
Semantic-based Automated Evaluation of Company
Core Competence

Simona Colucci13, Eugenio Di Sciascio1, Francesco M. Donini2, and Eufemia
Tinelli34

1 SisInfLab–Politecnico di Bari, Bari, Italy
2 Università della Tuscia, Viterbo, Italy

3 D.O.O.M. s.r.l., Matera, Italy
4 Università degli Studi di Bari, Bari, Italy

Abstract. Core Competence evaluation is crucial for strategical choices in knowl-
edge intensive companies. Such a process is usually manually performed by the
management on the basis of subjective criteria, which can then cause non-optimal
decisions, especially in wide companies. We propose here a semantic-based ap-
proach for the automatic evaluation of Core Competence, exploiting novel rea-
soning services in Description Logics, extracting commonalities in a collection
of resource descriptions. Such inferences aim at identifying features shared at
least by a significant portion of a collection of professional profiles formalized
in accordance with a logic language. We are in fact not necessarily interested in
competence shared by the whole company personnel.

1 Introduction

In [11] the notion of Core Competence was introduced to indicate the strategic knowl-
edge of a company. A core competence is defined as a sort of capability providing
customer benefits, hard to be imitated from competitors and possessing leverage poten-
tial. Further definitions of Core Competence have been proposed in the literature in the
attempt of finding methods for detecting such a specializing knowledge [13, 15].

The process of individuating Core Competence is in fact usually characterized by
high complexity and low objectivity because of the intangibility of knowledge itself and
difficulties inherent in formalizing them. The automation of Core Competence extrac-
tion process asks in fact for company know-how to be described according to a language
endowed with formal semantics. If employee profiles and organization knowledge are
formalized in a collection of concept descriptions according to a formal language con-
veying semantics, the management could extract company Core Competence by search-
ing for features shared in such a collection. In particular, Description Logics [1] offer
inference services specifically aimed at identifying concept collection commonalities.
Least Common Subsumers(LCS) have in fact been defined [7] — originally for the
DL underlying Classic [6]— with the specific purpose of determining the most specific
concept description subsuming all of the elements of a given collection.

Usefulness of LCSs has been shown in several different application fields, such as
the bottom-up construction of knowledge bases [2], inductive learning algorithms [8]
and information retrieval [14].



Noteworthy, all above introduced application scenarios share the need of individu-
ating features which are common to all of the elements in a given collection.

In Core Competence evaluation, instead, the issue is determining commonalities
of a significant portion of the collection rather than of the collection as a whole. The
problem reverts then to finding a concept subsuming a significant number, or percent-
age, of elements in the collection. The degree of significance may be chosen by the
management on the basis of organizational needs.

In order to perform such extraction process in a Knowledge Representation frame-
work, we define concepts which are LCS of k elements in a collection of n descriptions,
with k < n. We give the name k-Common Subsumers to such concepts.

The rest of this paper is organized as follows: in the next Section we briefly in-
troduce the DL formalism we adopt; then we outline our motivational case study and
its formalization in DLs. In Section 4 we detail k-Common Subsumers and three more
specific reasoning services needed for the commonalities extraction process, provided
in Section 5. Introduced services are illustrated in the motivating organizational context
in Section 6, before closing the paper with conclusions.

2 Basic Description Logics

We start recalling here basics of the formalism we adopt, based on Description Logics
(DLs). DLs are a family of formalisms and reasoning services widely employed for
knowledge representation in a decidable fragment of First Order Logic.

The alphabet of each DL is therefore made up by unary and binary predicates, de-
noted as Concepts Names and Role Names, respectively. The domain of interest is
represented through more expressive and complex Concept Descriptions, involving
constructors over concept and role names. The set of constructors allowed by a DL
characterizes it in terms of expressiveness and reasoning complexity: of course the more
a DL is expressive, the harder is inferring new knowledge on its descriptions.

Concept Definitions allow to assign an unique concept name to complex con-
cept descriptions: the so called Unique Name Assumption (UNA) holds in every DL.
Names associated to concept descriptions constitute the set of Defined Concepts, dis-
tinguished by Primitive Concepts not appearing on the left hand side of any concept
definition and corresponding to the concept names.

Concept Inclusions detail instead specificity hierarchies among concepts, either
defined or primitives. Role Inclusions are also aimed at detailing specificity hierarchies,
but among roles.

The set of concepts inclusions and definitions represents the formal representation
of the domain of interest, the intensional knowledge which takes the name TBox in DL
systems and Ontology in the generic knowledge representation framework.

The motivating scenario we here propose needs at least the expressiveness of ELHN
sublanguage of DLs for resources representation. ELHN allows of course for the con-
structors provided in every DL: conjunction of concepts(e.g.C++ u Java), negation
of atomic concepts (¬Skill), top concept(>, interpreted as the whole domain) and
bottom concept (⊥, interpreted as the empty set). The following constructors are fur-
thermore available: existential restriction (e.g. ∃knowsLanguage.English), num-



ber restrictions (e.g. (≤ 2 knowsLanguage) and (≥ 3 hasExperienceYears))
and role inclusion (e.g. advancedKnowledge v basicKnowledge).

3 Motivating Case Study

The investigations on the problem of evaluating Core Competence in knowledge inten-
sive companies originate from a real need we faced in the implementation of IMPAKT,
a novel and optimized semantic-based knowledge management system, which will be
released late this year. by D.O.O.M. s.r.l.

IMPAKT is specifically aimed at semantic-based human resources management [9]
and provides Core Competence extraction as decisional support service.

Hereafter we use Description Logics for knowledge representation and, for the sake
of simplicity, assume that the only source of company know-how is company personnel.
As a result, a company which needs to automatically extract its Core Competence has
to formalize the knowledge profiles of employees according to the vocabulary provided
by a TBox describing skill management domain.

An excerpt of the inclusions and the assertions composing the TBox at the basis of
our case study is given in Figure 1 and Figure 2, respectively.

Operations Management w
{

OperationsOptimization
Process Management
ProductionManagement

SoftwareEngineering w
{
UML

Programming w





ScriptLanguages w
{
Javascript
VBscript

OOP w
{
Java
C++

StrucProgramming w C

InformationSystems w

{
DBMS

ERPsystem w
{
SAP

TCP/IP

OperatingSystems w
{
Unix
Windows

AssetAllocation w HumanResourcesManagement

basicKnowledge w advancedKnowledge

Fig. 1. TBox Inclusions

The extraction process is grounded on the reasonable assumption that Core Compe-
tence, although characterizing a company, has not necessarily to be held by the whole
personnel, but at least by a significant portion of it. A competence shared by all of the
employees could be in fact too generic, if the objective is, for example, identifying skills
to invest on in long term strategy.

Consider the tiny organizational scenario in which the following employees are em-
ployed:



Manager ≡ ∃advancedKnowledge.(ManagementTechniques u (≥ 8 hasExperienceYears))
AssetManager ≡

Manager u ∃advancedKnowledge.(AssetAllocation u (≥ 5 hasExperienceYears))
Engineer ≡ ∃advancedKnowledge.(Design u (≥ 5 hasExperienceYears)) u

∃hasMasterDegree.Engineering u ∃basicKnowledge.OperationsOptimization
ManagerialEngineer ≡ Engineer u ∃basicKnowledge.ERPsystem u

∃advancedKnowledge.(ProductionManagement u (≥ 3 hasExperienceYears)) u
∃advancedKnowledge.(Process Management u (≥ 3 hasExperienceYears))

CSEngineer ≡ Engineer u ∃advancedKnowledge.OperatingSystems u
∃advancedKnowledge.(Programming u (≥ 5 hasExperienceYears)) u
∃advancedKnowledge.(SoftwareEngineering u (≥ 3 hasExperienceYears))

Fig. 2. TBox Definitions

– Antonio: Computer science engineer with advanced knowledge about Java since
more than 3 years, UML since more than 3 years and about Unix and a basic knowl-
edge of Information Systems;

– Claudio: Managerial Engineer with basic knowledge about SAP and software en-
gineering and advanced knowledge about Java since more than 2 years;

– Roberto: Asset Manager with advanced knowledge about human resources man-
agement since more than 5 years and C++ and VB Script;

– Daniele: Engineer with basic knowledge of data base management systems and
advanced knowledge of C since more than 5 years and Javascript since 3 years.

The four profiles are formalized according to the given TBox as shown in the fol-
lowing:

Antonio = CSEngineer u ∃advancedKnowledge.(Java u (≥ 3 hasExperienceYears)) u
∃advancedKnowledge.Unix u ∃advancedKnowledge.(UML u (≥ 3 hasExperienceYears)) u
∃basicKnowledge.InformationSystems

Claudio = ManagerialEngineer u ∃basicKnowledge.SAP u ∃advancedKnowledge.(Java u
(≥ 2 hasExperienceYears)) u ∃basicKnowledge.SoftwareEngineering

Roberto =
AssetManager u ∃advancedKnowledge.C++ u ∃advancedKnowledge.(HumanResourcesManagement u
(≥ 5 hasExperienceYears)) u ∃advancedKnowledge.VBscript

Daniele = Engineer u ∃advancedKnowledge.(C u (≥ 5 hasExperienceYears)) u
∃basicKnowledge.DBMS u ∃advancedKnowledge.(Javascript u (≥ 3 hasExperienceYears))

It is noteworthy that the employees competence descriptions need the full expressive-
ness of ELHN to convey all the embedded semantics. We therefore in the following
refer to such a DL for modeling our case study.

It is easy to observe that the only characteristic shared by the four employees of
our tiny case study is ”an advanced knowledge about programming”. Such a feature
might obviously be too generic to be considered for Core Competence identification.
The management of a company needs instead to take into account features shared by
significant subsets of the collection made up by the employees; the minimum required
number of employees may be set by the management on the basis of a decisional pro-
cess. As an example, if the management accepts that three employees have to hold some
knowledge to consider it part of Core Competence, we can state that the company has
advanced knowledge about object oriented programming as Core Competence. Such



a result is more significant than the first one w.r.t. to the objective of determining the
fields of excellence of the company.

Of course, the more the extracted knowledge is specific and unknown to the manage-
ment, the more the automated process we propose is useful for achieving competitive
advantage.

4 Inference Services

In the following we start recalling standard services we use in our approach and then
proceed to introduce non-standard ones. The most important —and well-known— ser-
vice characterizing reasoning in DL checks for specificity hierarchies, by determining
whether a concept description is more specific than another one or, formally, if there is
a subsumption relation between them.
Definition 1 (Subsumption) Given two concept descriptions C and D and a TBox T in
a DL L, we say that D subsumes C w.r.t. T if for every model of T , CI ⊂ DI . We
write C vT D, or simply C v D if we assume an empty TBox.

We recall Least Common Subsumer definition by Cohen and Hirsh [8], before in-
troducing new services based on it.
Definition 2 (LCS) [8] Let C1, . . . , Cn be n concept descriptions in a DL L. An LCS
of C1, . . . , Cn, denoted by LCS(C1, . . . , Cn), is a concept description E in L such that
the following conditions hold:(i) Ci v E for i = 1, . . . , n ;(ii)E is the least L-concept
description satisfying (i), i.e., if E′ is an L-concept description satisfying Ci v E′ for
all i = 1, . . . , n, then E v E′.

It is well known that, if the DL L admits conjunction of concepts “u”, then the LCS
is unique up to concept equivalence (since if both E1 and E2 are common subsumers
of C1, . . . , Cn, then so is E1 u E2). Moreover, if union of concepts “t” is allowed in
L, then for every set of concepts C1, . . . , Cn ∈ L, their LCS is C1 t · · · t Cn. Hence,
the study of LCS is limited to DLs not admitting union.

In order to deal with partial commonalities, we defined [10] common subsumers of
k concepts in a collection of n elements.
Definition 3 (k-CS) Let C1, . . . , Cn be n concepts in a DL L, and let be k < n. A
k-Common Subsumer (k-CS) of C1, . . . , Cn is a concept D such that D is an LCS of k
concepts among C1, . . . , Cn.

By definition, LCSs are also k-CSs, for every k < n. For this reason we defined
[10] a particular subset of k-CSs, adding informative content to the LCS computation.
Definition 4 (IkCS) Let C1, . . . , Cn be n concepts in a DL L, and let k < n. An
Informative k-Common Subsumer (IkCS) of C1, . . . , Cn is a k-CS E such that E is
strictly subsumed by LCS(C1, . . . , Cn).

We also defined [10] concepts subsuming the maximum number of elements in a
collection:
Definition 5 (BCS) Let C1, . . . , Cn be n concepts in a DLL. A Best Common Subsumer
(BCS) of C1, . . . , Cn is a concept S such that S is a k-CS for C1, . . . , Cn, and for every
k < j ≤ n every j-CS ≡ >.

The Least Common Subsumer, when not equivalent to the universal concept, is
of course the best common subsumer a collection may have: it subsumes the whole



collection. As a consequence, the computation of BCSs for collections admitting LCSs
not equivalent to> is meaningless. For such collections, we alternatively proposed [10]
the following service:
Definition 6 (BICS) Let C1, . . . , Cn be n concepts in a DL L. A Best Informative
Common Subsumer (BICS) of C1, . . . , Cn is a concept B such that B is an Informative
k-CS for C1, . . . , Cn, and for every k < j ≤ n every j-CS is not informative.
Proposition 1 If LCS(C1, . . . , Cn) ≡ >, every BCS is also a BICS.

5 Commonalities Extraction

In the following we show how to find commonalities in concept collections formalized
in DL in accordance with outlined services.

In the computation of common subsumers of a collection of concept descriptions
C1, . . . , Cn we assume that all concepts Ci in the collection are consistent; hence Ci 6≡
⊥ for every Ci ∈ (C1, . . . , Cn).

The reasoning services introduced in Section 4 ask for the concepts of the input
collection to be written in components according to the following recursive definition:
Definition 7 (Concept Components) Let C be a concept description in a DL L, with
C written in a conjunction C1 u · · · u Cm. The Concept Components of C are defined
as follows: if Cj , with j = 1 . . . , m is either a concept name, or a negated concept
name, or a number restriction, then Cj is a Concept Component of C; if Cj = ∃R.D ,
with j = 1 . . . , m, then ∃R.> is a Concept Component of C; if Cj = ∀R.E, with j =
1 . . . , m , then ∀R.Ek is a Concept Component of C, for each Ek Concept Component
of E.

Observe that we do not propagate universal restriction over existential restriction
since existential restriction always simplify to a component of the form ∃R.>. For the
computation of the sets of k-CSs, IkCSs, BICSs and BCSs of a collection of concepts
we define in the following a Subsumers Matrix, for the representation of the collection
itself.
Definition 8 (Subsumers Matrix) Let C1, . . . , Cn be a collection of concept descrip-
tions Ci in a Description Logic L and let Dj ∈ {D1, . . . , Dm} be the Concept Com-
ponents deriving from all concepts in the collection. We define the Subsumers Matrix
S = (sij) , with i = 1 . . . n and j = 1 . . .m, such that sij = 1 if the component Dj

subsumes Ci, and sij = 0 if the component Dj does not subsume Ci.
Definition 9 Referring to the Subsumers Matrix of C1, . . . , Cn, we define:

Concept Component Cardinality (TDj ) : cardinality of sigDj , that is, how many con-
cepts among C1, . . . , Cn are subsumed by Dj . Such a number is

∑n
i=1 sij ;

Maximum Concept Component Cardinality (MS): maximum among all concept com-
ponent cardinalities, that is, MS = max{TD1 , . . . TDm};

Second Maximum Concept Component Cardinality (PMS): maximum among the
cardinalities of concept components not subsuming all n concepts in the collection
(PMS = max{TDj |TDj < n}); by definition PMS < n;

Definition 8 hints that the computation of Subsumers Matrix includes an oracle to
subsumption. As a consequence the following proposition holds:



Proposition 2 Let L be a DL whose subsumption problem is decidable in polynomial
time. Then Subsumers Matrix in L is computable in polynomial time too.

Such a result causes the computation of common subsumers in DLs with different
complexities for subsumption to be treated separately. We therefore concentrate on the
DL needed for modeling our case study, ELHN , even though some considerations are
logic independent and preliminary to the determination of common subsumers in every
DL.

Firstly, we define the solution sets for the introduced reasoning services, regardless
of the DL employed for the representation of concepts in a given collection: BCS, set
of BCSs; BICS, set of BICSs; ICSk, set of IkCSs of the collection, given k < n;
CSk, set of k-CSs of the collection, given k < n.
Proposition 3 Given a DL L and a collection of concept descriptions in L, for each
k < n the solution sets of the collection are such that ICSk ⊆ CSk. If the collection
admits only the universal concept as LCS, then B = BI also holds.

The commonalities extraction process in ELHN relies on computation results for
LCS computation. Baader et al. [3] showed that, even for the small DL EL, the shortest
representation of the LCS of n concepts has exponential size in the worst case, and this
result holds also when a TBox is used to shorten possible repetitions [5]. Such a result
affects the computation of the introduced solution sets of common subsumers, as stated
in the following theorem.
Theorem 1 The computation of the solution sets BCS, BICS, CSk, ICSk for a col-
lection of concept descriptions in ELHN may be reduced to the problem of computing
the LCS of the subsets of the collection.
Proof For computing CSk it is sufficient to compute for every subset {i1, . . . , ik} ⊆
{1, . . . , n} the concept LCS(Ci1 , . . . , Cik

).
The same holds for ICSk, excluding those LCS(C1, . . . , Ck) which are equivalent to
LCS(C1, . . . , Cn). For the computation of the sets BCS and BICS, instead, we pro-
vide Algorithm 1 that uses the one proposed by Kusters and Molitor [12] for LCS com-
putation. The algorithm takes as input the collection C1, . . . , Cn represented through
its Subsumers Matrix. Consider now the Concept Components of the elements Ci in
the collection: the reduction in Step 2 of Definition 7 causes not all the components to
be straightly included in the solution sets BCS and BICS. For example, consider the
concept description C1 = AssetManager u ∃basicKnowledge.Psychology:
the resulting concept component is D1 = ∃basicKnowledge.> and
D2 = ∃advancedKnowledge.> (taking also into account the TBox definitions in
Figure 2 ). Even though such component is selected for the determination of the solution
sets, it just individuates the concepts in the collection to consider for the determination
of BCS and BICS. For each component Dj we denote LCSDj the LCS of the Ci

such that sij = 1. Algorithm 1 requires the computation of the LCS of l concepts —
with l ≤ n— in lines 3, 6. Similarly to the approach used in [4] we limit the size on
the input collection from n to l, and we compute the LCS of the l concepts as shown in
[12]. The problem of determining the solution sets of a collection may be then reduced
to the computation of the LCS of subsets of the collection itself.



Input : Subsumers Matrix S = (sij) for a collection of concepts Ci ∈ {C1, . . . , Cn} in ELHN
Output: BICS; BCS
if MS = n then1

BCS := ∅;2
foreach Dj s.t. TDj

= PMS do BICS := BICS ∪ LCSDj
;3

else4
foreach Dj s.t. TDj

= MS do5
BCS := BCS ∪ LCSDj

;6
BICS := BCS;7

return BCS , BICS;8
Algorithm 1: An algorithm for Common Subsumers enumeration in ELHN

6 Case Study Solution

In order to better clarify the proposed services we apply the commonalities extraction
process detailed in Section 5 to our tiny example scenario.

The input collection therefore is made up by the four profiles in Section 3. Let 50%
be the required level of competence coverage set by company management to individu-
ate Core Competence. We are hence interested in determining competence shared by at
least two employees out of the four in the company.

In order to compute the set CS2, it is sufficient to compute the LCS of all subsets
of cardinality 2:

LCS(Antonio, Claudio) =
Engineer u ∃advancedKnowledge.(Java u (≥ 2 hasExperienceYears)) u
∃basicKnowledge.SoftwareEngineering u ∃basicKnowledge.InformationSystems

LCS(Antonio, Roberto) = ∃advancedKnowledge.OOP
LCS(Antonio, Daniele) = Engineer u ∃advancedKnowledge.(Programming u

(≥ 5 hasExperienceYears)) u ∃basicKnowledge.InformationSystems)
LCS(Claudio, Roberto) = ∃advancedKnowledge.OOP
LCS(Claudio, Daniele) = Engineer u ∃advancedKnowledge.(Programming u

(≥ 2 hasExperienceYears)) u ∃basicKnowledge.InformationSystems
LCS(Roberto, Daniele) = ∃advancedKnowledge.ScriptLanguages

All elements in CS2 have to be investigated w.r.t. the LCS of the collection to
identify Informative 2-Common Subsumers. We need then to compute such a concept:
LCS = LCS(Antonio, Claudio, Roberto, Daniele) = ∃advancedKnowledge.Programming .

Each element in CS2 is more specific than LCS and then belongs also to ICS2.
We use instead Algorithm 1 for computing the sets BCS and BICS. The algorithm

requires the concept collection Subsumers Matrix as input; so we have to compute it
first. The concept components coming from the collection are computed according to
Definition 7 and take into account TBox definitions in Figure 2. As a result we have
the three concept components as in the following: D1 = ∃hasMasterDegree.>,
D2 = ∃advancedKnowledge.>, D3 = ∃basicKnowledge.>.

The collection subsumers matrix is shown in Figure 3 and is characterized by the
following values: MS = 4, PMS = 3.

By applying Algorithm 1 we have that BCS := ∅ (line 2) and we need to compute,
according to line 3, LCSD1 and LCSD3 . It is straightforward to notice that LCSD1 ≡
LCSD3 , so the only BICS for the collection is:

LCS(Antonio, Claudio, Daniele) = Engineer u ∃advancedKnowledge.(Programming u
(≥ 2 hasExperienceYears)) u ∃basicKnowledge.InformationSystems



D1 D2 D3
Antonio x x x
Claudio x x x
Roberto x
Daniele x x x

Fig. 3. Example Collection Subsumers Matrix

Thanks to the commonalities extraction process proposed here, the company in our
tiny case study discovered some new information about the fields of excellence char-
acterizing its know-how. In particular, by computing the LCS of the collection of em-
ployee profiles, the company management may discover that the whole personnel knows
Programming at an advanced level, which is quite a generic sort of information, proba-
bly well known by the company.

More significant and unknown commonalities may be found by computing the set
of IkCSs: i) knowledge embedded in Engineer job title together with an advanced
knowledge in Java, related to two years of working experience, and a basic knowledge
in Information Systems and software engineering; ii) advanced knowledge about object
oriented programming;iii) advanced knowledge about script languages. Such common-
alities are therefore informative w.r.t. the objective of determining unknown fields of
excellence in the company.

Moreover the company may discover, thanks to the computation of BICSs, that
knowledge shared by the maximum number of employees in the company (excluding
Programming which is shared by all employees) is an advanced knowledge of pro-
gramming related to 2 years of experience, together with the knowledge embedded in
Engineer job title and a basic knowledge in Information Systems.

In large knowledge intensive companies, like multinational ones, the proposed ap-
proach may hence help to detect hidden fields of excellence of a company, especially if
out of the core business, thus representing a potential source of competitive advantage.

7 Conclusions

Motivated by the need to identify and extract so called Core Competence in knowl-
edge intensive companies, and by the limits of LCS in such a framework, we have
exploited informative common subsumers in Description Logics, useful in application
fields where there is the need to extract significant informative commonalities in con-
cept collections, and such commonalities are not shared by the entire collection. We
have proposed definitions, algorithms to compute such informative common subsumers
for ELHN and presented simple complexity results.

Obviously our approach requires competencies be modeled in accordance with an
ontology, but as semantic-based languages and technologies gain momentum it is rea-
sonable to assume that more and more companies will move towards a logic-based
formalization of their skills and processes and be able to take advantage of proposed
and other relevant non-standard services.



Acknowledgment

This work has been supported in part by and Apulia Region funded projects PE 013
Innovative models for customer profiling, PS 092 DIPIS and PS 025 L’OrMaICT.

References

1. F. Baader, D. Calvanese, D. Mc Guinness, D. Nardi, and P. Patel-Schneider, editors. The
Description Logic Handbook. Cambridge University Press, 2003.

2. F. Baader and R. Küsters. Computing the least common subsumer and the most specific
concept in the presence of cyclic ALN -concept descriptions. In Proc. of KI’98, volume
1504 of LNCS, pages 129–140, Bremen, Germany, 1998. Springer–Verlag.

3. F. Baader, R. Küsters, and R. Molitor. Computing least common subsumer in description
logics with existential restriction. Technical Report LTCS-Report 98-09, RWTH Aachen,
1998.

4. F. Baader and R. Molitor. Building and structuring description logic knowledge bases us-
ing least common subsumers and concept analysis. In Proc. of ICCS’00, pages 292–305,
London, UK, 2000. Springer-Verlag.

5. F. Baader and A.-Y. Turhan. On the problem of computing small representations of least
common subsumers. In Proc. of KI 2002, volume 2479 of LNAI, Aachen, Germany, 2002.
Springer.

6. A. Borgida, R.J. Brachman, D. L. McGuinness, and L. Alperin Resnick. CLASSIC: A struc-
tural data model for objects. In Proc. of ACM SIGMOD, pages 59–67, 1989.

7. W. Cohen, A. Borgida, and H. Hirsh. Computing least common subsumers in description
logics. In Paul Rosenbloom and Peter Szolovits, editors, Proc. of AAAI’92, pages 754–761,
Menlo Park, California, 1992. AAAI Press.

8. W. Cohen and H. Hirsh. Learning the CLASSIC description logics: Theorethical and exper-
imental results. In Proc. of KR’94, pages 121–133, 1994.

9. S. Colucci, T. Di Noia, E. Di Sciascio, F.M. Donini, and A. Ragone. Semantic-based skill
management for automated task assignment and courseware composition. Journal of Uni-
versal Computer Science, 13(9):1184–1212, 2007.

10. Simona Colucci, Eugenio Di Sciascio, and Francesco M. Donini. Partial and informative
common subsumers of concepts collections in description logics. In Proceedings of the 21st
International Workshop on Description Logics (DL 2008), volume 353. CEUR, 2008.

11. G. Hamel and C. K. Prahalad. The core competence of the corporation. Harvard Business
Review, May-June:79–91, 1990.

12. R. Küsters and R. Molitor. Structural Subsumption and Least Common Subsumers in a
Description Logic with Existential and Number Restrictions. Studia Logica, 81:227–259,
2005.

13. C. Markides and P. J. Williamson. Related diversification, core competences and corporate
performance. Strategic Management Journal, 15:49–65, 1994.

14. R. Möller, V. Haarslev, and B. Neumann. Semantics-based information retrieval. In Proc. of
IT & KNOWS’98, Vienna, Budapest, 1998.

15. R. Nelson. Why do firms differ, and how does it matter? Strategic Management Journal,
12:61–74, 1991.


