,
Usage for Search, Usage as an Index, Usage as a Data Schema, Usage as a Media
for Knowledge Sharing, Usage for a Semantic Analysis, Usage for Information
Extraction, Usage as a Rule Set for Knowledge Models and Usage for System-
atizing Knowledge. The work presented in [7] adds the scenario of Collaborative
Construction of Knowledge to the presented ones.

3 Requirements Engineering in Semantic Applications

Requirements are the descriptions of the functionalities provided by the appli-
cation and its operational constraints and reflect the needs of the customer for
a system that helps solving some problem [8].

Ontologies Dimension
Typology Specifies if the application is based on a single ontology or makes use of several

ontologies that are organised in a network.
Domain
Openness

Specifies if the ontologies are bound to a particular domain or not.

Ubiquity Specifies if the ontologies are centralised in a single resource or distributed using
data from multiple sources.

Dynamicity Specifies if the ontologies are constantly changing or if on the contrary, they are
gathered and engineered at design-time.

Hugeness Specifies if the application can or cannot operate at scale in a context such as the
Semantic Web with a huge number of ontologies.

Heterogeneity Specifies if the ontologies are heterogeneous along several dimensions (encoding,
quality, complexity, modelling, views, etc.) or, on the contrary, if the application
is characterised by the use of ontologies that are selected, designed and integrated
manually and carefully.

Data Dimension
Domain
Openness

Specifies if the data used is bound to a particular domain or not.

Ubiquity Specifies if the data is centralised in a single resource or distributed using data
from multiple sources.

Dynamicity Specifies if the instances are constantly changing or if on the contrary they are
gathered and engineered at design-time.

Hugeness Specifies if the application can or cannot operate at scale in a context with a huge
data quantity.

Heterogeneity Specifies if the data is characterised by the heterogeneity on encoding or by the
combination of semantic and non-semantic data.

Reasoning Dimension
Reasoning
Type

Specifies if the application will use heavyweight, lightweight or hybrid (machine
learning, linguistic, statistical techniques, etc.) reasoning mechanisms.

Contradictory
Information

Specifies the capability of the application to deal with contradictory information.

Incomplete
Information

Specifies the capability of the application to deal with incomplete information.

Systems Interoperability Dimension
Legacy Inter-
operability

Specifies if the application integrates heterogeneous proprietary and legacy sys-
tems.

Distributed
Services

Specifies if the application will offer or consume distributed services in order to
interoperate with other applications.

Table 1. Characterisation of semantic applications

Sommerville [8] describes the Requirements Engineering process as a three-
stage activity where the activities are organised as an iterative process around
a spiral. The spiral process accommodates approaches to development in which
the requirements are developed to different levels of detail. Agile methods, an
approach to iterative development, follow this perspective.

The activities involved in the Requirements Engineering process are the fol-
lowing: (1) Requirements elicitation and analysis, in which the features that
the system should provide, the required performance of the system, and so on,
are discovered; (2) Requirements specification, in which the user and system
requirements are specified; (3) Requirements validation, which shows that the
requirements actually define the system that the customer wants.

This paper is focused on providing methodological guidelines for carrying out
the Requirements Elicitation and Analysis activity. Methodological guidelines
for the rest of the activities involved in the Requirements Engineering process
are not provided because we have not specialised them with respect to existing
software engineering methods.

Requirements elicitation and analysis

C
us

to
m

er Input
Business

Requirements

Task 1
Identify the use

cases

Task 2
Identify application
characteristics and

constraints

Task 3
Identify system

models

Task 5
Estimate

requirements

Task 6
Prioritize

requirements

Tasks
Budget

Output 2
Release
Planning

Use cases
models

Application
characteristics
& constraints

System
models Task 4

Document
requirements

Output 1
Requirements

document

D
ev

el
op

m
en

t T
ea

m

Fig. 1. The requirements elicitation and analysis activity

The input of the requirements elicitation and analysis activity is a set of
Business Requirements and its goal is to state the functionalities the system
should provide as well as the constraints on the system and when it should
be done. This is reflected in the Software Requirements Document and in the
Release Planning respectively, the outputs of the activity. The requirements
document is written incrementally at the beginning of the project and, as the
project proceeds, in the beginning of every application release development.

The tasks for carrying out the requirements elicitation and analysis activity
can be seen in the activity diagram shown Figure 1 and are explained below.

Task 1. To identify the use cases. The objective of this task is to gather
information about the application from the business requirements facilitated by
the customer and to distil use cases from this information.

Scenario-based elicitation and, in concrete, use cases are an appropriate ap-
proach to Requirements Engineering when implementing an agile method. How-
ever use cases are not as effective for eliciting constraints or high-level and non-
functional requirements, as for example those related to the characteristics pre-
sented in Section 2.

In order to speed-up this task, we provide a catalogue of use cases that
commonly appear in semantic applications. When performing this task, these
common use cases can be selected, adapted and appended to the identified set
of requirements. The use cases have been obtained by analysing the scenarios
presented in Section 2 from the viewpoint of the system user goals. The use
cases identified are the following: (1) Query Information, where the user goal
is to obtain integrated information from several resources given a query; (2)
Search resources, where the goal is to find resources related to a given search;
(3) Browse information, where the user wants to navigate through categorised
information; (4) Analyse Information, where the goal is to obtain some analysis

Use Case Template UCT2: Query Information from External Providers
Primary
actor

The person or system who requests the System under development to deliver some
information.

Stakeholders
and
interests

The Primary Actor requires some information that the System must gather and
integrate from other Information Providers. The Information Providers provide
to the System the information to be processed.

Preconditions The Primary Actor can access to the System.
Success
guarantee

The System returns to the Primary Actor the required information after integrat-
ing correctly the information obtained from the Information Providers.

Main success scenario
1. The Primary Actor requests to the System to deliver some integrated information.
2. The System requests to an Information Provider the information that requires from it.
3. The Information Provider responses to the System with the requested information.
Steps 2-3 are repeated until there are no more Information Providers to be requested.
4. The System integrates the gathered information and returns to the Primary Actor the re-
quired information.

Extensions
*a. At any time, System fails:

1. The System informs to the Primary Actor about the failure.
2-3a. At any time the communication with the Information Provider fails.

1. System keeps requesting other Information Providers continuing in step 2.
1a. The information requested to the Information Provider is mandatory in order to give a

correct response to the Primary Actor.
1. The System informs to the Primary Actor about the failure.

Table 2. Process External Information use case template

from collected information; (5) Extract Information, where the goal is to extract
meaningful information by processing a search result; and (6) Manage Knowledge
where the aim is to collaboratively construct and evolve shared knowledge.

As an example, Table 2 shows a variation of the Query Information use case,
whose template has been extracted from the catalogue of common use cases.

Task 2. To identify application characteristics and constraints. The
objective of this task is to collect non-functional requirements, that is, constraints
on the services or functions offered by the system.

In order to speed-up this task, we provide a set of characteristics that com-
monly appear in semantic applications. When performing this task these com-
mon characteristics can be selected and appended to the identified set of require-
ments. The common characteristics have been obtained through an analysis of
the State of the Art, are summarised in Section 2, and have been classified ac-
cording to four dimensions regarding the nature of the ontologies and data that
the application will use, the kind of reasoning that the application will apply
and the interoperability of the application with other systems.

Task 3. To identify system models. The objective of this task is to
preliminary specify the system in form of system models, which are an important
bridge between the requirements engineering and the design processes because
they are often more understandable than detailed natural language descriptions
of the system requirements [8]. The system models will reflect the scenarios
identified during the use case identification task, constrained by the application
characteristics.

The system models allow representing the system from the following differ-
ent perspectives: (1) an external perspective, where the context or environment
of the application is modelled by showing the limits of the system where the

Logistics Company

Application

Weather Information
Providers

Cartography Providers Transport Companies

Corporate
Database

aligned with
Weather Provider

data

aligned with

query

Cartography
Ontology

Geographical
Instances

conforms to

aligned with

Transport
Web Service

annotates

Logistics Shared
Ontology

Application
queries

Datasources with shared vocabulary

aligned with aligned with

Datasources with
schema

1

Datasources with
schema

N

Shared vocabulary

Fig. 2. Example of a system model template

application to develop will be deployed as well as the external systems; and (2)
a structural perspective, where the structure of the data processed by the sys-
tem is modelled. According to the process presented in this paper, the scenarios
described in Section 2 can be viewed as system models.

In order to speed-up this task, we provide a catalogue of system model tem-
plates. When performing this task, these system model templates can be selected
according to the identified use cases and the application characteristics and con-
straints. As an example, Figure 2 shows a the template used for an application
that queries information to a group of data sources that are aligned with a shared
vocabulary.

Task 4. To document requirements. In this task, the requirements dis-
covered in the previous tasks are consolidated in a single description as the official
statement of what the application developers should implement. The result of
this task is the requirements document.

Task 5. To estimate requirements. In this task, the effort needed for
implementing a set of requirements is estimated. As happens in Extreme Pro-
gramming [9], the developers work together to break the system models down
into development tasks. The result of this task reflects the estimation cost for
each identified task.

Task 6. To prioritise requirements. In this task, the customer priori-
tises the development tasks estimated in Task 5. The output of this task is the
release planning that reflects the system models to be implemented for the next
application release.

4 Example Case Study

This section presents an example showing how to carry out the first tasks of the
Requirements Elicitation and Analysis activity, given a fictitious case study.

Business Requirements. A logistics company has proved that setting dy-
namic shipment routes will decrease their shipment risks and delivery time and
will increase its income because of factors such as weather, the transport com-
panies availability and fares, etc.

Data Acess via Shared Ontology

Ontology Author

Specify
Ontology

Application Developer

Build Translator

Produce
Operational

Data

Consume
Operational

Data

<<actor>>
Application

System

Logistics
Company

Obtain Optimum
Route

<<actor>>
Weather Information

Provider System

Track Shipment

Customer

<<actor>>
Cartography Provider

System

<<actor>>
Transport Company

System

<<actor>>
Logistics Company
Information System

Fig. 3. Identified use cases

The company wants to upgrade its system in order to enable intelligent search
of optimum routes taking into account weather information coming from differ-
ent internet providers and information owned by transport companies such as
delivery times, transportation costs, availability of service for a certain route
stretch, etc. The candidate routes are obtained from cartographies available in
the Web.

Besides the search for the most adequate routes and transport companies,
the logistics company wants to make use of the aforementioned integrated infor-
mation to provide its clients with real time tracking about their shipments.

The information that the new application will use is encoded according to
different formats. The weather information providers expose their information
in XML according to a given XML schema. The transport companies provide a
set of Web services in order to facilitate the interoperability with the logistics
company. The cartographies are published in the Semantic Web as instances that
conform to a given ontology. The logistics company will also use information
stored in a relational database coming from its own information systems.

There are several information providers of each type: weather information,
transport companies and cartography providers. None of the different XML
schemas, Web service descriptors or ontologies that these providers use to specify
its information formats are unique, that is, each provider models its information
according to different criteria.

Given this set of Business Requirements, the three first tasks of an hypothet-
ical Requirements Elicitation and Analysis episode are summarised next.

Task 1. Identify the Use Cases. Taking into account the Business Re-
quirements facilitated by the logistics company, the development team starts
identifying the use cases, finding the two use cases shown in Figure 3.

The first use case, Obtain Optimum Route, identifies the individual interac-
tions between the logistics company system and the different external systems
when obtaining an optimum route. The purpose of second use case, Track Ship-
ment, is to show the interactions between the customer of the logistics company
with the system and the interactions of the system with the external information
provider systems.

Both of the use cases can be seen as realisations of the Query Information use
case presented in Section 3. The template in the catalogue has to be instantiated
by the development team by identifying the concrete primary actor and the set
of stakeholders including the external systems and modifying the flow of the
main success scenario and extensions.

Task 2. Identify Application Characteristics and Constraints. With
respect to the Ontologies Dimension, the application is characterised by the con-
sumption of own and foreign ontologies. Thus, the application is not bound to
the particular domain of the logistics company. The ontologies also are not cen-
tralised in a single resource but distributed in multiple sources so there exists
Ontologies Ubiquity. With respect to the Ontologies Dynamicity characteristic,
it is not specified in the business requirements if the ontologies are constantly
changing, so it is supposed that the ontologies are gathered and engineered at
design time. With respect to the Ontologies Hugeness characteristic, the appli-
cation will not operate at scale with a huge number of ontologies. Because the
application will deal with different ontologies produced by different organisa-
tions, these ontologies may have different encodings (e.g., RDF(S) or OWL),
they can exhibit differences in quality, computational heterogeneity (lightweight
and heavyweight ontologies), they can be modelled according to different criteria
and they will exhibit conceptual heterogeneity that should be solved with the
use of mappings; thus, the Ontologies Heterogeneity characteristic is guaranteed.
The use of different ontologies that somehow have to be interrelated will lead to
a network-of-ontologies typology.

With respect to the Data Dimension, the application is characterised by the
consumption of own and foreign data. In consequence, there exists Data Do-
main Openness. As happened with the ontologies, the data is not centralised in
a single resource , that is, there exists Data Ubiquity. Also, the application is
characterised by the use of dynamic data that is constantly changing so there ex-
ist Data Dynamicity. The data is gathered, selected, combined and processed at
run-time. With respect to the Data Hugeness characteristic, the application has
to operate at scale with a huge number of instances. There is Data Heterogeneity
because data is encoded in different forms that are semantic and non-semantic.

With respect to the Reasoning Dimension, the development team can ad-
vance that heavyweight logical reasoning is not a key aspect of the application.
Because the application has to deal with the heterogeneity of ontologies and
instances explained before, the reasoning has to be hybrid and enabled by the
combination of lightweight logical reasoning and other kinds of reasoning. Besides
the application should deal with contradictory information coming from different
cartography providers, contradictory weather previsions, etc. And, furthermore,
it is not guaranteed that the information used will be always complete because
the system will process information from different providers that the logistics
company does not own.

Finally, with respect to the System Interoperability Dimension, the system
will interoperate with legacy databases and will use the distributed services
provided by the transport companies.

Logistics Company

Application

Weather Information
Providers

Cartography Providers Transport Companies

Corporate
Database

aligned with
Weather Provider

data

aligned with

query

Cartography
Ontology

Geographical
Instances

conforms to

aligned with

Transport
Web Service

annotates

Logistics Shared
Ontology

Application
queries

Datasources with shared vocabulary

aligned with aligned with

Datasources with
schema

1

Datasources with
schema

N

Shared vocabulary

Fig. 4. Identified system model

Task 3. Identify System Models. As an example, the system model
sketched for the first use case is the one shown in Figure 4. The different in-
formation sources in every stakeholder system are represented: the weather in-
formation providers have XML data that conforms to certain XML schemas; the
cartography providers own a set of semantic geographical data that conforms
to given cartography ontologies; the transport companies publish on the Web
a set of services used to interoperate with their own systems; and the logistics
company owns a database with information generated by a legacy system.

5 Conclusions and Future Work

In this paper we have introduced a method for carrying out the Requirements
Elicitation and Analysis activity for semantic applications. We have defined the
tasks involved within the activity in the context of an iterative development life-
cycle. This is particularly useful when application requirements are changing
continuously during the whole application construction.

For this, we have adapted several requirement elicitation techniques taken
from Software Engineering. We provide catalogues of general use cases and sys-
tem models in order to be adapted by the software engineer during the require-
ments process. In addition, a set of applications characteristics and constraints
that commonly appear in semantic applications have been provided and are in-
tended to help the developers in identifying the semantic requirements of the
application under development. The set of application characteristics and the
catalogues of use cases and system models are being defined within the NeOn1

project. They will be available in a collaborative public space in the future in

1 http://www.neon-project.org/

order to be commented, specified and populated. The evaluation of the results
is intended to be done through the aforementioned community website as well
as within the real-world NeOn case studies.

The use cases and system models produced following this process allow an
easy understanding of the system requirements for users and developers while
incorporating the semantic particularities of the application.

The definition of the Requirements Engineering process is the first stage in
the construction of a rigorous and sound methodology for the development of
a new generation of large-scale semantic applications. This methodology will
provide the necessary framework to organise and manage the development of
semantic applications and will be specially focused on facilitating the use of
semantic technologies to software engineers. The next steps will be to define the
Design Process, wich will lead to the definition of the architecture of a semantic
application using reusable components, and to evaluate the whole methodology
within several case studies in the context of the NeOn project.

Acknowledgements

This work has been partially supported by the NeOn project (IST-2005-027595).

References

1. Aquin, M., Motta, E., Sabou, M., Angeletou, S., Gridinoc, L., Lopez, V., Guidi,
D.: Towards a New Generation of Semantic Web Applications. IEEE Intelligent
Systems 23 (2008)

2. Motta, E., Sabou, M.: Next Generation Semantic Web Applications. In: 1st Asian
Semantic Web Conference, Beijing (2006)

3. Domingue, J., Fensel, D.: Towards a Service Web: Integrating the Semantic Web
and Service Orientation. IEEE Intelligent Systems (2008)

4. Krummenacher, R., Simperl, E., Fensel, D.: Scalability in Semantic Computing:
Semantic Middleware. In: Proceedings of the IEEE Conference on Semantic Com-
puting. (2008) 538–544

5. Jasper, R., Uschold, M.: A Framework for Understanding and Classifying Ontol-
ogy Applications. In: Twelfth Workshop on Knowledge Acquisition Modeling and
Management KAW 99. (1999)

6. Kozaki, K., Hayashi, Y., Sasajima, M., Tarumi, S., Mizoguchi, R.: Understanding
Semantic Web Applications. In: 3rd Asian Semantic Web Conference (ASWC 2008).
(2008)

7. Coskun, G., Heese, R., Luczak-Rösh, M., Oldakowski, R., Schäfermeier, R., Streibel,
O.: Towards Corporate Semantic Web: Requirements and Use Cases. Technical
report, Freie Universität Berlin (2008)

8. Sommerville, I.: Software Engineering. Eighth edn. International Computer Science
Series. Addison-Wesley (2007)

9. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley
Professional (1999)

